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Abstract This paper presents an arbitrary Lagrangian-Eulerian (ALE) formulation for a qua-
sistatic cable finite element. The objective is to propose a theoretical framework for the derivation
of the ALE equilibrium equations of the cable starting from a continuous formulation and the
principle of virtual work. The model aims to be simple, as only axial strains are considered. The
advantages of using an ALE formulation are also shown through several numerical examples. In
the case of a distributed loading, the ALE setting yields an energy-optimal mesh. In some cases,
the problem can be nonconvex and a regularization of the equations is proposed to ensure the
convergence of the Newton solver to one of the solutions. A cable-pulley system is also investi-
gated without and with friction. In the latter case, the results are validated with an analytical
formula for the evolution of the tension force in the cable. Finally, a multibody model of a soft
finger is proposed in which the coupling of a system of rigid bodies with the cable model is
enforced through kinematic constraints.

Keywords Arbitrary Lagrangian-Eulerian formulation · multibody systems · cable · cable-
pulley systems · finite element method

1 Introduction

Cables are part of many engineering applications, such as suspended bridges or power lines. For
this reason, cable modeling has been investigated for more than a century. In these two examples,
due to the sag and length of the cables, vibrations need to be considered. In this context, one of
the first investigations on the dynamics of cable was made by Rohrs [39], who determined the
resonance frequencies for an inextensible cable. More than a century later, Irvine and Caughey
[21,22] unified all the previous developments made on cables with experimental validation. Wu
et al. [44] then extended Irvine’s theory to account for the presence of hybrid vibration modes
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(modes that are neither symmetric nor antisymmetric). All these authors considered a linear
response of the cable. Nonetheless, nonlinear formulations have also been proposed, notably with
the work of Hagedorn and Schäfer [15], who coupled Ritz-Galerkin and perturbation methods.
Rega can be cited for his work on the comparison between several cable models [36] and a cable-
oriented review [37]. Lacarbonara and Pacitti [25], along with Arena et al. [1] then studied a
collection of important modeling aspects of cables with a specific attention paid to the bending
stiffness, the torsional stiffness, and the noncompressibility of the cable. Research on the topic is
still going on to this day [3].

Nevertheless, cables are not only structures attached at both ends to withstand a traction
force. They can move, slide and even make contact and interact with other components of a
multibody system. It is namely the case in reeving systems, deployable space structures or even
in soft robotics. In such contexts, particularly when the system is operating in steady-state or
at slow speed, vibrations are no longer the main concern, and elastic bar or elastic beam models
can be used in a quasistatic setting.

A popular way of dealing with slender structures in multibody systems is to follow a nonlinear
finite element method (FEM). However, in applications where the cable enters contact with a
mechanical component, for instance in reeving systems where the cable is in contact with pulleys,
there is a need for a fine discretization of the cable to accurately describe the frictional contact
interactions. Nevertheless, it should be noted that this fine discretization is only needed in some
key regions, i.e., along the pulley in this case. Unfortunately, because the cable is moving along
the pulley with time, it is often necessary to work with smaller elements than needed along
the whole cable length. In order to circumvent this difficulty, a popular option is to use an
arbitrary Lagrangian-Eulerian (ALE) formulation. ALE formulations are widely used in fluid
mechanics, see for instance [7], for example in fluid-structure problems, where the flow can be
analyzed using an Eulerian viewpoint, whereas the structure deformation is analyzed using a
Lagrangian viewpoint [24]. In the cable-pulley system, this approach permits one to fix the mesh
to nonmaterial points of the cable, e.g., along a pulley span, and to account for a flow of material
through each element of the mesh. The aim of this paper is to develop a quasistatic ALE cable
formulation for the numerical simulation of such multibody systems.

For mechanical systems, the ALE equations can be derived starting from a continuous formu-
lation, either by writing the balance of mass and momentum on a nonmaterial control volume [20]
or by using variational principles, as proposed in [34]. In such frameworks, the nodes of the fi-
nite element mesh can have Lagrangian and Eulerian motions simultaneously. In [2,23], an ALE
formulation based on a continuous variational framework is proposed in which the integrals are
written on a referential domain. The authors highlight the fact that both the numerical solution
and the mesh configuration then achieve a minimum of the potential energy. In other words, an
optimal mesh is obtained with respect to the applied loading. In [29,45], a similar formulation
named the “r-adaptive finite element method” is presented. In this case, the method leads to an
optimal mesh and is also applied in fracture mechanics where the mesh adaptation permits one to
follows the crack propagation. Another early and fundamental contribution to ALE formulations
in fracture mechanics can be found in [27]. The possible redundancy and singularities of the ALE
equations are investigated in [2,29], and specific regularization procedures are proposed to tackle
this problem.

Several authors particularize the continuous approach to 1D structures, such as beams [32,35].
In [40], several approaches to model sliding beams, i.e., beams that undergo a large translational
motion with a superimposed flexible deformation, were compared. A formulation based on a
variational principle was developed in [19] for the modeling of sliding beams in which the integrals
are written on a referential domain. The large vibrations of axially moving beams or strings
were treated using an ALE approach in [41]. A mathematical model for dry friction in a cable-
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pulley system is proposed in [31] using an Eulerian description. In [13], an Eulerian description
is adopted to investigate a complex belt-pulley system. In [16], an ALE formulation for sliding
beams is developed with a special emphasis on the configurational forces arising from the material
flow. In this case, the equations were obtained using Reynold’s transport theorem. This model
was then used for the modeling of flexible multibody systems in [17]. In all these papers on ALE
methods for 1D structures, no mention is made about the need for a regularization procedure to
fix redundancy and singularity issues.

Another approach to derive the ALE equations for multibody systems is to start from the
discretized form of the equations of motion and distinguish nodes with a purely Lagrangian
description and nodes with a purely Eulerian description, thereby requiring specific ALE element
formulations. This distinction eliminates the redundancy and singularity problems and thus the
need for a regularization, but restricts the simulation to systems where no mesh optimality is
sought. In [18], an ALE-ANCF element is developed for the modeling of a sliding joint. In [8],
another ALE-ANCF approach for a beam element is developed to model reeving systems. In [9],
similar reeving systems are studied using ALE elements based on a modal description of the
deformation. In [33], an ALE element is developed to represent the part of the cable in contact
with the pulley. Deployable space structures such as antennas are investigated in [11] using an
ALE approach to model the cable-pulley-actuated system. An ALE cable-like model is developed
in [14] for the modeling of muscle-tendon units in musculoskeletal systems.

In this paper, we propose to adapt the framework developed in [23] to model cables as uni-
dimensional elements with a uniform distribution of axial strains in the cross section. Another
contribution is to enable the simulation of multibody systems by the introduction of constraints.
The formulation starts from a continuous form in which the integrals are written on the ref-
erential domain, inducing a consistent description of the problem in terms of the quasistatic
spatial and material equilibria. As in [2], optimal meshes can be obtained, which offers interest-
ing perspectives in multibody applications. In this quasistatic formulation, the redundancy and
singularity problems are inherent to the ALE equations. To counteract this problem, a regular-
ization technique, different from the one proposed in [2] or in [29], is presented. The optimal-mesh
behavior, the possibility to model multibody systems with constraints and the effectiveness of
the regularization will be studied through diversified examples.

The rest of the paper is organized as follows. In Section 2, the general ALE framework
is first proposed along with the definition of the different quantities and domains of interest.
After introducing kinematic assumptions, the continuous ALE equilibrium equations are derived
for the proposed cable element. In Section 3, the discretization of the equilibrium equations
is performed and the constraint vector is introduced in order to generalize the formulation to
multibody systems. Due to the redundant nature of the quasistatic formulation, a regularization
of the problem is also proposed. In Section 4, numerical examples are exposed, such as a cable-
pulley system, a cable-actuated soft finger and a simpler demonstrative example. In Section 5,
a brief discussion is conducted. Finally, in Section 6, conclusions are drawn and perspectives are
considered.

2 Continuous ALE formulation

2.1 General ALE concept in 3D

The motion of particles is usually observed based on either a Lagrangian description or an
Eulerian description. For any three-dimensional structure, one can define the material domain,
denoted B0, and the spatial domain, denoted Bt. In a purely Lagrangian description, a mapping
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Fig. 1 – The referential domain enables us to decompose the total motion into a material and a
spatial contribution. The three domains are interconnected by mappings, deformation gradients
and Jacobians.

from the material domain to the spatial domain can be defined. This mapping tracks an arbitrary
material particle on the structure with material coordinates s ∈ R3 to its spatial location x ∈ R3

and is written as x = φ(s, t). In a purely Eulerian description, the inverse mapping is involved,
which tracks the flow of material through fixed spatial locations and can in turn be written as
s = Φ(x, t).

In an ALE approach, the motion is analyzed with both descriptions simultaneously, so that the
total motion can be decomposed into a Lagrangian contribution and an Eulerian contribution. In
order to make this decomposition, a third domain, called the referential domain and denoted B, is
defined. In general, the referential domain does not correspond to the material nor to the spatial
domain. The equations of motion are expressed in this domain and represent the contributions of
the Lagrangian part of the motion, which will be called the spatial motion, and the Eulerian part
of the motion, which will be called the material motion. The purpose of this referential domain
is thus to obtain two sets of equations to analyze the two distinct contributions to the motion
separately.

The material motion is represented by a mapping from the referential domain to the material
domain

s = Φ̃(ξ, t) (1)

The associated tangent map must be understood as a deformation gradient and is defined as
f̃ ≡ ∂Φ̃/∂ξ, with the corresponding Jacobian j̃ = det f̃ . The inverse map from the material
domain to the referential domain, the associated deformation gradient and Jacobian can be
trivially expressed as φ̃ = Φ̃−1, F̃ ≡ ∂φ̃/∂s = f̃−1 and J̃ = det F̃ = j̃−1. On the other hand, the
mapping from the referential domain to the spatial domain, i.e., the spatial motion, is expressed
as

x = φ̄(ξ, t) (2)

The associated tangent map must also be understood as a deformation gradient and is defined
as F̄ ≡ ∂φ̄/∂ξ, with the corresponding Jacobian J̄ ≡ det F̄. The inverse map from the spatial
domain to the referential domain, the associated deformation gradient and Jacobian can again
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Fig. 2 – Cable model before and after deformation.

be trivially expressed as Φ̄ = φ̄−1, f̄ ≡ ∂Φ̄/∂x = F̄−1 and j̄ = det f̄ = J̄−1. Figure 1 graphically
shows the connections between the different mappings, deformation gradients and Jacobians
defined above. It can also be noted that the direct link between the material and the spatial
domain is obtained through the composition of the mappings and tangent mappings previously
defined:

φ = φ̄ ◦ Φ̃−1 = Φ−1 (3)

Φ = Φ̃ ◦ φ̄−1 = φ−1 (4)

F = F̄ F̃ = f−1 = f̃ f̄ (5)

J = J̄ J̃ = j−1 = j̃ j̄ (6)

In a continuous context, ξ ∈ R3 can be understood as the set of points of interest of the
structure. A more tangible meaning of this variable can be appreciated when thinking about a
discretized formulation, which will be further investigated in Section 3: it describes the mesh.
In that case, the spatial motion describes the motion of the mesh, whereas the material motion
describes the flow of material through the mesh.

2.2 Cable kinematics

According to Fig. 2, in the reference undeformed configuration, the cable, of undeformed length
L0, is assumed to be aligned with the base vector e⃗O1 and to have a uniform cross section. In this
paper, the notation •⃗ denotes a vector as a geometrical object and the bold notation represents
its components expressed in a specific basis. For example, e1 =

[
1 0 0

]T , e2 =
[
0 1 0

]T and
e3 =

[
0 0 1

]T are the components of the geometric vectors e⃗O1, e⃗O2, e⃗O3 in their own basis. The
centerline is a straight line that starts at the origin O of the coordinate system, so that it is
described by the set of particles with material coordinates s1e1 for s1 ∈ L0 = [0, L0]. At a given
point s = s1 along the centerline, an arbitrary particle located at point R on the cross section is
defined by its material position with respect to the frame {O, e⃗O1, e⃗O2, e⃗O3}

xOR = s = se1 + s2e2 + s3e3 (7)

which implies that the cross section is orthogonal to the centerline.
The motion from the reference to the deformed configuration is such that the cable can freely

translate, rotate and deform. After motion, the cable has a length Lt, and the particle initially
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in O has moved to point A. As can be seen in Fig. 2, the centerline particle is now located at
point C with position xOC . Assuming that the cross section remains undeformed, the considered
arbitrary particle on the cross section has moved from point R to point P with the spatial
position

x = xOP (s, s2, s3, t) = xOC(s, t) + ROC(s, t) xCP (s2, s3) (8)

where xCP (s2, s3) = s2e2 + s3e3 is the position of P expressed in the cross-sectional frame
{C, e⃗C1, e⃗C2, e⃗C3} and ROC is the rotation matrix which represents the relative orientation be-
tween the frames {O, e⃗O1, e⃗O2, e⃗O3} and {C, e⃗C1, e⃗C2, e⃗C3}. The above expression represents the
mapping φ from the material to the spatial domain.

The Green-Lagrange strain tensor, E, is defined using the deformation gradient F from the
material to the spatial domain as

E = 1
2

(
FT F − I

)
(9)

Using Eq. (8), F is expressed as

F =
[

∂x
∂s

∂x
∂s2

∂x
∂s3

]
=

[
∂xOC

∂s
+ ∂ROC

∂s
xCP ROC e2 ROC e3

]
(10)

Let us introduce the curvilinear abscissa x⋆ ∈ [0, Lt]. The axial gradient is then defined as
F = ∂x⋆/∂s. From the definition of the curvilinear abscissa, we have

F =
∥∥∥∥∂xOC

∂s

∥∥∥∥ (11)

and, exploiting the fact that ROC e1 is the unit vector in the direction of ∂xOC/∂s,

∂xOC

∂s
= F ROC e1 (12)

In a cable model, the structure is considered slender, so that xCP is small. The following
kinematic approximation is thus considered for the evaluation of the strain energy:

∂x
∂s

= ∂xOC

∂s
+ ∂ROC

∂s
xCP ≈ ∂xOC

∂s
(13)

which means that the deformation gradient is assumed to be purely axial and uniformly dis-
tributed in the cross section. From Eqs. (11) and (13), we obtain

F =
∥∥∥∥∂x

∂s

∥∥∥∥ (14)

and from Eqs. (10) and (12)
F = ROC

[
Fe1 e2 e3

]
(15)

The Green-Lagrange strain tensor is obtained as

E =


1
2

(
F 2 − 1

)
0 0

0 0 0
0 0 0

 (16)



A quasistatic ALE cable formulation for multibody systems applications 7

ξ�eO1 (ξ �= s)

Fig. 3 – Referential domain for the cable.

It can be noted that only the axial strain ε = 1
2

(
F 2 − 1

)
is relevant to the problem. The Green-

Lagrange strain tensor is thus only governed by the material coordinate s and the curvilinear
coordinate x⋆.

In general, the referential domain is described by ξ =
[
ξ ξ2 ξ3

]T . In this case, because only
an axial material flow is considered without any transverse flow, one has s(ξ) ̸= ξ, ξ2 = s2 and
ξ3 = s3 so that the only component of interest is ξ. The referential domain is depicted in Fig. 3.

From these considerations, Fig. 1 is simplified to Fig. 4. The material domain L0 is represented
by the centerline coordinate s, the spatial domain Lt is represented by the curvilinear abscissa
x⋆ of point P in the deformed configuration, and the referential domain L is represented by the
scalar quantity ξ, understood as points of interest (or mesh nodes) lying on the centerline. The
deformation gradients F, F̄, f̃ are all represented by scalar quantities F = ∂x⋆/∂s, F̄ = ∂x⋆/∂ξ

and f̃ = ∂s/∂ξ that actually coincide with the Jacobians

J = F =
∥∥∥∥∂x

∂s

∥∥∥∥ = f−1 = j−1 (17)

J̄ = F̄ =
∥∥∥∥∂x

∂ξ

∥∥∥∥ = j̄−1 (18)

j̃ = f̃ = J̃−1 (19)

Let the reader note that Eq. (5) still holds in this context. Indeed, one has

F =
∥∥∥∥∂x

∂s

∥∥∥∥ =
(

∂s

∂ξ

)−1 ∥∥∥∥∂x
∂ξ

∥∥∥∥ = f̃−1F̄ (20)

and, similarly,

f = f̃ F̄ −1 (21)

as ∂s/∂ξ is a scalar quantity. Equations (20) and (21) will be extensively used throughout this
paper in the calculus of variations, in order to express the deformation gradients with quantities
defined on the referential domain.

In this paper, even though the Jacobians and the deformation gradients are equal, both no-
tations will be kept. Notably, the deformation gradient will be used when a deformation measure
is implied, whereas the Jacobian will be used when a change of domain or multiplicative factor
is involved.

2.3 Equilibrium condition

In the quasistatic case, the equilibrium equation can be obtained from the virtual work principle
that states that the variation

δW = 0 (22)
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ϕ, F, J
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ξ

ϕ̃, F̃ , J̃
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Fig. 4 – Material, spatial and referential domains with their mapping, deformation gradients
and Jacobians in the case of a cable modeled as a unidimensional structure with a uniform
distribution of strain in the cross section.

for all compatible virtual displacements, where W is the total potential energy W = W int +Wext.
The extension to the dynamic case can be obtained using Hamilton’s principle. Defining V as the
energy density per unit volume and under the assumption of a unidimensional structure with a
uniform distribution of strains and material properties in the cross section, the virtual work can
be rewritten as

δ

(
A

∫
L

V dL

)
= 0 (23)

where A is the cross-sectional area that is supposed to be constant along the cable span and dL
is the length differential on the referential domain. The variation is expressed in the referential
domain L and should be understood as a total variation, including the contribution of two distinct
terms

δ(•) = δx(•) + δs(•) (24)

The equilibrium condition can then be written, according to the principle of virtual work, as

δ(W) = δx(W) + δs(W) = 0 (25)

The term δx(•) corresponds to the variation with respect to x keeping s fixed, i.e., it captures
Lagrangian contributions resulting from the spatial motion. The term δs(•) corresponds to the
variation with respect to s keeping x fixed, i.e., it captures Eulerian contributions resulting from
the material motion.

Although the previously defined energy density V is expressed in the referential domain, it
can also be defined in the material domain as V0, or in the spatial domain as Vt. To do so, it can
be noted that, independently of the integration domain, the total potential energy of the cable
should be the same:

W = A

∫
L

V dL = A

∫
L0

V0 dL0 = A

∫
Lt

Vt dLt (26)

Using the previously defined Jacobians and relying on Fig. 4, the length differentials on the
different domains are linked through the relation

dL = j̃−1dL0 = J̄−1dLt (27)
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As a consequence, using Eqs. (26) and (27), the energy densities in the different domains are
related through the Jacobians as

V = j̃V0 = J̄Vt (28)

2.4 Internal potential energy

Using the results of Section 2.2 and under the assumption of a linear stress-strain relation, the
internal energy density for the cable expressed on the material domain is given as

V int
0 = 1

2E ε2 (29)

where E is Young’s modulus.
For the spatial motion contribution, the variation of the internal energy is expressed keeping

s fixed, with the implication that δxf̃ = δxj̃ = 0, so that δxF = δxF̄ f̃−1. This variation will
describe the spatial motion at fixed material coordinates.

The variation is written as

δx(W int) = A

∫
L

δxV intdL

= A

∫
L

δx

(
j̃V int

0

)
dL

= EA

∫
L

ε δxε j̃ dL

= EA

∫
L

δx

(
∂x
∂ξ

)T

ε
∂x
∂ξ

j̃−1 dL (30)

since

δxF̄ = δx

∥∥∥∥∂x
∂ξ

∥∥∥∥
= 1

F̄

∂x
∂ξ

T

δx

(
∂x
∂ξ

)
(31)

Equation (30) represents the first set of equilibrium equations.
For the material-motion contribution, the variation of the internal energy is expressed keeping

x fixed, with the implication that δsF̄ = δsJ̄ = 0, so that δsf = δsf̃ F̄ −1. This variation will
describe the material motion at fixed spatial coordinates.

The variation is written as

δs(W int) = A

∫
L

δsV intdL

= A

∫
L

δs

(
j̃V int

0

)
dL

= 1
2EA

∫
L

(
δsf̃ ε2 + 2 j̃ ε δsε

)
dL

= 1
2EA

∫
L

(
δsf̃ ε2 + 2 j̃ ε F F̄ δsf̃−1

)
dL

= 1
2EA

∫
L

δsf̃
(
ε2 − 2 F 2 ε

)
dL (32)
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Equation (32) gives the second set of equilibrium equations.
In order to solve the equilibrium equations (30) and (32), a popular option is to work with

an iterative scheme such as a Newton scheme, so that the equilibrium equations need to be
linearized. As two mappings are present, the linearizations must be alternately computed with
respect to one variable while keeping the other fixed, hence

∆δ(•) = ∆xδx(•) + ∆xδs(•) + ∆sδx(•) + ∆sδs(•) (33)

The linearizations are written as

∆xδx(W int) = EA

∫
L

δx

(
∂x
∂ξ

)T (
ε I j̃−1 + ∂x

∂ξ

∂xT

∂ξ
j̃−3

)
∆x

∂x
∂ξ

dL (34)

∆sδs(W int) = EA

∫
L

δsf̃
(
ε F 3 + F 5)

J̄−1 ∆sf̃ dL (35)

∆xδs(W int) = −EA

∫
L

δsf̃
(
ε + F 2)

j̃−2 ∂xT

∂ξ
∆x

∂x
∂ξ

dL (36)

∆sδx(W int) = −EA

∫
L

δx

(
∂x
∂ξ

)T
∂x
∂ξ

(
ε + F 2)

j̃−2 ∆sf̃ dL (37)

where it can be seen from Eqs. (36) and (37) that the tangent stiffness matrix will be symmetric.

2.5 External loading

The contribution of external loading can be added to the equilibrium equations. In what follows,
both cases of distributed loading and punctual loading will be successively studied.

First, a distributed loading with an external work density of the form Vext
0 = −xT b0 is

considered, where b0 is the vector of external forces per unit length expressed in the inertial
frame. It is first assumed that b0 could explicitly depend on the material coordinate s. Similarly
as in the previous sections, the virtual work done by the external forces is expressed as

δ(Wext) =
∫

L
δVext

0 j̃ dL (38)

One should be careful that x = φ̄(ξ) is evaluated on the referential domain and has therefore
no explicit dependence on the material coordinate s. In this section, the representation of the
virtual displacements as δxφ̄ and δsΦ̃ is kept, instead of δxx and δss, to highlight the fact that
they capture virtual spatial and material displacements with respect to the referential domain.

The virtual work for the spatial motion is obtained as

δx(Wext) = −
∫

L
δxφ̄T b0 j̃ dL (39)

and the virtual work for the material motion as

δs(Wext) = −
∫

L

(
δsj̃ xT b0 + j̃ xT ∂b0

∂s
δsΦ̃

)
dL (40)

Equation (40) represents so-called material or configurational forces, which have already been
studied e.g., by Eshelby [10,28,30]. The second term in the integral takes into account the fact
that the loading b0 depends on s and could be distributed on a portion of the material domain
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only. In the special case where the external force is uniformly distributed over the cable, b0 is
independent of s, so that Eq. (40) becomes:

δs(Wext) = −
∫

L
δsf̃ xT b0 dL (41)

Secondly, in the case where a load is punctually applied at a location ξ⋆ ∈ [0, L], one has

δ(Wext) = δ(Wext
0 ) = −δφT |ξ⋆ t0 (42)

where t0 is the vector of external punctual loads applied at point ξ⋆. This means that the point
of application of the load is fixed at the position ξ⋆ in the referential domain, and that both
spatial and material motions may occur at that position. The total variation of φ = φ̄◦ φ̃ should
thus be taken into account using Eq. (24)

δφ = δxφ + δsφ

= δxφ̄ + ∂φ̄

∂ξ
δsφ̃ (43)

and using the mapping identity

φ̃(Φ̃) = 1 (44)

⇔ δφ̃ + j̃−1 δΦ̃ = 0 (45)

Equation (42) is rewritten as

δx(Wext) = −δxφ̄T |ξ⋆ t0 (46)

and

δs(Wext) = δsΦ̃|ξ⋆

∂xT

∂ξ
t0 j̃−1 (47)

It should be noted that the contribution of Eq. (46) is zero if the spatial motion is prevented
at point ξ⋆, as δxφ̄|ξ⋆ will become zero. This is notably the case when the force is applied at a
fixed spatial location. On the other hand, the contribution in Eq. (47) becomes zero if no flow is
allowed at point ξ⋆, e.g., if the force is always applied at the same material particle. This is also
particularly the case at the extremities of the cable, where the no-flow boundary conditions will
enforce δsΦ̃|0 = δsΦ̃|L = 0.

Unfortunately, the gradient ∂x/∂ξ and the Jacobian j̃ in Eq. (47) are discontinuous at point
ξ⋆ due to the punctual nature of the applied loading so that this equation cannot be used as
such. This problem was investigated in detail in [19], where it is demonstrated that the gradient
and the Jacobian should actually be replaced by the arithmetic mean of their two values across
the discontinuity.
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A B

sA, xA sB, xB

ξA = 0 ξB = L

s, x

Fig. 5 – Cable element. The variables s and x are interpolated between the nodal values sA and
sB and xA and xB , respectively, with linear shape functions of ξ.

3 Finite element discretization

A finite element with two nodes A and B and linear shape functions is proposed in the following,
as depicted in Fig. 5. Initially, the reference domain is equal to the material domain, so that
ξA = sA = 0 and ξB = sB = L, where L is the undeformed length of the cable. However, after
motion, sA is not necessarily equal to ξA and sB is not necessarily equal to ξB , as a flow of
material can arise between the elements. The nodal value of the unknown mappings s = Φ̃ and
x = φ̄ will be denoted using the following vectors

qs(t) =
[
sA(t)
sB(t)

]
(48)

qx(t) =
[
xA(t)
xB(t)

]
(49)

and the vector of coordinates of the element is simply

q(t) =
[

qs(t)
qx(t)

]
(50)

Over the element, the values of the maps can be approximated using linear shape functions

Φ̃(ξ, t) = Ns(ξ) qs(t) (51)

and

φ̄(ξ, t) = Nx(ξ) qx(t) (52)

with

Ns(ξ) =
[
N1(ξ) N2(ξ)

]
(53)

and

Nx(ξ) =

N1(ξ) 0 0 N2(ξ) 0 0
0 N1(ξ) 0 0 N2(ξ) 0
0 0 N1(ξ) 0 0 N2(ξ)

 (54)

where N1 = (1 − ξ)/L and N2 = ξ/L are functions of ξ ∈ [0, L].
The derivatives of the mappings are defined as

∂Φ̃

∂ξ
= f̃ = Bs qs (55)
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and
∂φ̄

∂ξ
= ∂x

∂ξ
= Bx qx (56)

with

Bs =
[

∂N1

∂ξ

∂N2

∂ξ

]
(57)

and

Bx =


∂N1

∂ξ
0 0 ∂N2

∂ξ
0 0

0 ∂N1

∂ξ
0 0 ∂N2

∂ξ
0

0 0 ∂N1

∂ξ
0 0 ∂N2

∂ξ

 (58)

where ∂N1/∂ξ = −1/L and ∂N2/∂ξ = 1/L
Since Bs and Bx are constant, one has

δsf̃ = Bs δsqs (59)

and

δx

(
∂x
∂ξ

)
= Bx δxqx (60)

3.1 Internal force vector

Using the previously defined quantities, in its discretized form, Eq. (30) becomes

δx(W int) = EA δxqT
x

∫
L

BT
x ε Bx qx (Bs qs)−1dL (61)

with ε = 1
2

(
F 2 − 1

)
and F = ∥Bx qx∥ (Bs qs)−1. For linear shape functions, the integration

over the element length L is trivial:

δx(W int) = EA L δxqT
x BT

x ε Bx qx (Bs qs)−1 (62)

For the material motion contribution, Eq. (32) becomes

δs(W int) = 1
2EA δsqT

s

∫
L

(
ε2 − 2 F 2 ε

)
dL (63)

Again, with the use of linear shape functions, the integration over the length L of the current
element is trivial:

δs(W int) = 1
2 EA LδsqT

s

(
ε2 − 2 F 2 ε

)
(64)

We obtain

δx(W int) + δs(W int) = δqT f int (65)

with

f int = EA L

[ 1
2BT

s

(
ε2 − 2 F 2 ε

)
BT

x Bx qx (Bs qs)−1
ε

]
=

[
f int
mat

f int
spatial

]
(66)
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3.2 External force vector

For a uniformly distributed external loading over the material domain, the discretization of
Eqs. (39) and (41) is written as

δx(Wext) = −
∫

L
δxqT

x NT
x b0 Bs qs dL (67)

and

δs(Wext) = −
∫

L
δsqT

s BT
s qT

x NT
x b0 dL (68)

For an external punctual loading at ξ⋆, the discretization of Eqs. (46) and (47) yields

δx(Wext) = −δxqT
x Nx(ξ⋆)T t0 (69)

and

δs(Wext) = δsqT
s Ns(ξ⋆)T qT

x BT
x t0 (Bsqs)

−1
(70)

where Nx(ξ⋆) and Ns(ξ⋆) are the shape functions evaluated at ξ⋆ and where qT
x BT

x and (Bsqs)
are the arithmetic means between their values before and after ξ⋆. In this specific case, the vector
of external forces becomes

f ext =
[

Ns(ξ⋆)T qT
x NT

x t0 (Bsqs)
−1

−Nx(ξ⋆)T t0

]
=

[
f ext
mat

f ext
spatial

]
(71)

3.3 Discretized equilibrium equations

The modeling of multibody systems often involves constraints. In the present ALE formulation,
constraints can be applied to the material coordinates, for instance, to impose the zero-flow
boundary conditions, or to the spatial coordinates, e.g. to enforce a fixed position, a bilateral
link between the cable mesh and a rigid body or a driven motion for one or several nodes of
the mesh in space. It should be noted that it is perfectly possible to enforce constraints on both
the material and spatial coordinates of the same node, for example, a node with a prescribed
kinematic motion through which no flow of material can occur. Moreover, the formulation of the
cable could be coupled to any multibody system involving its own constraints, e.g., to model
rigid links or joints. The vector of constraints can thus be noted as

g(q) =
[

gmat(qs)
gspatial(qx)

]
= 0 (72)

The equilibrium of the system in the quasistatic case is then written as

f int + f ext + GT λ = 0
g(q) = 0 (73)

where G is the constraint gradient with respect to the generalized coordinates q.
The residue can be defined from the equilibrium equations as

r =

 f int
mat + f ext

mat + GT
matλmat

f int
spatial + f ext

spatial + GT
spatialλspatial

g(q)

 =

 rmat
rspatial

rg

 (74)

where we define Gmat and Gspatial as the constraint gradients ∂gmat/∂qs and ∂gspatial/∂qx,
respectively.
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3.4 Regularization of the problem

In a purely Lagrangian setting i.e., when no flow of material is allowed through the nodes, the
spatial solution x will be the one that minimizes the potential energy for the chosen values of
the material coordinates s of the mesh. This means that, around a stable solution, a purely
Lagrangian description leads to a positive-definite tangent stiffness matrix of the internal and
external forces, which ensures the convergence of the Newton solver.

However, if the no-flow constraint is relaxed, as it is the case in an ALE formulation, the
equations are obtained from the variation of the potential energy with respect to the two vari-
ables s and x. Consequently, the solution will be such that the material and spatial coordinates
represent a stationary point of the potential energy. If the problem is convex, the mesh is called
"energy optimal" [2]. This property will be studied in a numerical example in the following section.
Nevertheless, when the material flow with respect to the mesh is also allowed, several problems
can arise, as identified in [29]. First, the uniqueness of the solution is not guaranteed. Indeed,
there might be several node configurations for the same spatial solution with the same potential
energy, for instance, when the strain field is uniform along the whole cable span. The discretized
energy is thus insensitive to the material position of the nodes on the cable so that there exists
an infinity of solutions that satisfy the minimum-energy condition. Secondly, at an undeformed
configuration, the tangent stiffness matrix is singular and thus not positive-definite. Finally, even
in the unconstrained case, the tangent stiffness matrix can have negative eigenvalues, indicating
a nonconvexity of the problem. Local convexity is usually recovered in the neighborhood of the
solution. In [2], dynamic constraints are introduced to eliminate the material coordinates having
a zero residual at each iteration. Although this method solves the case where the tangent stiff-
ness matrix is singular, it does not necessarily improve the convexity of the problem. In [29], a
regularization technique is applied to the whole material problem.

In this paper, this regularization is modified as follows. At each load step n, two regularized
subproblems are solved consecutively.

– In the first subproblem, a constant term is added to the material part of the residual as

rn⋆
mat := rn

mat + 2α(qn⋆
s − qn−1

s ) (75)

so that the material part of the tangent stiffness Smat takes the expression

Sn⋆
mat := Sn

mat + 2αI (76)

where α is a positive constant whose role is to force this part of the tangent stiffness to be
positive-definite. This resolves the nonconvexity of the problem and the Newton solver will
converge to a solution qn⋆. However, it can be noted that the term 2α(qn⋆

s − qn−1
s ) can be

nonnegligible, so that the obtained solution qn⋆ is not a solution of the unregularized problem.
– The second subproblem is formulated to solve the previously identified issue. In our expe-

rience, the configuration qn⋆ is sufficiently close to the unregularized solution so that the
unregularized tangent stiffness of the internal and external forces does not have any negative
eigenvalue. However, the uniqueness of the solution is still not guaranteed, implying that some
lines of the tangent stiffness can be dependent. At each iteration, the dependent lines of the
tangent stiffness matrix are identified through its QR decomposition, and the rank deficiency
of the resulting permutation matrix is examined. Since the decomposition is performed on the
entire tangent stiffness matrix, some dependent lines may correspond to spatial coordinates,
while others may correspond to material coordinates. To obtain a unique set of dependent
lines that correspond exclusively to material coordinates, the dependent lines associated with
spatial coordinates are swapped with their material counterparts, as each spatial coordinate
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(a) Initial position.

(b) Final position.

Fig. 6 – Material flow through the fixed middle node due to the bar translation.

has a unique corresponding material coordinate. In this way, the selection of dependent lines
is such that it only includes indices of material coordinates. In the second subproblem, the
regularization is then applied exclusively to the corresponding components of the material
part of the residual as

rn⋆⋆
mat, dependent := rn

mat, dependent + 2α(qn
s,dependent − qn⋆

s,dependent) (77)

The material part of the tangent stiffness is modified accordingly

Sn⋆⋆
mat,dependent := Sn

mat,dependent + 2αI (78)

The Newton solver starts from the initial guess qn⋆ and converges to the final solution qn of
the load step n. It should be noted that this regularization does not alter the solution, as was
the case for the first subproblem. Indeed, the regularization term 2α(qn

s,dependent−qn⋆
s,dependent)

only acts on the dependent solution components and can be seen as a kind of quasistatic
damping. Among the nonunique solutions of the unregularized problem, it penalizes the ones
departing from qn⋆

s,dependent so that the final solution satisfies qn
s,dependent = qn⋆

s,dependent.

4 Numerical results

4.1 Bar with simple material flow

In order to illustrate the formulation, a simple example is first studied. It consists in the qua-
sistatic rigid-body motion of a 3-node 10-mm-long bar in the axial direction. The same displace-
ment of 1 mm is imposed on both end nodes in a single step. A no-flow boundary condition is
imposed on the material coordinate at the two extremities. The middle node is completely fixed
in space. These conditions are all imposed through the constraint vector g. The material is al-
lowed to flow through the middle node, as its material coordinate is left unconstrained. The aim
is to check that the observed material flow is consistent with the imposed translation of the bar.
No regularization of the problem is needed in this context as there is only one free coordinate.
As can be seen in Fig. 6, in the final configuration, the material coordinate of the particle at the
middle node has been shifted by 1 mm, which agrees with the amplitude of the translation.
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(a) Middle node with initial coordinates s = 5 mm and x1 = 5 mm.

(b) Middle node with initial coordinates s = 2 mm and x1 = 2 mm.

(c) Final configuration for both initial configurations.

Fig. 7 – The solution for the axially uniformly loaded cable is an optimal mesh regardless of the
initial middle-node position.

4.2 Clamped-clamped cable under constant axial distributed loading

This example is inspired by [2] and is intended to show the possibility to apply a distributed
load on the cable and the mesh-optimality property mentioned in Section 3.4. A cable, with
material properties E = 1 GPa, cross-sectional area A = π mm2 and a length L = 10 mm, is
clamped at both extremities and a uniform axial distributed loading b0 = 100000 N/m is applied
on the cable span. The cable is divided into two elements, so that only the middle node, with
initial coordinates s = 5 mm and x1 = 5 mm, is free to move both spatially and materially.
At the undeformed configuration, the tangent stiffness matrix is singular. In this context, the
proposed regularization is applied with α = 100. With 40 load steps, the average number of
Newton iterations for the first and second regularized subproblems is 2.13 and 1.5, respectively.

For this particular example, the 1D equations that need to be solved are two scalar equations
for the two unknown axial coordinates of the middle node B denoted sB and xB

1
4EA

(
3
2

(
F 4

2 − F 4
1

)
+ F 2

1 − F 2
2

)
+ b0

xC − xA

2 = 0
1
2EA

(
F 3

1 − F 3
2 + F2 − F1

)
− b0

sC − sA

2 = 0
(79)

where the material and spatial coordinates of the clamped nodes sA, sC , xA and xC are fixed to
their initial values and where

F1 = xB − xA

sB − sA
, F2 = xC − xB

sC − sB
(80)
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Fig. 8 – Displacement u as a function of the material position s for the axially uniformly loaded
clamped-clamped cable for several numbers of ALE elements. The reference solution is obtained
from a purely Lagrangian simulation with 800 elements.

The results are presented in Fig. 7. It is observed that the middle node moves towards the
right while the material flow is directed to the left, such that its final coordinates are s = 5.41 mm
and x1 = 5.81 mm.

In Fig. 8, this result can be compared to a reference solution of the displacement field u
as a function of the material coordinate s obtained with a finely discretized mesh in a purely
Lagrangian setting. It is remarkable that the material position obtained in the previous simulation
coincides with the material coordinates for which the displacement u reaches its maximum. By
increasing the number of ALE elements, it can also be seen in Fig. 8 that the exact displacement
field is approached with few elements. This illustrates the fact that the mesh becomes optimal
energy-wise. One can confirm the energy optimality by plotting the potential energy W = Wint +
Wext as a function of the material position of the middle node in a purely Lagrangian setting
with two elements, see Fig. 9. It can be appreciated that the minimum of the potential energy is
achieved when the position of the middle node is chosen as s = 5.41 mm, which is the solution
given by the ALE simulation. It can also be checked that the same solution is recovered by the
ALE formulation regardless of the initial middle-node position, e.g., when the initial position of
the middle node is changed to s = 2 mm and x1 = 2 mm as shown in Fig. 7.

4.3 Cable-pulley system

4.3.1 Frictionless cable

In this example, a cable-pulley system will be studied. The aim is to model the system when
sufficient tension is assumed in the cable, so that closed contact is achieved between the cable
and the pulley without any gap. It is considered that the contact region of the cable on the pulley
is known a priori. In such cases, as previously mentioned, the drawback of a purely Lagrangian
formulation for a cable-pulley system is that the discretization of the cable should be fine enough
over the whole length to represent the contact and friction between the pulley and the cable
during the sliding motion of the cable. In contrast, an ALE formulation may only require small
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Fig. 9 – Potential energy W as a function of the material position s of the middle-node for the
axially uniformly loaded clamped-clamped cable in a purely Lagrangian setting with two finite
elements. A minimum is reached for s = 5.41 mm.

A

KMN

�eO1

�eO2

B

Fig. 10 – ALE discretization of the cable in a cable-pulley system.

elements in the contact zone between the cable and the pulley while the rest of the cable is
modeled using coarser elements, as depicted in Fig. 10. For the nodes in the contact zone, a flow
of material is thus observed.

The numerical simulation consists in a planar and frictionless cable-pulley system where the
pulley center is fixed, the rotation of the pulley is blocked and an imposed displacement is
applied to the end nodes of the cable in several steps. In order to show the possibility to take
into account the elasticity of the cable, a larger displacement is imposed at one of the two ends:
∆xA, 1 = 10 mm at the top extremity in the positive x-direction and ∆xN, 1 = 20 mm at the
bottom extremity in the negative x1-direction, whereas their motion in the x2- and x3-directions
is not allowed. Again, a no-flow boundary condition is applied at the two extremities. All the
nodes in contact with the pulley are constrained to keep their spatial position. In this case, there
is no need for generalized coordinates to represent the pulley, as its rotation is blocked. The node
M , located between the end of the cable and the pulley, initially at sM = 256.9, is not allowed
to move in the x2- and x3-directions but is unconstrained in the x1-direction. In this example,
the cable has an initial length L = 306.9 mm, a Young’s modulus E = 3 GPa, a cross-sectional
area A = 7.069 mm2, and the pulley has a radius R = 50 mm. The regularization parameter α
has been set to 1. The results are presented in Fig. 11.

It can be observed in Fig. 11b that the spatially constrained nodes see a flow of material
through them, as expected. Indeed, the material value s decreases with time, indicating that the
nodes do not follow the same material particle during the simulation. On the other hand, the end
nodes always follow the material particles located at s = 0 and s = L, because of the imposed
boundary conditions. Finally, it can be noted that node M keeps a fixed material position at
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(a) Initial configuration.

(b) Final configuration.

Fig. 11 – Simulation of the cable-pulley system with imposed displacements on both ends.

s = 256.9 mm during the whole simulation. As mentioned in Section 3.4, the solution for the
material coordinate of this node is not unique because there is a constant strain in the last two
elements. This can be seen in Fig. 12 representing the strain as a function of s. This means that
each value of s between sK = 175.4 mm and sN = L is a solution to this nonconvex minimization
problem. In other words, the solution is independent of the material coordinate of this node. As
previously mentioned, with the help of the proposed regularization, the Newton solver forces
this node to converge to its initial material coordinate among all the possible solutions. The
average number of Newton iterations for the first regularized subproblem is 4, and 1 for the
second subproblem, with 20 load steps.

4.3.2 Introducing friction

In order to take into account the friction between the cable and the pulley, a friction law can be
applied to each node in contact with the pulley. Relying on Fig. 10, these nodes are all the nodes
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Fig. 12 – Evolution of the axial strain as a function of the material coordinate s.

from B to K. At first, a slip-only friction law of Coulomb type is considered as follows

T = µN (81)

where N is the normal component of the reaction force of the cable on the pulley, which will be
called the normal contact force and T is the tangential component of this reaction force, which
will be called the friction force. µ is the kinetic friction coefficient. Considering that µ is known,
the friction force to apply to every node on the pulley can be evaluated thanks to Eq. (81) if the
normal contact force is known. In the present case, because nodes B to K are constrained to
the pulley, the term GT

spatialλspatial in Eq. (74) represents the vector of reaction forces for each
of these node. For node i, let us denote this force as Ri. The normal component of the contact
force Ni for each node i is found by projecting the reaction force Ri in the normal direction ni

Ni = Ri · ni (82)

The friction force is then computed using Eq. (47) by replacing t0 with T computed through
Eq. (81) and is applied to each node i in the tangential direction to the pulley. This friction force
is thus computed as a pseudopunctual load acting on the material coordinates.

After running the simulation, the results can be validated by comparison with an analytical
result. Indeed, according to the theory of belts and pulleys [6], the tension forces in the two
branches of the (massless) cable are related through

F1

F2
≤ eµαth (83)

where F1 is the tension force in the tight branch, F2 is the tension in the slack branch, and αth
is the theoretical angle of wrap of the cable on the pulley. The equality corresponds to the case
where the slip limit is reached in the whole contact zone.

In order to reproduce this last case, a traction force is applied to the cable such that the
displacement of the end node is nonzero but negligible. In this scenario, it can be considered that
the slip threshold has just been reached, so that the ratio of tension forces should be exactly
described by an exponential law. In the simulation, the traction force on node N is F = 1000 N,
the Young’s modulus of the cable is E = 210 GPa, its cross-sectional area is A = 7.854 mm2,
and the coefficient of friction is chosen as µ = 0.3. There are n = 20 elements on the pulley from
B to K. The length of the cable, the radius of the pulley and the regularization parameter are
left unchanged compared to the previous simulation.
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Fig. 13 – Evolution of the tension force in the cable for an angle of wrap αcorr = π − π

20 rad
and µ = 0.3.

As nodes B and K are tangent to the pulley, no contact force develops between the cable and
the pulley at these locations. This means that the friction force only departs from 0 for nodes
B + 1 to K − 1. In the model, we thus consider that the first and last elements on the pulley are
only in contact for half of their length. The angle of wrap considered in Eq. (83) is thus corrected
as

αcorr = αth − αth

n
= π − π

n
(84)

where n is the number of elements on the pulley.
In Fig. 13, the evolution of the tension force in the cable is shown. It can be observed that

it approaches the exponential law in Eq. (83) with αcorr = π − π/20 rad in a staircase pattern,
as the strain is constant in each element. Also, the global tension ratio F1/F2 exactly satisfies
Eq. (83) with αcorr.

In the simulation, the number of elements n = 20 is finite, so that αcorr < αth = π, leading to
an underestimation of the tension ratio and thus to an overestimation of the tension force in the
slack branch. However, the theoretical ratio should be reached for an infinite number of elements
on the pulley as

lim
n→∞

αcorr = lim
n→∞

π − π

n
= αth (85)

This property is illustrated in Fig. 14, where an order-1 convergence to the theoretical ratio eµπ

is observed when the number of elements on the pulley increases.
With 40 load steps, the average number of Newton iterations for the first regularized subprob-

lem is 8.525. The second problem is not solved in this case because the cable motion is negligible
at the slip limit.
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Fig. 14 – Evolution of the tension ratio as a function of the number of elements on the pulley.

4.4 Soft finger

Soft robots are robots made of soft materials, e.g., silicone or plastic. They exhibit various
advantages. For instance, soft grippers grant flexibility to the tasks to be accomplished. Making
use of adequate force and torque sensors, the same programming sequence can be used for the
grasping of objects of different sizes and shapes, as can be encountered in the food industry [42,
43]. The actuation of soft robots may rely on different techniques, and cable-driven actuation
is one of them. In the case of cable-actuated soft robots, the robot structure can either be
entirely soft or composed of several relatively rigid sections connected together, as in the trunk
considered in [4]. This is also notably the case for a soft finger composed of bulky phalanges
with thin junctions, where a cable attached to the distal phalange can be used to control the
bending of the finger, as shown in Fig. 15a. Even though the whole finger is made of soft material,
deformations will mainly occur at the junctions between the phalanges due to the reduction in
section. This kind of design has already been studied in the soft-robot community, for instance,
a software toolkit for the modeling, simulation and control of soft robots is proposed in [5], a
complete gripper made of three fingers is developed in [26], a self-healing material is used for the
making of a finger in [38], and a soft finger actuated by three cables has been developed in [12].
The quasistatic simulation of a soft finger is thus studied in this section. The two phalanges
are represented by rigid bodies, and their connection is modeled using a revolute joint with a
torsional stiffness, simulating the local resistance of the junction to bending. The first phalange
is fixed on a support. A punctual external force F is applied at the end of the cable while the
other end is attached to the distal phalange. Although the proposed multibody model will not
be able to catch the compliance of the phalanges, the main goal of the simulation is to show the
interest of an ALE approach to model the interaction between the finger and the cable. Indeed,
Fig. 15b illustrates the system under study and shows the position of the contact points between
the phalanges and the cable inside its cavity. One observes that the positions of these points on
the phalange are known a priori and that the rest of the cable is contact free, provided that the
cable is under tension, so that the problem fits well to an ALE description.

Nodes are placed where contact and friction are supposed to happen. In Fig. 15c, these
correspond to nodes B and C. Their spatial position is constrained to follow the motion of the
finger and a flow of material can occur. Nodes A and D are also chosen to be constrained to
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Phalanges

Cable

(a) Soft cable-actuated finger.

Contact points

Cable
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(b) Contact points between the cable
and the inside of the finger.
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Hinge and spring

Nodes fixed to the finger

Moving node
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(c) Numerical model of the finger.

Fig. 15 – Soft finger, occurrence of contact due to the cable actuation and associated numerical
model.

(a) Initial configuration.

(b) Final configuration.

Fig. 16 – Soft-finger model actuated by a cable.

follow the motion of the phalanges. On the other hand, node E, and any node that would be
located between nodes D and E can follow the material particles, as shown in Fig. 15c. The
force F = 1000 N is applied in several load steps. The cable has an initial length L = 25 cm, a
Young’s modulus E = 3 GPa, and a cross-sectional area A = 7.069 mm2. The torsional stiffness
of the joint is equal to k = 40 N m. The regularization parameter α has been set to 1. The results
are presented in Fig. 16. For the same reason as in Section 4.3.1, the node located between D
and E at s = 20 cm keeps a fixed material position with the help of the regularization but any
other material position between s = 12.05 cm and s = 25 cm for this node would be a valid
solution to the problem. The flow of material is observed, as expected, at the contact points on
the phalanges.

In terms of average number of Newton iterations, with 20 load steps, the first regularized
subproblem converges in 4 iterations, whereas the second regularized subproblem converges in 1
iteration.

5 Discussion

This paper has presented a general ALE cable formulation with the following features.
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1. It is possible to deal with nodes that are not considered Lagrangian or Eulerian a priori. In
this case, the ALE solver establishes the solution to both the material and spatial equilibrium
equations, such that the final mesh is optimal in an energetic sense. This property was illus-
trated in the clamped-clamped cable example by computing the energy for different material
positions of the middle node in a Lagrangian setting.

2. When such material and spatial freedom is given at some nodes, the tangent stiffness matrix
can become singular in several cases. First, as shown in the cable-pulley example, the set of
equations may be redundant if the strain is uniform in adjacent elements and the solution
is then not uniquely defined. Secondly, as shown in the clamped-clamped cable example, the
tangent stiffness is locally singular at the undeformed configuration. A novel regularization
procedure was proposed to build an algorithm converging to one of the solutions in all these
cases.

3. Constraints can be taken into account to model driven motions or to represent interactions
with other mechanical components of a multibody system. This capability was illustrated in
the cable-pulley and in the cable-actuated soft-finger examples.

For the clamped-clamped cable example, the results are similar to those presented in [2]
although a different material law is considered. In our formulation, the regularization was essential
as the tangent stiffness matrix is singular at the undeformed configuration. In [2], this issue
was not solved using a regularization but using a so-called dynamic constraint strategy. Our
regularization is closer to the method proposed by [29] with the difference that our method is
based on a sequence of two subproblems solved using a standard Newton scheme whereas the
method in [29] was based on a single problem solved using a line-search scheme and a Cholesky
factorization. Also, the formulation of constraints was not addressed in [2] nor in [29].

Several ALE cable formulations were developed in the multibody community and were com-
bined with the description of constraints [8,18]. However, in these papers, the description of each
node is a priori specified either as Lagrangian or Eulerian. As a consequence, the tangent stiffness
matrix is not exposed to the aforementioned singularity issues and no regularization technique
is needed. Our example includes an unconstrained node M that might undergo both material
and spatial motions, thereby demonstrating the generality of our approach and the effectiveness
of the proposed regularization, leading to an optimal mesh at convergence. In [17], a general
dynamic framework is proposed with no a priori condition on the motion of the nodes. However,
this paper does not address singularity issues, nor regularization techniques. It might be that the
singularity issues are specific to quasistatic models.

Finally, the paper has shown that a cable-actuated soft finger can be modeled as a multibody
system based on the proposed ALE formulation. This contrasts with usual approaches considered
in the robotics community such as in [5], where a 3D mesh of the entire structure is used. A
multibody model offers the advantage of a more concise model based on a limited number of
nodes and coordinates in order to capture the interactions between the cable actuation and the
finger motion.

6 Conclusion

In this paper, the arbitrary Lagrangian-Eulerian quasistatic formulation of a cable element in
a multibody framework was revisited. Unlike many other ALE formulations in the multibody
community, it starts from the continuous form of the equilibrium and uses the principle of
virtual work before introducing the finite element discretization. This development may thus
help to clarify the link between the continuum mechanics literature and the multibody dynamics
literature for a simple cable. The resulting unidimensional cable finite element with a uniform
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distribution of strains in the cross section was tested on elementary examples and was successfully
used for the modeling of two multibody systems: a cable-pulley system and a cable-actuated soft
finger.

As is known in the continuum mechanics literature and as illustrated in the clamped-clamped
cable example, the configuration of the mesh resulting from the ALE simulation is energy optimal.
This means that the mesh will find the material position yielding a global minimum of the
potential energy in the cable. The advantage of such energy-optimal meshes is that they capture
the displacement field better than a uniform mesh. Indeed, the reference displacement field
obtained with a purely Lagrangian simulation and 800 elements is well approximated with only
a few ALE elements.

The formulation is general and can be extended to the modeling of the interactions between
cables and multibody systems. Constraints can be used to represent driven motions or connections
between the components of the system. In the cable-pulley example, a frictionless simulation was
performed for a cable subjected to an imposed displacement of both ends while keeping the nodes
on the pulley spatially fixed thanks to constraints. It was shown that a flow of material occurs on
the pulley, capturing the motion of the cable around the pulley. Then, a simple sliding friction
model was considered. The normal contact force was retrieved from the Lagrange multiplier
appearing in the equilibrium equations, which permits us to evaluate the tangential friction force
according to Coulomb’s law. The simulation was performed by imposing a traction force at the
end of the cable so that the slip limit was reached. A comparison with the analytical result for
the evolution of the tension force in the cable, which follows an exponential decrease, confirmed
the validity of the proposed ALE formulation for cable-pulley systems.

Finally, the advantages of the formulation were also shown in the case of a cable-actuated
soft finger, where contact and friction may also be considered between the cable and the finger
cavity. This example demonstrated the possibility to directly couple the ALE cable formulation
with normal multibody elements such as rigid bodies, representing the phalanges, and other
constraints such as the revolute joint with a torsional stiffness located between the two phalanges.
A frictionless model was considered in this paper. However, the same sliding friction model as
for the pulley could be applied without further consideration.

In all those cases, a singularity of the tangent stiffness matrix, a nonconvexity of the problem
and/or a nonuniqueness of the solution might arise. To overcome these issues, a regularization of
the problem has been proposed by first solving a completely regularized subproblem, and then
solving a partially regularized problem that only restrains the dependent material coordinates.
In the considered examples, this second subproblem converges in less than two iterations on
average, so that the computational overhead of the two-step procedure remains small and ensures
the convergence of the solver to one of the possible solutions of the unregularized problem.

As perspectives, the present formulation could be adapted to more sophisticated elements,
such as beam elements. This will permit study of other cases where the bending stiffness is non-
negligible and to observe the mesh-optimality property under other types of loading. In a later
step, the friction model should also be revisited. Although sliding friction was proposed in this pa-
per for the cable-pulley example, this model can only be used under quite restrictive assumptions.
A more general friction model could be explored to capture the stick-slip transition phenomenon
and represent situations where the cable effectively drives the pulley. Finally, cables are often
assumed to be unable to support compressive loads. The introduction of a noncompressibility
condition might also be considered in a future generalization of the model.
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