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ABSTRACT

We show how we can  linearize  individual  probabilistic  linear  constraints  with 
binary variables when all coefficients are independently distributed according to 
either N(μi, λμi), for some λ > 0 and μi > 0, or Γ(ki, θ) for some θ > 0 and ki > 0. 
The constraint can also be linearized when the coefficients are independent and 
identically distributed and either positive or strictly stable random variables.
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1. Introduction

Many  combinatorial  optimization  models  address  problems  with  parameters 
which are impossible to predict exactly. Therefore, it is often more accurate to 
model these parameters with random variables. This modifies the structure of the 
optimization problems, depending on the times at which decisions are taken and 
parameters  are  revealed.  In  this  note  we  study  probabilistic  constraints:  all 
decisions must be taken here and now, such that the constraints of the model 
shall be satisfied with a certain probability. In other words, we aim at maximizing 
some objective for a given feasibility tolerance.

Stochastic  programs  with  linear  probabilistic  constraints  are  in  general  non-
convex non-linear optimization problems, see [18] among others. If furthermore 
some variables are integer, they become non-convex Mixed Integer Non-Linear 
Problems [15]. Although probabilistic constraints have been widely studied for 
many years, see [17,34,37] and the references therein, papers on problems with 
integer variables are not very numerous. Among them, problems featuring joint 
probabilistic constraints with a random right-hand side have been studied by [7-
9] who propose exact and heuristic branch-and-bound algorithms, [13] who study 
formulations and bounding procedures, [23] who develop a column-generation 
based  algorithm  for  a  supply  chain  management  problem,  and  [35]  who 
introduce  the  concepts  of  p-inefficiency  and  provide  extensive  computational 
results for the probabilistic set-covering problem studied in [8]. All these works 
handle  probabilistic  constraints  through  the  concept  of  p-efficient  points 
introduced by [32], apart from [35] which uses p-inefficient points instead.

Herein,  we  consider  problems  where  uncertainty  affects  both  sides  of  the 
constraints. A branch-and-bound algorithm and heuristics for such problems have 
been  proposed  in  [5,6].  In  [21]  the  author  studies  valid  inequalities  for  the 
problem with individual probabilistic constraints with uncertainty in both sides.

In  what  follows,  we  are  particularly  interested  by  the  case  of  individual 
probabilistic constraints while the random variables follow particular continuous 
distributions,  among which are Gaussian distributions.  Previous results  in  this 
direction assume that all random variables are normally distributed. In that case, 
the  probabilistic  constraints  can  be  rewritten  as  quadratic  constraints  (see 
[19,33,39]), convex under some assumption on the confidence level [29]. If all 
variables  are  binary,  the  constraints  can  be  further  linearized  using  classical 
techniques [16]. Further work extends the classical Gaussian framework to the 
more  general  class  of  radial  distributions  [12].  The  authors  show  how  a 
probabilistic constraint can be written as a second-order cone convex constraint. 
The  latter  constraint  can  be  linearized  as  well  when  working  with  binary 
variables.

In  this  note,  we always  assume that  coefficients  are  independent  continuous 
random variables. We show that an individual linear probabilistic constraint with 
binary  variables  is  equivalent  to  a  linear  constraint  when  all  coefficients  are 
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distributed according to either N (μi, λμi ), for some λ > 0 and μi > 0, or Γ(ki ,θ) for 
some  θ >  0  and  ki >  0.  The  constraint  can  also  be  linearized  when  the 
coefficients are independent and identically  distributed,  and either positive or 
strictly stable random variables.

The  next  section  describes  precisely  the  constraints  studied  herein.  Then,  in 
Section 3 we study the case of identically distributed random variables, while in 
Section 4 we study Gaussian and gamma random variables. Finally, Section 5 
illustrates  our  results  on  a  multi-commodity  flow  problem  arising  in 
telecommunications networks, and we conclude in Section 6.

2. Studied constraints

In the following we study mainly the following type of probabilistic constraints,

though our results extend easily to

and

where  p ∈ (0,1),  ai are  independent  random  variables,  ci and  b  are  fixed 
coefficients. In addition, we always consider that xi, yj ∈ {0, 1}, for 1 ≤ i ≤ n and 1 
≤ j ≤ m. The first constraint (1) is the so-called knapsack constraint, which plays 
an important role in capacitated problems such as unsplittable multi-commodity 
flow and generalized assignment problems. The second constraint (2) appears 
when the choice of the capacitated facilities to be built is part of the decision: b 
denotes the initial capacity and c1 the capacity provided by the facility. Typical 
examples  are  network  design and facility  location problems.  Finally,  in  many 
technical problems we must choose at most one out of a set of different facilities,  
for instance, different capacities for a new link to install in a telecommunication 
network. This is represented by (3).

In  what  follows,  we  say  that  two  constraints  C1 (x)  ≥  0  and  C2(x)  ≥  0  are 
equivalent, denoted by C1(x) ≥ 0 ⇔ C2(x) ≥ 0, if the sets {x ∈ {0, 1}n s.t. C1(x) ≥ 
0} and {x ∈ {0, 1}n s.t. C2(x) ≥ 0} are equal.
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3. Identically distributed variables

We  first  consider  (1)  for  the  simple  example  where  ai are  positive  random 
variables identically distributed. Since ai are positive, we see that

Thus, the number of xi that can be equal to 1 can certainly not exceed

Conversely, if some binary vector x satisfies ∑
i=1

n

x i≤N (b), then certainly x satisfies 

(1)  because  ai  are  identically  distributed.  Then,  considering  (2),  the  previous 
reasoning holds with N ( b ) for y1 = 0, and with N (b + c1) for y1 = 1. Finally, this 
reasoning extends to the pair of constraints (3), since at most one of the yj can be 
equal to 1. We just proved the following:

Proposition 1. Consider  n independent identically distributed positive random 
variables  ai, 1 ≤  i ≤  n. Then, for  xi,  yj ∈ {0,1}, 1  ≤  i ≤  n and 1 ≤  j ≤  m, the 
following constraints are equivalent:

with N(r) defined in (5) for any real r.

In the following, we focus on results of type 1 since 2 and 3 can be deduced from 
1 by the above arguments.

Remark that computing the value of N (b) requires, in general, the solution of a 
multivariate integral that must be solved using efficient packages for numerical 
integration, see [33]. For some distributions, this computational burden can be 
avoided. For instance, if all  ai are uniformly distributed between 0 and 1, their 
sum is distributed according to (see for instance [14])

The uniform distributions  are  not  the only  distributions  which sum up nicely. 
Stable distributions satisfy interesting summation properties too. Recall that if ai 
are n independent copies of a stable random variable a, then for any constants xi 

the random variable  ∑
i=1

n

x iai has the same distribution as  vna +  wn with some 

constants vn = n1/α for some α ∈ (0, 2), and wn. Moreover, a is said strictly stable if 
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wn = 0 in the relation above. For instance, the Levy distribution, with density 

function equal to f ( z ;c )=√ c
2π
e−c/2x

x3/2
 for z ≥ 0, is positive (satisfying the hypothesis 

of  Proposition  1)  and  stable  so  that  sums  of  such  distributions  are  easy  to 
compute. We refer to [27] for a good introduction to stable distributions.

In  general,  the  support  of  stable  distributions  intersects  negative  reals.  For 
instance Gaussian and Cauchy distributions always have negative tails. We show 
next that property (4) still holds for strictly stable distributions. By definition

so that

If b ≥ 0, the function  n bn-1/α is non-increasing, implying (4). We obtain the 
following:

Proposition  2. Consider  n independent  identically  distributed  strictly  stable 
random variables ai, 1 ≤ i ≤ n, and b ≥ 0. Then, if xi  ∈ {0, 1} for each 1 ≤ i ≤ n, 
the following constraints are equivalent:

with N(b) defined in (5).

An example of strictly stable distribution with α = 1 is the Cauchy distribution, 

with density function f ( z ; z0 , γ )=1
π ( γ

( z−z0 )2+γ 2 ) for some location parameter z0∈ R 

and scale parameter γ > 0.

4. Non-identically distributed variables

A well known stable distribution is the Gaussian distribution. In fact, for Gaussian 
and gamma random variables we are able to derive stronger results, allowing for  
the random variables to be distributed differently,  as long as some regularity 
condition holds. Consider independent Gaussian random variables, ai ~ N(μi, σi

2), 

1 ≤ i ≤ n. Then, can be rewritten (see for instance [33]) 
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where Φ is the cumulative distribution of the standard Gaussian distribution N(0, 
1).When  x ∈ {0,1}n,  (6)  can  be  linearized  introducing  additional  continuous 
variables,  see  [16].  However,  these  linearizations  contain  significantly  more 
variables than the direct linearization from Proposition 3 below.

Proposition 3. Consider n independent random variables ai ~ N (μi, λμi), 1 ≤ i ≤ 
n, for λ > 0 and μi > 0. Then, if  xi ∈ {0, 1} for each 1  ≤ i ≤ n, the following 
constraints are equivalent:

where μ* is the unique root of the equation b−μ=Φ−1( p)√γμ.
Proof. Recall  that  if  a1,...,  an are  independent  Gaussian  with  mean  μ i and 

variance  σi
2,  and  xi are  real  numbers,  then  a :¿∑

i=1

n

x iai N (μ (x ) , σ2 ( x )) with 

μ ( x )=∑
i=1

n

x iμi and σ 2 ( x )=∑
i=1

n

x i
2σ i

2. Thus, because xi ∈ {0, 1} and σi
2 = λμi for each 1 

≤ i ≤ n, we have σ2(x) = λμ(x). Then, 

so that is equivalent to

The left-hand side of (8) is decreasing in μ(x), and thus  is equivalent to 

μ(x) ≤ μ*, where μ* is the unique root of the equation .

We provide in Section 5 an application of  Proposition 3 to a routing problem 
arising  in  telecommunications.  Similar  examples  can  be  devised  for  the 
generalized  assignment  problem,  see  for  instance  the  Proportional  Mean-
Variance Model from [38] which assumes that random variables are those from 
Proposition 3.

The next proposition considers the case of independent gamma random variables 
used,  for  instance,  to model  waiting and processing times in server locations 
problems [10].



Published in : Operations Research Letters (2010), vol. 38, n°6, pp. 545–
549
DOI: https://doi.org/10.1016/j.orl.2010.09.005
Status : Postprint (Author’s version) 

Proposition 4. Consider n independent random variables ai ~ Γ (ki, θ), 1 ≤ i ≤ n, 
for some θ > 0 and ki > 0, and assume that b > 0. Then, if xi ∈ {0, 1} for each 1 ≤ 
i ≤ n, the following constraints are equivalent:

,

where  k* is the unique solution of   and the gamma function is 

defined by .

Proof. Gamma  distributions  satisfy  also  some  kind  of  summation  property, 
although weaker than the property satisfied by Gaussian distributions. Recall that 
if a1 , . . . , an are independent Gamma with shape ki and a common scale θ, then 

a :∑
i=1

n

ai Γ ( k ,θ ), with  ∑
i=1

n

k i. Thus, if  xi are binary numbers, we have also that  a :

∑
i=1

n

x iai Γ (k ( x ) ,θ ) with k ( x )=∑
i=1

n

k i x i. Thus, for binary xi  ,  ) is equivalent to P(Γ

 (k(x), θ) ≤ b) defined by

,

which we note  in the following. Assuming that is a strictly decreasing 
function of k, the constraint is equivalent to the constraint k(x) ≤ k*, 

with  k*  =  which  proves  .  Note  that  is  well-
defined  for  any  p ∈ (0,  1)  because   is  continuous,  strictly  decreasing, 

and .

We are left to prove that is a strictly decreasing function of k > 0:

,
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which is strictly negative because ln 
z
v

  < 0 for (z, v) ∈ [0, b] × (b, ∞).

When  so that the probabilistic constraint is equivalent to ∑
i=1

n

x i≤0

.

5. Application  to  the  bandwidth  packing 
problem

In  what  follows,  we  apply  Proposition  3  to  a  multi-commodity  flow  problem 
occurring in telecommunications networks. We discuss different approaches to 
tackle the probabilistic constraints. Notice that our example is easily extended to 
the  problem of  designing  a  telecommunications  network,  replacing  the  fixed 
capacity C by a set of facilities with capacity Cj, j = 1,..., m as in(3).

5.1. PROBLEM DESCRIPTION

Given  a  directed  graph  G =  (V ,  A)  with  a  capacity  vector  C,  and  a  set  of 
commodities  K of size  dk and revenue  ck from  s(k) to  t(k) for each  k ∈ K,  the 
bandwidth packing problem (BWP) aims at routing commodities on the network in 
order  to  maximize the total  revenue.  For  technical  reasons  based on routing 
protocols, each commodity must be sent along a unique path from s(k) to  t(k), 

see [4,30].  Introducing the binary variable  xa
k stating whether commodity  k is 

routed through arc a, the problem can be formulated as

where A+(v) and A-(v) denote the set of outgoing arcs and incoming arcs at node 
v, respectively. In practice, although the traffic size dk varies along with time, it is 
not convenient to change the routing according to these variations; x must be set 
once  for  a  given  time  period.  Different  frameworks  allow  to  model  such 
uncertainties. Some works consider that d belongs to a polyhedron D and that (9) 
must  be feasible for  any  d ∈ D,  see [22]  and the closely related [2],  among 
others. Others [31] model dk, k ∈ K, by random variables and replace (9) by
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In what follows, we assume that dk, k ∈ K, are independent Gaussian distributed 
according to N(μk, λμk). The Gaussian assumption has been studied in [1,20] and 
used in [3], among others. Moreover, [36] (followed by [24,3]) assume that  dk 

and dh are independently distributed for k ≠ h. Finally, some authors [26] suggest 
that means and variances are linearly correlated as traffic size increases, that is, 
σ = λμ for some λ > 0, so that we can apply Proposition 3 to (10).

5.2. SOLUTION METHODS

We  review  different  approaches  to  tackle  the  chance-constrained  version  of 
(BWP). Besides Proposition 3, there are two groups of methods to handle (10). 
Keeping the random vector continuous, we can tackle (10) by MINLP methods. 
Alternatively, we can sample the random variables to obtain a scenario set S and 
solve the deterministic equivalent.

Direct  linearization.  We  apply  Proposition  3  to  (10),  obtaining  again  problem 

(BWP) with dk and Ca replaced by μk and the unique root μa
¿of Ca−μ=Φ

−1( p)√ λμ, 

respectively.  Computing  μ*  is  easy  since  function  
Ca−μ

√ λμ
 is  convex  and 

differentiable. Therefore, we can solve the problem with efficient algorithms used 
in the deterministic case, such as the branch-and-cut-and-price algorithm from 
[4].

MINLP methods. When p ≥ 0.5 and each dk is Gaussian, (10) is convex and thus, 
well suited for non-linear algorithms [11]. However, it is clearly easier to use the 
direct linearization of (10) through Proposition 3, because non-linear constraints 
are harder to handle than linear ones and both formulations provide the same 
bound. For instance, outer approximation-based algorithms replace (10) by a set 
of  tangent cutting planes.  The latter contains more inequalities,  with possibly 
highly fractional coefficients, than the unique inequality resulting from (10).

Alternatively, (10) with Gaussian random variables can be reformulated as (6). 
We can then rewrite (6) as
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for each a ∈ A. When p > 0.5, which is the case in real situations,  μa
¿
 < Ca and 

thus,(11) is less tight than(7). Hence, Proposition(10) allows one to strengthen 
the above formulation by substituting (11) with (7).  Then, (12) is  not needed 
anymore to define a valid formulation. However, since it takes into account the 

binary restriction on  x  (by using  (xa
k )2=xa

k), it may be used together with (7) to 

provide  a  stronger  continuous  relaxation.  Note  finally  that  linearizing  (12) 
requires at least |K| additional variables and 2|K | additional constraints for each 
a ∈ A [16].

Discretization  and  deterministic  equivalent.  Sampling  a  scenario  set  S that 
approximates the continuous distribution  d in an acceptable way, see [25,28], 
among others, we can write a deterministic equivalent for (10):

where components of vector  M are numbers large enough. However, (13) and 
(14)  yield  a  very  difficult  problem because  (13)  contains  a  large  number  of 
constraints  and  features  “big-M”  coefficients.  Therefore,  [5,6]  show  how  to 
replace (13) and (14) by a relevant set L of scenario sets through a branch-and-
bound algorithm. Each l ∈ L yields a problem similar to (BWP), but with multiple 
capacity constraints (9) for each arc a ∈ A (one for each scenario in l). Then, using 
bounding mechanisms, they avoid solving all problems associated to elements of 
L.  Eventually, the exact approaches from [5,6] will have solved several binary 
multicommodity flow problems with multiple capacity constraints, each of them 
being  more  complex  than  (BWP).  Although  applicable  to  a  broader  class  of 
problems, this approach will  in general be slower than the direct linearization 
from Proposition 3 that requires only to solve one problem similar to (BWP) plus 
the computation of the root vector μ*.

5. Conclusion

In this note we show that integer programs featuring special cases of probabilistic 
constraints are as easy as their deterministic counterparts.

In opposition, recent solution methods to integer programs under probabilistic 
constraints with uncertainty in both sides, such as [5,6], are far more general and 
only assume that the uncertain parameters are described by a finite scenario set. 
Nevertheless, these approaches require to solve integer programs significantly 
harder than the deterministic versions.



Published in : Operations Research Letters (2010), vol. 38, n°6, pp. 545–
549
DOI: https://doi.org/10.1016/j.orl.2010.09.005
Status : Postprint (Author’s version) 

Acknowledgements

This  research  is  supported  by  an  ‘‘Actions  de  Recherche  Concertées’’  (ARC) 
project of the ‘‘Communautée française de Belgique’’. Michael Poss is a research 
fellow of the ‘‘Fonds pour la Formation à la Recherche dans l’Industrie et dans 
l’Agriculture’’  (FRIA).  The  authors  would  also  like  to  thank  a  referee  for 
constructive criticism.

Références

[1] F. Alagöz, Approximations on the aggregate mpeg video traffic and their impact on 
admission control, Turk. J. Electr. Eng. 10 (1) (2002) 73–84.

[2] A. Altin, E. Amaldi, P. Belotti, M.Ç. Pinar, Provisioning virtual private networks under 
traffic uncertainty, Networks 49 (1) (2007) 100–115.

[3] R. Andrade, A. Lisser, N. Maculan, G. Plateau, Telecommunication network capacity 
design for uncertain demand, Comput. Optim. Appl. 29 (2) (2004) 127–146.

[4] C. Barnhart, C.A. Hane, P.H. Vance, Using branch-and-price-and-cut to solve origin-
destination integer multicommodity flow problems, Oper. Res. 48 (2) (2000) 318–326.

[5]  P.  Beraldi,  M.E.  Bruni,  A probabilistic  model  applied to emergency service vehicle 
location, European J. Oper. Res. 196 (1) (2009) 323–331.

[6]  P.  Beraldi,  M.E.  Bruni,  An  exact  approach  for  solving  integer  problem  under 
probabilistic constraints with random technology matrix, Ann. Oper. Res. 177 (2010) 127–
137.

[7]  P.  Beraldi,  A.  Ruszczynski,  A  branch  and  bound  method  for  stochastic  integer 
problems under probabilistic constraints, Optim. Methods Softw. 17 (2002) 359–382.

[8] P. Beraldi, A. Ruszczynski, The probabilistic set-covering problem, Oper. Res. 50 (6) 
(2002) 956–967.

[9] P. Beraldi, A. Ruszczynski, Beam search heuristic to solve stochastic integer problems 
under probabilistic constraints, European J. Oper. Res. 167 (1) (2005) 35–47.

[10]  O.  Berman,  D.  Krass,  Facility  location  problems  with  stochastic  demands  and 
congestion,  in:  Z.  Drezner,  H.W.  Hamacher  (Eds.),  Facility  Location:  Applications  and 
Theory, Springer, 2004, pp. 329–371 (Chapter 11).

[11] P. Bonami, M. Kilinc, J. Linderoth, Algorithms and software for convex mixed integer 
nonlinear programs, Tech. Report 1664, Computer Sciences Department, University of 
Wisconsin-Madison, 2009.

[12] G. Calafiore, L. El Ghaoui, Distributionally robust chance-constrained linear programs 
with applications, J. Optim. Theory Appl. 130 (1) (2006) 1–22.

[13]  D.  Dentcheva,  A.  Prékopa,  A.  Ruszczynski,  Bounds  for  probabilistic  integer 
programming problems, Discrete Appl. Math. 124 (1–3) (2002) 55–65.

[14]  C.  Grinstead,  J.  Snell,  Introduction  to  Probability,  2nd  edition,  American  Math. 
Society, Providence, 1997.



Published in : Operations Research Letters (2010), vol. 38, n°6, pp. 545–
549
DOI: https://doi.org/10.1016/j.orl.2010.09.005
Status : Postprint (Author’s version) 

[15]  I.E.  Grossmann,  Review of  nonlinear  mixed-integer  and disjunctive  programming 
techniques, Optim. Eng. 3 (26) (2002) 227–252.

[16]  P.  Hansen,  C.  Meyer,  Improved  compact  linearizations  for  the  unconstrained 
quadratic 0–1 minimization problem, Discrete Appl. Math. 157 (2009) 1267–1290.

[17] R. Henrion, Introduction to chance-constrained programming, Tutorial Paper for the 
Stochastic Programming Community Home Page, 2004.

[18] R. Henrion, C. Strugarek, Convexity of chance constraints with independent random 
variables, Comput. Optim. Appl. 41 (2008) 263–276.

[19] S. Kataoka, A stochastic programming model, Econometrica 31 (1/2) (1963) 181–
196.

[20] J. Kilpi, I. Norros, Testing the gaussian approximation of aggregate traffic, in: IMW’02: 
Proceedings of  the 2nd ACM SIGCOMM Workshop on Internet Measurment,  ACM, New 
York, NY, USA, 2002, pp. 49–61.

[21] O. Klopfenstein, Solving chance-constrained combinatorial problems to optimality, 
Comput. Optim. Appl. 45 (3) (2010) 607–638.

[22]  O.  Klopfenstein,  D.  Nace,  Valid  inequalities  for  a  robust  knapsack 
polyhedronapplication  to  the  robust  bandwidth  packing  problem,  Networks  (2010)  (in 
press).

[23]  M.A.  Lejeune,  A.  Ruszczynski,  An  efficient  trajectory  method  for  probabilistic 
production–inventory-distribution problems, Oper. Res. 55 (2) (2007) 378–394.

[24] A. Lisser, A. Ouorou, J.-P. Vial, J. Gondzio, Capacity planning under uncertain demand 
in telecommunication networks, Tech. report, 1999.

[25]  J.  Luedtke,  S.  Ahmed,  A  sample  approximation  approach  for  optimization  with 
probabilistic constraints, SIAM J. Optim. 19 (2) (2008) 674–699.

[26] R. Morris, D. Lin, Variance of aggregated web traffic, in: Proceedings of INFOCOM, 
2000, pp. 360–366.

[27] J.P.  Nolan, Stable Distributions-Models for Heavy Tailed Data, Birkhäuser,  Boston, 
2010 (in progress), Chapter 1 online at: academic2.american.edu/∼jpnolan.

[28] B. Pagnoncelli,  S.  Ahmed, A. Shapiro, Sample average approximation method for 
chance constrained programming: theory and applications, J.  Optim. Theory Appl.  142 
(2009) 399–416.

[29]  S.  Parikh,  Lecture  Notes  on  Stochastic  Programming,  University  of  California, 
Berkeley, CA, 1968.

[30]  K.  Park,  S.  Kang,  S.  Park,  An  integer  programming  approach  to  the  bandwidth 
packing problem, Manage. Sci. 42 (9) (1996) 1277–1291.

[31] F. Pascali, Chance constrained network design, Ph.D. thesis, Universitá di Pisa, 2009.

[32] A. Prékopa, Dual method for a one-stage stochastic programming with random rhs 
obeying a discrete probability distribution, Z. Oper. Res. 34 (1990) 441–461.

[33] A. Prékopa, Stochastic Programming, Kluwer, 1995.



Published in : Operations Research Letters (2010), vol. 38, n°6, pp. 545–
549
DOI: https://doi.org/10.1016/j.orl.2010.09.005
Status : Postprint (Author’s version) 

[34] A. Prékopa, Probabilistic programming models, in: A. Ruszczynski, A. Shapiro (Eds.), 
Stochastic Programming: Handbook in Operations Research and Management Science, 
vol. 10, Elsevier Science Ltd., Amsterdam, 2003, pp. 267–351 (Chapter 5).

[35]  A.  Saxena,  V.  Goyal,  M.A.  Lejeune,  MIP  reformulations  of  the  probabilistic  set 
covering problem, Math. Program. 121 (1) (2009) 1–31.

[36]  S.  Sen,  R.D.  Doverspike,  S.  Cosares,  Network  planning  with  random  demand, 
Telecommun. Syst. 3 (1) (1994) 11–30.

[37]  A.  Shapiro,  D.  Dentcheva,  A.  Ruszczynski,  Lectures  on  Stochastic  Programming: 
Modeling and Theory, SIAM, Philadelphia, 2009.

[38] D. Spoerl, R.K. Wood, A stochastic generalized assignment problem, INFORMS Annual 
Meeting, Atlanta, GA, 19–22 October, 2003.

[39]  C.  van de Panne,  W.  Popp,  Minimum-cost  cattle  feed under  probabilistic  protein 
constraints, Manag. Sci. 9 (3) (1963) 405–430.


	1. Introduction
	2. Studied constraints
	3. Identically distributed variables
	4. Non-identically distributed variables
	5. Application to the bandwidth packing problem
	5.1. Problem description
	5.2. Solution methods

	5. Conclusion
	Références

