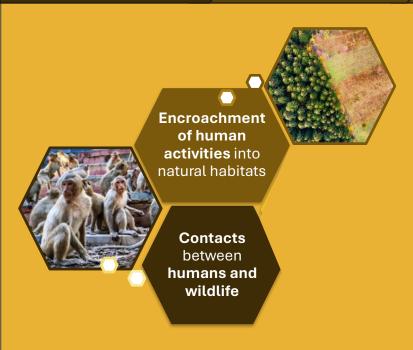
Social network analysis and zoonotic gastrointestinal parasites in urban macaques: The role of social centrality and synanthropy in infection rates

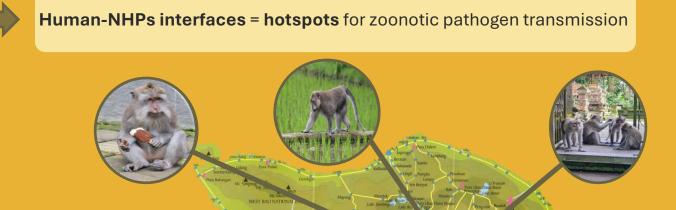
L. Patouillat, G. Raway, J. Rousseaux, N. Wandia, S. Adi Subrata, W. Artama, M.-M. Garigliany, F. Brotcorne



Human-animal interfaces

crucial for **understanding** and **controlling** the **emergence of zoonoses**

- Zoonotic disease outbreaks = challenge to global health
- **60%** of infectious diseases in humans


Introduction Methods Results Discussion & Conclusion

Genetic similarity to humans, **sensitive** to identical pathogens

Bali, Indonesia

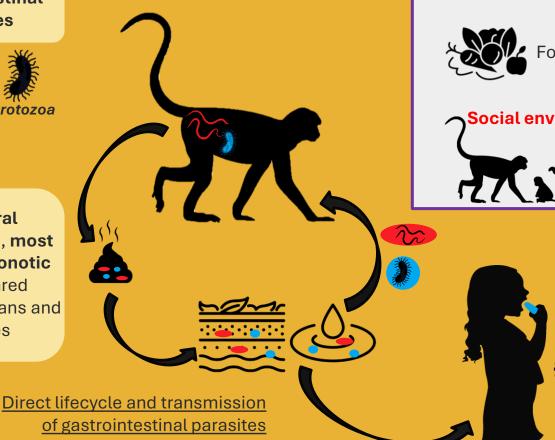
Commensal long-tailed macaques (*Macaca fascicularis*)

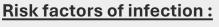
Highly touristic area, share space with human population, frequent and close direct contacts between macaques and humans

Methods

Results

Discussion & Conclusion

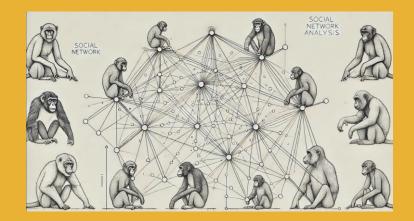

Gastrointestinal parasites



(Cestoda, Nematoda, Trematoda)

Fecal-oral transmission, most common zoonotic agent shared between humans and primates

Food access

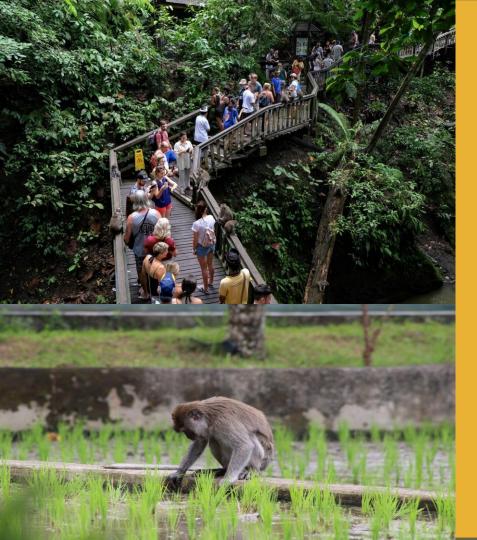


other species

Contact with

Host biological parameters Social Network Analysis (SNA): quantitative tool → study infection dynamics, predict the risk of infection at the individual and group level

Understand how social position and individual relationships influence disease transmission


Partially explored **BUT** → **contrasting** results, often focus on a **single aspect**Need to consider multiple factors

Evaluate the role of:

- Social centrality
- Host characteristics
- Human-macaque interactions

on zoonotic GI parasites

Material and Methods

Introduction Methods Results Discussion & Conclusion

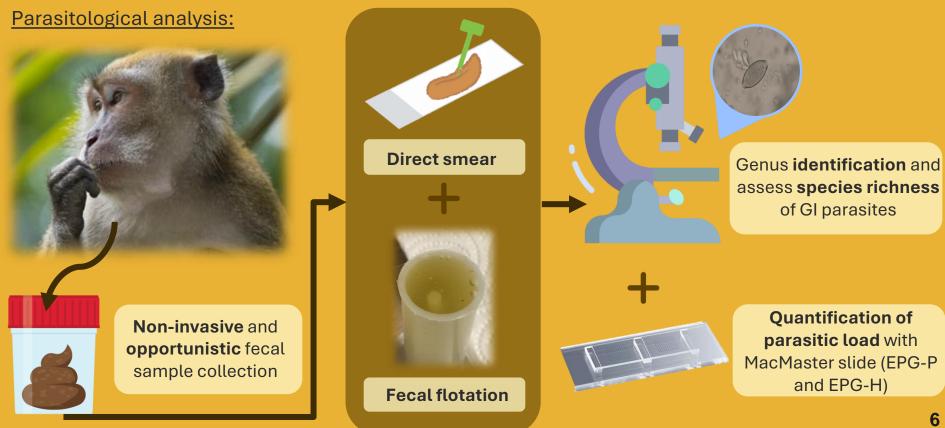
Touristic site in Bali, Indonesia

Temples, close contacts with macaques, 3000 tourists/day

Urban sanctuary

Forest fragment (20 ha) in the city

Long-tailed macaques (*Macaca fascicularis*)


~ 900 free ranging macaques (in 2022) divided into 10 groups: overpopulation

Study group

Michelin group, 161 individuals, 53 adults (males and females) identified as focal subjects

All data were collected between **February to November 2022** (1 observer) and **March to August 2023** (3 observers)

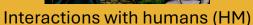
Introduction

Methods

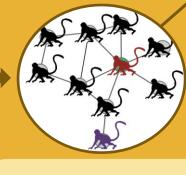
Results

Discussion & Conclusion

All data were collected between **February to November 2022** (1 observer) and **March to August 2023** (3 observers)

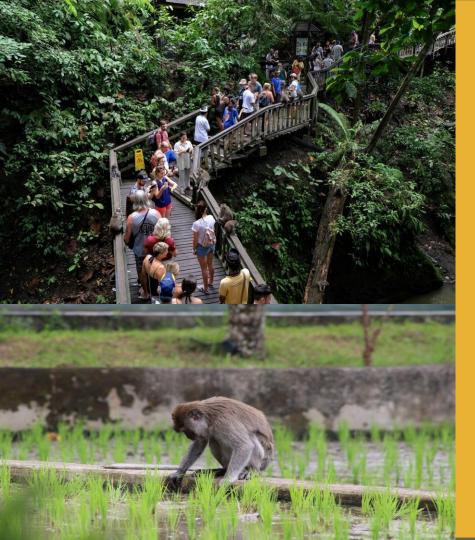

Behavioral analysis:

Agonistic


Affiliative

53 adults as focal subjects, 15 min focal sampling, social behaviors and **HM** interactions

Centrality measures


- Strength
- Eigenvector

David's score

Hierarchy

- Clustering analysis → identify social clusters
- K-test analysis → GI parasite infections follow grooming network pathways
- GLMMs → effects of risk factors on host's GI parasites species richness/presence

Results

Introduction

Methods

Results

Discussion & Conclusion

Parasitology: 2

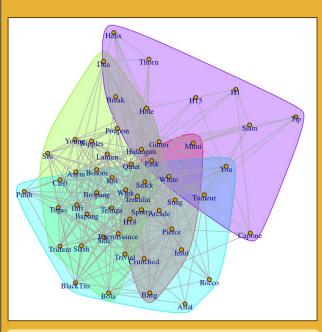
2022 : **68** fecal samples ; 2023 : **73** fecal samples

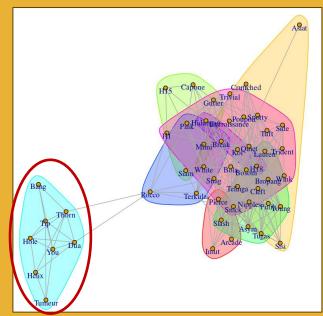
141 samples : 105 positive (**74** %)

<u>Protozoa:</u>	2022	2023
Entamoeba sp	0.62	0.79
lodamoeba sp	0.15	0.25
Balantiodes sp	0.02	0.35

Helminths:	2022	2023
Strongyloides sp	0.00	0.04
Hookworm	0.43	0.40
Oesophagostomum sp	0.26	0.15
Trichuris sp	0.08	0.07

Each focal individual sampled was assigned a **specific richness value** for GI parasites


Methods


Results

Discussion & Conclusion

Clustering analysis:

Community detection in grooming networks

2023 : isolated subgroup "Peripheral group "

→ Grooming network divided into two sub-networks for SNA analysis

Grooming network in 2022

Grooming network in 2023

Introduction Me	ethods	Re	sults Discussion & Conclusion	
K-test analysis: GI parasite infections follow grooming network pathways?				
K-test analysis for each genus	of GI paras			
K-statistic (p-value): NS	2022	2023	K-statistic : How many infected individuals are in direct contact with other infected individuals	
Entamoeba sp	0.98	0.45		
lodamoeba sp	0.77	0.65	Observed k-statistic → compared to a permuted distribution of k-statistics	
Balantiodes sp	NA	0.48		
Strongyloides sp	NA	NA	K-test → determine whether individuals near an infected case in network had a higher	
Hookworm	0.99	0.76	likelihood of being infected	
Oesophagostomum sp	0.95	0.87	Individuals neighboring an infected case DO NOT HAVE a higher likelihood of	
Trichuris sp	0.27	1	being infected	
			10	

Average pathway distance

Oesophagostomum sp

Trichuris sp

(n-value) ·

2022

0.70

0.70

K-test analysis: GI parasite infections follow grooming network pathways?

2023

0.71

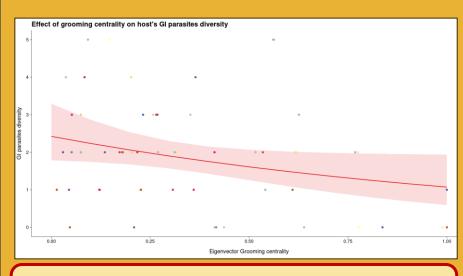
0.95

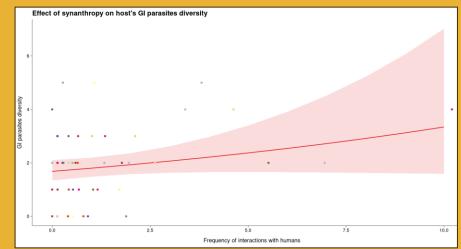
K-test analysis for **each genus of GI parasites**

<u>(p vatac):</u>		
Entamoeba sp	0.89	1
lodamoeba sp	0.92	0.73
Balantiodes sp	NA	0.90
Strongyloides sp	NA	NA
Hookworm	0.77	0.93

NS

Pathways analysis → measure the average distance between two infected individuals

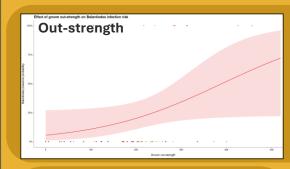

Average pathway distance between **2 infected**individuals ≮ Average distance observed
between **2 random individuals**

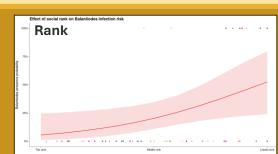

Results indicate that **grooming interactions ALONE** are **not sufficient** to explain the transmission patterns of GI parasites.

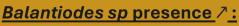
GLMMs:

Effects of grooming network centrality, HM interactions, and host parameters on host's GI parasites species richness

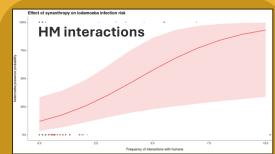
Best model: GI parasites species richness~ grooming_eigenvector + HM_interactions + (1|ID), family = Poisson

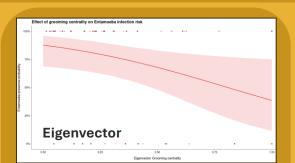



→ HM interactions → → GI parasite species richness

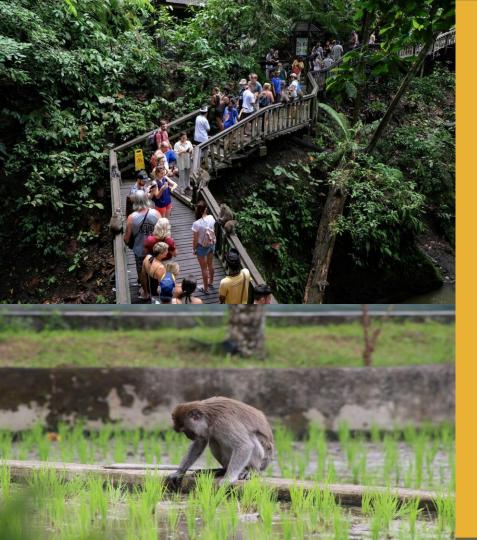

Results

GLMMs: Effects of grooming network centrality, HM interactions, and host parameters on GI parasites taxon presence


Best model: GI parasites taxon presence~ grooming network centrality + HM_interactions + host parameters + (1|ID), family = binomial



- / subordinate (p = 0.027)
- **7 grooming out** (p = 0.049)


• **7 HM interactions** (p = 0.022)

Entamoeba sp presence > :

• / eigenvector (p = 0.032)

No significant effects of the explanatory variables on the presence of helminthic GI parasites

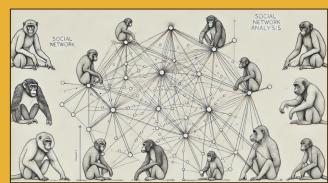
Discussion & Conclusion

Parasitology:

<u>Protozoa</u>

ba sp lodamoeba sp

Helminths


Oesophagostomum sp


Trichuris sp

- Entamoeba sp → most found
 → could be pathogenic
 (cf. E hystolitica)
 - Hookworm → most found

 → Ancylostoma sp or Necator sp
- Common GI parasites usually found in primates
- All GI parasites found → direct life cycle
- All genera of helminths found → include species that can cause intestinal diseases

Risk factors influencing GI parasite species presence and richness:

Social buffering effect: Central individuals have better health status and are less likely to be infected

Social network pathways → alone not explain GI parasite infection, infection sources = multiple

Synanthropic behavior increases exposure to parasites

GI parasites: not uncommon,
direct life cycle
environment → possible source of
infection 1

Thank you for your attention

L. Patouillat, G. Raway, J. Rousseaux, N. Wandia, S. Adi Subrata, W. Artama, M.-M. Garigliany, F. Brotcorne