
Type Source Route
CO2 

footprint
Energy TRL

Product 

quality

Natural Magnesite

Firing of magnesite 

concentrate (Drnek, 

2002)

High1 Regular 9 Regular

Synthetic Seawater

Brucite precipitation 

and firing (Fontana 

et al., 2022)

High2 High 7 High

Aman process 

(Roskill, 2010)
Regular Very High 8 Very High

Carbonation and 

firing (Ferrini et al., 

2009)

Regular High 4 Regular

Mg-

bearing 

minerals

Olivine, 

serpentine

Mineral 

decomposition (Teir

et al., 2009)

Very High Very High 4 Very High

Direct carbonation 

and firing (Maroto-

Valer et al., 2005)

Regular Very High 3 Low

1 - CO2 capture can reduce drastically.

2 - The use of NaOH or NH3 (instead of lime) produced with green energy may reduce CO2

emissions. Otherwise, it can be even higher than the natural one.
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Fig. 2: Magnesium in our planet

Fig. 5: Qualitative comparison of MgO production routes
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Natural Magnesia
Natural magnesia is the name given to the MgO produced from magnesite. One factor 
that affects the quality of the refractory aggregate and its environmental performance is 
the quality of the magnesite ore. Fine-grained magnesite, associated with other gangue 
minerals, requires mineral processing before sintering to achieve the proper purity of the 
magnesia aggregate. This leads to a much more complex production route:

Synthetic Magnesia
Minerals are not the only source of magnesium on Earth. Seawater is the other huge, 
almost limitless, commercial source of high-purity magnesia. Magnesia production has 
also proven to be possible with Mg-bearing minerals. MgO produced from these 
alternative sources is called Synthetic Magnesia.

Rudnick & Gao (2014) estimate that MgO represents 4.66 wt% of the continental crust composition. Most of 
the magnesia produced globally comes from minerals. Magnesite [MgCO3] is the most important source for 
magnesia production and its geogenic CO2 emissions are a big concern in the refractory magnesia aggregates 
production. Can we produce refractory MgO emitting less CO2 with other sources? 

In addition to these techniques, synthetic magnesia can also be obtained by direct 
carbonation of Mg-bearing minerals or by CO2 bubbling into a Mg2+ concentrated 
solution. Another known process to produce magnesia from seawater and brines is the 
Aman process. It consists in feeding a thermal reactor (at 500 – 600 °C) with a 
concentrated magnesium chloride solution.
Despite having lower direct CO2 emissions compared to the natural route, the synthetic 
routes have a huge energy demand and considerable indirect emissions from chemicals. 
Additionally, synthetic routes are more expensive, and their production scale is smaller 
than that of natural routes.

The urgency in tackling climate change turns the attention of the 
magnesia industry towards the reduction of CO2 emissions. In this 
context, synthetic magnesia could contribute to this goal in the future, 
but this would require a massive development of green energy 
production capacity. With the current conditions, the supplies required in 
the production of synthetic magnesia contribute to increasing the carbon 
footprint of the final product, leading to higher values than natural 
magnesia.
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Fig. 1: Natural Magnesia simplified route

Fig. 3: Magnesite mineral processing

Fig. 4: Synthetic Magnesia routes


	Slide 1

