

Quantitative MRI, practical considerations & applications

Christophe Phillips, Ir Ph.D. c.phillips@uliege.be

- Quantitative MRI
- qMRI application in
 - Multiple sclerosis
 - Alzheimer disease
- Conclusions

Classical vs quantitative MR imaging

SI_{MPRAGE} = f (sequence parameters, scanner hardware, physical MRI parameters)

Classical vs quantitative MR imaging

⇒ Quantitative MRI & "Voxel-Based Quantification"

Effective Transverse Relaxation Rate

In vivo histology using MRI (hMRI)

Weiskopf et al., https://doi.org/10.1097/WCO.0000000000222

qMRI interpretation as hMRI

Weiskopf et al., https://doi.org/10.1038/s42254-021-00326-1

hMRI toolbox: MPM to quantitative maps

Bias field correction

NIfTI images and JSON metadata (acquisition parameters: flip angle, TE, TR, MT on/off, ...)

Multi-Parameter Mapping (MPM) Protocol

hMRI toolbox: MPM to quantitative maps

parameters: flip angle, TE, TR, MT on/off, ...)

NIfTI images and JSON metadata (processing parameters & description)

Tabelow et al., https://doi.org/10.1016/j.neuroimage.2019.01.029 & http://hmri.info

Raw data are messy...

qMRI relies on

- multiple series of images (different weighting & field maps)
- specific acquisition parameters (echo times, flip angles,...)

Image Series No.	Sequence Name	Description	
4	mfc_seste_b1map_v1e	B1 ⁺ Mapping Data	
5	gre_field_mapping_1acq_rl	B ₀ Mapping Magnitude	
6	gre_field_mapping_1acq_rl	B ₀ Mapping Phase Difference	
7	mfc_smaps_v1a_Array	Net Receive Sensitivity Mapping of Array	
8	mfc_smaps_v1a_QBC	Net Receive Sensitivity Mapping of Body Coil	
9	pdw_mfc_3dflash_v1i_R4	Lower flip angle multi-echo FLASH	
Participant moved t	o new position via primary rotation	n about z	
10	mfc_smaps_v1a_Array	Net Receive Sensitivity Mapping of Array	
11	mfc_smaps_v1a_QBC	Net Receive Sensitivity Mapping of Body Coil	
12	mtw_mfc_3dflash_v1i_R4	FLASH acquisition with MT pre-pulse	
Participant returned	l to approximate alignment with th	e original position	
13	mfc_smaps_v1a_Array	Net Receive Sensitivity Mapping of Array	
14	mfc_smaps_v1a_QBC	Net Receive Sensitivity Mapping of Body Coil	
15	tlw mfc 3dflash vli R4	Higher flip angle multi-echo FLASH	

Raw data are messy...

qMRI relies on

- multiple series of images (different weighting & field maps)
- specific acquisition parameters (echo times, flip angles,...)

Image Series No.	Sequence Name	Description		
4	mfc_seste_b1map_v1e	B1 ⁺ Mapping Data		
5	gre_field_mapping_lacq_rl	B ₀ Mapping Magnitude		
6	gre_field_mapping_1acq_rl	B ₀ Mapping Phase Difference		
7	mfc_smaps_vla_Array	Net Receive Sensitivity Mapping of Array		
8	mfc_smaps_v1a_QBC	Net Receive Sensitivity Mapping of Body Coil		
9	pdw_mfc_3dflash_v1i_R4	Lower flip angle multi-echo FLASH		
Participant moved t	o new position via primary rotation	about z		
10	mfc_smaps_vla_Array	Net Receive Sensitivity Mapping of Array		
11	mfc_smaps_v1a_QBC	Net Receive Sensitivity Mapping of Body Coil		
12	mtw_mfc_3dflash_v1i_R4	FLASH acquisition with MT pre-pulse		
Participant returned to approximate alignment with the original position				
13	mfc_smaps_v1a_Array	Net Receive Sensitivity Mapping of Array		
14	mfc_smaps_v1a_QBC	Net Receive Sensitivity Mapping of Body Coil		
15	t1w_mfc_3dflash_v1i_R4	Higher flip angle multi-echo FLASH		

Callaghan et al., <u>https://doi.org/10.1016/j.dib.2019.104132</u>

BIDS, with qMRI extension...

Karakuzu et al., https://doi.org/10.1101/2021.10.22.21265382 & https://bids.neuroimaging.io/

Raw data sorted...

"Manufacturer": "SIEMENS ",
"ManufacturersModelName": "Prisma_fit",
"DeviceSerialNumber": "167025",
"StationName": "MRC35437",
<pre>"MagneticFieldStrength": 3,</pre>
"ScanningSequence": "RM",
"SequenceName": "fl3d_1i3d6",
"PulseSequenceDetails": "mtw mfc 3dflash v1i R4".
"RepetitionTimeExcitation": 0.025,
"EchoTime": 0.0092,
"FlipAngle": 6,
"MTState": 1,
"NumberShots": 1,
"PhaseEncodingDirectionSign": 1,
"history": {
"procstep": {
"descrip": "dicom to nifti import",
"version": "spm_dicom_convert.m - version 6899 - SPM12 (12.3)",
"procpar": []
},
"input": {
"filename": "AnonymousFileName",
"history": []
},
"output": {
<pre>"imtype": "ORIGINAL\\PRIMARY\\M\\ND ",</pre>
"units": "a.u."
}
}

"BIDSme" tool

Beliy *et al.*, <u>https://doi.org/10.21105/joss.05575</u> & <u>https://github.com/CyclotronResearchCentre/bidsme</u>

-	sub-01	
-	🗁 anat	
	sub-01_acq-MTw_echo-1_flip-1_mt-on_MPM.json	804 B
	sub-01_acq-MTw_echo-1_flip-1_mt-on_MPM.nii	40.1 MB
	sub-01_acq-MTw_echo-2_flip-1_mt-on_MPM.json	804 B
	🖹 sub-01_acq-MTw_echo-2_flip-1_mt-on_MPM.nii	40.1 MB
	sub-01_acq-MTw_echo-3_flip-1_mt-on_MPM.json	818 B
	sub-01_acq-MTw_echo-3_flip-1_mt-on_MPM.nii	40.1 MB
	sub-01_acq-MTw_echo-4_flip-1_mt-on_MPM.json	804 B
	🖹 sub-01_acq-MTw_echo-4_flip-1_mt-on_MPM.nii	40.1 MB
	sub-01_acq-MTw_echo-5_flip-1_mt-on_MPM.json	804 B
	sub-01_acq-MTw_echo-5_flip-1_mt-on_MPM.nii	40.1 MB
	sub-01_acq-MTw_echo-6_flip-1_mt-on_MPM.json	804 B
	🖹 sub-01_acq-MTw_echo-6_flip-1_mt-on_MPM.nii	40.1 MB
	sub-01_acq-PDw_echo-1_flip-1_mt-off_MPM.json	804 B
	sub-01_acq-PDw_echo-1_flip-1_mt-off_MPM.nii	40.1 MB
	sub-01_acq-PDw_echo-2_flip-1_mt-off_MPM.json	804 B
	sub-01_acq-PDw_echo-2_flip-1_mt-off_MPM.nii	40.1 MB
	sub-01_acq-PDw_echo-3_flip-1_mt-off_MPM.json	818 B
	sub-01_acq-PDw_echo-3_flip-1_mt-off_MPM.nii	40.1 MB
	sub-01_acq-PDw_echo-4_flip-1_mt-off_MPM.json	804 B
	🗟 sub-01_acq-PDw_echo-4_flip-1_mt-off_MPM.nii	40.1 MB
	sub-01_acq-PDw_echo-5_flip-1_mt-off_MPM.json	804 B
	sub-01_acq-PDw_echo-5_flip-1_mt-off_MPM.nii	40.1 MB
	sub-01_acq-PDw_echo-6_flip-1_mt-off_MPM.json	804 B
	sub-01_acq-PDw_echo-6_flip-1_mt-off_MPM.nii	40.1 MB
	sub-01_acq-PDw_echo-7_flip-1_mt-off_MPM.json	804 B
	sub-01_acq-PDw_echo-7_flip-1_mt-off_MPM.nii	40.1 MB
	sub-01_acq-PDw_echo-8_flip-1_mt-off_MPM.json	804 B
	sub-01_acq-PDw_echo-8_flip-1_mt-off_MPM.nii	40.1 MB
	sub-01_acq-T1w_echo-1_flip-2_mt-off_MPM.json	805 B
	sub-01 acg-T1w echo-1_flip-2_mt-off_MPM.nii	40.1 MB

- 5	▶ sub-01	
	🕨 🖿 anat	
9	- 🖕 fmap	
	sub-01_acq-bodyMTw_RB1COR.json	1.2 kB
	sub-01_acq-bodyMTw_RB1COR.nii	39.8 kB
	sub-01_acq-bodyPDw_RB1COR.json	1.3 kB
	🖹 sub-01_acq-bodyPDw_RB1COR.nii	39.8 kB
	sub-01_acq-bodyT1w_RB1COR.json	1.3 kB
	sub-01_acq-bodyT1w_RB1COR.nii	39.8 kB
	sub-01_acq-headMTw_RB1COR.json	1.2 kB
	sub-01_acq-headMTw_RB1COR.nii	39.8 kB
	sub-01_acq-headPDw_RB1COR.json	1.3 kB
	sub-01_acq-headPDw_RB1COR.nii	39.8 kB
	sub-01_acq-headT1w_RB1COR.json	1.3 kB
	sub-01_acq-headT1w_RB1COR.nii	39.8 kB
	sub-01_echo-1_flip-01_TB1EPI.json	2.2 kB
	sub-01_echo-1_flip-01_TB1EPI.nii	295.3 kB
	sub-01_echo-1_flip-02_TB1EP1.json	2.2 kB
	sub-01_echo-1_flip-02_TB1EPI.nii	295.3 kB
	sub-01_echo-1_flip-03_TB1EPI.json	2.2 kB
	sub-01_echo-1_flip-03_TB1EPI.nii	295.3 kB
	sub-01_echo-1_flip-04_TB1EPI.json	2.2 kB
	sub-01_echo-1_flip-04_TB1EPI.nii	295.3 kB
	sub-01_echo-1_flip-05_TB1EPI.json	2.2 kB
	sub-01_echo-1_flip-05_TB1EPI.nii	295.3 kB
	sub-01_echo-1_flip-06_TB1EPI.json	2.2 kB
	sub-01_echo-1_flip-06_TB1EPI.nii	295.3 kB
	sub-01_echo-1_flip-07_TB1EPI.json	2.2 kB
	sub-01_echo-1_flip-07_TB1EPI.nii	295.3 kB
	🗟 sub-01_echo-1_flip-08_TB1EPI.json	2.2 kB
	sub-01_echo-1_flip-08_TB1EPI.nii	295.3 kB
	sub-01_echo-1_flip-09_TB1EPI.json	2.2 kB
	Ch. sub-01 acho 1 flip.00 TR1EPLoii	205 3 kB

qMRI application in multiple sclerosis (MS)

- 35 MS patients (14 RRMS, 21 PMS) & 36 matched controls
- qMRI data + FLAIR
- Processing:
- "unified segmentation with lesion"
- tissue-weighted smoothing
- population GM mask

Application in MS: healthy tissues global changes

15

10

HC

- 35 MS patients (14) RRMS, 21 PMS) & 36 matched controls
- gMRI data + FLAIR
- Processing:
- "unified segmentation with lesion"
- tissue-weighted smoothing
- population GM mask
- GM-specific global comparison of
 - MTsat, R1 & R2*
 - Across HC vs. RRMS vs. PMS

14

12

HC

RRMS

PMS

Mean Median

RRMS

PMS

HC

RRMS

PMS

18

Application in MS: healthy tissue voxel-wise analysis

- 35 MS patients (14 RRMS, 21 PMS) & 36 matched controls
- qMRI data + FLAIR
- Processing:
- "unified segmentation with lesion"
- tissue-weighted smoothing
- population GM mask
- GM-specific voxelwise comparison of
 - MTsat, R1 & R2* (VBQ)
 - GM density (VBM)
 - HC > MS

⇒ 3 different patterns: Primary Neocortical Regions (1), Hippocampus (2), Deep Gray Matter Nuclei (3)
Lommers et al., http://dx.doi.org/10.1002/hbm.25274

Longitudinal qMRI analysis in MS

Data

- 17 MS patients (11 RRMS, 6 PMS),
 - scanned twice over 1-5 years (T0 & T1), on average 2.5 years
 - 13 patients with disease-modifying treatments (11 RRMS, 6 PMS)
- qMRI & FLAIR images

Processing

- FLAIR derived mask + qMRI-USwL multichannel segmentation
 - → normal appearing tissues (NAWM, NACGM, NADGM) & lesion
- Spatial alignment to TO
- Extract volumes & tissue preperties

Vandeleene et al., https://doi.org/10.1002/brb3.2923

Longitudinal qMRI analysis in MS

- Significant longitudinal effects
 - (Relative) lesion volume increase
 - Rate of change for some qMRI values in NA tissues, associated to clinical status
- FLAIR hyper-intensity lesions
 < US-w-Lesion qMRI detected lesions
 ⇒ 3 "lesional tissue" types in WM
 - Clinical lesion (FLAIR hyp-int) at TO
 - Peripheral lesion (qMRI USwL) at T0
 - Peripheral lesion (qMRI USwL) at T1
 - + Normal appearing WM

Vandeleene et al., https://doi.org/10.1002/brb3.2923

Application in Alzheimer disease

- 24 AD patients & 19 matched controls
- Data
 - qMRI : Mtsat and R2*
 - SV2A PET images
 - Grey matter density
- Multivariate GLM for voxel wise analysis, i.e. 1 mGLM for 4 modalities!

2

0

Moallemian et al., http://dx.doi.org/10.1002/hbm.25274

Conclusions

- Morphometry still useful but...
- qMRI biomarkers
 - enhance specificity
 - disentangle effects via multi-modal quantification
 - reproducible across scanner
- getting closer to *in vivo* histology using MRI
 - follow tissue changes w/o (or before...) volume changes
 - (explore structure/function relationships)
- hMRI toolbox (SPM12 add-on) to create & process maps

- Improve MRI acquisition sequence: speed, SNR, resolution, different scanners, 3T & 7T,...
- Improve image reconstruction & processing: noisy voxels, automatization, data & meta-data organization (BIDS),...
- Linking to neuro-biological tissue properties: combining with PET, clinical applications,...

CRC references

- N. Beliy et al., BIDSme, a user friendly open-source python toolkit to "bidsify" source-level neuroimaging data-sets to BIDS-conformed.
 2019, <u>https://github.com/CyclotronResearchCentre/bidsme</u> & 2023, <u>https://doi.org/10.21105/joss.05575</u>
- E. Lommers et al., Multiparameter MRI quantification of microstructural tissue alterations in multiple sclerosis. 2019, <u>https://doi.org/10.1016/j.nicl.2019.101879</u>
- E. Lommers et al., Voxel-Based quantitative MRI reveals spatial patterns of grey matter alteration in multiple sclerosis. 2021, <u>http://dx.doi.org/10.1002/hbm.25274</u>
- N. Vandeleene et al., Using quantitative MRI to characterize cerebral damage in multiple sclerosis: a longitudinal study. 2023, <u>https://doi.org/10.1002/brb3.2923</u>
- S. Moallemian et al., Multimodal imaging of microstructural cerebral alterations and loss of synaptic density in Alzheimer's disease. 2023, <u>https://doi.org/10.1016/j.neurobiolaging.2023.08.001</u>

Some qMRI/hMRI references

- ► Toolbox, <u>http://hmri.info</u> & <u>https://doi.org/10.1016/j.neuroimage.2019.01.029</u>
- MPM protocol, <u>https://dx.doi.org/10.3389%2Ffnins.2013.00095</u>
- hMRI review, <u>https://doi.org/10.1097/WCO.00000000000222</u>
- Multi-centre study, <u>https://doi.org/10.3389/fnins.2013.00095</u>
- Ageing studies, <u>https://doi.org/10.1016/j.neuroimage.2011.01.052</u> and <u>https://doi.org/10.1016/j.neurobiolaging.2014.02.008</u>
- Example dataset, https://doi.org/10.1016/j.dib.2019.104132
- qMRI-BIDS, <u>https://doi.org/10.1038/s41597-022-01571-4</u>

Thank you for your attention!

Acknowledgments:

C. Bastin , E. Lommers, P. Maquet, S. Moallemian, N. Vandeleene, S. Sheriff + the GIGA CRC human imaging & the international hMRI teams

