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Abstract

Allelic variability in the adaptive immune receptor loci, which harbor the gene

segments that encode B cell and T cell receptors (BCR/TCR), is of critical

importance for immune responses to pathogens and vaccines. Adaptive immune

receptor repertoire sequencing (AIRR-seq) has become widespread in immunology

research making it the most readily available source of information about allelic

diversity in immunoglobulin (IG) and T cell receptor (TR) loci. Here we present a
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novel algorithm for extra-sensitive and specific variable (V) and joining (J) gene allele

inference, allowing reconstruction of individual high-quality gene segment libraries.

The approach can be applied for inferring allelic variants from peripheral blood

lymphocyte BCR and TCR repertoire sequencing data, including hypermutated

isotype-switched BCR sequences, thus allowing high-throughput novel allele

discovery from a wide variety of existing datasets. The developed algorithm is a part

of the MiXCR software.

We demonstrate the accuracy of this approach using AIRR-seq paired with long-read

genomic sequencing data, comparing it to a widely used algorithm, TIgGER. We

applied the algorithm to a large set of IG heavy chain (IGH) AIRR-seq data from 450

donors of ancestrally diverse population groups, and to the largest reported

full-length TCR alpha and beta chain (TRA; TRB) AIRR-seq dataset, representing

134 individuals. This allowed us to assess the genetic diversity within the IGH, TRA

and TRB loci in different populations and to establish a database of alleles of V and

J genes inferred from AIRR-seq data and their population frequencies with free

public access through vdj.online database.

Introduction

Adaptive immune repertoire diversity plays a crucial role in shaping the immune

response and forming immunological memory. Most immune repertoire research has

focused primarily on somatically derived immune receptor diversity, namely V(D)J

recombination and somatic hypermutation (SHM) diversity. In recent years, however,

the extent of population diversity has begun to be appreciated at both the

immunoglobulin (IG) (Gidoni et al., 2019; Mikocziova et al. 2021; Corcoran et al.
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2023; Rodriguez et al. 2023; Gibson et al. 2023) and T cell receptor (TCR) loci

(Omer et al., 2022; M. Corcoran et al., 2023; Rodriguez et al. 2022). The functional

significance of allelic variation in adaptive immune loci has also been recognized in

the context of influenza, HIV and COVID-19 immunity and vaccination (Avnir et al.

2016; Lee et al. 2021; Leggat et al. 2022; Pushparaj et al., 2022).

Sequencing repertoires of adaptive immune receptors encoded by recombined

germline V, D and J genes have become a major source of information about

adaptive immune functions in health and disease. In recent years, AIRR-seq has

been utilized to discover many novel alleles in TR and IG loci, becoming one of the

major sources of information of the allelic diversity of TR and IG genes in different

populations. However, the major obstacle for utilizing AIRR-seq datasets for

genotyping and allelic discovery is the presence of somatically hypermutated

sequences in most available immunoglobulin AIRR-seq datasets, along with the

PCR and sequencing errors which affect both BCR and TR repertoire datasets.

Hot-spot hypermutations and sequence errors have significantly hindered the ability

to clearly detect individual polymorphisms. We aimed to overcome these issues with

the algorithm described in this paper. However, there are two other challenging

obstacles for accurate genotyping and haplotyping of TR and IG loci using AIRR-seq

data only. Common structural variants (SVs) in IG loci (Rodriguez et al. 2023),

especially gene duplications, in some cases make it hard to unequivocally map a

sequence from AIRR-seq data to a particular germline gene without an additional

source of information. Further, some alleles exhibit low usage levels, precluding their

detection with AIRR-seq. Despite these limitations, AIRR-seq data remain valuable

for applications focused on functional adaptive immune repertoires and their

fluctuations in different conditions.
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The ability to precisely call known allelic variants and infer novel ones from the same

AIRR-seq data could enable new analyses of germline variation contribution to

immune responses, and also improve the accuracy of many existing downstream

approaches. There are several published methods for genotyping and allelic

inference of V and J genes from AIRR-seq data (Table 1, numbers 2-5), however,

each has important limitations. TIgGER (Gadala-Maria, Yaari, Uduman, & Kleinstein,

2015; Gadala-Maria et al., 2019) and Partis (Ralph & Matsen, 2019) are based on

the idea that allelic sequence variants show a distinctive pattern over the background

of SHMs. On the other hand, IgDiscover (M. M. Corcoran et al., 2016), a very robust

and reliable tool for novel allele inference, requires data without hypermutations, thus

excluding much published immunoglobulin repertoire data. The recently developed

PIgLET software (Peres et al. 2023) has enhanced genotype inference capabilities

through the use of IGHV allele similarity clustering, although it is not designed to

infer novel alleles.
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Table 1. Tools for novel allele variants inference from AIRR-seq data and their
characteristics.

# Tool name Year Supported
chain type(s)

Supported
gene

type(s)

Programming
language(s)

Suitable for inference
from hypermutated

repertoires

1 MiXCR 2023 IGH, IGK, IGL,
TRA, TRB

V, J Java, Kotlin Yes

2 TIgGER 2015 IGH, IGK, IGL V R Yes

3 IgDiscover 2016 IGH, IGK, IGL,
TRA, TRB

V, D, J Python No

4 Partis 2019 IGH, IGK, IGL V C,C++,Perl,
Python Yes

5 ImPre 2016 IGH, IGK, IGL,
TRA, TRB

V, J C,Perl Yes

Existing tools also require considerable depth of AIRR-seq data for reliable allele

inference (for example, IgDiscover recommends at least 750,000 sequencing reads

per individual library). Such sequencing depth is costly and not available for most

publicly available AIRR-seq datasets. Here we present an algorithm for allelic

inference and genotyping from both hypermutated and non-hypermutated

repertoires, with low sequencing depth requirements. The algorithm performs well

starting with a minimalistic gene reference library of only one allele for each gene,

and even with some genes missing. These features make the tool especially useful

for studying allelic diversity in non-model species where reference gene libraries are

sparse and incomplete. The developed approach is integrated in MiXCR software

and is available as the findAlleles command. Starting with version 4.0,

MiXCR can process immune repertoire data directly from raw sequencing

reads in FASTQ format. The MiXCR upstream pipeline supports all

commercially available library preparation kits, as well as any custom

protocols. It handles pre-processing, sequence alignment, and clonal
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assembly based on customizable region of interest, such as the CDR3, the

whole VDJ region, or any user-defined region. The output of the upstream

pipeline can be generated in several formats: a highly efficient binary format, a

tabular format with customizable fields, or the AIRR format. The findAlleles

command can be executed on clonesets in binary format. For each individual

findAlleles outputs a personalized reference allele library in either FASTA,

tabular or json format.

The International ImMunoGeneTics Information System (IMGT®), established in

1989, is the oldest widely available source of information about immune receptors,

including alleles. Recent advancements in high-throughput adaptive immune

receptor repertoire sequencing (AIRR-seq) methods enabled a broader view of

alleles, and many tools were developed to infer allelic variants from such data. In

2017, the AIRR-Community (a network of over 300 practitioners in the field of

AIRR-seq, www.airr-community.org) and IMGT® agreed on a process for adding

new alleles inferred from AIRR-seq data to the IMGT® database (Ohlin et al., 2019).

The AIRR Community also introduced the Open Germline Receptor Database

(OGRDB, https://ogrdb.airr-community.org/, Lees et al., 2020), to track the addition

of new alleles. Although being the most recognized source of germline

immunoglobulin sequence data, IMGT® lacks information on population allele

frequencies and harbors sequences ‘mapped’ to the identified genes at the specific

genomic locations. However, structural variation is quite common (Rodriguez et al.

2023) in the IG and TR loci, while most new IG and TR sequence data is coming

from AIRR-seq experiments, and can be hard to map to a particular gemline locus

position. Other databases of immune receptor gene alleles have been introduced,
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such as pmTR (Dekker, van Dongen, Reinders, & Khatri, 2022,

https://pmtrig.lumc.nl/), IgPdb (https://cgi.cse.unsw.edu.au/~ihmmune/IgPdb) and

Karolinska Institutet human T cell receptor database (M. Corcoran et al., 2023,

https://gkhlab.gitlab.io/tcr/). A comprehensive and well-maintained database of

immune receptor gene alleles, including allelic variants inferred from AIRR-seq, is

VDJbase (Omer et al. 2020, https://vdjbase.org/). However, VDJbase is not

seamlessly integrated with any of the analysis tools, and using it for AIRR-seq data

analysis requires conversion of sequence data formats. To accompany the MiXCR

software, we have developed VDJ.online (https://vdj.online/library), a free and open

database of immune receptor allelic sequences that enables examination,

comparison, and downloading of sequences.The VDJ.online reference library is

supplied with the MiXCR, allowing seamless AIRR-seq data processing with

accurate V and J gene annotation, genotyping, and novel allele inference.

Results

Novel approach to V and J gene allele variants inference and genotyping

The main challenge of allelic inference from AIRR-seq data is the presence of

hypermutations, PCR and sequencing errors, with a large fraction of them being

hot-spot mutations occurring simultaneously in unrelated clones. We have overcome

this challenge by consecutively applying several filters based on two major

measures. The first one is the lower diversity bound, estimated as the number of

unique combinations of J and V genes and CDR3-lengths of clonotypes. The second

measure is based on the number of clonotypes with unmutated J and V genes.

Filters are applied both at individual mutation and at mutation set levels (see
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Methods for the detailed description). The mutations at germline-encoded positions

in CDR3 are recovered, when possible, by using non-mutated clonotypes matching

the inferred variants in the rest of the sequence. This approach allows both to infer

novel (undocumented) V and J gene alleles and to perform genotyping with high

sensitivity and precision.

Benchmarking of the V and J gene allele variants inference and genotyping

To assess the performance of the developed algorithm we utilized publicly available

datasets (Rodriguez et al. 2023) containing both AIRR-seq data and highly reliable

genotyping data of the IGH locus reconstructed using Pacific Biosciences HiFi

long-read sequencing from the same individuals. For the sake of comparison we

utilized 33 AIRR-seq data sets of sufficient sequencing depth (> 500,000 sequencing

reads) and at least 3,000 unique full-length clonotypes. Targeted long-read

sequencing of genomic DNA (as described in Rodriguez et al., 2023) allowed us to

observe the non-rearranged IGH locus, containing germline, unmutated IGHV and

IGHJ genes. Since these genes were not rearranged, and did not contain somatic

hypermutation, they provide a reliable ground truth for allele identification in our

comparison. However, in some individuals, not all genes of interest were captured by

the long-read sequencing. Consequently, we excluded the allele calls for these

genes from our comparison. AIRR-seq data, which was derived from peripheral

blood mononuclear cell samples containing both naive and antigen-experienced B

cells, expressing either unmutated or somatically hypermutated BCR sequences,

was used to infer the allele variants using our approach, with the PacBio germline

DNA sequences as the gold standard for the true alleles present in each individual
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(Rodriguez et al., 2020b). We also compared the performance of our algorithm to

TIgGER, the most widely cited tool for this task.

Upstream analysis, including sequence alignment to reference V and J gene libraries

and defining the full-length clonotypes, was performed using the tools’ recommended

pipeline, MiXCR’s analyze module (Bolotin et al., 2015,

https://mixcr.com/mixcr/reference/mixcr-analyze/), and Presto (Vander Heiden et al.,

2014) and Change-O (Gupta et al., 2015) from Immcantation framework

(https://immcantation.readthedocs.io). For further details please see the Methods

section. For the alignment step and V and J gene annotation we used a custom

minimalistic gene set library with only one allelic variant per V and J gene, derived

from a custom public genome reference to match the one used for the long-read

based genotyping (Rodriguez et al. 2020). Then we performed allele variant

inference and genotyping with both tools for all datasets containing more than 3,000

unique full-length clonotypes and compared the resulting individualized V and J gene

libraries with the accurate genotype inferred with the next generation long-read

sequencing (Rodriguez et al. 2023), comparing nucleotide sequences of the genes.

We also excluded poorly expressed allelic variants as determined by aligning the

reads to the individualized gene reference libraries. Thus, in our benchmarking we

focused on the question of detection of particular V or J gene allele sequences in the

participants’ AIRR-seq IGH data for the subsequent accurate clonotype annotation,

which is crucial for many downstream applications of such data (e.g. lineage trees

analysis). Importantly, we compared the abilities of both approaches using the

sparse reference libraries and AIRR-seq data, containing varying amounts of errors

and sequencing noise, including datasets incorporating unique molecular identifiers
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and not. Therefore, we consider our benchmarking relevant to real world applications

where the data quality is typically far from ideal in many aspects.

MiXCR on average detected 98% of the allelic variants of the V genes supported by

the long-read based genotyping, while TIgGER detected 81% of the V gene alleles

(Fig. 1A). MiXCR produced on average 1 allele call not supported by long-read

based genotyping, while TIgGER yielded 2 potential false positive calls (Fig. 1B).

The recall of TIgGER improved up to 94% on average when the upstream analysis

and allele inference was performed utilizing the full built-in reference library

containing all of the known alleles (Supplemental Fig. S1A). However, the number

of the allele calls not supported by the long-read sequencing also increased, up to 5

potential false-positive calls on average. (Supplemental Fig. S1B). We assume that

the TIgGER algorithm may exhibit improved performance when utilizing the full

reference library, due to the algorithm's inherent design. Even with the most recent

implementation utilizing the dynamic window as described by Gadala-Maria et al.

(2019), there may be instances where a novel allele could be obfuscated by another

novel allele that is more similar to the one in the minimal reference library. For

MiXCR, transition to full reference library resulted in only minor changes in

performance (Supplemental Fig. S1A, S1B).

The difference in the number of called alleles between the two algorithms was also

apparent when we compared rates of detection of the de novo inferred alleles.

TIgGER did not detect on average 14% of alleles absent in the starting reference

gene library, while MiXCR missed none of the alleles (Fig. 1C).

To test the sensitivity of the approaches we also downsampled the dataset to

500,000, 100,000, 50,000 and 10,000 raw sequencing reads. MiXCR allele detection

rates decreased by 9 percentage points down to 89% on average when
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downsampled to 50,000 reads, which is more than 10x downsampling for all of the

datasets. TIgGER detection rates also deteriorated by 23 percentage points,

detecting on average 58% of alleles with 50,000 reads. At the extreme level of

downsampling by 10,000 sequencing reads MiXCR was able to detect 70% of alleles

on average, while TIgGER yielded an error for 21 of the samples due to the low

number of clones assigned to any of the V genes (Fig. 1D). The number of potential

false-positive calls did not increase with lower downsampling depth. For MiXCR,

there was a slight decrease in false positives at each downsampling step.

Expectedly, both tools produced no potential false-positive calls at extreme

downsampling depths (Fig. 1E). For MiXCR, the detection of the alleles clearly

depended on the two variables - the frequency of the V gene in a particular

repertoire and the imbalance in usage between different alleles for a particular V

gene. For TIgGER, these parameters appeared to have little influence on detection

rates (Fig. 1F). Sequencing quality influenced inference for both tools during

upstream processing. TIgGER filters sequences based on average Phred quality

scores, while MiXCR uses an adjustable threshold for each position. MiXCR's

stringent default criteria resulted in no alleles being recovered for one sample at a

50,000 reads downsampling depth and for several more samples at 10,000 reads

due to extensive read filtering. For the task of detecting J gene allelic variants, for

which could not be performed with TIgGER, MiXCR yielded 100% sensitivity and

specificity even with the datasets downsampled to 50,000 reads (Supplemental Fig.

S2).

Furthermore, we compared the runtime of both tools and found that, on average,

there was no significant difference. However, the runtime variability for TIgGER was

considerably greater (Supplemental Fig. S3).

11

 Cold Spring Harbor Laboratory Press on October 29, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


To assess the influence of sequencing and PCR errors on MiXCR inference

performance, we compared results from data generated with and without unique

molecular identifiers (Supplemental Fig. S4 A, B), which are known to eliminate

these errors (Shugay et al., 2014). Additionally, we evaluated the impact of somatic

hypermutation (SHM) load on allele inference performance (Supplemental Fig. S4

C, D). The number of potential false positive calls was unaffected by SHM frequency

or by the presence of sequencing errors in data generated without using unique

molecular identifiers (Supplemental Fig. S4 B, D). However, the fraction of false

negative calls was influenced by both parameters (Supplemental Fig. S4 A, C).
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Figure 1. Detection of allelic variants of V genes by inference tools. a, Fraction of

allele calls supported by long-read based genotyping. b, Number of allele calls not supported

by long-read based genotyping. c, Fraction of alleles, missed by MiXCR or TIgGER, by

presence in the initial reference library. d, e Sensitivity and specificity testing by

downsampling each sample in the benchmarking dataset by 500,000, 100,000, 50,000 or

10,000 reads. d, fraction of identified allele calls supported by long-read based genotyping.

e, number of identified allele calls not supported by long-read based genotyping. f, detection

of the allele variants of V genes depending on V usage and allelic imbalance. Each dot

represents a V gene allele present in the donor's genotype confirmed by long-read

sequencing. The upper row represents detection by the developed algorithm; the lower,

allele detection by the comparison tool TIgGER. Columns represent different depths of

downsampling by number of aligned reads, from right to left: full set of reads, 500,000,

100,000, 50,000, 10,000. V gene, and allele frequencies for each facet were calculated

using the full set of reads and allele-resolved V and J gene reference library. Alleles

excluded due to low expression (<10 clonotypes), are represented as empty crossed points.

N=33 for a - e panels.
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Numerous IGH, TRA and TRB novel alleles detected using MiXCR allele

inference

To investigate allelic diversity in human populations we applied the developed

algorithm to a large collections of IGH (450 individuals) and full-length TRA and TRB

(134 individuals) AIRR-seq datasets. The MiXCR allele inference and genotyping

pipeline resulted in identification of both known and previously undocumented

alleles, 384 IGHV, 128 TRAV, 144 TRBV, 14 IGHJ, 64 TRAJ, and 14 TRBJ in total.

Numerous previously undocumented alleles, absent from major databases

mentioned above (OGRDB or IMGT), were detected: 183 IGHV, 33 TRAV, 7 TRAJ,

41 TRBV (Fig. 2 A-D, F). Of note, we did not detect any novel variant for any of the

IGHJ and TRBJ genes (Fig. 2E). All of the novel alleles sequences were contributed

to the public database of allelic variants and are available for download at

https://vdj.online/library.

Divergent allele frequency distribution in IGHV genes in African population

The considered IGH AIRR-seq datasets included repertoires from African, Asian,

European, and Hispanic/Latino individuals (Fig. 3A). We did not observe significant

differences in the number of detected novel IGHV alleles per donor between these

groups (Fig. 3B). The sufficient sample sizes in the European and African

populations allowed us to investigate differences in the number of IGHV and IGHJ

alleles and allelic distributions between these two groups. The number of detected

alleles was similar for all of the J genes (Fig. 3C) and most of the V genes with the

exception of IGHV1-3, IGHV1-69, IGHV3-53 and IGHV4-30-2 (Fig. 3D).
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On the other hand, the allele frequency distribution in the African population was

significantly different than that of other populations for 38 IGHV genes

(Supplemental Fig. S5,6). Some V genes, even those with similar frequencies in a

typical human repertoire, showed very distinct allele distributions. For example,

several alleles of IGHV1-69 and IGHV3-48 appear at intermediate frequencies in the

populations studied. In contrast, IGHV3-23 had only one predominantly represented

allele, while IGHV3-7 had several alleles at the level of nucleotide sequence

differences, but encoding the same amino acid sequence (Fig. 4). For these V

genes, where the alleles were more evenly distributed, the allele distributions also

showed greater differences between ethnic groups (Fig. 4, Supplemental Fig.

S5,6).

The same difference was also observed for two of the IGHJ genes: IGHJ3 and

IGHJ6 (Supplemental Fig. S7). In TRBV and TRAV loci for most of the gene

frequencies, distributions were heavily skewed towards particular single allele

variants (Supplemental Fig. S8, S9), which may be attributed to a more

homogeneous cohort composition by ethnicity, with the predominant majority of

participants being of European descent.
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Figure 2. Number of observed novel and known alleles. a, TRAV. b, TRBV. c, IGHV. d, TRAJ. e, TRBJ. f, IGHJ
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Figure 3. IGHV and IGHJ allelic diversity by major ethnic groups. a, Cohort composition. b, Number of detected novel alleles,

normalized per number of individuals. c, Total number of detected alleles by IGHJ gene in European, African and general

population, normalized by downsampling to a fixed number of individuals (N=92). d, Total number of detected alleles by IGHV gene

in European, African and general population, normalized by downsampling to a fixed number of individuals (N=92). Comparison
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between ethnicities in each b,c, d was performed using permutation test (1000 permutations, * = p ≤ 0.05, ** = p ≤ 0.01,

non-significant not shown)

20

 Cold Spring Harbor Laboratory Press on October 29, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


323 5 3 2 1 113 3 104 96 8 39 37 28 10 9 8 6 5 2 1 1 1 1 1 1 1 1 1 1

65

63

12

6

27 2

10

6

3

20

19

4

26

4

8

4

4

24

1

1

1

32 23 10 5

1

2

3 6 2

1

1 1

1 1 1 1 1 1

IGHV1−69

All

European

African

Asian

Hisp./Lat.

01 12 13 51x 19 06 37x 02 04 09 10 05 15 53x 39x 17 52x 20 57x 27x 54x 55x 56x 58x 59x 60x 61x 62x 63x

554 1 42 17 1 6 4 4 4 2 1 2 1

80

90

18

6

2

5

2

6 4 4

1 1

IGHV3−23

All

European

African

Asian

Hisp./Lat.

01 19x 04 03 07x 12x 13x 11x 16x 14x 18x 17x 15x

185 80 228 1 202 4 1 1 1

23 12

49 23

8 3

1

48

14

8

4

41

45

10

5

1 1

1

1

IGHV3−48

All

European

African

Asian

Hisp./Lat.

01 04 02 06x 03 09x 08x 07x 05x

394 160 45 47 1 1 1 1

63 37 9 6

86 13 3 10

14 6 4 2

6 4

1

IGHV3−7

All

European

African

Asian

Hisp./Lat.

01 03 04 05 09x 06x 10x 12x

0.0 0.5 1.0

Allele
frequency

 Cold Spring Harbor Laboratory Press on October 29, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


Figure 4. IGHV gene allele frequencies in major ethnic groups for selected IGHV genes. Each column in heatmaps represents

a particular allele; numbers for novel alleles, first reported in this study, are colored in green; the letter 'x' designates alleles inferred

from AIRR-seq data, either in this study or previously, with the same sequences already present in OGRDB; bold lines separate

groups of alleles with different amino acid sequences; groups of alleles with the same amino acid sequence are ordered by the

aggregated frequencies of alleles; alleles within groups are order by allele frequency in the general population. Color represents the

allele frequency within the ethnic group; numbers in cells represent the number of occurrences of the corresponding allele.
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Discussion

Immune receptor repertoire sequencing datasets have become a valuable source of

information for studying immune responses across different health conditions,

tissues and cell subsets. Recently developed specialized algorithms (Gadala-Maria

et al., 2019; M. M. Corcoran et al., 2016; Zhang et al., 2016; Ralph & Matsen, 2019)

allow inference of allelic variants of V and J genes of adaptive immune receptors

from AIRR-seq data, scaling up the process of novel allele discovery and allowing

AIRR-seq data analysis using individualized gene reference libraries, which

significantly increases the accuracy and quality of many types of downstream

repertoire analyses. However, all of the current approaches demand high

sequencing depth and a significant number of unique receptor sequences for the

analysis. Moreover, many prior approaches do not allow allelic inference from both

hypermutated and non-hypermutated repertoires. The most comprehensive

approach for precise genotyping and allelic inference, utilizing long-read sequencing

of the immune receptor gene loci (Gibson et al., 2023; Rodriguez et al. 2023;

Rodriguez et al., 2020b), has the greatest accuracy, and also allows for the

investigation of structural variants. Although being the most desirable and accurate

way to obtain donor-specific V and J gene genotypes, this methodology is costly and

requires special experimental procedures. Here, we addressed this unmet need by

developing an alternative approach for inferring allelic variants of V and J genes

directly from AIRR-seq data, offering improved sensitivity and accuracy compared to

existing tools.

Our method allows for successful allelic inference from datasets downsampled to as

few as 50,000 sequencing reads. Moreover, the algorithm applicability is not
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restricted to a particular type of AIRR-seq data; it can be applied to both repertoires

containing hypermutated sequences (e.g., IGH repertoires generated from any

isotype) as well as datasets containing only non-hypermutated sequences (e.g.

TCR-repertoires). Multiple filtering steps integrated into our pipeline prevent

false-positive polymorphism calling which typically arises due to the presence of

hot-spot hypermutations and PCR and sequencing errors. Furthermore, we

demonstrate high sensitivity and specificity of the approach utilizing a very sparse

starting reference gene library, containing only one allelic variant per gene, which

makes it even more useful for studying allelic diversity in non-model species for

which V and J gene reference libraries are incomplete and lack allelic variants. We

assume that the improved sensitivity compared to the comparison tool is due to our

algorithm bypassing the regression modeling component, which requires a certain

number of sequences for a specific V gene to reliably infer alleles. The developed

approach is integrated within the MiXCR (Bolotin et al., 2015, https://mixcr.com)

pipeline for immune-repertoire analysis, and allows seamless allelic inference and

re-aligning repertoires to a personalized reference library.

Applying the developed approach to large collections of IGH, TRA and TRB

repertoire datasets, we were able to identify a large number of previously

undocumented V and J gene alleles. The number of novel IGHV alleles,

normalized per donor, did not significantly differ among the different population

groups. This finding suggests that the genetic diversity of IGHV genes even in

the relatively better-studied European populations is still not fully

characterized. Each additional sampling in the different population groups we

studied continues to reveal novel alleles at similar rates. To facilitate sharing

and usage of the discovered allele sequences we have established a
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database of allelic variants integrated with MiXCR and publicly available at

https://vdj.online/library.

Differences in allele frequency distributions may have major implications for

susceptibility of different populations to diseases and vaccination outcomes (Avnir et

al., 2016). Large sample sizes (450 individuals for IGH and 134 for TRA/TRB)

allowed us to estimate allele frequencies for most of the studied genes in the

population. For IGHV and J gene allelic variants we identify striking differences in

allele frequency distributions between African donors and other major population

groups. We also contributed the information on V and J gene allele frequencies to

VDJ.online, making it a valuable public resource of such information. Having

incorporated this database of allelic variants into the MiXCR platform, we hope that it

will facilitate further advancement in the immune repertoire analysis field, adding the

dimension of allele analysis with little additional effort and cost to many further

studies.
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Methods

Allele variants detection algorithm

The algorithm utilizes alignment and clonotype assembly information from the

upstream AIRR-seq data processing, specifically mutation calls from reference V

and J gene reference library for BCR or TCR clonotypes and V and J gene

annotations, readily available after running the ‘analyze’ command in the MiXCR

software (Bolotin et al. 2015). The clonotype definition for the purpose of allele

inference may vary depending on the region covered by sequencing.

Using these defined sets of mutations which differentiate the particular clonotype

sequences from the corresponding reference V or J gene, the algorithm then

separately infers alleles for V and J genes. For simplicity, we describe the algorithm

steps for V genes only, the J gene inference follows the same logic:

1. Clonotypes are grouped by the V genes. For the data without unique

molecular barcodes only clonotypes with read count greater than one are

utilized for subsequent analysis.

2. For each mutation within the group, including insertions and deletions, we

define a set of clonotypes which contain this mutation.

3. The mutations are filtered based on the lower diversity bound, estimated as

the number of unique combinations of J genes and CDR3-lengths of

clonotypes containing that mutation. The mutations that don’t exceed a

predefined threshold for the value are removed from each of the clonotype’s

mutation sets.
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4. Clonotypes are grouped by filtered mutation sets, including “empty” mutation

sets, containing no mutations. The lower diversity bound is calculated for each

of the groups as described above. Additionally, the number of clonotypes

containing no mutations in J gene after filtering as described in step 3 is

calculated. Mutation sets are then filtered by thresholds of these two

parameters, resulting in a list of allele candidates.

5. Clonotypes are then assigned to the closest allele candidates. Clonotypes

which can not be unambiguously assigned are filtered out. Lower bound of

naive diversity is calculated as the number of unique combinations of J genes

and CDR3-lengths for clonotypes with unmutated J gene sequences.

Candidates are sorted by the score which represents the weighted sum of the

lower bound of diversity and lower bound of naive diversity, calculated as

described above. Formula for the score:

𝑠𝑐𝑜𝑟𝑒 =  𝐷
𝑎𝑙𝑙

+  2 · 𝐷
𝑛𝑎𝑖𝑣𝑒𝐵𝑦𝐽𝑔𝑒𝑛𝑒

 

Where is the lower bound of diversity for all clonotypes; -𝐷
𝑎𝑙𝑙

𝐷
𝑛𝑎𝑖𝑣𝑒𝐵𝑦𝐽𝑔𝑒𝑛𝑒

lower bound diversity, calculated only for clonotypes with no mutations in J

gene.

6. Candidates with the score not lower than 0.35 of the maximum score are then

selected for the subject-specific gene set library.

7. Mutations at germline-encoded positions in CDR3 are recovered using the

non-mutated clonotypes, which totally match the inferred variants by the rest

of the sequence excluding CDR3. Each position is considered if it has at least

5 clonotypes covering it and 70% nucleotide concordance. The right-most
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position in CDR3, which meets these criteria, is reported by MiXCR

(reliableRegion field in tabular output). The rest of CDR3 is picked from

the closest allele in the database.

The process for inferring J gene alleles is the same, however the initial grouping is

performed by J genes and V genes are used for all of the filtering steps.

This stepwise approach based sequential filtering first on the level of individual

mutation and then on the level of mutation sets reduces noise introduced by SHM

and sequencing and PCR-errors. The threshold of 0.35 for the final allele filtering

was initially chosen from a theoretical consideration of possible distributions of

expressed alleles for a V gene allowing the presence of three allelic variants due to

possible V gene duplications. This was then corroborated by examining empirical

score distributions for alleles in sequencing of IGH repertoire of a healthy donor with

known genotype; in this case the donor was different from the one in the

benchmarking of the algorithm.

In case of a significant difference between the reference library and a particular

individual’s genotype, the algorithm repeats the steps described above twice, with

two different sets of parameters. The first step generates preliminary allele calls,

which allows more precise estimation of numbers of clonotypes with unmutated gene

sequences.

The algorithm always utilizes only one allele variant per gene as starting reference,

preventing potential biases towards particular known sequences. In case there is a

weak signal in a particular gene (usually represented by less than 20 clonotypes),

the algorithm falls back to assigning one of the known alleles.
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Finally, for all of the allele calls, the allele names are looked up in a reference

database (the same as available at https://vdj.online/library) by exact match of

nucleotide sequence. If there is no match the new name is derived from

concatenation of the closest allele and sequence hash.

The described algorithm is integrated into MiXCR as the findAlleles command.

Data collection and repertoire sequencing

For the benchmarking purposes we utilized IGH repertoire sequencing data,

accompanied by a targeted long-read IGH locus sequencing from Rodriguez et al.

2023, selecting samples which had at least 500,000 sequencing (N=40), which was

necessary for compatibility in downsampling experiments. IGH locus assembly and

variant detection characterizing novel alleles were performed using iGenotyper

(https://github.com/oscarlr/IGenotyper, Rodriguez et al. 2020b) as previously

described (Rodriguez et al. 2023). Briefly, IGenotyper utilizes BLASR (Chaisson, M.

J., & Tesler, G., 2012), WhatsHap (Martin et al., 2023), MsPAC (Rodriguez et al.,

2020a), and Canu (Koren et al., 2017) for read alignment, calling and phasing single

nucleotide variants, phasing reads, and assembling phased reads, respectively.

Using the genotypes generated with IGenotyper, we constructed reference allele

libraries in FASTA format for each participant. These libraries were then used to

match with AIRR-seq derived allele sequences in the benchmarking.

For calculating population allele frequencies we used publicly available IGH

AIRR-seq data from 6 published studies (total N=450) (Gidoni et al. 2019; Nielsen et

al. 2020; Nielsen et al. 2019; Roskin et al. 2015; Davis et al. 2019; Rodriguez et al.

2022).
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For generating high-quality full-length TCR repertoires, peripheral blood was

collected from 134 individuals without major chronic immunological conditions at

CHU of Liège, including COVID-19 patients and individuals after vaccination. 2.5 mL

of blood was collected on PAXGene RNA tubes from each participant and stored at

-80°C until use, RNA was extracted using the PAXgene Blood RNA Kit (Qiagen).

cDNA libraries were generated using SMARTer Human TCR a/b Profiling Kit v2

(Takara Bio USA, San Jose, California, USA). Briefly, a rapid amplification of cDNA

ends (RACE) approach with a template-switch effect was used to introduce 5’ adaptors

during cDNA synthesis. cDNA corresponding to TRA and TRB transcripts was further

amplified and prepared for sequencing, which was performed on a MiSeq instrument

with paired-end 2×300 bp reads using the NovaSeq 6000 SP Reagent Kit v1.5 (500

cycles) (Illumina, San Diego, California, USA). The protocol was approved by the

ethics committee of Liège University Hospital (approval numbers 2021-54 and

2020/107).

Benchmarking of allele variants detection and genotyping

Processing of the AIRR-seq data was performed using MiXCR v4.4.0

(https://mixcr.com, Bolotin et al. 2015) upstream pipeline ‘analyze’ command,

parallelized using GNU Parallel (Tange 2018). Importantly, for the alignment step and

V and J gene annotation we used a custom minimalistic gene set library with only

one allelic variant per V and J gene, derived from a custom public genome reference

to match the one used for the long-read assembly (Rodriguez et al. 2023). After

processing we excluded samples with the resulting number of full-length IGH

clonotypes less than 3,000 (N=7), which probably related to samples either with low

cell counts or with low RNA yield. Then the allelic variants were inferred and
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individual genotypes were reconstructed for each individual sample (N=33) with the

algorithm described above integrated into MiXCR pipeline as findAlleles

command.

To infer the alleles with the comparison tool, TIgGER (Gadala-Maria et al., 2019) we

used the same set of samples (N=33). For initial AIRR-seq data processing we

utilized tools pRESTO (Vander Heiden et al., 2014) and Change-O (Gupta et al.,

2015), which are the part of the Immcantation framework along with TIgGER

(https://immcantation.readthedocs.io), using commands and settings, recommended

by the documentation. TIgGER v1.0.1 functions findNovelAlleles and

inferGenotype were used for inferring novel alleles and reconstructing

genotypes.

To test the sensitivity of the approaches we downsampled the dataset to 500,000,

100,000, 50,000 and 10,000 raw sequencing reads using seqtk

(https://github.com/lh3/seqtk) v1.3 and applied the same upstream processing,

allele inference and genotyping pipelines as for the full datasets.

The resulting sets of allele sequences were exported from both tools in FASTA

format and matched with the sequences of the alleles present in the genotype of the

donor, previously recovered with iGenotyper (Rodriguez et al. 2023), and the

number of matches was determined. Comparison was performed on the sequences

remaining after removing primers, 5’ untranslated regions, and leader sequences.

Importantly, due to the fact that IGH repertoire sequencing data utilized for

comparison was derived using RNA-based technology, inference could be performed

only for expressed V and J gene alleles. Thus, we excluded non-functional alleles

and also those alleles from comparison which had less than 10 total clonotypes or
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less than 3 “naive” clonotypes with no mutation calls assigned to these alleles, when

utilizing the same MiXCR v4.3.2 upstream pipeline, but with the individual

allele-resolved V and J gene reference libraries constructed from long-read based

genotypes. Also we have excluded from comparison genes which were not captured

by the long-read sequencing. In particular, IGHJ genes were covered only for 9 of 33

considered individuals. For the benchmarking purposes, we excluded alleles for low

abundance genes with too low abundance, as defined by each of the tools. TIgGER

could not infer novel alleles for genes with less than 50 clonotypes assigned to it, so

we excluded such alleles from comparison for TIgGER. MiXCR reports the low

abundance genes for which the analysis is impossible with the parameters described

above. The average number of clonotypes assigned to those genes was less than

10, we excluded such alleles from comparison for MiXCR too. Finally, we have not

taken into account false negative and false positive polymorphism calls in the whole

CDR3 region for TIgGER; for MiXCR we applied stricter criteria and have not

considered false negative and false positive polymorphism calls outside

reliableRegion, defined by the tool as described above. The runtime for each of

the samples was benchmarked with the R package “bench” v. 1.1.3 (Hester &

Vaughan, 2023).

Novel allele inference and population frequencies

Processing of the AIRR-seq data for both BCR and TCR repertoires was performed

using MiXCR v4.3.2 analyze command. Repertoires containing less than 3000

unique clonotypes were not used for downstream analysis. The algorithm described

above for inferring novel alleles and genotyping was used by invoking

findAlleles MiXCR command under default settings. Alleles lacking designated
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names by the International Union of Immunological Societies were given interim

names composed of a number continuing the existing sequence, with 'x' letter added

after the number. Those not found in OGRDB, the most up-to-date database of

alleles inferred from AIRR-seq, were labeled as undocumented.

To compare the total number of alleles per V gene, we selected only European and

African populations due to their sufficient size. We downsampled these populations

to match the number of participants in the smallest group (N=92) and performed a

permutation test to statistically validate the findings. For both TCR and

immunoglobulin V and J gene alleles the number of haplotypes with these alleles

were estimated using output tables from findAlleles command, utilizing only

those alleles for which inference could be reliably performed as mentioned in the

generated reports. Each case where the only one allele per gene was indicated was

treated as a gene in homozygous state, thus not taking into account possible

deletions of the genes on one of the chromosomes. We also limited our analysis with

the genes detected in at least 15% of the donors. Allele frequencies were then

calculated by dividing the number of haplotypes for a particular allele by the total

number of haplotypes for this gene in the population. For the IGH data we also were

able to calculate allele frequencies for four major ethnic groups - African, Asian,

European, Hispanic/Latino (self-reported by participants, where missing assigned to

“unknown”).

To evaluate pairwise similarity between IGH allele frequency distributions in different

populations, we utilized Hellinger distance (Hellinger, 1909), calculated using the

following formula:

𝐻 𝑃, 𝑄( ) = 1
2 𝑖=1

𝑘

∑ ( 𝑝
𝑖

− 𝑞
𝑖
)

2
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where P and Q represent the distributions of alleles of a particular V or J gene in two

populations, and pi and qi represent frequencies of individual member i (one

particular allele) of total number of alleles for the gene k.

We utilized a permutation test to statistically validate differences in the number of

novel alleles (Fig. 3B), and the total number of alleles per gene (Fig. 3C, D), and

Hellinger distance between allele distributions (Supplementary Fig. S6), reshuffling

ethnicity labels 1,000 times, and then calculating the fraction of permutations where

we observed the same absolute difference (or Hellinger distance) between groups or

greater.

Software and packages

All downstream data analyses and visualizations were conducted using R version

4.3.2 (R Core Team, 2023) with the following packages: bench v. 1.1.3 (Hester &

Vaughan, 2023), Biostrings v. 2.70.3 (Pagès et al., 2024), ComplexHeatmap v.

2.15.4 (Gu, 2022; Gu, Eils, & Schlesner, 2016), cowplot v. 1.1.3 (Wilke, 2024),

fuzzyjoin v. 0.1.6 (Robinson, 2020), ggpubr v. 0.6.0 (Kassambara, 2023), spgs v.

1.0.4 (Hart & Martıńez, 2023), tidyverse v. 2.0.0 (Wickham et al., 2019), waffle v.

1.0.2 (Rudis & Gandy, 2023).
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Data access

Sequencing data generated in this study have been deposited in the ArrayExpress

database (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-13593.

MiXCR software including findAlleles module is free for academic nonprofit

research and could be obtained at https://github.com/milaboratory/mixcr. Code

required to reproduce the work is included as Supplemental Code.
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