

The Sixth International Conference on Efficient Building Design

Materials and HVAC Equipment Technologies

Pathways and Solutions towards Net-Zero Whole-Life Carbon Buildings by 2050

Beirut, Lebanon | October 4, 2024

Prof. Dr. Shady Attia

Sustainable Building Design Lab, UEE, Applied Sciences, University of Liège, Belgium shady.attia@uliege.be in /in/shady-attia-14352a7 () /www.shadyattia.org

Acknowledgment

Beirut 04/10/2024

Prof. Dr. Nesreen Ghaddar

.

fib

IABSE

S

Global consensus on sustainability in the built environment

- High level policy advice
- More than 150 nations
- 5000+ experts
- 50+ years of expert networks
- Standards and guidelines
- Research and education
- Innovation
- .

See on-line presentation from COP28 for more details

Shaping Tomorrow's Built Environment Today

Cause of Climate Change

Climate Disruptions in MENA

- Floods
- Sea Level Rise
- Wind Storms
- Heat Waves
- Fires
- Power outages
- Earthquakes
- Water Shortages
- Air Pollution
- Pandemics
- 2024 Dubai
- 2023 Darna
- 2021 Beirut
- 2019 Chouf
- 2018 Jeddah
- 2016 Kuwait

Source: Aerial view of Derna, Libya, on September 10-11, 2023. AYMAN AL-SAHILI / REUTERS

Global Climate Change Paris Agreement 2015 Targets Compatibility

Pathways and Solutions towards Net-Zero Whole-Life Carbon Buildings by 2050

Shady Attia

Carbon Neutral Communities

Storage & Scale the Core of Carbon Neutrality

Micro Grids

Source: Attia, S. (2025) Net Zero Energy Buildings (NZEB), Elsevier, 2nd

What cause climate change?

No greenhouse gases

What cause climate change?

With greenhouse gases

Pathways and Solutions towards Net-Zero Whole-Life Carbon Buildings by 2050

LIÈGE université

What cause climate change?

Molecule	x or %	μmol mol ⁻¹ (ppmv) ^a (2014)	μmol mol ⁻¹ (ppmv) (1750)
N_2	0.78 or 78%	780 900	780 900
O_2	0.21 or 21%	209 400	209 400
H ₂ O	0.03 (100% humidity, 298 K)	30 000	31 000
H ₂ O	0.01 (50% humidity, 298 K)	10 000	16 000
Ar	0.01 or 1%	9300	9300
CO ₂	3.8×10^{-4} or 0.038%	393	280
Ne	1.8×10^{-5} or 0.002%	18	18
CH ₄	1.77×10^{-6} or 0.0002%	1.80	0.72
N ₂ O	3.2×10^{-7} or 0.00003%	0.32	0.27
O_3^{b}	3.4×10^{-8} or 0.000003%	0.034	0.025
All CFCs ^c	8.7×10^{-10} or $8.7 \times 10^{-8}\%$	0.0009	0
All HCFCs ^d	$1.9 \times 10^{-10} \text{ or } 1.9 \times 10^{-8}\%$	0.0002	0
All PFCs ^e	8.3×10^{-11} or $8.3 \times 10^{-9}\%$	0.00008	0
All HFCs ^f	6.1×10^{-11} or $6.1 \times 10^{-9}\%$	0.00006	0

Climate change indicator?

From Energy Use Intensity to GHG Emissions Intensity

Measuring Energy Emissions

Why Whole-Life Carbon Buildings

'Embodied' and 'operational' impacts

Source: https://www.smartlivinglab.ch/en/infrastructures/smart-living-building/

Reducing 'embodied' impacts

Life cycle phases of buildings

Source: https://www.smartlivinglab.ch/en/infrastructures/smart-living-building/

Lifecycle Stages of Buildings: ISO 14040

Why whole life cycle carbon?

Embodied Emissions

ISO 14040

- 1. Comprehensive Carbon Footprint Assessment
- 2. Long-term Sustainability Goals Climate-neutral by 2050.
- 3. Regulatory Efficiency Resources efficiency
- 4. Market Transformation accelerate the adoption of green technologies
- 5. Holistic Environmental Impact: circular economy

Figure 1: Lifecycle stages of building carbon. Data source: BS EN 15978:2011 Source: Bowles, Cheslak, and Edelson 2022

Net-Zero Whole-Life Carbon Buildings

EU Carbon Neurality 2050

- 1. All-electric buildings
- 2. Low carbon buildings
- 3. Decarbonization of heating & cooling
- 4. Decarbonization of Energy Mix
- 5. Low carbon building services

Why whole life cycle carbon?

Denmark

- regulation year: 2023
- all new buildings > 1000 m₂
- system boundary: A1-A3, B4, B6, C3-C4
- lifespan: 50 years
- from 2025: max. 7,1 kg $CO_{2-eq}/m_2/year$
- 1,5 kg CO_{2-eq} /m₂ / year: A4-A5

France

- regulation year: 2022
- all new buildings > 50 m₂
- system boundary: A1-A5
- lifespan: 50 years
- from 2022: max. 640-980 kg CO_{2-eq} /m₂,
- depending on building typology

- WLC regulation for all/non-residential buildings implemented/agreed
- WLC regulation for all/non-residential buildings planned
- LCA reguirement for public buildings implemented/ agreed

The Nederlands (MilieuPrestatie Gebouw)

- regulation year: 2017
- all new buildings > 100 m₂
- system boundary: A1-A5
- lifespan: 75 years (residential)
- from 2021: ≤ 0.8
- (DGBC max. 200-260 CO_{2-eq}/m₂GFA)

<u>Sweden</u>

- regulation year: 2022
- all new buildings > 1000 m₂
- (single-family houses excl.)
- system boundary: A1-A5
- lifespan: 50 years
- from 2025: max. 180-460 CO_{2-eq}/m₂ GFA, depending on building typology

Attia, S., et al. (2021)

Operational vs Embodied emissions

GHG Emissions

Embodied and Operational Emissions

Modelle Gebaude	☐ Alle ☑ ID_ Test IFC.ifc Gebäudename		
LCA-Datenbank	Oekobaudat_2021-II	Ŧ	
Berücksichtigung Baukonstruktion	🗹 Material-Datensätze 🗹 Bauteil	-Datensätze	
Berücksichtigung TGA	● Ohne ○ Vereinfacht ○ Vollst	ändig	
Gespeicherte Betriebsbilanz		✔ Laden	
	1/2 : 100%		
Freehole ledes und se	- internet		
Ergebnis laden und sp	beichem		0.0
Ergebnis speichern	Variante 2	Ergebnis speichern	
Ergebnis wählen	Variante 2	✓ Ergebnis löschen	
	Ergebnis anzeigen	Alle Ergebnisse anzeigen	
Ergebnisübersicht			6
Ergebnisübersicht	Ŀ,		
Ergebnisübersicht GWP-Bilanz des Gebäudes	s		
Ergebnisübersicht GWP-Bilanz des Gebäudes	s 12.0 12.2		
Ergebnisübersicht GWP-Bilanz des Gebäudes	s 12.0 12.2		
Ergebnisübersicht GWP-Bilanz des Gebäudes	12.0 12.2		

2023, Operational emissions:
4 kgCO2.equiv. per m2 for new residential buildings

2023, Embodied emissions (Office)
24 kgCO2.equiv per m2

 2025 Operational + Embodied emissions:

7,1 kgCO2.equiv. per m2 for new residential buildings: A1-A3, B4, B6, C3-C4

1,5 kg CO2-eq /m2 / year: A4-A5

Source: DGNB, Sebastian Theißen, BIM-based emissions modeling

Corporate ESG strategies

- 1. Tenants demanding low-carbon spaces
- 2. Office buildings reflect corporate carbon commitments
- 3. Market is seeing rents for these spaces rise due to demand

SCOPES OF EMISSIONS

Many of the mostly widely used construction materials are from carbonintensive heavy industries

Categories of carbon negative materials

Timber

Straw

Cork

Biochar

Biomineralization Captured carbon (Low carbon aggregates)

Coupling of Embodied and Operational GHG Emissions Modeling

Source: Attia, S. (2025) Net Zero Energy Buildings (NZEB) , Elsevier, 2nd

Some low carbon solutions

Nr.	Low carbon solutions	Category		
1	Renovate instead of building new			
2	Design for flexibility, resilience and extended lifespan	Circularity principles and downsizing in the conceptual design stage		
3	Design for disassembly			
4	Re-use existing materials in construction			
5	Optimize the use of space in offices, residential buildings			
6	Design based on light construction method instead of massive construction			
7a	Use industry by-products instead of cement			
7b	Use recycled concrete and other by-products as aggregate for new concrete	Carbon reduction in material selection and sourcing		
8	Reduce concrete demand through material use optimization in (structural) design			
9	Offsite construction and design for less waste on-site			
10	Use of locally sourced materials and clean transportation			
11	Use timber structures in new construction			
12	Use hybrid (concrete + timber) structures in new construction	Carbon reduction in material		
13	Use timber roof elements in standard structure	selection and sourcing – bio- based materials		
14	Use other bio-based materials			

Building Stock Renovation

Evaluate systematic strategies to increase the deep renovation rate before implementation to gain time, money and energy.

Zero Net Carbon Buildings De Tippe Zwolle (F6), The Netherlands

Pathways and Solutions

Zero Net Carbon Buildings Definition

An ZNC is a gridconnected, carbon-efficient building that balances its total annual carbon emissions by on-site generation.

A ZNC building is a **highly energy efficient** building that produces onsite, or **procures, enough carbon-free renewable energy** to meet building operations energy consumption annually.

Source: Attia, S. (2025) Net Zero Energy Buildings (NZEB) , Elsevier, 2nd

Electrification + Decarbonization

ASHRAE Standard 189.1, 2020

IEQ, Energy Efficiency and RES Balance

Cooling, Heating and Mixed Energy Demand Balance

Decarbonization of Heating

Attia, S. (2035) Net Zero Energy Buildings (NZEB), Elsevier, 2nd

Zero Net Carbon Buildings All Electric with Heat Pumps

Attia, S. (2025) Net Zero Energy Buildings (NZEB), Elsevier, 2nd

Worlds largest heat pump to be installed in Helsinki, Finland.

- 1. Full heating production capacity ranges from 20-33 MW, depending on the air temperature,
- 2. Can help deliver heat up to 90 degrees Celsius (194 Fahrenheit) while operating at temperatures as low as -20 degrees Celsius (-4 Fahrenheit).
- 3. The heat pump will provide heat for 30,000 homes in Helsinki annually, roughly saving 26,000 tonnes of CO2 emissions.

Source: MAN Energy Solutions

Industrial heat pumps are reaching ever-higher temperatures

- 1. Industrial heat pumps can supply heat with more than 200C now.
- 2. Most of the heat pumps in the upper range are steam compressors, compressing steam generated by a bottom-cycle closed-loop heat pump.

Source: Industrial electrification report Rosenow

District Heating & Cooling

4th Generation: District heating grid with a

collective source

5th Generation: Thermal energy directly from the subsurface (T 5 – 25°C)

District Heating Grid: 5th Generation

The Neutral Grid: Centralized Heat Pumps

4th Generation vs. 5th Generation

4th Generation

5th Generation

Carbon Neutral Communities

Storage & Scale the Core of Carbon Neutrality

Resilience

Micro Grids

Source: Attia, S. (2018) Net Zero Energy Buildings (NZEB), Elsevier, 2nd

Energy Storage Systems The Core of Carbon Neutrality

Zero Net Carbon Buildings Plug-In Battery

∮ homewizard

2 kWh and 5 kWh cover all households equipments and appliances

Source: https://www.homewizard.com/

Regulations on Refrigerants

- 1. EU Directive introduced in 2006 on the direct impact of air conditioning systems
- 2. February 2024: EU set a steeper schedule for phasing down fluorinated gases
- 3. Prohibition of product categories: Chillers, Heat Pumps and Split Air Conditioning systems

. 8

-	1st January 2027	
-	1st January 2035	
-	1st January 2029	
-	1st January 2033	
	+ + + +	 1st January 2027 1st January 2035 1st January 2029 1st January 2033

ISO 817

Modern refrigerants – new characteristics

- Efficiency remains the same
- Capacity increases
- Technology only available for small inverter-driven compressors
- Specified due to availability of small DX compressors using inverters to manage higher discharge temperature
- R290 Propane (GWP 3)
- Used in industrial refrigeration for many years, known domestically in use for outdoor heaters and cookers
- Low GWP
- Non-toxic
- Good thermodynamic properties, making it highly energy efficient in systems
- Flammable

R410A (GW 2088)

R32 (GWP 675)

- Good energy efficiency
- Higher cooling capacity
- Superior heat transfer coefficient which allows for better heat exchange
- Higher operating pressures which should be reflected in system design correctly sized components are essential to optimize energy efficiency.

ISO 817

GHG emissions generated by refrigerant leakage

GHG Operation = $\Sigma n \Sigma k W n$, k · (GHGk + GHGup,k) + $\Sigma n \Sigma r Gn r \cdot \tau n \cdot \omega r \cdot \alpha + \Sigma n \Sigma j M n$, j · GHG up, j

where GHGOperation: the GHG equ. Emissions during the operation stage in kgCO2;
Wn, k: The amount of energy k consumed by the operation of the HVAC type of equipment (pipeline);
Gn, r: The amount of type r refrigerant charged by type n equipment, kg;
Tn: Operating year of the HVAC device, year;
wr: GWP value of the r refrigerant;
α: Annual leakage rate of refrigerant;
Mn, j: The amount of type j material consumed to maintain type n equipment (piping), kg;

Source: Attia, S., Petersen, S., Hoxha, E., Gobbo, É., Bertini, A., Dasse, M., Abu-Ghaida, H., Heiranipou, M., Al-Obaidy, M., Norouziasa, A., & Stephan, A. (2024). Framework to Model Building Carbon Emissions. (Version 5). Liege, Belgium: Sustainable Building Design Lab, Liege, Belgium, doi: 10.13140/RG.2.2.15338.73925/4

New refrigerants – new rules

Refrigerant	GWP	Saf ISO
R718 (Water)	0	A1
R744 (CO2)	1	A1
R290 (Propane)	3	A3
R1234yf	4	A2
R1234ze	7	A2
R454b	466	A21
R513A	631	A1
R32	675	A2
R410A	2088	A1

Safety class ISO 817; PED (EU)	
A1 (non-flammable)	
A1 (non-flammable)	
A3 (higher flammability)	
A2L (mildly flammable)	
A2L (mildly flammable)	
A2L (mildly flammable)	
A1 (non-flammable)	
A2L (mildly flammable)	
A1 (non-flammable)	

Future influences:

- Achieving low-carbon buildings
- Growth of hydronic technologies and low GWP- refrigerants
- Advanced control and monitoring systems
- Retrofit balance
- Balance what's possible and what's practical

ISO 817

Pathways and Solutions towards Net-Zero Whole-Life Carbon Buildings by 2050

Zero Net Carbon Buildings

Smart Meters & Grid Mix Emission Factors

CE

-08-68-AA-00-07-08-48

exion 01120190123 | Made in Taiwan

25°C to + 55°C

- Net-Zero Energy ≠ Net-Zero Carbon
- Belgium has a 15 min grid mix factor

Property of Horizon Energy Infra Ltd

APR 1

E M21

- Hold to OK

 Annual operational emissions calculations based on dynamic factors and export/import fluctuations

EMISSION FACTOR [g/kWh]												
2022	MONTH											
2023	1	2	3	4	5	6	7	8	9	10	11	12
1	411	517	487	484	500	543	580	544	512	470	480	383
2	406	516	484	473	474	534		532	509	472	479	380
3	402	516	478	467	475	534		529	506	472	479	379
4	400	517	483	464	480	533		529	506	473	480	380
5	403	519	485	467	487	533		533	509	476	483	383
6	415	523	493	477	498	536			518	486	489	391
7	429	529	500	487	502	535			527	492	499	402
8	441	531	498	479	489	518		524	521	497	505	411
9	447	522	483	454	463	487	508	493	494	486	498	415
10	446	501	462	422	426	451	467	457	461	462	486	414
g 11	440	481	441	389	390	421	434	421	425	439	476	408
ម្ព័ 12	434	466	426	365	365	400	410	393	396	418	471	404
5 2 13	432	458	420	351		387	396	378	376	404	470	404
	437	460	420	344	345	379	389	371	368	401	479	409
15	447	473	430	344	348	379	391	372	372	411	495	420
16	460	494	448	356	360	389	401	384	391	433	516	429
17	468	521	473	381	383	408	420	408	424	466	520	430
18	469	540	499	425	416	440	456	450	475	505	511	426
19	464	540	513	478	459	481	498	498	526	521	502	421
20	457	530	512	517	497	519	541			513	495	415
21	448	523	505	522	518	546	572			502	491	407
22	440	520	500	511	511					493	486	399
23	434	520	500	500	499	551			529	487	486	396
	105		100	107	100				510		100	

ISO 52000-3:2023

Converting the primary energy use intensity to GHG emissions

Measuring Epacy Emissions

Carbon Neutral Communities

From Single Building to Community

Carbon Neutral Communities

From Single Building to Community

- Either average or marginal grid mix scenarios are typically adopted
- Environmental data sources are usually based on averages:
 - Real-time Generation Mix Data
 - Carbon Intensity of Each Source:
 - Power Demand and Grid Load:
 - External Data Sources:
 - Emissions Factor Calculation:
 - Updating the Signals through smart grids

Source: NREL.

Source: https://trellis.net/article/health-economic-and-community-benefits-zero-carbon-buildings/

Pathways and Solutions

The transition towards zero-emission buildings

Framework for Building Modelling

For Zero Carbon Buildings

10 Modules

Paris-goal-compatible assessment method

evaluate the assessment methods proposed or required by current climate policies, aiming to check their compatibility with meeting the science-based carbon targets ٠ and budgets

Attia, S., Petersen, S., Hoxha, E., Gobbo, E., Bertinit, A., Dasse, M., et al. (2024) Framework to Model Building Carbon Emissions, Report, Sustainable Building Design Lab, Liege University, Liege, Belgium. DOI: 10.13140/RG.2.2.15338.73925/3

Conclusion

What should be focused on:

- Adopt the new indicators of GWP and Module A-B-C + (D)
- Get experienced with carbon numbers through EPDs (databases)
- Use consistent methodology and software

Zero Carbon Emissions Buildings Ingredients:

- > Reduced building area
 > Minimized car parking
 > High-Performance envelope
 > Electric heating & cooling
 > Biogenic materials
 > 40% window-to-wall ratio
- > Plug-in batteries
- > Solar PV on roof and facades

Directions:

Begin by setting a decarbonization performance goal and limit for your project. Start by mixing the smallest building area with the minimal parking. Next, add a high-performance building envelope alongside an electric heating and cooling system. Add a pinch of solar PV and a large scoop of biogenic materials and run the energy and life cycle impact assessment simulations.

Questions?

The Sixth International Conference on Efficient Building Design

Materials and HVAC Equipment Technologies

Pathways and Solutions towards Net-Zero Whole-Life Carbon Buildings by 2050

Beirut, Lebanon | October 4, 2024

Prof. Dr. Shady Attia

Sustainable Building Design Lab, UEE, Applied Sciences, University of Liège, Belgium shady.attia@uliege.be in /in/shady-attia-14352a7 () /www.shadyattia.org

Attia, S., Petersen, S., Hoxha, et al. (2024). Framework to Model Building Carbon Emissions. (Version 5). Liege, Belgium: Sustainable Building Design Lab. doi: 10.13140/RG.2.2.15338.73925/4;

Attia, S. (2025) Net Zero Energy Buildings (NZEB), Elsevier, 2nd Edition, Camridge, UK

- Alaux, N., Saade, M. R. M., Hoxha, E., Truger, B., & Passer, A. (2023). Future trends in materials manufacturing for low carbon building stocks: A prospective macro-scale analysis at the provincial level. Journal of Cleaner Production, 382, 135278.
- An, J., Wu, Y., Gui, C., & Yan, D. (2023). Chinese prototype building models for simulating the energy performance of the nationwide building stock. Building Simulation, 16(8), 1559–1582. https://tinyurl.com/3z8kyzwu

ASHRAE, S. (2021). Standard 189.1- Standard for the Design of High-performance Green Buildings. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 66.

Attia, S. (2023). DynamicRenowave: Life Cycle Assessment and Energy Simulation of Building Renovation Strategies. https://www.sbd.uliege.be/dynamicrenowave

Attia, S., & Petersen, S. (Directors). (2024, April 24). Building Carbon Emissions Modeling Framework (Webinar 1). https://www.youtube.com/watch?v=50fzJ9yCAkA

Bertini, A., & Dasse, M. (Directors). (2024, April 24). Building Carbon Emissions Modeling Framework (Webinar 2). https://www.youtube.com/watch?v=4B3Cs4ewIVc&t=1662s

CEN. (2019). 15804:2019+A2 sustainability of construction works—Environmental product declaration—Core rules for the product category of construction products. Brusssles, Belgium.