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Résumé 

Depuis qu'elle a été proposée en 2001, la sélection génomique (SG) a été mise en œuvre avec 

succès dans plusieurs grandes espèces d’élevage. Cependant, ses performances peuvent encore être 

améliorées, par exemple en termes de précision. Les modèles couramment utilisés donnent en effet le 

même poids à tous les variants, malgré leurs différences biologiques. Il a cependant été démontré que 

l'ampleur de l'effet d'un variant varie considérablement en fonction de sa catégorie fonctionnelle, les 

variants codants ayant des effets plus importants. En outre, des études récentes sur les caractères 

complexes chez l'homme ont mis en évidence l'importance des variants régulateurs qui affectent 

l'expression des gènes. De même, l'inclusion d'informations d'annotation fonctionnelle dans les modèles 

de prédiction génomique a permis d'améliorer leur précision chez l'homme. Enfin, l'identification des 

éléments régulateurs et des variants régulateurs est également essentielle pour l'identification des 

variants causaux dans les études d'association. 

Les objectifs de cette thèse étaient de contribuer à l'annotation fonctionnelle du génome bovin 

en générant un catalogue de variants régulateurs, et d'utiliser cette annotation fonctionnelle pour étudier 

l'importance de différentes catégories fonctionnelles dans la variation génétique de caractères complexes 

d'intérêt chez les bovins blanc bleus belges (BBB). Enfin, j'ai cherché à savoir si l'incorporation de ces 

informations fonctionnelles dans les modèles de prédiction génomique pouvait améliorer leur précision. 

Dans la première partie de cette étude, 104 échantillons provenant de 63 types de tissus ont été 

analysés par ATAC-Seq, l'une des approches les plus utilisées pour la détection d'éléments régulateurs. 

Au total, 976 813 pics ont été détectés, représentant 10,0 % du génome. Les pics proximaux (c'est-à-

dire proches des gènes) étaient plus ouverts et actifs dans un plus grand nombre de types de tissus que 

les pics distaux, qui sont plus éloignés des gènes et plus spécifiques aux tissus. Les scores GERP, qui 

reflètent les contraintes évolutives, ont une distribution dispersée dans les régions de chromatine ouverte 

(RCO), ce qui suggère un processus évolutif complexe. Pour faciliter l'interprétation biologique des pics 

observés, nous avons compressé la matrice contenant les 976 813 pics de 104 échantillons en 16 

composantes par factorisation matricielle non négative. La plupart des composantes résultantes ont pu 

être facilement attribuées à un processus biologique car elles regroupaient des tissus anatomiquement et 

fonctionnellement similaires. Nous avons ensuite caractérisé les variants dans les RCO en utilisant les 

données de séquence de 264 individus Holstein. Sur les 11030905 variants nucléotidiques détectés dans 

cette cohorte, 1256997 correspondaient à des pics ATAC-Seq. Malgré le nombre plus faible de variants 

attendus dans les RCO en raison de la sélection purifiante, nous avons observé un niveau plus élevé de 

polymorphismes.  Cela pourrait être dû à un taux de mutation plus élevé dans les RCO, hypothèse 

supportée par la fréquence des ‘singletons’ et des mutations de novo 1,3 fois plus élevée dans ces 

régions. Nous avons ensuite utilisé 7 817 eQTLs sanguins et 6 172 eQTLs hépatiques pour évaluer si 

les RCO étaient enrichies en variants régulateurs. En utilisant une méthode de permutations pour 

quantifier l'enrichissement, nous avons constaté que les eQTLs ont tendance à chevaucher les RCO plus 
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souvent que par hasard, et que cet enrichissement est spécifique au tissu. Nous avons estimé que la 

proportion de variants régulateurs correspondant aux pics ATAC-Seq est d'environ 1 sur 3, et que la 

proportion de variants dans les pics ATAC-Seq qui sont régulateurs est d'environ 1 sur 25, ce qui suggère 

que ce catalogue peut être utile pour la SG. 

L'objectif de la deuxième partie de la thèse était d'estimer la proportion de variance génétique 

associée aux éléments régulateurs pour les caractères de développement musculaire en utilisant environ 

15000 vaches BBB dont les génotypes ont été imputés au niveau de la séquence. Bien que des méthodes 

telles que GREML et BayesRR-RC permettent un tel partitionnement de l'héritabilité, leur précision n'a 

pas été étudiée de manière approfondie chez les espèces animales, qui ont une structure très différente 

de celle des données humaines en termes de taille effective de la population, de niveaux de parenté et 

de déséquilibre de liaison (DL). Nous avons donc évalué ces méthodes sur la base d'une étude de 

simulation utilisant la structure de nos données. En l'absence de stratification, nous avons constaté que 

les méthodes étaient non biaisées et imprécises. Comme chez l'homme, des modèles plus complexes 

avec davantage de catégories de variants étaient nécessaires en présence d'une stratification due au DL 

ou aux fréquences alléliques. Dans des scénarios plus complexes, avec plusieurs groupes d'annotation 

ayant des tailles d'effet différentes, nous avons observé qu'il pouvait y avoir une confusion entre les 

différentes catégories et que les estimateurs étaient imprécis. Néanmoins, ils étaient toujours indicatifs 

des tendances globales. Enfin, lorsque les méthodes ont été appliquées à des caractères de 

développement musculaire, nous avons constaté que les RCO contribuaient significativement à la 

variance génétique et que les variants codants avaient les effets les plus importants par SNP, ce qui 

plaide en faveur de l'utilisation de ces informations dans la GS. 

Dans le dernier chapitre, j'ai évalué les avantages de l'utilisation des données de séquence et 

d’annotation fonctionnelle pour améliorer la précision de la SG. L'utilisation de la séquence a légèrement 

augmenté la fiabilité de la SG, et une légère augmentation supplémentaire a été observée avec lors de 

l'incorporation de l'annotation fonctionnelle dans le modèle GBLUP. J'ai ensuite testé une stratégie 

alternative en sélectionnant des sous-ensembles de marqueurs. Cette stratégie a permis d'utiliser 

davantage de modèles. En particulier, le Bayesian Sparse Linear Mixed Model (BSLMM), combinant 

un effet polygénique avec quelques variants majeurs, a permis d’obtenir une plus grande précision pour 

tous les caractères. Les meilleurs résultats ont été obtenus lorsque les informations fonctionnelles ont 

été utilisées pour sélectionner les marqueurs. J'ai également observé qu'une plus grande précision était 

obtenue avec des génotypes centrés qu'avec des génotypes standardisés, ce qui indique une relation 

différente entre la taille de l'effet du marqueur et la fréquence de l'allèle que chez l'homme, probablement 

en raison de la sélection directionnelle et de la présence de quelques variants communs à grand effet.  

Pour conclure, cette thèse a démontré l'importance des variants régulateurs chez les bovins et 

qu'ils peuvent être utilisés pour améliorer la précision de la SG, bien qu'il reste des progrès à faire. 
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Summary 

Since it was first proposed in 2001, genomic selection (GS) has been successfully implemented 

in several major livestock species and has had a major impact on livestock breeding. However, its 

performance can be further improved, for example in terms of accuracy. The models commonly used in 

GS give equal weight to all variants, despite their biological differences. In fact, the effect size of a 

variant has been shown to vary significantly as a function of the functional category of the variant, with 

coding variants having larger effects. In addition, recent studies of complex traits in humans have 

highlighted the importance of regulatory variants that affect traits by perturbing gene expression in a 

quantitative manner. Consistently, the inclusion of functional annotation information in genomic 

prediction models has led to improved prediction accuracy in humans. Finally, the identification of 

regulatory elements and regulatory variants is also essential for the identification of causative variants 

in association studies.  

The objectives of this thesis were to contribute to the functional annotation of the bovine genome 

by generating a catalog of regulatory variants, and to use this functional annotation to study the 

importance of different functional categories in the genetic variation of complex traits of interest in 

Belgian Blue cattle (BBC). Finally, I investigated whether incorporating this functional information into 

genomic prediction models could improve their accuracy when applied to the same set of traits. 

In the first part of this study, 104 samples from 63 tissue types were subjected to transposase 

accessible chromatin using sequencing (ATAC-Seq), one of the most widely used approaches for the 

detection of regulatory elements. A total of 976,813 peaks were detected, representing 10.0% of the 

genome (5% for the core regions of the peaks). Proximal peaks (i.e., close to genes) were more open 

and active in more tissue types than distal peaks, which are more distant from genes and more tissue 

specific. Genomic evolutionary rate profiling (GERP) scores, reflecting evolutionary constraints, had a 

dispersed distribution in open chromatin regions (OCR), suggesting a complex evolutionary process. To 

facilitate biological interpretation of the observed peaks, we compressed the matrix containing the 

976,813 peaks from 104 samples into 16 components by non-negative matrix factorization. Most of the 

resulting components could be easily assigned to a biological process as they grouped anatomically and 

functionally similar tissues. We then characterized variants in OCR using sequence data from 264 

Holstein individuals. Of the 11,030,905 single nucleotide variants detected in this cohort, 1,256,997 

mapped to ATAC-Seq peaks, including 847,831 common variants. Despite the lower expected number 

of variants in OCR due to evolutionary constraints resulting from purifying selection, we observed a 

higher level of polymorphisms. This could be due to an increased mutation rate in OCRs, a hypothesis 

supported by a 1.3-fold increase in the frequency of singletons and de novo mutations in these regions, 

in agreement with recent findings in humans and Arabidopsis. We then used 7,817 blood and 6,172 liver 

expression quantitative trait loci (eQTLs) and their credible sets, obtained from an experiment with more 

than 170 samples, to evaluate whether OCR were enriched in the regulatory variant. Using a 
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permutation-based method to quantify enrichment, we found that credible sets tend to overlap with 

ATAC-Seq more often than by chance alone, and that this enrichment is tissue-specific. We estimated 

that the proportion of regulatory variants mapping to ATAC-Seq peaks is approximately 1 in 3, and that 

the proportion of variants in ATAC-Seq peaks that are regulatory is approximately 1 in 25, suggesting 

that this catalog may be useful for GS. 

The objective of the second part of the thesis was to estimate the proportion of genetic variance 

associated with regulatory elements for muscular development traits in BBC using a cohort of ~15,000 

BBC cows with imputed genotypes at the sequence level. Although methods such as genomic restricted 

maximum likelihood (GREML) and BayesRR-RC allow for such heritability partitioning, their accuracy 

has not been thoroughly studied in livestock species, which have a very different structure compared to 

human data in terms of effective population size, relatedness levels, and linkage disequilibrium (LD) 

patterns. Therefore, we started an evaluation of these methods based on a simulation study using the 

structure of our data sets. Overall, we found that the methods were unbiased and imprecise in the absence 

of stratification. As in humans, more complex models with more categories of variants were required in 

the presence of LD or allele frequency stratification. In more complex simulation scenarios, with 

multiple annotation groups having different effect sizes, we observed that there could be confounding 

between the different categories and that the estimators were imprecise. Nevertheless, they were still 

indicative of global trends. Finally, when the methods were applied to muscular development traits, we 

found that OCR accounted for a large fraction of the genetic variance and that coding variants had the 

largest effects per single nucleotide polymorphisms (SNPs), arguing for the use of this information in 

GS. 

In the final chapter, I evaluated the benefit of using whole-genome sequence (WGS) data and 

functional annotation to improve the accuracy of GS, with a particular emphasis on coding and 

regulatory variants and on elements detected in muscle, the tissue of interest in BBC. Using WGS data 

slightly increased the reliability of GS, and a slight additional increase was observed with GBLUP when 

incorporating functional annotation into the model, but not with BayesRR-RC. I then tested an 

alternative strategy by selecting subsets of markers. This strategy allowed more models to be used, as 

GBLUP and BayesRR-RC were the only approaches that could be run on the full sequence. In particular, 

the Bayesian Sparse Linear Mixed Model (BSLMM), a model that fits a polygenic effect combined with 

a few large effect variants, achieved the highest reliabilities across all traits. The best results were 

obtained when the functional information was used to select the marker panels. I also observed that 

higher accuracy was obtained with centered genotypes compared to standardized genotypes, indicating 

a different relationship between marker effect size and allele frequency than in humans, probably due to 

directional selection and the presence of a few common large-effect variants. Here, only 50 to 200 large-

effect variants were fitted by BSLMM in the best models.  

Overall, the thesis has shown the importance of regulatory variants in cattle and that they can 

be used to improve the accuracy of GS although there is still room for improvement. 
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Animal breeding has seen significant advances over the years, from pedigree based breeding 

value estimation, through marker assisted selection (MAS), to genomic selection, enabling continuous 

increases in livestock productivity (Georges et al., 2019; Meuwissen et al., 2016). In recent years, 

genomic selection has been widely adopted and has had a tremendous impact on livestock breeding, 

including changes in breeding programs (e.g. García-Ruiz et al., 2016). The key feature of genomic 

selection, proposed by Meuwissen et al. in 2001, is its ability to use dense variant maps that allow the 

effects of quantitative trait loci (QTLs) associated with the trait of interest to be captured. Its main 

advantages are increased accuracy of breeding values coupled with a reduced generation interval, and 

the ability to select for traits that are more difficult to measure or for sex-specific traits (Goddard and 

Hayes, 2007; Meuwissen et al., 2016). The cost of genotyping and sequencing technologies has fallen 

dramatically over the last 20 years, making it possible to genotype large cohorts of individuals and 

perform large-scale resequencing of entire genomes on hundreds of individuals (Quackenbush, 2022). 

Accordingly, the number of animals genotyped and whole genome sequenced has steadily increased 

over the last decade, greatly facilitating the use of genomic selection. Combining these data with 

efficient missing genotype imputation techniques allows genome-wide association studies and genomic 

selection to be performed at the sequence level in large cohorts, with the potential to increase the power 

of association studies and the accuracy of genomic predictions (Quick et al., 2020). In cattle, for 

example, the whole genome sequence data from 2,703 individuals covering the major ancestors of 

several breeds gathered in the 1000 Bull Genomes Project provides a valuable resource for genotype 

imputation, greatly accelerating the identification of causative variants (Daetwyler et al., 2014). 

Nevertheless, the accuracy of genomic selection using sequence-level data remains inferior to 

what can be achieved given the heritability of the selected traits. This could have a number of causes, 

including the size and composition of the reference population, the accuracy of imputation or the 

contribution of dominance and epistasis to the genetic architecture of the traits of interest. Another factor 

is that all variants are generally given equal weight in the computation of the additive relationship 

between animals required for GBLUP analyses, or equal prior probabilities of variant effects in Bayesian 

approaches. Yet, only a minority of variants are causative, the remainder being at best passenger variants 

in LD with one or more of the causative variants. The extent of LD between causative and passenger 

variants is bound to be population or even sub-population specific and is likely to vary over time, which 

may partly account for the observed limitations in selection accuracy. It is generally accepted that 

causative variants are essentially coding and regulatory variants, although our understanding of complex 

traits remains partial and other mechanisms may be at play. Coding variants, including missense, 

nonsense, frameshift, splice site variants and deletions, are easily identified using bioinformatic 

annotation tools. They account for only a small proportion of the genome, and their contribution to 

genetic variance of complex phenotypes in livestock species, has been estimated to be modest 

(Koufariotis et al., 2014). Regulatory variants can act either by perturbing the expression profile of genes 

located in cis, or possibly, by perturbing the gene regulatory network and affecting the expression profile 
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of a restricted number of core genes in trans. Therefore, comprehensive genome annotations, which 

allows the identification of coding and more importantly regulatory variants, are critical for identifying 

the causative variants. More generally, it is widely accepted that variants in different functional classes 

contribute heterogeneously to genetic variation (Finucane et al., 2015). To gain further insight into the 

genetic architecture of complex traits in humans and livestock, heritability partitioning methods have 

been extensively used in combination with available functional annotations, although further 

investigation is needed to estimate the exact contribution of different functional categories to genetic 

variance, especially in livestock. Such knowledge would facilitate the use of biological priors to 

prioritize or weight variants to further improve the accuracy of genomic prediction. 

Several collaborative efforts have been undertaken to identify functional elements and variants 

in the human genome, including the Encyclopedia of DNA Elements (ENCODE) (de Souza, 2012), 

Roadmap Epigenomics (Kundaje et al., 2015) and the Genotype-Tissue Expression (GTEx) (GTEx 

Consortium, 2020) projects. Results from these projects have highlighted the importance of regulatory 

elements, which have been found to underlie a large proportion of (Genome-wide association studies) 

GWAS hits and contribute substantially to the heritability of complex diseases and traits, confirming the 

potential benefit of prioritizing these variants in genome prediction. Consistently, more and more tools 

are being developed to incorporate functional annotations as priors in genomic prediction models. In 

animal species, similar consortia such as Functional Annotation of Animal Genomes (FAANG) 

(Andersson et al., 2015), Farm animal Genotype-Tissue Expression (FarmGTEx) (Liu et al., 2022), the 

regulatory GENomE of SWine and Chicken (GENE-SWitCH) (Acloque et al., 2022) and BovReg 

(Moreira et al., 2022) have produced similar catalogues of functional elements for livestock and poultry 

genomes. As in humans, heritability partitioning approaches using the available biological information 

revealed an enrichment of coding and regulatory variants among those associated with complex traits 

(Bhuiyan et al., 2018; Koufariotis et al., 2014). However, to date, functional annotations for regulatory 

elements in cattle are only available for a few tissues and developmental stages, which is insufficient 

for biological interpretation and severely limits their use in understanding the mechanism underlying 

complex traits. 

The overall objective of my thesis is to better understand the contribution of different functional 

classes, with a focus on regulatory variants, to genetic variation and how this information can be used 

to improve reliability of genomic predictions. Therefore, in my thesis I have (1) contributed to the 

generation of a comprehensive catalogue of regulatory elements for the bovine genome to complement 

its functional annotation and tested its sensitivity and accuracy in identifying regulatory variants, (2) 

evaluated heritability partitioning methods in cattle and estimated the genetic contribution of different 

functional categories to the heritability of complex traits in Belgian Blue cattle (BBC), (3) evaluated 

strategies for using biological information, including the newly discovered regulatory elements, to 

improve genomic predictions. My manuscript begins with an introduction that gives an overview of 

these aspects in livestock and presents the BBC breed.  
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1 Introduction 

1.1 Belgian Blue beef cattle 

1.1.1 The breed 

Belgian Blue cattle (BBC), a breed found mainly in Belgium, are famous for their extreme 

muscle development, known as "double muscling" (see example in Figure 1.1), which results from a 

significantly increased number of muscle fibres rather than an increased fibre diameter (Grobet et al., 

1997). The BBC originated from a cross between a local breed and a British Shorthorn breed, initially 

to improve the local breed for both dairy and beef production (Cheville, 1999; Kolkman, 2010). At the 

time, the population was small, with only about three thousand individuals reported. In the 20th century, 

market demand for meat products gradually shifted the focus of selection from dual-purpose to a more 

beef-oriented breed (Kolkman, 2010). At the same time, BBC individuals with the double-muscling 

phenotype, which is associated with increased muscle mass, became more common, highlighting their 

potential to improve meat production (Hanset, 2004; Kolkman, 2010). Intensive selection, combined 

with the widespread use of double-muscling bulls as sires through artificial insemination, accelerated 

the fixation of the trait and made it the iconic characteristic of the breed. Grobet et al. (1997) 

demonstrated that this double muscling trait was due to an 11-bp deletion in the myostatin gene (MSTN). 

However, there were problems with parturition in double-muscled cows and reduced semen quantity 

and quality in bulls (De Tavernier et al., 2001; Hoflack et al., 2008). Despite these challenges, the 

population increased significantly from 40,000 in 1970 to 450,000 in 1994, marking the first stage of 

genetic improvement as the use of this mutation was driven by the visible phenotypic changes in 

homozygous individuals. Research has shown that after 1985 this natural mutation is almost fixed in the 

new BBC population (Druet et al., 2014a). Interestingly, a significant variation in muscular traits has 

been observed in the new BBC population and further genetic gains have been achieved through genetic 

improvement (e.g. Druet et al., 2014a). Notably, the heritability of these traits remains above 30% even 

when excluding the effect of the double muscling mutation, which is now fixed.  

 

Figure 1.1. A double-muscled Belgian Blue sire. The bull is Adajio de Bray, born in 2007. Figure downloaded 

from https://belgianbluegroup.com/bull/adajio-de-bray/ 

https://belgianbluegroup.com/bull/adajio-de-bray/
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1.1.2 Genetic evaluation in Belgian Blue beef cattle 

Until recently, genetic evaluation in BBC was based on pedigrees and progeny testing. Traits 

are mainly measured at three time points, including a first visit at birth, a second visit at around 14 

months and a linear classification in adult cows (Hanset, 2004). At birth, conformation, gestation length 

and birth weight are recorded, while at the second visit, individuals are phenotyped for height, weight 

(predicted from thoracic perimeter) and conformation. In addition to these traits, so-called functional 

traits, such as drinking ability and defects, are reported. The heritability of these traits is not always high 

as the phenotypes can have some drawbacks. For example, until recently, birth weight has been 

evaluated by the eye of the breeder, whereas gestation length is influenced by caesarean section. 

Linear scoring consist of visual inspection of the cows by trained technicians. Animals are 

scored (from 0 to 50) for 19 individuals traits that are grouped in three categories. In addition, skin 

thickness is manually assessed and height is measured. As a result, 7, 6 and 8 phenotypes are related to 

the size of the animal, the muscle development and to the bone structure and posture, respectively (see 

Figure 1.2). For genetic evaluation, multiple-trait models with canonical transformation are used 

(Hanset, 2004). 

 

 

Figure 1.2. Linear classification traits recorded in adult cows. A-G. Traits related to body dimension including 

body length (A), height (B), chest width (C), pelvis width (D), rib shape (E), rump (F) and tail set (G). H-L. Traits 

related to muscular development including shoulder muscling (H), top muscling (I), buttock muscling – side view 

(J), pelvis length (K) and buttock muscling – rear view (L). Traits related to bone structure and posture including 

top line (M), bone (O), shoulder bone (P), hock (Q) and legs stance (R-T). Figure adapted from 

http://www.belgianblue.cz/fr/index.php?page=page&kid=22 

 

 

http://www.belgianblue.cz/fr/index.php?page=page&kid=22
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The use of these breeding values has allowed a further increase in muscle mass, but this selection 

has also resulted in a negative trend in the height and length of the animals (Figure 1.3). The BBC is 

therefore an interesting example of a breed selected for reduced height. 

 

Figure 1.3. Genetic trends for muscular development and height. The figure represents the evolution of 

breeding values for muscling score, meaty type and height from 1989 to 2002 (copied from Hanset, (2004)) 

 

1.1.3 Use of molecular and genomic information in the breeding program 

High levels of inbreeding resulting from intensive use of elite sires can lead to outbreaks of 

recessive genetic defects. This was the case in BBC where Charlier et al. (2008) reported first three 

genetic defects including congenital muscular dystonia 1 & 2 (CMD1 & CMD2) and crooked tail 

syndrome (CTS). Fortunately, with the development of genetic arrays and sequencing technologies, it 

is possible to identify the causative variants and develop genetic tests to manage such recessive alleles 

in the population. With the help of the Unit of Animal Genomics, such a strategy has been implemented 

in BBC, where it was decided to exclude all carrier bulls from the breeding program. 

The causative variant causing CTS was characterized by Fasquelle et al (2009). Causative 

variants for other genetic defects have subsequently been identified in BBC, including a splice site 

variant of the Ring Finger Protein 11 (RNF11) gene associated with proportional dwarfism (Sartelet et 

al., 2012), a missense mutation in the CIC-7 Chloride Channel (CLCN7) gene causing osteopetrosis with 

gingival hamartomas (Sartelet et al., 2014), and a variant in the phosphatidylinositol glycan anchor 

biosynthesis class H (PIGH) gene causing arthrogryposis (Sartelet et al., 2015). Intriguingly, some of 

these defects segregated at high frequencies in the breed, with 25 and 26 percent of carriers for CTS and 

dwarfism, respectively (Fasquelle et al., 2009; Sartelet et al., 2012). Such high frequencies may result 

from the heavy use of popular sires carrying these defects (e.g. Précieux and Galopeur for CTS and 

dwarfism, respectively) and subsequent high levels of inbreeding. Nevertheless, statistical analyses 

taking into account the pedigree structure have shown by allele dropping in the true genealogy that the 

the heavy use of certain sires is not sufficient to explain the observed frequencies and that carriers are 

positively selected. In addition, Fasquelle et al. (2009) found that carriers of the CTS variants had higher 

muscular development, consistent with the selective advantage of carriers, whereas the origin of the 
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selective advantage for the variant causing dwarfism remained unidentified (Sartelet et al., 2012). Using 

a large sample of 593 progeny tested sires born between 1970 and 2010, Druet et al. (2014a) showed 

that the variant in mannose receptor C type 2 (MRC2) causing the CTS was associated with one of the 

major QTL for muscular development in BBC, and that the frequency of carriers increased from less 

than 20% before 1980 to more than 40% in the years 2000. More recently, Gualdrón Duarte et al. (2023, 

2020) performed GWAS and genomic predictions in a larger cohort of genotyped cows. Bayesian 

variable selection models indicated that variants associated with four recessive defects, including 

variants in MRC2, RNF11, ATP2A1 (associated with CMD) and WWP1, had large effects on muscular 

development traits or height. The variant in WWP1 was previously identified in a reverse genetic screen 

by Charlier et al. (2016). This variant segregated had relatively high frequency but presented a depletion 

in homozygotes, suggesting a recessive effect. As for other variants, evidence of balancing selection 

was also found as the variant was associated with some muscular development traits. Importantly, the 

study also identified several recessive embryonic lethal variants. 

Given the large number of recessive deleterious variants, including the embryonic lethal variant, 

it was important to genotype all the sires in the population. Therefore, many young sires were genotyped 

each year and genomic technologies were rapidly adpoted in the breed. This allowed to rapidly reduce 

frequency of carriers in the population (Table 1.1). However, the exclusion of sires carrying genetic 

defects reduced the number of bulls in use, with potentially negative effects on genetic diversity and 

inbreeding levels.  

 

Table 1.1. Evolution of the number of bulls carrying identified genetic defects. The number in 

brackets indicates the number of bulls genotyped for the corresponding defect (CMD = congenital 

muscular dystonia; CTS = crooked tail syndrome; DWA = dwarfism; HAM = hamartoma; PG = 

prolonged gestation; AP = arthrogryposis). The red line in the table indicates the introduction of genetic 

testing for each defect. Data and table taken from Sartelet (2013). 

 

Year of 

birth 

CMD1 

(559) 

CMD2 

(556) 

CTS 

(539) 

DWA 

(528) 

HAM 

(532) 

PG 

(522) 

AP 

(521) 

<2000 17 7 32 17 4 18 1 

2000 10 3 41 36 7 11 0 

2001 17 4 39 23 8 5 0 

2002 14 5 46 28 15 8 5 

2003 12 1 32 26 15 12 6 

2004 2 5 29 24 11 10 2 

2005 2 2 20 26 7 18 5 

2006 0 0 13 33 5 5 5 

2007 0 0 0 30 14 6 3 

2008 0 0 0 6 9 6 3 

2009 0 0 0 0 3 3 0 

2010 0 0 0 0 0 0 0 
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The first genomic evaluation in BBC was established in 2016 (Inovéo, 2020). The situation is 

different from dairy cattle where bulls don't have records for milk production and a long progeny testing 

was previously required. In beef cattle, many phenotypes of interest have relatively high heritability and 

own records are available earlier in life, allowing 'visual' selection of young bulls. In addition, in BBC 

there are fewer progeny tested bulls, not enough to build a large reference population to ensure high 

reliability. It was therefore decided to build a reference population based on phenotyped cows in a series 

of reference farms, called genomic farms. Genomic selection was first applied to the linear scoring traits 

for which convincing results were obtained. The initial goal was to have a reference population of 10,000 

genotyped cows with linear scoring phenotypes, an objective that has been clearly achieved since more 

than such 18,000 cows were available in 2024. Initially the focus was on genotyping animals with as 

many phenotypes as possible (e.g. adult cows). In parallel, a reference population was also established 

for carcass traits, including both males and females. After demonstrating the limitations of visual 

assessment of birth weight, it was decided to properly record birth weight using scales on the genomic 

farms, and more than 30,000 true birth weights are now available, including 20,000 genotyped animals. 

The accumulated datasets allow the genetic architecture of traits recorded in the BBC, such as 

height or muscular development, to be studied. For example, Gualdrón Duarte et al. (2023) performed 

multiple trait GWAS at the sequence level and identified several coding variants with large effects. The 

data also allow to test some genomic prediction selection models or the benefit of using functional 

annotation, as will be done in the present study. 

 

1.2 Functional annotation of the bovine genome 

The completion of genome assemblies for many species, including humans, has revolutionized 

our understanding of genetics and its role in complex traits. Most genes within these newly assembled 

genomes have been automatically predicted using a combination of ab initio methods and expressed 

sequence tag (EST) based evidence (Ashurst and Collins, 2003). In addition, the advent of tools such as 

QTL mapping and GWAS has enabled us to identify genomic regions or variants associated with 

phenotypes, greatly improving our understanding of the genetic basis of complex traits. However, results 

from an increasing number of GWAS have shown that many leading SNPs are located outside coding 

regions (Morova et al., 2022), once thought to be 'junk DNA', expanding our appreciation of the 

complexity of the genome and its impact on biological processes and phenotypes. Therefore, a 

comprehensive annotation of the genome sequence is required to gain further insight into how genomic 

variants, including non-coding ones, are translated into phenotypic differences. This is why several 

major collaborative efforts such as ENCODE (de Souza, 2012), Roadmap Epigenomics project 

(Kundaje et al., 2015), the International Human Epigenome Consortium (IHEC) (Stunnenberg et al., 

2016) and others have been launched (Forrest et al., 2014; GTEx Consortium, 2020). Unlike the coding 

regions of the genome, functional elements in non-coding regions often lack easily identifiable features 
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that would allow their function to be predicted from sequence analysis alone (Birney et al., 2007; Zhen 

and Andolfatto, 2012). To address this challenge, these consortia have relied on a variety of experimental 

techniques, including genomic, transcriptomic and epigenomic approaches. In particular, the integration 

of multiple omics data allows the identification of these functional elements within non-coding regions 

based on their associations with specific genomic features and their regulatory roles. In parallel with 

these efforts to understand the functional components of the human genome, several consortia have been 

established to explore the genomes of livestock and poultry species, including initiatives such as Model 

Organism ENCyclopedia Of DNA Elements (modENCODE) (Roy et al., 2010), FAANG (Andersson et 

al., 2015) or GENE-Switch (Vos et al., 2023). Specifically, these consortia refine our understanding of 

genome functionality by pinpointing gene locations, discovering novel genes and elucidating alternative 

coding mechanisms (e.g., alternative transcription start sites), as well as uncovering non-coding 

transcripts such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Most often, these 

consortia focus on identifying regulatory regions that orchestrate gene expression, such as promoters 

and enhancers, which are emerging as critical elements alongside protein-coding regions (Andersson et 

al., 2015). They harbor regulatory elements that interact with transcription factors, chromatin modifying 

enzymes and other essential components, as highlighted by ENCODE (Pennisi, 2012). In the first part 

of my thesis, I contributed to the identification of regulatory elements in the bovine genome. Therefore, 

I start with an overview of these regulatory regions, the methods used to identify them and their 

importance in complex traits. 

 

1.2.1 What are regulatory elements? 

Coding regions account for less than 2% of the human genome, and the remainder was initially 

considered to be non-functional "junk DNA" (Dunham et al., 2012; Pennisi, 2012), although it has since 

been shown that non-coding mechanisms play an important role in complex traits. Indeed, the correct 

spatial and temporal expression of genes involved in a wide range of biological processes, such as 

differentiation, development and response to stress and stimulation, is central to life (Maston et al., 

2006). Perturbations in the regulation of gene expression have also been shown to cause disease and 

abnormal development (Epstein, 2009; Grant et al., 1996; Van Laere et al., 2003), highlighting their 

importance. Thanks to the development of sequencing technologies, the ENCODE consortium has 

identified non-coding regions located in the remaining 98% of the genome that have biochemical 

activities and serve as landing sites for proteins that coordinate gene expression, both near and far from 

genes, and defined them as regulatory elements. The published catalogue of identified regulatory 

elements has allowed significant advances in the understanding of complex traits in humans and mice. 
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Figure 1.4. The assembly of transcriptional machinery. Activators, which are site-specific DNA-binding 

transcription factors, bind via their DNA-binding domains (DBDs) to specific sequences upstream of the promoter, 

known as transcription factor binding sites (TFBSs). These activators facilitate the binding of general transcription 

factors to the promoter region. General transcription factors, including RNA polymerase II and several auxiliary 

components such as TFIIA, TFIIB and TFIID, interact to form a transcription preinitiation complex (PIC). This 

complex assembles at the core promoter, guides RNA polymerase II to the transcription start site (TSS) and 

initiates transcription. Figure adapted from Maston et al. (2006). 

 

Regulatory elements can be defined as non-coding genomic regions that coordinate the level 

and spatio-temporal dynamics of gene expression. They have specific DNA sequences that are 

recognised by transcription factors, providing high binding affinities (Boeva, 2016; Nagy and Nagy, 

2020). In most cases, the transcription factor binds a specific motif and interacts with so-called co-

regulators to form a multi-protein complex that plays a role in the regulatory process (see Figure 1.4). 

The variation of gene expression levels in different cell types and at different developmental stages 

reflects the dynamic activity of regulatory elements mediated by their cell-specific transcription factor 

binding sites (Barral and Déjardin, 2023). Regulatory elements vary in size, most commonly ranging 

from tens to hundreds of base pairs in length, but rarely exceeding thousands of base pairs. Although 

regulatory elements have been reported to be located upstream of coding sequences, in introns or even 

far away from genes, they are significantly enriched in transcription start site (TSS) regions. These 

regions are responsible for the expression profile of the neighbouring gene(s) and correspond to the so-

called proximal promoter. Conversely, studies have reported a depletion of regulatory elements in 

heterochromatin. The activity of regulatory elements has been shown to be associated with histone 

modifications (spicuglia and Vanhille, 2012), while chromatin architecture and nucleosomal positioning 

have been found to influence their accessibility to the transcriptional machinery. 
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1.2.2 Categories of regulatory elements 

Regulatory elements can be classified according to their mechanism (e.g. enhancers versus 

silencers) and their location (e.g. promoters). They can also be divided into cis- and trans-regulatory 

elements, affecting nearby and distant genes respectively. Here I will focus on cis-regulatory elements, 

which can be further categorised into several primary types based on their function, including promoters, 

enhancers, silencers and insulators (Chatterjee and Ahituv 2017, see Figure 1.5). 

 

 

 

Figure 1.5. The different types of regulatory elements. Promoters directly regulate gene transcription. 

Enhancers interact with promoters to increase gene expression, while silencers do the same but decrease gene 

expression. Insulators and CTCF can cooperate to inhibit the function of enhancers (Figure adapted from 

Chatterjee and Ahituv, 2017). 

 

Promoters are located upstream of genes and are DNA sequences to which RNA polymerase 

and transcription factors bind to initiate transcription of the corresponding downstream gene. Promoter 

sequences define the direction of transcription and indicate which strand of DNA is being transcribed. 

Although the definition of promoter boundaries is not clear, promoters are recognised as regions of 

approximately 81-1000 bp in length (Xiao et al., 2019) that recruit the transcriptional machinery and 

serve as its 'landing site'. Their affinity profiles play a crucial role in controlling gene expression, as 

variation in affinity has been shown to correlate significantly with tissue-specific expression patterns 

(Molineris et al., 2011). Although the level of conservation of DNA sequences is lower in regulatory 

regions than in coding regions, mutations in promoters can have a high impact, including on phenotypic 

morphology (Karim et al., 2011; Zhu et al., 2023). 
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Enhancers represent a distinct type of regulatory element and are found in non-coding sequences 

that contain dense clusters of transcription factor binding motifs. They are cis-acting regulatory elements 

that can be distant from their target genes, up to 1 Mbp (Lettice et al., 2003; Panigrahi and O’Malley, 

2021). They increase the expression of a target gene in specific tissues or at specific developmental 

stages (Blobel et al., 2021; Neyret-Kahn et al., 2023). Enhancers are first recognized and bound by a 

transcription factor, to trigger the formation of a chromosome loop that allows the enhancer to interact 

with the promoter, thereby increasing the expression of the target gene. Enhancers have been identified 

predominantly in intergenic and intronic regions, and less frequently in exons (Panigrahi and O’Malley, 

2021). Epigenetic studies have shown that enhancers are almost invariably associated with open 

chromatin regions and active enhancers are associated with specific histone modifications (Blobel et al., 

2021; Sethi et al., 2020). Enhancers have been found to occur in clusters and act in an additive, 

synergistic or redundant manner to regulate target genes. These clusters are commonly referred to as 

super-enhancers (Blobel et al., 2021). These super-enhancers are for example significantly associated 

with tumor-specific genes (Neyret-Kahn et al., 2023). Although reversed genomic orientation of 

enhancers does not affect their function in gene transcription, subtle modifications in the affinity of 

enhancers can disrupt the expression of target genes and result in severe and penetrant phenotypes (Lim 

et al., 2024). 

Unlike promoters and enhancers, which positively regulate gene expression, silencers reduce 

expression by binding to specific transcription factors called repressors. In general, silencers have 

similar characteristics to those described for enhancers, but with the opposite function (Srinivasan and 

Atchison, 2004). Silencers are usually located upstream of their gene, but can also be found in introns, 

exons or in the 3' untranslated region (UTR). Silencers can recruit repressors to compete with activators 

for the same site, thereby reducing gene transcription or blocking activator binding (Harris et al., 2005; 

Li and Davie, 2010). Alternatively, these repressors recruited by silencers can reduce the accessibility 

of a promoter and prevent transcription. This is achieved by altering the chromatin structure, either 

through histone modifications or chromatin stabilising activities (Harris et al., 2005). Finally, distal 

silencers can interact with promoters through chromosome loops (Maston et al., 2006). 

Finally, insulators are long-range regulatory elements that isolate the independent regulatory 

domain to prevent environmental noise signals from misleadingly influencing the transcription process 

(West et al., 2002). An insulator varies in size from 300 bp to 2,000 bp (Allison and Allison, 2008) and 

regulates the transcription of genes located on the same or a different chromosome that are brought close 

to the insulator by its looping activity (Allison and Allison, 2008). Two types of insulators have been 

described, acting either as enhancer blockers or as barriers (West et al., 2002). Insulators that act as 

enhancer blockers must be located between the enhancer and the promoter (West et al., 2002). 

Conversely, insulators that act as barriers prevent the expansion of nearby condensed chromatin 

associated with a silencer. This allows the DNA sequence to have a distinct transcription pattern 

compared to the nearby region covered by the silencer (West et al., 2002). The CTCF protein is the most 
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important insulator characterized in vertebrates (Kim et al., 2007; West et al., 2002; Yang and Corces, 

2011). CTCF, also known as CCCTC-binding factor, contains an 11-zinc finger (ZF) DNA-binding 

domain and was identified as an insulator in vertebrates in 1991 (Bell et al., 1999). CTCF also plays an 

essential role in development and differentiation, is ubiquitously expressed in different cell types and is 

conserved across species (Kim et al., 2007; Moon et al., 2005). Disregulation of CTCF has been reported 

to affect histone modification (Fedoriw et al., 2004) and to be associated with a variety of cancers 

(Filippova et al., 2002, 1998). 

 

1.2.3 Methods to identify regulatory elements 

Advances in technologies for the experimental and computational identification of regulatory 

elements allow for a deeper investigation of their role. In particular, the advent of high-throughput 

sequencing technologies provides information at the genome-wide level. Reporter gene assays, which 

use a vector carrying both the sequence of interest and the target gene, are widely used to confirm the 

regulatory activity of a specific DNA sequence (Kornberg, 1974). However, the focus of my thesis is to 

generate a catalogue of regulatory elements for the bovine genome, so high-throughput methods are 

more relevant.  

Genomic DNA is hierarchically packed into chromatin, which allows it to be stored in the 

nucleus but renders most DNA inaccessible (Kornberg, 1974; Richmond and Davey, 2003). However, 

accessibility and affinity for transcription factors are fundamental features of active regulatory elements. 

Therefore, chromatin accessibility has been widely used as a marker to identify regulatory elements in 

the non-coding part of genomes. 

Taking advantage of high-throughput sequencing technologies, several approaches have been 

established to assess chromatin accessibility and identify putative regulatory elements. These include 

formaldehyde-assisted isolation of regulatory elements followed by sequencing (FAIRE-seq), DNase I 

hypersensitive sites sequencing (DNase-seq), ATAC-Seq and micrococcal nuclease sequencing 

(MNase-seq) (see Figure 1.6 for an overview of these methods). One of the major differences between 

these methods is the distinction between nucleosomal and nucleosome-free regions. In the FAIRE-seq 

approach, samples are cross-linked with formaldehyde, the DNA is then sheared and a phenol-

chloroform extraction is used to recover unfixed DNA fragments in the aqueous phase, corresponding 

to nucleosome-free DNA, prior to sequencing. As shown in large scale studies, these DNA fragments 

are significantly enriched for regulatory elements (Giresi et al., 2007; Nagy et al., 2003). DNase-Seq 

takes advantage of the fact that DNA fragments wrapped by histone octamers are more resistant to 

deoxyribonuclease I than DNA fragments in open chromatin regions, allowing DNase I hypersensitive 

sites to be used to identify open chromatin regions. A major advance in the use of DNase-Seq as a 

method for genome-scale regulatory element detection has been the adaptation of the sequencing 

technology after DNase I digestion. In recent years, the DNase-Seq approach has been used in large-

scale studies, including the ENCODE project (Boyle et al., 2008; Meuleman et al., 2020). ATAC-Seq 
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also uses a cleavage enzyme, a hyperactive Tn5 transposase, to cut DNA sequences of higher 

accessibility. The hyperactive Tn5 transposase simultaneously marks the binding site by inserting a 

sequence adaptor (Figure 1.7). The Tn5 target region is amplified using the inserted primers and the 

amplified fragments, corresponding to the open chromatin regions, are sequenced. Further details of the 

procedure are shown in Figure 1.7. Compared to DNase-Seq and FAIRE-Seq, the ATAC-Seq protocol 

requires fewer and simpler experimental steps and less starting material, making it the most popular 

approach for open chromatin detection. Thanks to these advantages, ATAC-Seq allows the study of 

larger samples, covering more tissues or individuals, but also the study of open chromatin at the single 

cell level. In the MNase-seq approach, the micrococcal nuclease is first used to digest genomic DNA, 

digesting the naked DNA while leaving undigested the DNA wrapped by histones or other chromatin-

bound proteins. The undigested DNA is then sequenced. Thus, unlike the other three approaches, 

MNase-seq detects nucleosome positions where the interaction of cis-regulatory element and trans-

regulatory factor is hindered (Chereji et al., 2019). 

 

  

 

Figure 1.6. The shematic diagram of four experimental based approaches for the detection of chromatin 

accessibility. ATAC-Seq, DNase-seq, and FAIRE-seq detect open chromatin regions, while MNase-seq identifies 

condensed chromatin. The arrows indicate the endpoints of the chromatin regions identified by each method. The 

bars below represent the data signal for each method, reflecting chromatin accessibility (Figure adapted from 

Tsompana and Buck, 2014). 
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Figure 1.7. The schematic diagram of ATAC-Seq. The transposase cleaves open chromatin (with nucleosomes 

shown in grey) and inserts sequencing adapters into the DNA. This enables the amplification of regions between 

two insertion sites, representing open chromatin. The amplified fragments are then sequenced to determine their 

positions, efficiently delineating the open chromatin regions. Fragments smaller than 146 bp are nucleosome-free, 

as a single nucleosome is longer than 146 bp. 

 

The activity of the regulatory region is controlled by interactions with transcription factors, 

nucleosome positioning and DNA and histone modifications. Therefore, the identification of DNA 

binding sites for transcription factors, the core transcriptional machinery, and different histone 

modifications provides complementary information to study the regulation of gene expression, 

especially during development and differentiation (Park, 2009). ChIP sequencing, also known as ChIP-

seq, was developed by combining chromatin immunoprecipitation assays with massively parallel 

sequencing (Robertson et al., 2007). ChIP-seq is the most universal approach to identify DNA sequences 

bound by a specific protein, such as transcription factors or other chromatin-associated proteins with 

different epigenetic modifications (Park, 2009). In ChIP-seq, antibodies specific to the protein of interest 

are first used to enrich the DNA fragment bound by that protein. The precipitated DNA is then subjected 

to high-throughput sequencing, allowing genome-wide mapping of the region bound by that protein. 

Since its development, an increasing number of studies have used ChIP-seq to decipher the 

transcriptional binding map. Among these, the identification of CTCF binding sites in different tissues 

and species has been of particular interest due to its critical role in regulation (Holwerda and de Laat, 

2013; Oomen et al., 2019; Phillips and Corces, 2009). 

In addition, epigenetic modifications including DNA methylation and histone post-translational 

modifications such as acetylation, SUMOylation, phosphorylation, methylation and ubiquitination have 

been reported to regulate gene expression. These modifications don't alter the DNA sequence, but affect 

histone-DNA interactions, resulting in a change in chromatin state (Espinoza Pereira et al., 2023; 

Kimura, 2013). In mammals, DNA methylation predominantly targets cytosine nucleotides followed by 

guanine nucleotides, known as CpG sites, with up to 75% of CpGs in the genome being methylated 

(Tost, 2009). However, CpG sites within CpG islands, which are regions enriched for regulatory 

elements, tend to have lower levels of methylation (Moore et al., 2013). Among the many techniques 
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available to detect DNA methylation, bisulfite sequencing is the most widely used and efficient method 

(Li and Tollefsbol, 2011). It allows precise profiling and quantification of DNA methylation at single 

base pair resolution across the genome and has been used in the Epigenomics Roadmap project. The 

interplay between histones and the genome is essential for nucleosome positioning and chromatin 

organisation (Parmar and Padinhateeri, 2020), and thus critical for transcriptional regulation by 

influencing DNA accessibility. Modifications to histones can alter these interactions, thereby 

dynamically shaping the precise programmes that govern nucleosome positioning. The role of histone 

modification varies depending on the type of modification and the specific amino acid residues, resulting 

in different mechanisms. For example, histone H3 lysine 4 methylation (H3K4me3) and histone H3 

lysine 27 acetylation (H3K27ac) promote gene expression, whereas histone H3 lysine 9 trimethylation 

(H3K9me3) represses gene expression (Kimura, 2013). 

Using ChIP-seq with antibodies targeting specific histone modifications, it is possible to 

accurately detect genomic regions associated with these signatures and to reveal the locations of histones 

bearing these modifications along the DNA sequence. A comprehensive histone modification map of 

127 cell lines and tissues covering the major cell lineages in the human body has been generated 

(Kundaje et al., 2015). In addition, by integrating histone modifications with genome accessibility data, 

we can delineate the chromatin state of regulatory elements and identify active elements (Boix et al., 

2021; Hoffman et al., 2013; Kern et al., 2021). In the Roadmap Epigenomics project, a hidden Markov 

model, called the ChromHMM model, has been developed to identify 15 core chromatin states that 

capture primary interactions between epigenetic marks, including Active TSS, Flanking Active TSS, 

Strong Transcription, Genic Enhancers and more (Kundaje et al., 2015). 

Although the experimental techniques available for identifying regulatory elements have been 

greatly improved by high-throughput sequencing technologies, they remain labour-intensive and 

expensive, and are therefore mainly accessible to model organisms. Even in these species, it remains 

difficult to cover all developmental stages and cell types and to work on many individuals. Bioinformatic 

approaches therefore provide an alternative and complementary approach to identifying regulatory 

elements. Bioinformatic approaches could also improve experimental results by correcting some of the 

environmental "noise". However, as these bioinformatic approaches are not the focus of my thesis, I will 

only briefly summarise the most common methods: 

 

1. Identification of TF binding motifs: Short DNA sequences that are specifically 

recognised by TFs are referred to as binding motifs (Leporcq et al., 2020). The most 

commonly used methods for finding TF binding sites are based on position weight 

matrices (PWMs) defined for a given set of known motifs (Staden, 1984). A weight 

matrix records the score of four nucleotides at each position of a given motif, allowing 

a quantitative assessment of the potential of sequences of interest to be a motif (Staden, 

1984). Nowadays, the increasing availability of PWMs for known motifs in public 
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databases such as JASPAR (Sandelin et al., 2004) and the TRANSFAC database 

(Wingender et al., 2000) greatly facilitates the prediction of TF binding sites. In 

addition, PWMs of de novo motifs have also been derived from de novo motif discovery 

programmes, for example from ChIP-seq data (Leporcq et al., 2020). 

2. Identification of regulatory elements using phylogenetic footprinting: Phylogenetic 

footprinting, another experimental-free technology, identifies regulatory elements by 

analysing the conservation of orthologous regulatory regions across species (Tagle et 

al., 1988). Regulatory regions are thought to be more conserved than other non-coding 

genomes because of their functional importance in controlling gene expression 

(Wasserman and Sandelin, 2004). The phylogenetic footprint hypothesis relies on the 

assumption that regulatory mechanisms for a given gene remain consistent across 

species. Various methods embodying this approach have been developed (Bailey and 

Elkan, 1995; Blanchette and Tompa, 2002; Hertz and Stormo, 1999) and have been 

extensively used to reveal the regulatory elements of genes (Leung et al., 2000; Loots 

et al., 2000; Manen et al., 1994). As the number and quality of reference genome 

assemblies increase, they serve as a valuable resource for inferring regulatory elements 

on a genome-wide scale. Christmas et al. (2023) have predicted cross-species cis-

regulatory elements at the tissue and cell type level by aligning hundreds of placental 

mammalian genomes. 

 

1.2.4 Identification of regulatory variants 

To fully understand the regulatory architecture and gain insight into how regulatory elements 

contribute to complex diseases and traits, projects have been initiated to generate additional information 

that complements the identification of regulatory elements. One prominent initiative is the GTEx project 

(GTEx Consortium, 2020). GTEx aims to elucidate how genetic variants affect gene expression in 

different tissues and individuals, providing critical insights into the role of regulatory variants. GTEx 

has investigated the effect of genetic variants on gene expression using eQTL analysis. This analysis 

helps to identify variants in the regulatory element that are associated with differences in gene 

expression levels between individuals. By studying eQTLs in different tissues and populations, GTEx 

is improving our understanding of the regulatory landscape that controls gene expression. In addition, 

GTEx has been extended to different species (Guan et al., 2023; Liu et al., 2022; Teng et al., 2024), 

allowing comparative analyses to reveal evolutionary conservation and divergence in regulatory 

mechanisms, facilitating the identification of conserved regulatory elements and their functional 

significance across species. 

In the GTEx study, two primary types of eQTL signals were identified: cis-eQTL and trans-

eQTL (GTEx Consortium, 2015). Cis-eQTL refer to genetic variants located in proximal regulatory 

regions that influence the expression of nearby genes and are the predominant type of eQTL observed. 
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These variants are typically located within cis-regulatory elements. Conversely, trans-eQTLs refer to 

variants that affect the expression levels of multiple genes located distally, and many of these eQTLs 

are associated with transcription factors. It's worth noting that splicing eQTLs are excluded from our 

analysis as they fall outside the scope of this study. Importantly, the majority of eQTLs operate across 

multiple tissues and regulatory variants may disrupt the expression of more than one gene. Cis-eQTLs 

generally show larger effect sizes on gene expression compared to trans-eQTLs and have a higher 

replication rate across different tissue types (Võsa et al., 2021). 

 

1.2.5 The advances of functional annotation in cattle 

In cattle, efforts have also been made to improve the functional annotation of the reference 

genome since its completion (Pareek et al., 2011). These efforts have focused on gaining deeper insights 

into the regulation and biological functions of various genes, particularly their roles in the intricate 

biological processes underlying differentiation and development. As mentioned above, the advent of 

improved sequencing technologies has led to the generation of vast amounts of data over the past few 

decades. Among these, two prominent consortia, namely FAANG, launched in 2015 (Andersson et al., 

2015), and BovReg, part of Euro FAANG, launched in 2020 (Moreira et al., 2022), have made 

significant contributions to advancing our understanding of the bovine genome and its functional 

elements. Using data from the FAANG project, researchers have extensively studied chromatin 

accessibility in different tissues and under different conditions, including different breeds, and compared 

them with those of other domesticated animals, revealing conserved regulatory patterns (Fang et al., 

2019; Foissac et al., 2019; Kern et al., 2021). The BovReg project, similar to the ENCODE project in 

humans, aims to create a comprehensive regulatory map of the bovine genome across tissues, ages and 

populations by integrating data on gene expression, epigenetic modifications and chromatin accessibility 

(Moreira et al., 2022). Recently, a new catalogue of transcription start sites across different tissues has 

been annotated by BovReg (Salavati et al., 2023). In addition, other studies have investigated more 

specific aspects such as chromatin accessibility in Indicine cattle (Alexandre et al., 2021), the immune 

epigenome of different breeds (Powell et al., 2023) and chromatin dynamics in different tissues (Gao et 

al., 2022a; Halstead et al., 2020b). In line with the human GTEx project, the cattle GTEx (cGTEx) 

initiative has published the results of its pilot study (Liu et al., 2022). This includes a catalog of 

regulatory variants that provides insights into how genetic variation affects gene expression in different 

bovine tissues (Liu et al., 2022). These studies are making a significant contribution to our knowledge 

of specific regulatory elements and their dynamics in bovine biology. Despite extensive efforts, the 

annotation of the bovine genome remains less advanced than that of the human genome. This lack of 

thorough annotation poses a challenge in identifying and understanding the functional elements that 

contribute to complex traits. 
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1.3 Heritability partitioning using functional annotation 

The proportion of phenotypic variance attributable to genetic variation is termed heritability and 

is commonly estimated using pedigree or genomic information (Visscher et al., 2008). The heritability 

captured by genotyped variants, mainly variants in LD with causal variants and, less frequently, some 

causal variants, is referred to as SNP heritability (Yang et al., 2017). Heritability estimation is essential 

for genetic evaluation and genomic prediction. Despite the widespread use of GWAS to identify variants 

associated with complex traits, the genetic variance explained by the identified SNPs remains far below 

the total heritability for most traits (Eichler et al., 2010; Yang et al., 2011b). To better estimate SNP 

heritability and account for the collective contribution of multiple genetic variants, several methods have 

been developed to fit all genetic variants simultaneously, such as the genomic restricted maximum 

likelihood (GREML) approach (Yang et al., 2011a) and BayesR (Moser et al., 2015). Extensions of 

these methods allow the contribution of different categories of variants to the SNP heritability to be 

estimated, potentially improving our understanding of the genetic architecture of complex traits. For 

instance, SNP categories could be defined based on their location (e.g. chromosomes), minor allele 

frequencies (MAF), levels of LD with other variants, GC content or functional annotation (Gusev et al., 

2014; Lee et al., 2012; Yang et al., 2011b). The continuing increase in the number of whole-genome 

sequenced individuals, coupled with improvements in the functional annotation of livestock genomes, 

provides an unprecedented opportunity to apply such approaches to partition the heritability of important 

agronomic traits. 

 

1.3.1 Method used for heritability partitioning 

To date, three main approaches have been developed to perform heritability partitioning: 

methods based on GREML (Yang et al., 2011a), Bayesian mixture models (Patxot et al., 2021), and so-

called LD score regressions (Finucane et al., 2015) (the LD score associated with a SNP is defined as 

the sum of the LD levels of that SNP with other SNPs in the region). Of these, GREML and Bayesian 

mixture models allow the use of both individual-level data and summary statistics, whereas LD score 

regression is primarily restricted to the use of summary statistics and is commonly used in human genetic 

research.  

GREML is an approach proposed by Yang et al. (2011a) that uses REML to estimate variance 

components from a linear mixed model (LMM) containing one or more polygenic terms associated with 

a genomic relationship matrix (GRM). Following common practice (e.g., Mrode), I use GBLUP to 

denote such an LMM with a single polygenic term modelled using genomic information, although Best 

Linear Unbiased Prediction (BLUP) refers to the estimation of breeding values with LMM in general 

(e.g., with an animal model). Thus, in my thesis, GBLUP will refer to a model, while GREML will refer 

to the estimation by REML of the variance components of a GBLUP model (or other genomic LMMs). 

The standard GBLUP models assume a priori that all SNPs contribute equally to the genetic variance 
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(Meuwissen et al., 2001) or according to their respective allele frequencies (see below). This model can 

be written as: 

𝒚 = 𝟏𝝁 + 𝒈 + 𝒆, 

 

where y is the vector of individual phenotypes, 𝟏𝝁 is the intercept term (i.e. the mean effect), g is the 

vector of individual polygenic effects, and e is the vector of individual random error terms. The 

polygenic effects are normally distributed, 𝒈 ~ 𝑁(0, 𝐆𝜎𝑔
2) where 𝐆 is the genomic relationship matrix 

(GRM). The calculation of G relies on the n x m genetic dosage matrix M, which indicates how many 

alternate alleles the n individuals carry at each of the m markers. The dosage of individual i and marker 

j, mij is typically 0, 1 or 2 when relying on genotypes, but other values are possible when working with 

genotype probabilities. Note also that different allele coding can be used, such as reference versus 

alternate allele, ancestral versus derived allele, major versus minor allele or A versus B allele. To 

construct the GRM, the centred dosage matrix Z or the centred and scaled dosage matrix X are generally 

used. The allele frequencies are used to centre the genotypes as 𝑧𝑖𝑗 = 𝑚𝑖𝑗 − 2𝑓𝑗, where fj is the allele 

frequency of the alternate allele at marker j. The scaling of individual centred dosages is achieved as: 

 

𝑥𝑖𝑗 =
𝑚𝑖𝑗−2𝑓𝑗

√2𝑓𝑗(1−𝑓𝑗)
. 

 

Using the centred dosages, the GRM is estimated as: 

 

𝐆 =
𝐙𝐙′

∑ 2𝑓𝑗(1−𝑓𝑗)𝑛
𝑗=1

, 

 

where the denominator is used to scale G like the additive relationship matrix A (VanRaden, 2008). 

With the scaled and centred dosages, the GRM is obtained as: 

 

𝐆 =
𝐗𝐗′

𝑛
. 

 

Although these rules have been described in several studies (Speed and Balding, 2015; 

VanRaden, 2008; Yang et al., 2011a), the centred GRM is often referred to as "VanRaden1", while the 

scaled and centred GRM is referred to as "Yang" (although it also corresponds to "VanRaden 2"). In the 

first case, the effect sizes of markers are independent of their allele frequencies, and common alleles 

consequently have higher contributions to genetic variance. In the second case, standardisation ensures 

that each marker has an equal expected contribution to genetic variance, and rare alleles will have large 

effect sizes. 
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For heritability partitioning, the LMM is extended to multiple polygenic terms, one per 

annotation group (e.g., different categories of genetic variants classified according to their allele 

frequency, function, etc.), allowing the genetic variance associated with each of these groups to be 

estimated: 

𝒚 = 𝟏𝝁 + ∑ 𝒈𝑠

𝑆

𝑠=1

+ 𝒆, 

 

where gs is the vector of individual polygenic effects associated with annotation group s, S is the total 

number of fitted annotation groups. Each polygenic component is normally distributed, 

𝒈𝑠 ~ 𝑁(0, 𝑮𝑠𝜎𝑠
2) and has its own GRM Gs, computed using only the variants present in category s, and 

its own variance 𝜎𝑠
2. In this model, the additive polygenic variance, 𝜎𝑔

2, is equal to the sum of the 

variances associated with each annotation groups: 

 

𝜎𝑔
2 = ∑ 𝜎𝑠

2

𝑆

𝑠=1

. 

 

The contribution of annotation group s to the genetic variance, called %SNP heritability, is 

estimated as: 

%ℎ𝑠
2 =

𝜎𝑠
2

𝜎𝑔
2. 

 

As described above, different rules have been proposed to construct the GRM, the most 

commonly used being the so-called "VanRaden1" and "Yang" rules. These rules correspond to different 

assumptions about the relationship between allele frequency and SNP effect size. However, the true 

properties of causal variants in terms of MAF or LD levels remain unknown and may differ from the 

assumptions made in GREML. This has been reported to affect heritability estimation (Speed et al., 

2012) and therefore several GREML-based approaches have been developed to allow for more general 

assumptions and greater flexibility, such as the GREML-LDMS (Yang et al., 2015) and LDAK (Speed 

et al., 2012). In the GREML-LDMS approach (Yang et al., 2015), SNPs are assigned to multiple 

annotation groups based on their LD scores and MAF. Each category has a different distribution of SNP 

effects, allowing more flexibility in the relationship between LD and MAF and SNP effect sizes. The 

model thus accounts for LD and MAF stratification (LDMS). In LDAK, LD and MAF effects are 

adjusted by weighting the variants used to calculate the GRM based on their LD score and allele 

frequency (Zhang et al., 2021). These derived models show reduced bias and improved robustness in 

heritability estimation. Consequently, LD and MAF corrections are commonly used in partitioning 

approaches. However, the increased number of variance components to be estimated poses 
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computational challenges, particularly for the largest cohorts. For example, the average information-

REML (AI-REML) algorithm allows faster convergence (Gilmour et al., 1995), but can have 

convergence problems when parameters are close to the boundary of the parameter space (e.g. negative 

variances or correlations > 1). Expectation–maximization-REML (EM-REML) is more stable and can 

converge even in scenarios where AI-REML fails, but at a slower rate (Misztal, 2008) and with a 

potential risk of becoming trapped in local maxima. To address the computational challenges posed by 

large datasets, RHE-mc (based on Haseman-Elston regression) (Pazokitoroudi et al., 2020) and BOLT-

REML (Loh et al., 2015a) have recently been developed. REML-based approaches are unable to 

efficiently handle large datasets, making methods like RHE-mc and BOLT-REML more practical for 

big dataset in future. These methods are faster and capable of analyzing large datasets, which can lead 

to higher accuracy due to the increased number of individuals being analyzed. 

Bayesian mixture models allow the construction of more complex and realistic models of 

heritability partitioning by (1) estimating parameters using non-infinitesimal hypotheses that allow only 

a subset of SNPs to have genetic effects, (2) incorporating flexible SNP effects with non-Gaussian 

distributions that include both small and large effects, and (3) allowing the specification of priors for all 

parameters in the model. A variety of Bayesian models are commonly used in genomic prediction, such 

as BayesB (Meuwissen et al., 2001), BayesCπ (Habier et al., 2011) and BayesR (Erbe et al., 2012). 

These models have been reported to improve the accuracy of genomic prediction over GBLUP due to 

their ability to better define SNP effects and to accurately incorporate the number of SNPs with a non-

zero effect into the model (Moser et al., 2015). However, only a few of these approaches have been 

extended to accommodate different annotation groups, as required for heritability partitioning, including 

BayesRC (MacLeod et al., 2016), BayesRCO (BayesRCπ and BayesRC+) (Mollandin et al., 2022), and 

BayesRR-RC (Patxot et al., 2021). These methods are derived from BayesR and use different effect 

sizes (large, medium, small and zero) to better represent the realistic distribution of SNP effects. Of 

these, only BayesRR-RC has the ability to directly estimate the variance contributed by each SNP group. 

In BayesRR-RC, phenotypes are modelled as: 

 

𝒚 = 𝟏𝝁 + ∑ 𝐗𝑠
𝑆
𝑠=1 𝛃𝑠 + 𝒆, 

 

where Xs is the matrix of centred and scaled genotypes for markers in category s and βs is the vector of 

marker effects for category s. These are modelled as a mixture of null effects (spike probability at zero) 

and L Gaussian distributions: 

 

𝛽𝑠𝑗
~𝜋0𝑠

𝛿0 + 𝜋1𝑠
𝑁(0, 𝜎1𝑠

2 ) + 𝜋2𝑠
𝑁(0, 𝜎2𝑠

2 ) + … + 𝜋𝐿𝑠
𝑁(0, 𝜎𝐿𝑠

2 ), 
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where j is the marker index, δ0 is a discrete probability mass at 0, L is the number of Gaussian 

distributions in the mixture, {𝜋0𝑠
, 𝜋1𝑠

, 𝜋2𝑠
, … , 𝜋𝐿𝑠

} are the mixture proportions for annotation group s, 

{𝜎1𝑠

2 , 𝜎2𝑠

2 , … , 𝜎𝐿𝑠

2 } are the mixture variances for group s and correspond to predefined proportions of 𝜎𝑠
2, 

the variance explained by the group estimated directly from the data. The proportion of heritability 

associated with each group is then estimated as: 

 

%ℎ𝑠
2 =

𝜎𝑠
2

∑ 𝜎𝑠
2𝑆

𝑠=1

. 

 

Compared to BayesRR-RC, BayesRC lacks the explicit estimation of the variance for each 

annotation group in the model. Indeed, the group-specific variances 𝜎𝑠
2 are replaced by the total additive 

genetic variance 𝜎𝑔
2. Therefore, Xiang et al. (2023) used an indirect approach to compute 𝜎𝑠

2 using the 

following formula: 

 

𝜎𝑠
2 = 0.0001 𝜎𝑔

2𝜋1𝑠
+ 0.001 𝜎𝑔

2𝜋2𝑠
+ 0.01 𝜎𝑔

2𝜋3𝑠
, 

 

where 0.0001, 0.001 and 0.01 correspond to the predefined proportions of 𝜎𝑔
2 associated with the three 

distributions he fitted per annotation group in his model.  

Unlike BayesRC and BayesRR-RC, which explicitly assign each SNP to a single annotation 

group, a process that can be subjective, BayesRCO (Mollandin et al., 2022) allows variants to have 

multiple annotation groups. The probability of a SNP to belong to each group is modelled as an 

additional variable and estimated in parallel with other parameters.  

While Bayesian-based methods offer a better defined variance scheme, GREML remains 

prevalent in many analyses on individual-level data (i.e., with individual phenotypes for each genotyped 

individual) due to its faster computational times compared to Bayesian mixture approaches, which often 

require longer sampling chains to reach equilibrium. Two recently developed software GMRM (Patxot 

et al., 2021) and BayesR3 (Breen et al., 2022) use a different strategy to improve speed, making 

heritability partitioning at the sequence level feasible. Conversely, convergence problems become more 

frequent with GREML when too many annotation groups are fitted simultaneously. 

 

In some cases, however, genetic analyses rely on summary statistics rather than individual-level 

data. LD score regression (Bulik-Sullivan et al., 2015) (or LDSC) is an approach that can be used to 

estimate heritability and perform heritability partitioning with summary statistics. It is based on the 

principle that in association studies, the estimated effect of a genetic variant results from the combination 

of its own effect and that of other variants that are in LD, but also from other factors such as population 

stratification. LDSC distinguishes between inflation due to polygenic effects and the consequences of 
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cryptic relatedness or population stratification by modelling the relationships between test statistics and 

LD scores. More specifically, the expected association statistic for variant j has a 𝜒2 distribution (Bulik-

Sullivan et al., 2015): 

𝐸[𝜒𝑗
2|𝑙𝑗] = 𝑛ℎ²𝑙𝑗 𝑚⁄ + 𝑛𝑎 + 1, 

 

where 𝑛 is the total sample size, m is the number of markers, ℎ²is the heritability, 𝑙𝑗 = ∑ 𝑟𝑗𝑘
2

𝑘  is the LD 

Score of variant 𝑗(𝑟𝑗𝑘
2  is the LD between markers j and k), a is the contribution of confounding biases 

such as stratification and cryptic relatedness to the test statistic. 

This approach can be extended to partition heritability according to functional annotation 

(Finucane et al., 2015). In this case, the test statistic is modelled as:  

 

𝐸[𝜒𝑗
2] = 𝑛 ∑ 𝜏𝑠𝑙(𝑗, 𝑠) + 𝑛𝑎 + 1𝑠 , 

 

where s is the annotation group index, 𝑙(𝑗, 𝑠) is the LD Score of marker j with respect to category s (i.e. 

𝑙(𝑗, 𝑠) = ∑ 𝑟𝑗𝑘
2

𝑘∈𝑠 ), 𝜏𝑠 is the per-SNP contribution to heritability of annotation group s. 

 

Each of the three approaches has its own advantages. A key feature of LDSC is that only a 

simple regression is required to estimate 𝜏𝑠, significantly reducing computational time and resources 

compared to GREML and Bayesian mixture models, even for large cohorts. This allows analysis based 

on large numbers of individuals and annotation groups. For example, Finucane et al. (2015) successfully 

implemented LDSC to perform heritability partitioning for 17 complex diseases and traits across 53 

annotation categories, which would be computationally intractable with GREML. They also showed 

that including more annotation groups improves the accuracy of heritability partitioning. In addition, 

stratified LDSC offers greater flexibility in group specification, allowing a variant to be assigned to 

multiple groups, whereas GREML and Bayesian approaches, with the exception of BayesRCO, only 

allow one annotation group for each SNP. It is worth noting that, unlike these GREML and Bayesian 

mixture models, LDSC can distinguish population structure from polygenic effects, resulting in 

improved heritability estimation in the presence of population stratification. However, LDSC only 

works with summary statistics, and if the genotype data of the individuals used to generate these 

statistics are not available, it is crucial that the individuals used to calculate LD scores have similar LD 

patterns to those used in the GWAS. Although LDSC has proven effective in human genetics and has 

been further improved over the years, it is rarely used in animal breeding. Importantly, LDSC has been 

reported to be inferior to approaches based on individual-level data in both humans (Patxot et al., 2021) 

and cattle (Xiang et al., 2023). For example, in the study by Patxot et al. (2021), heritability partitioning 

using LDSC was found to be less accurate than BayesRR-RC and Bolt-REML, which use individual-

level data. GREML assigns the same variance parameter to all SNPs in the same annotation group, 
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whereas Bayesian mixture models offer greater flexibility at the expense of more parameters to estimate. 

GREML generally results in faster computation, but the number of annotation groups that can be fitted 

simultaneously remains limited. Indeed, partitioning with a large number of annotation groups 

dramatically increases the computational time and often results in convergence problems (Finucane et 

al., 2015). Bayesian mixture models are generally slower due to the time-consuming sampling process 

required for each SNP. However, Bayesian methods provide additional posterior inclusion probability 

(PIP) information and SNP effects for each SNP, which can be used for fine mapping and provide higher 

resolution than standard LMM-based GWAS. Finally, BayesRR-RC showed comparable accuracy in 

heritability partitioning to Bolt-REML and higher accuracy than RHEmc in the simulation study by 

Paxtot et al. (2021). 

 

1.3.2 Applications of heritability partitioning in humans and livestock populations 

The development of these techniques has allowed the contribution of different genomic features 

and functional elements to genetic variance to be studied, providing a better understanding of complex 

traits in humans, model organisms and livestock species. The first partitioning approaches investigated 

the contribution of different chromosomes to genetic heritability. For example, Yang et al. (2011b) used 

GREML to partition the heritability of human height and body mass index (BMI) across chromosomes 

and found that the contribution from each chromosome was correlated with its length, suggesting highly 

polygenic traits. Similar studies were later applied to other traits (Loh et al., 2015a) and in livestock 

(Bhuiyan et al., 2018; Jensen et al., 2012; Pimentel et al., 2011). For example, extreme polygenicity has 

been observed for schizophrenia (Loh et al., 2015a). In contrast, a few traits showed a different 

architecture, where a single gene was associated with most of the genetic variation, such as the ABO 

locus for plasma von Willebrand factor (vWF) levels (Yang et al., 2011b). Next, partitioning approaches 

were used with annotation group associated with LD score or MAF categories (Bhuiyan et al., 2018; 

Yang et al., 2015). In humans, the use of such LDMS approaches was shown to be necessary to obtain 

unbiased estimates of heritability (Yang et al., 2015). In addition, results from GREML-LDMS suggest 

that the heritability of human height is enriched for variants with a MAF < 0.1. 

With the increased functional information available, partitioning approaches have been used to 

estimate the contribution of different functional classes to complex traits. These studies have mostly 

been carried out in humans. For example, Gusev et al. (2014) used GREML to estimate the contribution 

of six functional categories, including coding, UTR, promoter, DNaseI hypersensitivity sites (DHS), 

intronic and intergenic, to 11 common diseases. Their analysis showed that variants in coding regions 

had the highest levels of per-SNP heritability (i.e. the proportion of genetic variance explained by a SNP 

in that category), while regulatory elements explained the largest proportion of genetic variation (their 

collective contribution). Furthermore, in another study using the LDSC approach to unravel the genetic 

architecture of 49 disease and complex traits (van de Geijn et al., 2020), transcription binding sites 

within regulatory regions were found to make a substantial contribution to heritability. Using the same 
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approach and data set, Hujoel et al. (2019) showed that conserved regulatory elements had higher 

enrichment levels compared to broad regulatory elements. The use of Bayesian mixture models to 

partition heritability is more recent. For example, Patxot et al. (2021) used BayesRR-RC to investigate 

the genetic architecture of four complex traits including cardiovascular disease (CAD) outcomes, type 

2 diabetes (T2D), BMI and height. Their analysis revealed a slightly different genetic architecture, with 

a large proportion of heritability associated with intronic, exonic and distal regulatory regions, and less 

than 10% associated with proximal regulatory regions. Their study also confirmed that common variants 

explain a substantial proportion of heritability. The variant effect sizes from each category showed a 

parallel trend to the proportion of heritability associated with the categories (e.g. intronic and exonic 

regions had larger effect sizes). Finally, partitioning approaches based on summary statistics allow more 

annotation groups to be included in the model. For example, a baseline model with more than 50 

annotation groups has been used in several human studies (Finucane et al., 2015; Speed et al., 2020; 

Speed and Balding, 2019; Zheng et al., 2024). These analyses revealed substantial heritability 

enrichment levels in conserved regions for several complex traits (Finucane et al. 2015). Surprisingly, 

this enrichment exceeded that of coding variants, although Speed et al. (2019) pointed out a possible 

overcorrection. 

Similar studies have been carried out in cattle, although functional annotation is not as complete 

and accurate as in humans. First, genome partitioning of genetic variation per chromosome with 

GREML showed a weak correlation between length and associated variance for traits such as milk 

production and composition (Pimentel et al., 2011) and fitness (Jensen et al., 2012) recorded in dairy 

cattle. This suggests an uneven distribution of QTL and the presence of large effect variants, which is 

not consistent with findings in humans. Similar results have been observed for carcass traits in beef 

cattle (Bhuiyan et al., 2018; Niu et al., 2021). Functional heritability partitioning has also been applied 

to livestock species. For example, Koufariotis et al. (2014) performed one of the first studies in dairy 

and beef cattle. However, they mainly used high-density genotyping arrays and in silico prediction of 

functional classes (as obtained with the Variant Effect Predictor - VEP (McLaren et al., 2016)). They 

found that variants in coding and regulatory regions contributed significantly more to heritability, 

consistent with findings in humans (Gusev et al., 2014). To do this, they estimated the contribution of 

only one category at a time by fitting a GREML with two annotation groups (the target category versus 

the rest of the genome). In fact, this strategy has been used in most studies carried out in livestock species 

to estimate the contribution of different genomic features, both in cattle (Edwards et al., 2015; Lingzhao 

et al., 2017) and in other species such as pigs (Sarup et al., 2016; Ye et al., 2020), and is the core of the 

so-called Genomic Feature BLUP (GFBLUP) (Edwards et al., 2016). More recently, Xiang et al. (2023) 

used a Bayesian mixture model to highlight the important role of regulatory variants in complex traits 

in cattle. Compared to many of the previous studies, they relied on more advanced functional 

information, including information from the cattle GTEx (cGTEx) database. Overall, the results from 

different studies in cattle have been highly variable, with the estimated contribution of each class varying 
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significantly from trait to trait (Xiang et al., 2023). Sometimes unexpected results have been reported, 

such as synonymous variants explaining a larger proportion of the genetic variance of carcass traits than 

non-synonymous variants (Bhuiyan et al., 2018). Finally, the LDSC approach has been used very rarely 

in livestock species, where it has been reported to achieve low accuracy (Xiang et al., 2023). 

It's worth noting that these analyses were carried out using methods developed in the human 

genetic community and tested mainly on human data. Although these methods have been widely used 

in livestock species, their accuracy has not been fully validated in this context. To my knowledge, the 

only study in livestock that has evaluated the accuracy of GREML for estimating the variance associated 

with different annotation groups was performed by Cai et al. (2022). The study focused only on LDMS 

stratification in a relatively small dataset (~2000 individuals), not at the sequence level, and only with a 

two variance component approach (not by fitting all annotation groups simultaneously). However, 

livestock populations have very different characteristics from human data at the genomic level. For 

example, they typically exhibit characteristics such as long distance LD, small effective population size, 

and high levels of inbreeding and relatedness between individuals. Such characteristics can significantly 

affect the efficiency and accuracy of heritability partitioning methods. Therefore, a comprehensive 

evaluation of the properties of these methods in livestock populations would be valuable. 

 

1.4 Using biological priors in genomic selection models 

1.4.1 Introduction to genomic selection  

The concept of GS, originally introduced by Meuwissen et al. (2001), is based on the use of 

high-density genotyping to capture all QTLs across the genome. GS is designed to simultaneously 

capture the effects of all causal variants distributed across the genome, including those with small effects 

that don't reach significance levels in GWAS. Compared to conventional breeding approaches based on 

phenotypic and pedigree data, or to Marker-Assisted Selection (MAS), which uses a limited number of 

markers to capture only large effects - QTL or genome-wide significant associations - GS offers the 

potential to achieve significantly higher prediction accuracies for complex traits in plant and animal 

breeding (García-Ruiz et al., 2016; Georges et al., 2019; Meuwissen et al., 2001; Zhao et al., 2012). In 

addition, GS can also increase genetic progress by reducing the generation interval. In practice, the 

advent of low-cost commercial genotyping arrays, such as the SNP 50K bovine chip, has greatly 

accelerated the application of GS, making large-scale genotyping feasible. Accordingly, the adoption of 

GS has become widespread among breeding companies, particularly in cattle, as a replacement for 

laborious and costly progeny testing (de Koning, 2016; Georges et al., 2019). In the US dairy industry, 

García-Ruiz et al. (2016). reported a twofold increase in annual genetic gains for milk, fat and protein 

yields and a significant reduction in the generation interval for selection of sires of bulls and cows when 

comparing periods before and after the introduction of genomic selection in 2010 (García-Ruiz et al., 

2016). Similar trends were observed for the Montbeliarde, Normande and Holstein breeds in France 
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(Doublet et al., 2019). The trend reported for Holstein bulls was accompanied by a marked reduction in 

genetic diversity, exceeding the acceptable rate of inbreeding defined in the FAO guidelines (Doublet 

et al., 2019). The decrease in genetic diversity could be compensated by increasing the number of new 

bulls and by optimising the use of genomic information in breeding programmes, e.g. to balance the 

level of inbreeding and genetic gain (Doublet et al., 2019). The implementation of GS in the beef 

industry presents unique challenges compared to dairy cattle, such as the ability to directly observe 

phenotypes in young males or the lower use of artificial insemination. In addition, the presence of 

multiple breeds results in smaller population sizes per breed, which complicates prediction efforts. 

Compared to dairy cattle, the reference population of genotyped animals remains small, especially 

compared to the Holstein breed, and phenotypes may also be of lower quality in beef breeds (Meuwissen 

et al., 2016; Van Eenennaam et al., 2014). Although the use of a multi-breed reference population 

strategy has shown marginal improvements in accuracy (when the same phenotypes are recorded in the 

different breeds), the presence of shared QTLs becomes crucial when performing such cross-breed GS. 

In addition, the accuracy of multibreed prediction decreases significantly when using a 50K SNP panel 

due to differences in LD phases between breeds (Meuwissen et al., 2016). Although GS has been 

adopted in other species such as pigs, poultry, sheep or fish (Georges et al., 2019; Ibáñez-Escriche et al., 

2014; Meuwissen et al., 2016), this adoption is not as widespread as in cattle. Finally, similar techniques, 

called polygenic risk scores, are being investigated in human genetics, for example to predict disease 

risk (de los Campos et al., 2010). 

 

1.4.2 Statistical approaches used in genomic selection 

Some of the models used for GS have already been introduced because they are similar to 

approaches used for heritability partitioning. The SNP-BLUP and GBLUP, two equivalent LMM 

models as previously shown (see for instance Goddard, 2009; Strandén and Garrick, 2009; Strandén and 

Christensen, 2011), are standard approaches when all individuals are genotyped. In the SNP-BLUP, 

already proposed by Meuwissen et al. (2001), the phenotypes in the vector y are modelled as a function 

of all individual SNP effects 𝛽𝑗, which have the same variance 𝜎𝛽
2: 

 

𝒚 = 𝟏𝜇 + ∑ 𝒙𝑗
𝑀
𝑗=1 𝛽𝑗 + 𝒆, 

 

where 𝒙𝑗 is the vector of centred and scaled genotypes for marker j. The model can also be applied using 

centred genotypes 𝒛𝑗. The SNP effects are normally distributed as 𝛽𝑗~𝑁(0, 𝜎𝛽
2). The genomic estimated 

breeding values (GEBV) correspond to the polygenic effects stored in g and can be estimated as: 

 

𝒈 = ∑ 𝒙𝑗
𝑀
𝑗=1 𝛽𝑗. 
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In this model, the variance of the phenotypes is: 

 

var(𝒚) = 𝑿𝑿′𝜎𝛽
2 + 𝑰𝜎𝑒

2. 

 

The SNP effect variance is a function of the total genetic variance 𝜎𝑔
2, where 𝜎𝛽

2 = 𝜎𝑔
2 𝑀⁄ . This 

model, sometimes called ridge regression, is equivalent to the GBLUP presented earlier, where 

phenotypes are modelled directly as a function of individual polygenic terms gi stored in g:  

 

𝒚 = 𝟏𝜇 + 𝒈 + 𝒆. 

 

These polygenic terms are normally distributed 𝒈~(0, 𝑮𝜎𝑔
2), where G is the GRM (see previous 

section for more details).  

Note that when A, the pedigree relationship matrix, is used instead of G, the model corresponds 

to the ‘traditional’ selection used before GS. In animal breeding, the GRM computed using centred 

genotypes (“VanRaden1”) is most commonly used (VanRaden, 2008), whereas in humans, GRM are 

more often computed using scaled and centred genotypes (“Yang” or “VanRaden2”) (Yang et al., 

2011a). Other rules for constructing GRMs have been proposed (e.g. Speed et al., 2012), where markers 

are “optimally” weighted according to their MAF or LD scores.  

In animal breeding, extensions of GBLUP and SNP-BLUP have been developed to use 

information from ungenotyped animals with phenotypes (Christensen and Lund, 2010; Legarra et al., 

2009). These represent often the largest fraction of the population. These extensions called single step 

GBLUP (ssGBLUP) (Christensen and Lund, 2010; Legarra et al., 2009) or SNP-BLUP combine 

pedigree and genomic BLUP. Integration of these ungenotyped individuals results in higher prediction 

accuracy and can also correct for some biases. In addition, this procedure has been shown to be more 

efficient that multistep procedures where GBLUP is first run and information from pedigree BLUP are 

integrated in a second step (Bradford et al., 2019). Therefore, ssGBLUP is the approach used for 

genomic evaluations in many countries. 

In addition to GBLUP, a rather large alphabet of Bayesian models has been developed for whole 

genome prediction. A key feature of these models is that SNP effects can have different variances 

(Figure 1.8), and priors are used to estimate these SNP-specific variances. In BayesA, the variance of 

SNP effects has an inverse chi-squared distribution 𝜒−2(𝑣, 𝑆) (Meuwissen et al., 2001), where v and S 

are the number of degrees of freedom and the scale parameter, respectively. In BayesB (Meuwissen et 

al., 2001), only a fraction (1-π) of the SNPs have a non-zero effect. This model better reflects the sparse 

distribution of QTL effects and allows some variants to have a large effect. However, in both BayesA 

and BayesB, the posterior distribution of the SNP effect variance for each locus is heavily influenced 

by the prior distribution because the data provide little information per marker. Therefore, the results 
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are strongly influenced by the choice of prior. In addition, the proportion of SNPs with non-zero effects 

is typically fixed rather than learned from the data, which further affects the flexibility and adaptability 

of the model to traits with different genetic architecture (Gianola et al., 2009; Habier et al., 2011). To 

overcome these limitations, BayesCπ and BayesDπ (Habier et al., 2011) define π as an unknown 

parameter that must be inferred from the data. In addition, effect sizes have the same variance in 

BayesCπ, making it less sensitive to the choice of priors, whereas each locus still has its own variance 

in BayesDπ. To capture different effect sizes of causal variants without increasing computational 

complexity, BayesR (Erbe et al., 2012) defines marker effects 𝛽𝑗  as a mixture of four normal 

distributions with different variances: 

 

𝑝(𝛽𝑗|𝜋, 𝜎𝑔
2)~𝜋1𝑁(0,0 ∗ 𝜎𝑔

2) + 𝜋2𝑁(0, 10−4 ∗ 𝜎𝑔
2) + 𝜋3𝑁(0, 10−3𝜎𝑔

2) + 𝜋4𝑁(0, 10−2𝜎𝑔
2). 

 

The model includes a null effect distribution and markers can contribute up to 1% of the genetic variance 

although different models with different numbers of distributions and effect sizes can be defined (Erbe 

et al., 2012; Moser et al., 2015). The proportions of variants within the four categories are estimated 

from the data. Although the same distribution is used for all markers to improve computational 

efficiency, the use of a mixture of four distributions has been shown to improve performance in both 

prediction and mapping (Moser et al., 2015). Finally, a number of models are based on a mixture of two 

Gaussian distributions designed to capture small polygenic effects (associated with most markers) and 

large marker effects (for only a few loci). This is the case for example of the Bayesian Sparse Linear 

Mixed Model or BSLMM (Zhou et al., 2013), Bolt-LMM (Loh et al., 2015b), BayesGC (Meuwissen et 

al., 2021). Although the models have common features, their implementation may differ. For example, 

Bolt-LMM tests a predefined set of 18 parameter combinations to increase computational efficiency. 

Other models have been proposed but are not presented as it is not my aim to review them all. 

 

 

Figure 1.8. The prior distributions of SNP effect sizes are different for each model.  GBLUP uses a single 

normal distribution, BSLMM employs a mixture of two normal distributions, and BayesR utilizes a mixture of 

three normal distributions and one point mass at zero. 
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1.4.3 Incorporation of genomic features in genomic prediction models 

The original GBLUP and SNP-BLUP approaches assume the same effect size distribution for 

all SNP effects, although variant effect sizes may vary along the genome or across functional categories. 

To account for heterogeneity in SNP effect variance, several extensions of GBLUP have been proposed. 

In the genomic feature BLUP or GFBLUP (Edwards et al., 2016), SNPs are assigned to two groups 

based on genomic features or functional priors, the variants within and outside the fitted functional 

group. Two independent polygenic terms are then defined, one for each group:  

 

𝒚 = 𝟏𝜇 + 𝒈𝐹 + 𝒈𝐹 + 𝒆, 

 

where gF and g-F are the polygenic terms associated with the feature and the rest of the genome. These 

terms are normally distributed, 𝒈𝐹~(0, 𝑮𝐹𝜎𝑔𝐹
2 ) and 𝒈𝐹~(0, 𝑮𝐹𝜎𝑔𝐹

2 ) where GF and GF are the GRM 

estimated with the markers within and outside the functional category, respectively. The marker effects 

from the two different categories also have different variances, 𝜎𝑔𝐹
2  and 𝜎𝑔𝐹

2 , which need to be estimated, 

e.g. by GREML. 

In the MultiBLUP model (Speed and Balding, 2014), several groups of variants are fitted 

simultaneously, each with its own variance. The groups can be defined according to their position along 

the genome or according to different functional categories. 

 

As mentioned in the section on heritability partitioning, BayesR has been extended to 

incorporate information from functional annotation. This was first done in BayesRC (MacLeod et al., 

2016), then in BayesRCO (Mollandin et al., 2022), and finally in BayesRR-RC (Patxot et al., 2021). The 

main idea of these methods is that the mixture proportions are a function of the annotation group. In 

addition, in BayesRR-RC, each annotation group has its own variance parameter. However, both 

BayesRC and BayesRR-RC have the disadvantage that the SNPs are manually assigned to the different 

annotation groups prior to the analysis. BayesRCO is derived from BayesRC and provides two new 

options implemented in BayesRC+ and BayesRCπ. These options allow variants to be assigned to 

multiple annotation groups (Mollandin et al., 2022). 

  

1.4.4 Application of genomic prediction models using functional information in livestock 

species 

The ever-increasing number of whole-genome sequenced individuals, which provide reference 

populations for missing genotype imputation, combined with the improving functional annotation of 

genomes in several species, makes it possible to incorporate this functional information into genomic 

selection to further improve its accuracy. The use of whole genome sequence is expected to increase the 

accuracy of genomic selection by including causal variants in the dataset, which is particularly important 
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for multi-population predictions. In addition, accuracy is expected to be maintained over multiple 

generations as the LD between markers and causal variants does not decrease with each generation due 

to the recombination process. However, first attempts in livestock species did not systematically achieve 

higher prediction accuracy (Raymond et al., 2018; van Binsbergen et al., 2015; VanRaden et al., 2017). 

Some simulation studies have shown that higher accuracy is obtained when the causative variants are 

known, whereas using all variants from the sequence data gives at best modest improvements (Druet et 

al., 2014b; Meuwissen and Goddard, 2010; Pérez-Enciso et al., 2015). In addition, little gain is expected 

when causative variants are common and well tagged by markers from genotyping arrays. Higher gains 

are expected when causative variants are rare, but unfortunately these remain more difficult to impute 

(e.g. Druet et al., 2014b). These initial results support the use of functional annotation to improve the 

accuracy of genomic prediction when using sequence data. 

Although genomic selection models using information from functional annotations have already 

been applied to livestock species, there is still a need for further investigation. Indeed, these studies have 

some limitations as they have rarely been carried out at the sequence level and on large cohorts. In 

several cases, commercial genotyping arrays have been used (Nayee et al., 2018; Rincon et al., 2011), 

although marker selection is then biased (i.e. not all functional variants are equally likely to be selected). 

These panels are enriched for common variants and capture only a small subset of causative variants, 

particularly when medium density arrays are used . Such marker panels may be useful for initial testing, 

but the use of whole genome sequence data is required to make best use of the biological information. 

Even when (imputed) full sequence data are available, subsets of markers have been used in a few studies 

(Lopez et al., 2021; VanRaden et al., 2017; Veerkamp et al., 2016) to reduce the computational burden, 

although this may lead to some bias and loss of causative variants, making the use of functional 

annotation less relevant. It is also important to remember that large datasets are required to fully exploit 

whole genome sequence data and functional information, but this is not always the case (Do et al., 2015). 

In addition, annotation information was rarely obtained from functional experiments, but rather from in 

silico predicted annotations, typically using VEP or similar tools, where variants are classified according 

to their position relative to genes (e.g. exonic, intronic, intergenic) (Lopez et al., 2021) or their predicted 

effect (e.g. missense variants) (MacLeod et al., 2016). Gene ontology information was also used in 

several studies (Edwards et al., 2016; Lingzhao et al., 2017), whereas conservation information was used 

less frequently (e.g. Xiang et al., 2021b, 2019a). A few studies used catalogues of eQTL (Xiang et al., 

2021b, 2019a) that have strong evidence of regulatory effect, but represent only a fraction of the true 

eQTL, as their identification depends on the power of the study (eventually reduced by the burden of 

multiple testing). Ideally, these eQTL should have been identified in a large sample of the target 

population and in the relevant tissue. Overall, the list of genomic features included in the model remains 

limited compared to recent human studies based on a so-called baseline model including 24 elements 

(Finucane et al., 2015; Gazal et al., 2017; Speed et al., 2020). 
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In all these studies, the genomic feature BLUP was the most commonly used, often in 

combination with gene ontology information. This means that hundreds of models are tested (one per 

tested ontology) and that several of these may improve prediction accuracy (Edwards et al., 2016; 

Lingzhao et al., 2017). However, the approach does not provide a solution for combining these identified 

ontologies to perform prediction in a single model. In addition to GFBLUP, BayesRC has also been 

used in a limited number of studies, but never with the full sequence data. Another strategy commonly 

used to exploit biological priors is to perform a pre-selection of markers based on their annotation and 

then apply 'classical' models that don't exploit the biological information (MacLeod et al., 2016; Xiang, 

2021). This strategy has the advantage of being more computationally efficient, but does not optimally 

exploit the functional information. Overall, it remains difficult to determine which strategies lead to a 

consistent improvement in prediction accuracy, as a variety of approaches have been applied to different 

traits in different populations. There is a large variation in results even for the same method, and in many 

cases the use of functional annotation in livestock species has not resulted in higher prediction accuracy 

(Abdollahi-Arpanahi et al., 2017; Xiang, 2021). Recent studies in human genetics have reported greater 

and more consistent benefits from using functional annotation for genomic prediction (Orliac et al., 

2022; Zhang et al., 2021), suggesting that there may be further room for improvement in livestock 

species, particularly where more functional information is available. 
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2 Objectives 

Genomic selection has more than doubled genetic progress in cattle breeding over the past 

decade. However, the GBLUP method widely used in genomic selection still needs improvement. 

Improving functional annotation and integrating it into genomic selection models has the potential to 

significantly increase the accuracy of genomic selection. GWAS and heritability partitioning studies in 

human genetics are increasingly highlighting the importance of regulatory variants in complex traits. 

Therefore, the identification of regulatory variants in cattle holds great promise for pinpointing causative 

regulatory elements and improving the accuracy of genomic prediction. While significant progress has 

been made in human genetics with the establishment of several large consortia that are accelerating our 

understanding of the genetic architecture of complex traits through the identification of regulatory 

elements, parallel efforts in cattle are notably limited. The lack of a comprehensive regulatory map 

hinders our ability to unravel the genetic mechanisms controlling complex traits in cattle and to improve 

genomic selection methods. Therefore, this thesis has three main objectives. 

  

The first objective of this thesis is to generate a comprehensive map of regulatory elements using 

a large number of samples covering almost all tissues, including those associated with economically 

important traits, and to use this map to identify regulatory variants. This will involve generating a catalog 

of regulatory regions in the bovine genome using ATAC-Seq and identifying variants within open 

chromatin regions. To assess the relevance of the catalog, I will then evaluate its enrichment in 

regulatory variants. In addition, this first study will evaluate the specificity and precision of using 

ATAC-Seq to identify regulatory variants, and will examine the utility of these regulatory variants for 

identifying causative variants. 

 

The second objective is to investigate the genetic contribution of different functional categories 

of variants to the genetic variation of complex traits in Belgian Blue cattle. This will involve a 

comprehensive evaluation of heritability partitioning approaches in livestock populations, followed by 

their use to estimate the heritability explained by different functional categories for muscular 

development traits and height, with a focus on the contribution of regulatory elements. 

 

The third objective is to explore strategies for using functional annotation, in particular the 

catalog of identified regulatory elements, to improve the accuracy of genomic selection. This will 

include evaluating the accuracy of genomic selection for muscular development traits in Belgian Blue 

cattle using whole-sequence data, evaluating the performance of genomic prediction models that use 

functional annotations as priors, and evaluating the accuracy of genomic selection when using subsets 

of variants selected based on functional annotation.
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3 Experimental section: Study 1 

3.1 Summary 

We herein report the generation of an organism-wide catalogue of 976,813 cis-acting regulatory 

elements for the bovine detected by the Assay for Transposase Accessible Chromatin using sequencing 

(ATAC-Seq). We regroup these regulatory elements in 16 components by non-negative matrix 

factorization. Correlations between the genome-wide density of peaks and transcription start sites, 

between peak accessibility and expression of neighboring genes, and enrichment in transcription factor 

binding motifs supports their regulatory potential. Using a previously established catalogue of 

12,736,643 variants, we show that the proportion of single nucleotide polymorphisms mapping to 

ATAC-Seq peaks is higher than expected and that this is due to an ~ 1.3-fold higher mutation rate within 

than outside peaks. Their site frequency spectrum indicates that variants in ATAC-Seq peaks are subject 

to purifying selection. We generate eQTL datasets for liver and blood and show that variants that drive 

eQTL fall into liver and blood-specific ATAC-Seq peaks more often than expected by chance. We 

combine ATAC-Seq and eQTL data to estimate that the proportion of regulatory variants mapping to 

ATAC-Seq peaks is approximately 1 in 3, and that the proportion of variants mapping to ATAC-Seq 

peaks that are regulatory is approximately 1 in 25. We discuss the implication of these findings on the 

utility of ATAC-Seq information to improve the accuracy of genomic selection. 

 



Chapter 3  Experimental section – Study 1 

 

52 



Chapter 3  Experimental section – Study 1 

 

53 



Chapter 3  Experimental section – Study 1 

 

54 



Chapter 3  Experimental section – Study 1 

 

55 



Chapter 3  Experimental section – Study 1 

 

56 



Chapter 3  Experimental section – Study 1 

 

57 



Chapter 3  Experimental section – Study 1 

 

58 



Chapter 3  Experimental section – Study 1 

 

59 



Chapter 3  Experimental section – Study 1 

 

60 



Chapter 3  Experimental section – Study 1 

 

61 



Chapter 3  Experimental section – Study 1 

 

62 



Chapter 3  Experimental section – Study 1 

 

63 



Chapter 3  Experimental section – Study 1 

 

64 



Chapter 3  Experimental section – Study 1 

 

65 



Chapter 3  Experimental section – Study 1 

 

66 



Chapter 3  Experimental section – Study 1 

 

67 



Chapter 3  Experimental section – Study 1 

 

68 



Chapter 3  Experimental section – Study 1 

 

69 



Chapter 3  Experimental section – Study 1 

 

70 

 

 

  



Chapter 3  Experimental section – Study 1 

 

71 

 

 



Chapter 3  Experimental section – Study 1 

 

72 

 

  



Chapter 3  Experimental section – Study 1 

 

73 

 

 



Chapter 3  Experimental section – Study 1 

 

74 

 

  



Chapter 3  Experimental section – Study 1 

 

75 

 

  



Chapter 3  Experimental section – Study 1 

 

76 

 

  



Chapter 3  Experimental section – Study 1 

 

77 

 

 

  



Chapter 3  Experimental section – Study 1 

 

78 

 

 



 

 

  

Evaluation of heritability partitioning approaches in livestock 

populations 

Experimental Section 

Study 2 

BMC Genomics 25(1):690 

Can Yuan, José Luis Gualdrón Duarte, Haruko Takeda, Michel Georges and Tom Druet 



 

 

 

  



Chapter 4  Experimental section – Study 2 

 

81 

4 Experimental section: Study 2 

4.1 Summary 

Heritability partitioning approaches estimate the contribution of different functional classes, 

such as coding or regulatory variants, to the genetic variance. This information allows a better 

understanding of the genetic architecture of complex traits, including complex diseases, but can also 

help improve the accuracy of genomic selection in livestock species. However, methods have mainly 

been tested on human genomic data, whereas livestock populations have specific characteristics, such 

as high levels of relatedness, small effective population size or long-range levels of linkage 

disequilibrium. Here, we used data from 14,762 cows, imputed at the whole-genome sequence level for 

11,537,240 variants, to simulate traits in a typical livestock population and evaluate the accuracy of two 

state-of-the-art heritability partitioning methods, GREML and a Bayesian mixture model. In simulations 

where a single functional class had increased contribution to heritability, we observed that the estimators 

were unbiased but had low precision. When causal variants were enriched in variants with low (<0.05) 

or high (> 0.20) minor allele frequency or low (below 1st quartile) or high (above 3rd quartile) linkage 

disequilibrium scores, it was necessary to partition the genetic variance into multiple classes defined on 

the basis of allele frequencies or LD scores to obtain unbiased results. When multiple functional classes 

had variable contributions to heritability, estimators showed higher levels of variation and confounding 

between certain categories was observed. In addition, estimators from small categories were particularly 

imprecise. However, the estimates and their ranking were still informative about the contribution of the 

classes. We also demonstrated that using methods that estimate the contribution of a single category at 

a time, a commonly used approach, results in an overestimation. Finally, we applied the methods to 

phenotypes for muscular development and height and estimated that, on average, variants in open 

chromatin regions had a higher contribution to the genetic variance (> 45%), while variants in coding 

regions had the strongest individual effects (> 25-fold enrichment on average). Conversely, variants in 

intergenic or intronic regions showed lower levels of enrichment (0.2 and 0.6-fold on average, 

respectively). Heritability partitioning approaches should be used cautiously in livestock populations, in 

particular for small categories. Two-component approaches that fit only one functional category at a 

time lead to biased estimators and should not be used.  
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4.2 Introduction 

In livestock species, the number of genotyped and whole-genome sequenced animals is steadily 

increasing. Combining these data with missing genotype imputation techniques allows genome-wide 

association studies and genomic selection to be performed at the sequence level in large cohorts. More 

recently, functional annotations of the genome are becoming available for several livestock species 

(Andersson et al., 2015; Clark et al., 2020). For example, transcriptome data (Fang et al., 2020; Liu et 

al., 2022), chromatin accessibility maps (Kern et al., 2021; Yuan et al., 2023) or histone mark 

distributions (Kern et al., 2021; S. Liu et al., 2020) are now available in cattle. In human genetics, such 

information has been used to study the genetic architecture of complex traits, including complex diseases 

(Finucane et al., 2015; Gusev et al., 2014). More precisely, the contribution of different functional 

categories of variants to the genetic variance of these different traits has been estimated. Such 

approaches are referred to as variance partitioning or heritability partitioning approaches. They have for 

example highlighted the importance of regulatory variants (Finucane et al., 2015; Gusev et al., 2014). 

Fewer studies have been realized in livestock species, as functional annotation maps remain limited 

compared to humans, and are more recent. Nevertheless, similar approaches have been used, for 

instance, in cattle (Koufariotis et al., 2014; Xiang et al., 2019a). In this context, the identification of 

functional categories contributing to complex traits is also important for prioritizing variants to be used 

in genomic selection and improving its accuracy.  

Most methods used for heritability partitioning have been developed and tested in the context 

of human genetics (Finucane et al., 2015; Patxot et al., 2021; Yang et al., 2015). Although livestock 

species have specific characteristics at the genomic level, methods have often been transferred without 

additional testing. As a result of their demographic history, including domestication, breed creation and 

intensive selection, livestock species are indeed different in terms of effective population size (Hayes et 

al., 2003; MacLeod et al., 2013), levels and extent of linkage disequilibrium (LD) (Gautier et al., 2007), 

relatedness between individuals and levels of inbreeding (Leroy, 2014). The higher selection intensity 

in livestock species often results in the fixation of large effect variants accompanied by large selective 

sweeps (Druet et al., 2013). Importantly, previous studies in humans have relied on samples of unrelated 

individuals, discarding all pairs of individuals with a relatedness level above 0.025 (Yang et al., 2015), 

whereas in a typical livestock dataset these and higher relationships are common. For instance, with the 

use of artificial insemination, many individuals may have a common sire or grand-sire. Similarly, the 

importance of accounting for LD scores when estimating variance components (Yang et al., 2015) has 

not been evaluated when high LD levels are present at long distances (Farnir et al., 2000). 

We herein used a genotyped population of 14,762 Belgian Blue Beef (BBB) cows to evaluate 

the accuracy of heritability partitioning approaches in a typical livestock population. Belgian Blue cattle 

have indeed been intensively selected for muscular development. This has resulted in the fixation of an 

11bp deletion in the myostatin gene (Grobet et al., 1997), accompanied by a large selective sweep (Druet 
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et al., 2013). Additional genetic variation for muscular development has been exploited to further 

improve this trait (Druet et al., 2014a). As in other livestock populations, the effective population size 

is small, around 100 (Druet et al., 2013), and individuals have high levels of recent inbreeding associated 

with long runs of homozygosity (Solé et al., 2017). The objective of the present study was to use these 

data to perform realistic simulations, with characteristics of a typical livestock population, in order to 

evaluate two state-of-the-art methods, a variance component approach (Yang et al., 2015) and a 

Bayesian mixture model (Patxot et al., 2021). The simulations included scenarios where causal variants 

were enriched in specific allele frequency, LD score or functional categories. An additional objective 

was to use these approaches to perform heritability partitioning based on functional annotation for 

muscular development and height traits in Belgian Blue beef cattle.  

 

4.3 Material and methods 

4.3.1 Data 

For the present study we used data from 14,762 Belgian Blue beef cows with imputed genotypes 

from 11,537,240 SNPs and small indels (Gualdrón Duarte et al., 2023). Cows were genotyped with 

either low-density (9983 to 20,502 SNPs) or medium-density (51,809 to 57,979 SNPs) arrays and 

genotype imputation to the sequence level was performed in successive steps. The reference panels 

included 13,600, 890 and 230 individuals at the medium-density (28,893 SNPs selected), high-density 

(572,667 SNPs selected) and sequence levels, respectively. Variants with low minor allele frequency 

(MAF) (< 0.01) or with lower imputation accuracy (r² < 0.90) were filtered out, resulting in the selection 

of 11,431,742 variants. More details on the imputation procedure and the data set can be found in 

Gualdron Duarte et al. (2023). We used phenotypes for muscularity traits (shoulder muscularity, top 

muscularity, buttock muscularity rear and side view) and height (with heritabilities of 0.30, 0.31, 0.42, 

0.39 and 0.38, respectively). The four muscularity traits are scores from 51 to 100, given on the farm by 

a technician based on a visual assessment (available for 14,476 individuals), while height was measured 

for 12,904 individuals. In addition, a synthetic score for muscular development was obtained as a linear 

combination of the four individual muscularity scores (with a weight of 1 for shoulder and top 

muscularity and 2 for buttock muscularity scores). These phenotypes were corrected for fixed effects 

from the evaluation model as described in Gualdron Duarte et al. (2023). 

 

4.3.2 Variant annotation 

For variant annotation, we selected categories similar to those defined by Gusev et al. (2014). 

Accordingly, six functional categories were defined to classify the 11,431,742 variants. First, we 

identified variants located in open chromatin regions (OCR). These regions were defined using an 

organism-wide catalog of 976,813 cis-acting regulatory elements for the bovine detected by the assay 

for transposase accessible chromatin using sequencing (ATAC-Seq) described in Yuan et al. (2023). 
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The catalogue was generated using data from 106 samples corresponding to 68 tissue types. We 

annotated as OCR variants those variants located in the 976,813 peaks, which represented 10% of the 

genome space. Variants outside the OCR were classified into five additional groups corresponding to 

coding sequence (CDS), untranslated regions (UTR) including both 3’ and 5’ UTR, regions upstream (-

1kb) or downstream (+1kb) of genes (UDR), intronic (IOR) and intergenic (IGR) regions. The number 

of variants per category is reported in Table1. This annotation was obtained from the General Transfer 

Format (GTF) file of the bovine genome assembly ARS-UCD1.2 downloaded from Ensembl (v105). 

This file directly provides coordinates of genes, transcripts, exons, CDS and UTR. IORs were defined 

as non-exonic regions in genes. Transcription start and termination sites (TSS and TTS) were obtained 

using Homer (Heinz et al., 2010) and all transcripts from the genes. Upstream and downstream regions 

were then defined as 1 kb upstream and downstream from TSS and TTS, respectively. IGR corresponded 

to the remaining unannotated regions. 

Annotation groups were also defined based on MAF and linkage disequilibrium (LD) scores 

(Yang et al., 2015). Three MAF groups were defined [0.01-0.05; 0.05-0.10; 0.10-0.50]. For each variant, 

LD scores were obtained using GCTA (Yang et al., 2011a) as the sum of LD r² scores between the 

variant and all variants within a 200 kb window (Yang et al., 2015). SNPs were then stratified into four 

LD score groups based on quartiles. These groups thus represent SNPs that have, for example, low or 

high LD levels with other SNPs in the region. SNPs in high LD groups capture the effect of more SNPs, 

and potentially causal variants, than SNPs in low LD groups. 

 

4.3.3 Heritability partitioning methods 

Two methods were applied to estimate the contribution of different annotation groups to the 

additive genetic variance. First, we used a genomic restricted maximum likelihood (GREML) approach 

to estimate the variance components with the following linear mixed model: 

 

𝒚 = 𝟏𝝁 + ∑ 𝒈𝑠
𝑆
𝑠=1 + 𝒆, 

 

where y is the vector of individual phenotypes, 𝟏𝝁 is the intercept term (i.e. the mean effect), gs is the 

vector of individual polygenic effects associated to annotation group s, S is the total number of fitted 

annotation groups, and e is the vector of individual random error terms. Each polygenic component is 

normally distributed, 𝒈𝑠 ~ 𝑵(𝟎, 𝑮𝑠𝜎𝑠
2) where Gs is the genomic relationship matrix (GRM) computed 

using the variants present in category s and 𝜎𝑠
2 is the variance of polygenic effects from the annotation 

group. The GRM were computed with GCTA using centered and scaled genotypes as described in Yang 

et al. (Yang et al., 2011a). The residual error terms are independent and normally distributed, 

𝒆 ~ 𝑵(𝟎, 𝑰𝜎𝑒
2) where I is the identity matrix and 𝜎𝑒

2 is the residual variance. The additive polygenic 

variance, 𝜎𝑔
2, is equal to the sum of the variances associated to each annotation groups: 
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𝜎𝑔
2 = ∑ 𝜎𝑠

2𝑆
𝑠=1 . 

 

The contribution of annotation group s to the genetic variance, called %SNP heritability, is estimated 

as: 

%ℎ𝑠
2 =

𝜎𝑠
2

𝜎𝑔
2. 

 

Variance components were estimated using GCTA and the Average-Information (AI) algorithm 

(default option). When the AI-REML did not converge, we used the EM-REML algorithm with a 

maximum of 500 iterations. We follow Gusev et al. (Gusev et al., 2014) to define the enrichment of 

heritability as the percentage of heritability in category s divided by the proportion of variants in the 

same category. 

 

The second approach is a Bayesian model designed for large-scale genomic data and called 

BayesRR-RC (Patxot et al., 2021). The model is an extension of BayesR (Erbe et al., 2012) and BayesRC 

(MacLeod et al., 2016). Variant effects are described as a mixture of null effects (spike probability at 

zero) and Gaussian distributions. The hyper-parameters vary for variants from different annotation 

groups. Accordingly, the variance explained by the markers and their mixture proportions are group-

specific. Phenotypes are modeled as: 

 

𝒚 = 𝟏𝝁 + ∑ 𝑿𝑠
𝑆
𝑠=1 𝜷𝑠 + 𝒆, 

 

where Xs is the matrix of centered and scaled genotypes for markers in category s and βs is the vector of 

marker effect for category s. These effects are distributed according to: 

 

𝛽𝑠𝑗
~𝜋0𝑠

𝛿0 + 𝜋1𝑠
𝑁(0, 𝜎1𝑠

2 ) + 𝜋2𝑠
𝑁(0, 𝜎2𝑠

2 ) + … + 𝜋𝐿𝑠
𝑁(0, 𝜎𝐿𝑠

2 ), 

 

where j is the marker index, δ0 is a discrete probability mass at 0, L is the number of Gaussian 

distributions in the mixture, {𝜋0𝑠
, 𝜋1𝑠

, 𝜋2𝑠
, … , 𝜋𝐿𝑠

} are the mixture proportions for annotation group s, 

{𝜎1𝑠

2 , 𝜎2𝑠

2 , … , 𝜎𝐿𝑠

2 } are the mixture variances for group s, proportional to 𝜎𝑠
2, the variance explained by the 

group which is directly estimated from the data. In our study, we set L to 3, with variances 𝜎𝑙𝑠

2 

respectively equal to 0.0001, 0.001 and 0.01 𝜎𝑠
2. This model was run using the GMRM software (Patxot 

et al., 2021) with a Gibbs sampling scheme for 5,000 iterations with a burn-in period of 2,000 iterations. 

This setting corresponds to the values used by the software developers in their original study (Patxot et 
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al., 2021), and Orliac et al. (2022) have shown that 2,000 iterations allow to obtain good approximations 

of the parameters. 

Different definitions of annotation groups can be applied in both approaches. In two-component 

(TC) models, two functional annotation groups are selected (e.g., OCR versus non-OCR), whereas in 

multiple-component (MC) models, multiple functional annotation groups are fitted simultaneously. 

Additional stratification levels can be added to these models (Yang et al., 2015). In the MAF-stratified 

(MS) and LD-stratified (LDS) models, groups are defined as a function of the MAF and LD score 

categories described above, respectively, whereas an LDMS model fits all combinations of functional, 

MAF and LD categories. In this case, the total number of fitted components is equal to the number of 

functional categories multiplied by the number of MAF groups and by the number of LD score groups. 

When a model is run without correcting for MAF or LD score categories, we use the abbreviation 

"noLDMS" to distinguish it from the other models.  

 

4.3.4 Simulation study 

Phenotype simulation. To obtain phenotypes with different architectures, we simulated them as: 

 

𝒚 = ∑ ∑ 𝒙𝑠𝑗
𝛽𝑠𝑗

𝑀𝑠
𝑗=1

𝑆
𝑠=1 + 𝒆. 

 

where y is the vector of individual simulated phenotypes, S is the number of different annotation groups, 

Ms is the number of causal variants (CVs) in annotation group s, xsj is a vector of centered individual 

allele dosages for the jth variant from the sth group, βsj is the effect of the corresponding variant and e is 

a vector of individual errors terms. By default, CV effect sizes were sampled from normal distributions 

with variance equal to [2pj(1-pj)]-1, where pj is the allele frequency of variant j. This is equivalent to 

assuming that each CV contributes equally to the genetic variance, as in Gusev et al. (2014) and Yang 

et al. (2015). This corresponds also to the default rule used by GCTA to construct the GRM. We assessed 

the robustness to this assumption later (see below). To simulate variable contributions of the annotation 

groups to the genetic variance, we selected the number of CVs, Ms, proportionally to the simulated 

contribution.  

In this model, the individual polygenic effects gi are equal to: 

 

𝒈 = ∑ ∑ 𝒙𝑠𝑗
𝛽𝑠𝑗

𝑀𝑠
𝑗=1

𝑆
𝑠=1 = ∑ 𝒈𝑠

𝑆
𝑠=1 , 

 

where g is the vector of individual polygenic effects and gs is the vector of individual polygenic effects 

associated to annotation group s. After simulating these polygenic terms, their variance was rescaled to 

obtain the simulated contribution to the genetic variance, also defined as %SNP heritability. Finally, the 

individual error terms were normally distributed with a variance adjusted to obtain the simulated 
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heritability. By default, M, the total number of CVs, was set equal to 10,000 and the heritability to 0.50. 

This simulation code is available at https://github.com/can11sichuan/Bov-hg/. 

Simulations scenarios with causal variants enriched in OCR. In unstratified scenarios, CVs were 

randomly sampled. In other scenarios, higher proportions of variants were sampled in certain annotation 

groups.  

We started with simulations in which OCR contributed to 50% of the heritability, without 

stratification according to MAF or LD scores. Accordingly, 5,000 CVs were selected within OCR and 

5,000 outside OCR. We then ran simulations in which CVs were enriched in specific MAF classes, LD-

score categories, or combinations of both (LDMS simulation scenarios). The enriched annotation groups 

were defined as low MAF (MAF ≤ 0.05), high MAF (MAF > 0.20), low LD (LD scores below the 1st 

quartile) and high LD (LD scores above the 3rd quartile). In these simulations, 3,000 OCR SNPs were 

sampled in the enriched annotation groups and 2,000 OCR SNPs were sampled outside of these groups, 

and the same sampling was applied outside of OCR. A total of six stratified scenarios were defined: 1) 

low MAF, 2) high MAF, 3) low LD, 4) high LD, 5) low MAF and low LD, and 6) low MAF and high 

LD.  

Finally, we tested the robustness of the approaches to the relationship between SNP effects and 

their MAF. In the default scenario described above, CVs have the same contribution to the genetic 

variance (i.e. rare variants have larger effects). In the alternative scenario corresponding to the first rules 

proposed by VanRaden (2008), the distribution of CV effects was independent of MAF (common 

variants would have a higher contribution to genetic variance).  

Due to the high computational demands of BayesRR-RC, we worked with a subset of the 

genome. To do this, we randomly sampled 200 positions in the genome and selected all variants within 

500 kb of the position (we sampled fragments rather than variants to preserve some LD structure). This 

resulted in a selection of 191 Mb and 965,428 variants (we have less than 200 Mb because some 

positions were less than 500 kb apart and their windows overlapped, while other positions were close to 

the chromosome ends). Both BayesRR-RC and GREML were applied to these simulations to ensure fair 

comparisons. 

In total, each simulation scenario was repeated 100 times. 

Simulation scenarios with variable contributions from different functional categories. We then 

used the six functional categories in our simulations. These categories were similar to those used in the 

study by Gusev et al. (2014). As in their study, we ran simulations where one of the functional categories 

contributed to 100% of the genetic variance, and then simulations without enrichment, where each 

category contributed proportionally to the number of variants present in the category. In addition, we 

simulated three more complex scenarios in which the different functional categories had variable 

contributions (Table 4.1). For these simulations, repeated 100 times per scenario, the heritability was set 

to 0.70 and we selected 2,000 CVs variants. In the scenarios where a single class contributed to 100% 

https://github.com/can11sichuan/Bov-hg/
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of the heritability, the number of CVs was reduced to 500, as the number of SNPs in certain categories 

was limited. 

 

4.3.5 Evaluation metrics 

For each scenario, we reported summary statistics (mean, median, standard deviation, quantiles, 

minimum, maximum), measures of precision and accuracy (Root Mean Square Error – RMSE, and bias) 

of the estimators. We also reported the number of simulations without convergence with the AI-REML 

and after 500 additional iterations of the EM-REML. 

 

4.3.6 Application to real data 

Finally, we applied the approach to the five muscular development traits and height measured 

on the ~15,000 genotyped Belgian Blue beef cows and imputed to the whole-genome sequence level. 

We used a MC model with the same partitioning of the genome as in the simulation, except that UTR 

was merged with CDS (as the variability of estimates in the small category was too high). For the 

GREML approach, GRMs were computed using the rules described above (Yang et al., 2011a) or the 

first rule proposed by VanRaden et al. (2008). In addition, we also estimated the %SNP heritability 

associated with the different annotation classes using a TC approach. 

 

4.4 Results 

4.4.1 Estimation of proportion of genetic variance associated with a single annotation 

class  

We first assessed whether the approaches could estimate the proportion of genetic variance 

associated with a specific category (also referred to as %SNP heritability) with TC models. For this 

purpose, we selected variants located in open chromatin regions (OCR) identified by ATAC-Seq (Yuan 

et al., 2023), which account for approximately 10% of the genome, and started with simulations in which 

these variants accounted for 50% of the genetic variance. The architecture was independent of both 

MAF and LD scores (i.e. CVs were randomly sampled within OCR and non-OCR). In Figure 4.1, we 

show the proportion of genetic variance estimated with GREML or with the BayesRR-RC model 

(without correction for LDMS (noLDMS), MAF-stratified (MS), LD-stratified (LDS) or LD- and MAF-

stratified (LDMS) approaches). Results for each scenario are provided in Additional File 1, including 

summary statistics, measures of precision and accuracy, and convergence information.We observed that 

the %SNP heritability associated with OCR was accurately estimated with the different GREML 

approaches (mean = 49.7% (noLDMS), 49.7% (MS), 49.7% (LDS) and 50.4% (LDMS)), although with 

relatively high imprecision of the estimators (RMSE = 5.4 (noLDMS), 5.7 (MS), 5.7 (LDS) and 5.6 

(LDMS)) (Additional file 1: Table S1). For example, the estimated %SNP heritability ranged from 35.9 

to 67.1% when running GREML without correction for LDMS (95% of the values were between 40.4 
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and 58.5%). BayesRR-RC also produced estimates close to the simulated values, but with slightly higher 

levels of variation than GREML with the noLDMS, MS and LDS approaches. In this first scenario, the 

bias was below 1% with both methods, except with BayesRR-RC for the LDMS approach. 

Next, we investigated whether the methods were robust to MAF- or LD-dependent architectures 

(MS and LDS simulations, respectively). To this end, we performed simulations in which CVs were 

enriched in specific MAF classes (e.g., MAF ≤ 0.05 or MAF > 0.20), LD-score categories (i.e., SNP 

with LD score in the lower or upper quartile), or in combinations of both features (LDMS simulation 

scenarios). Although the noLDMS-GREML approach provided unbiased estimates of OCR %SNP 

heritability in some scenarios, such as the low MAF (Figure 4.2A) and high MAF (Additional file 2: 

Figure S1A) scenario, high levels of bias were observed when CVs were enriched in certain LD classes 

(Figure 4.2B-C and Additional file 2: Figure S1B). LDS-GREML was biased in MS simulations and 

vice versa. Overall, only LDMS models were robust in most scenarios (Figure 4.2A-C; Additional File 

1: Tables S2-7; Additional file 2: Figure S1), in agreement with previous studies (Yang et al., 2017, 

2015). In this case, the estimators obtained with BayesRR-RC deviated more from the simulated values 

than the GREML approach. However, convergence was not systematically achieved with the GREML 

approach (with both the AI-REML algorithm and after 500 iterations of the EM-REML algorithm). This 

occurred mainly with the LDMS-GREML (Additional file 1: Tables S1-7), when a higher number of 

GRMs was fitted, and has also been reported in previous studies (Finucane et al., 2015; Speed et al., 

2017).  

 

 

Figure 4.1. Estimation of %SNP heritability when variants in open chromatin regions (OCR) accounted for 

50% of heritability.There was no additional MAF (MS) or LD stratification (LDS) in the simulations. The %SNP 

heritability was estimated with GREML and BayesRR-RC. The methods were applied without correction for MAF 

or LD score (noLDMS), and with MAF stratified (MS), LD stratified (LDMS) and both MAF and LD stratified 

(LDMS) approaches. 

 

In these first simulations, each CV had the same expected contribution to the genetic variance 

because its effect variance was proportional to the inverse of pj (1- pj) (where pj is the reference allele 
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frequency at SNP j). This architecture is consistent with the default rule used to construct the GRM in 

GCTA (i.e., the same architecture was used in the simulation and in the partitioning approach). We also 

investigated whether the accuracy of heritability partitioning would be different if different rules were 

used to simulate the CV effects and to construct the GRMs used in the partitioning approach. Therefore, 

we performed the partitioning using GRMs constructed with the first rules  proposed by VanRaden 

(VanRaden, 2008), assuming that the CV effect variance is independent of allele frequency. In addition, 

we used these second rules to simulate a new scenario in which common variants contribute more to the 

genetic variance. In the analyses, we observed a modest bias with the noLDMS and LDS approaches 

when the rules used to estimate the GRM did not match those used in the simulation (Additional file 2: 

Figure S2). Interestingly, this bias could be reduced by using the MS and LDMS approaches.  

 

 
 

Figure 4.2. Estimation of %SNP heritability when causal variants are enriched in specific MAF or LD score 

categories. Variants in open chromatin regions (OCR) accounted for 50% of heritability. Causal variants were 

enriched in A) low MAF variants (MAF < 0.05), B) Low LD variants (LD score in the 1st quartile), and C) low 

MAF and low LD variants. The %SNP heritability was estimated with GREML and BayesRR-RC. The methods 

were applied without correction for MAF or LD score (noLDMS), and with MAF stratified (MS), LD stratified 

(LDMS) and both MAF and LD stratified (LDMS) approaches.  

 

4.4.2 Estimation of proportions of the genetic variance associated with multiple 

annotation classes 

In the second part of the study, we simulated more complex scenarios in which six different 

annotation classes contributed to the total genetic variance to varying degrees. The selected categories 

were coding regions (CDS), 3’ and 5’ UTR (UTRs), regions upstream and downstream of genes (+/- 

1kb) called UDR, intronic regions (IOR), intergenic regions (IGR) and variants in OCR. For each 

simulation, we assessed whether the model was able to estimate %SNP heritability and heritability 

enrichment, defined as the ratio of the percentage of heritability contributed by the category to the 

percentage of SNPs in the category. To do this, we fitted the six categories simultaneously with a MC 
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model, without correcting for LDMS structure for computational reasons. We started with simulations 

where all the genetic variance was associated to a single class (Figure 4.3A-B; Additional file 1: Tables 

S8-12; Additional file 2: Figure S3). The GREML approach identified the class contributing to the 

genetic variation, but with relatively low precision and some bias (for instance, estimates ranged from 

0.943 to 0.997 for CDS and from 0.657 to 0.979 for OCR). The BayesRR-RC approach was more 

accurate, with exceptionally low levels of variation in estimates across simulations, except when OCR 

variants accounted for 100% of the genetic variation. In this case, other categories such as CDS or UDR 

captured some of the variation, suggesting some confounding between these categories.  

 

 

Figure 4.3. Estimation of %SNP heritability when causal variants are enriched in a single functional 

annotation class. Causal variants were located in A) coding sequences (CDS) and B) open chromatin regions 

(OCR). The %SNP heritability was estimated using GREML and BayesRR-RC with the following functional 

classes: CDS, 3’ and 5’ UTRs (UTR), upstream and downstream regions (UDR), intronic regions (IOR), intergenic 

regions (IGR) and OCR. 
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Figure 4.4. Estimation of heritability enrichment in simulations where SNPs from different functional 

classes had equal contribution.Heritability enrichment was estimated using GREML and BayesRR-RC with the 

following functional classes: coding sequence (CDS), 3’ and 5’ UTRs (UTR), upstream and downstream regions 

(UDR), intronic regions (IOR), intergenic regions (IGR) and open chromatin regions (OCR). 

 

We then ran simulations without heritability enrichment, with the proportion of CVs per 

category equal to their genomic proportions. For most classes, the correct levels of enrichment were 

estimated by both methods (Figure 4.4; Additional file 1: Table S13), but some classes showed either 

high levels of variation or even some bias. The level of variation was inversely related to the size of the 

class, with the highest levels for the estimation of %SNP heritability for variants in UTRs and CDS. 

Overall, the %SNP heritability associated with each class and the ranking between classes was well 

estimated. We then simulated more complex and realistic scenarios with variable contributions from the 

different functional categories (see Table 4.1). In these scenarios, CDS and OCR were always enriched 

in causal variants, whereas intergenic and intronic regions harbored proportionally fewer causal variants. 

In the first scenario, five categories contributed 10% or more of the heritability, whereas OCR and CDS 

accounted for 50% or more of the genetic variation in the second and the third scenario, respectively. 

Results for the three scenarios are shown in Figure 4.5A-C and Additional file 1: Tables S14-16. The 

standard deviations of the estimators were around 0.04, but higher values were observed for OCR (over 

0.08). The estimators showed some bias, with deviations generally around 0.01-0.04. The largest biases 

were observed for OCR and UDR, which were underestimated and overestimated respectively, 

confirming the confounding between these categories. In most cases, the estimators obtained with 

BayesRR-RC were less variable and associated with lower biases. The average RMSE, combining 

variation and bias, was equal to 0.063 and 0.053 for GREML and BayesRR-RC, respectively (Additional 

file 1: Table S17). The ranking of the different categories according to their contribution to genetic 

variance was not always correct, with the largest errors associated with UDR, whose contribution was 

systematically overestimated, and OCR. Nevertheless, the estimators provided information about which 

classes contributed most to genetic variation (for example, the relative importance of CDS or intergenic 
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variants was generally close to their simulated values). Comparisons of estimators from the same 

category across different scenarios (Figure 4.6) indicate that these estimators are informative despite 

their low precision. The coefficient of determination from the regression of estimated versus simulated 

values was 0.941 for CDS, 0.760 for intronic regions, 0.959 for intergenic regions and 0.804 for OCR 

with GREML, and 0.947 for CDS, 0.708 for intronic regions, 0.965 for intergenic regions and 0.855 for 

OCR with BayesRR-RC. Note that for these analyses, we did not include scenarios where classes 

contribute to 100% of the genetic variance, and results for UDR are not shown because its simulated 

values remained low in all scenarios. We repeated this analysis using estimated heritability enrichment 

levels (Additional file 2: Figure S4). 
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Figure 4.5. Estimation of %SNP heritability in complex simulation scenarios where SNPs from different 

functional classes had variable contributions. The contribution for each category is shown in Table 4.1. 

Heritability enrichment was estimated using GREML and BayesRR-RC with the following functional classes: 

coding sequence (CDS), 3’ and 5’ UTRs (UTR), upstream and downstream regions (UDR), intronic regions (IOR), 

intergenic regions (IGR) and open chromatin regions (OCR). 

 

 

Figure 4.6. Scatterplot of estimated versus true %SNP heritability across simulation scenarios where SNPs 

from different functional classes contribute to genetic variance. The comparison is made separately for each 

functional class. %SNP heritability was estimated using GREML and BayesRR-RC with the following functional 

classes: coding sequence (CDS), 3’ and 5’ UTRs (UTR), upstream and downstream regions (UDR), intronic 

regions (IOR), intergenic regions (IGR) and open chromatin regions (OCR). 
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Figure 4.7. Estimation of %SNP heritability of variants in open chromatin regions (OCR) using a two-

component strategy. Estimation was performed in complex simulation scenarios in which SNPs from multiple 

functional classes contribute to genetic variance (Panel A for the scenario without enrichment and Panels B-D for 

complex scenarios 1 to 3, respectively). Heritability enrichment was estimated using GREML and BayesRR-RC 

with the following two functional classes (OCR versus other categories). In addition, methods were run with 

unstratified (US), MAF stratified (MS), LD stratified (LDS) and both MAF and LD stratified (LDMS) approaches. 

 

We then evaluated the properties of the estimators obtained with models that estimate the 

contribution of only one functional category, using a model that fits a second category that includes all 

other functional classes (TC models). This approach is commonly used because it reduces computational 

requirements and thus allows MS, LDS or LDMS models to be applied. The approach was evaluated in 

the four scenarios where several categories contribute to the genetic variance, and not for UTR as the 

estimator was shown to be highly inaccurate due to the small size of the category. This strategy gave 

poor results as %SNP heritability was most often overestimated for all categories (OCR, UDR, CDS, 

and IOR), even when LDMS methods were used, while biases were lower for intergenic regions (Figure 

4.7A-D; Additional file 1: Table S18-21; Additional file 2: Figure S5-8). The estimators showed no bias 

mainly in simulations without enrichment or when the category had a null contribution in the simulation. 

Bias was greater for OCR than for intergenic regions. In the vast majority of cases, heritability 

partitioning with multiple annotation groups gave better results, for example in terms of RMSE 

(Additional file 1: Table S22). This can also be observed when comparing estimates for a single category 

across multiple scenarios (Additional file 2: Figure S9). This behavior could occur because the fitted 

class captured variance associated with other classes due to their similarity (for example, in terms of 

GRM). We measured the correlations between the off-diagonal elements from GRM of each category 

(Additional file 1: Table S23) and observed, for example, that the GRM from IGR variants was less 

correlated with other GRMs, consistent with the fact that less confounding was obtained for this 

category. Other GRMs were highly correlated with the exception of the UTR GRM, probably because 

it was the smallest category. However, the correlation between GRMs from OCR and UDR was not the 
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highest, even though they appeared to be the most confounded indicating that other parameters influence 

the confounding level. For example, relative distribution of effect sizes is probably important as we 

don’t observe confounding when enrichment levels are uniform across categories. 

 

4.4.3 Heritability partitioning for traits related to muscular development and height in 

cattle 

Finally, we applied the approach to the real phenotypes, as described in Material and methods. 

%SNP heritabilities from the different categories were relatively variable across traits. For instance, the 

contributions of intergenic or CDS-UTR variants estimated by BayesRR-RC were not consistent across 

traits, ranging from 10 to 30% of the genetic variation (Figure 4.8; Additional file 1: Table S24). 

Similarly, relatively large differences were observed between BayesRR-RC and GREML estimates (for 

instance, the estimated %SNP heritability associated with OCR was equal to 85.5 and 45.0% for height). 

Nevertheless, some trends were consistent across traits and methods. OCR contributed to more than 

30% of the genetic variance for all traits with BayesRR-RC (25% with GREML) and most often had the 

largest value of %SNP heritability (Figure 4.8). The contribution of UDR was generally low, while 

intergenic variants had a modest contribution despite accounting for more than 50% of SNPs and indels. 

As in other studies, we averaged the contributions across traits (Finucane et al., 2015; Gusev et al., 2014) 

(Table 2). For CDS-UTR, OCR, IGR and IOR, the average estimated contributions were similar with 

GREML and BayesRR-RC: over 45% for OCR, around 16-19% for CDS-UTR, 17% for IOR and 10-

13% for IGR. UDR had a small contribution with both approaches, but almost zero with GREML 

(indicating possible problems in estimating the contribution of UDR with GREML). Except for CDS-

UTR, the relative ranking of the different functional categories was consistent with both methods. In 

terms of heritability enrichment, some trends were also consistent (Figure 4.8; Table 2; Additional file 

1: Table S25). CDS-UTR had the largest enrichment (around 25 to 30-fold), followed by OCR (around 

5-fold on average), whereas intronic and intergenic variants had values below 1 (0.6-fold and 0.2-fold, 

respectively). Partitioning with a GREML using GRMs computed with the first rules proposed by 

VanRaden (VanRaden, 2008) was relatively similar to the first GREML results (Table 2; Additional file 

1: Tables S24-25). The estimated contributions to heritability of CDS-UTR were on average smaller, 

while those of the OCR were even larger. When we repeated the heritability partitioning with TC 

approaches without LDMS stratification, we obtained higher contributions for all functional categories 

(Table 4.2; Additional file 1: Tables S24-25). For example, when using GREML, the following increases 

were observed: +14% for CDS-UTR, +45% for IOR, +29% for UDR, +5% for IGR and +28% for OCR. 

These values are 1.5 times higher or more for all categories. The sum of the contributions estimated with 

TC approaches corresponded to more than 200% of the total genetic variance (Table 4.2). Similar results 

were obtained using a TC-GREML with LDMS stratification but convergence was not systematically 

achieved with the GREML approach. 
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Figure 4.8. Estimation of %SNP heritability and heritability enrichment in real data sets. Estimates were 

obtained using GREML and BayesRR-RC with the following functional classes: coding sequence (CDS), 3’ and 

5’ UTRs (UTR), upstream and downstream regions (UDR), intronic regions (IOR), intergenic regions (IGR) and 

open chromatin regions (OCR). Solid bars show %SNP heritability estimated when fitting simultaneously all the 

functional classes, while parameters estimated using a two-component approach, which only fits one functional 

category at a time, are shown with open bars. 

 



 

 

Table 4.1. Description of the number of variants in each functional category and their contribution to SNP heritability in the three more complex 

scenarios. The annotations are coding sequence (CDS), intronic regions (IOR), 5’ and 3’ untranslated regions (UTR), up- and down-stream regions (UDR), 

intergenic regions (IGR) and open chromatin regions (OCR). 
 

Annotation 
Full genome Subset of the genome %SNP heritability 

Number of variants Proportion of variants Number of variants Proportion of variants Scenario I Scenario II Scenario III 

CDS 63,663 0.56% 4,161 0.43% 25 15 50 

IOR 3,445,739 30.14% 278,021 28.80% 14 10 20 

UTR 5,837 0.05% 412 0.04% 1 0.5 0 

UDR 604,425 5.29% 40,423 4.19% 10 4.5 10 

IGR 6,099,183 53.35% 547,980 56.76% 15 10 0 

OCR 1,212,895 10.61% 94,429 9.78% 35 60 20 

 

 

Table 4.2. Average %SNP heritability and heritability enrichment estimated for five functional groups and for six traits measured in Belgian Blue beef 

cattle.  Values were estimated by fitting all components simultaneously with multiple classes (MC) or each component in turn with two component (TC) models 

and without correction for LDMS, and using BayesRR-RC or GREML (values in the parentheses correspond to the GREML partitioning when the GRMs were 

computed using the first rules from VanRaden (2008)). 

 

Annotation 
%SNP heritability (MC) Heritability enrichment (MC) %SNP heritability (TC) Heritability enrichment (TC) 

GREML BayesRR-RC GREML BayesRR-RC GREML BayesRR-RC GREML BayesRR-RC 

CDS-UTR 18.8 (14.0) 16.1 30.9 (23.0) 26.4 33.0 33.8 54.3 55.6 

IOR 16.9 (16.0) 17.4 0.6 (0.5) 0.6 62.2 58.8 2.1 1.9 

UDR 0.0 (1.2) 8.5 0.0 (0.2) 1.6 28.7 28.1 5.4 5.3 

IGR 10.4 (9.0) 12.7 0.2 (0.2) 0.2 15.5 18.4 0.3 0.3 

OCR 53.9 (59.8) 45.3 5.1 (5.6) 4.3 82.1 70.9 7.7 6.7 

Total 100.0 100.0   221.5 210.0   
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4.5 Discussion 

4.5.1 Limitations of heritability partitioning approaches in livestock species 

We herein evaluated the accuracy of GREML and BayesRR-RC in partitioning heritability 

according to functional classes, defined mainly on the basis of their position relative to genes and 

transcripts. Importantly, we evaluated the methods in a typical livestock population with reduced 

effective population size, high levels of relatedness and inbreeding, under intensive selection, and with 

high levels of long-range LD. The GREML approach has already been used in such livestock 

populations, for example in cattle (Bhuiyan et al., 2018; Edwards et al., 2015; Koufariotis et al., 2014; 

Lingzhao et al., 2017; Xiang et al., 2019a). Most often, this partitioning method was applied without an 

evaluation of its bias and accuracy in such context. However, differences in population structure and 

their impact on genome structure (e.g. LD patterns) could affect the precision and accuracy of the 

methods. For example, in humans, the methods have been evaluated by carefully filtering out pairs of 

individuals with levels of relatedness greater than 0.025 (Yang et al., 2015). In livestock, a large fraction 

of pairs of individuals would have levels above such a threshold. Recently, Cai et al. (2022) conducted 

a study to evaluate different GREML approaches for estimating heritability enrichment in a cattle 

population. They used data from 2,000 Holstein bulls imputed for about 700,000 markers, and mainly 

evaluated the accuracy of the estimators for three different MAF categories. Although some models 

gave unbiased results, biased estimators were observed when parameters from the simulated and fitted 

models did not match (Cai et al., 2022). In particular, they found that estimated enrichment values were 

biased when CVs were enriched in rare alleles and that using LD scores calculated in too large windows 

resulted in biased estimates. We herein performed a simulation approach based on a large cohort of 

individuals. Importantly, our data were imputed at the whole-genome sequence level, providing a finer 

resolution for annotation. Compared to the study by Cai et al. (2022), we included more functional 

annotation groups, including information from a recently published ATAC-Seq peak catalogue (Yuan 

et al., 2023), and we explored more scenarios (CVs could be enriched as a function of MAF, LD score 

and functional annotation). Using this approach, we first observed that in relatively simple scenarios (no 

stratification by MAF or LD, with CVs enriched for a single functional category), the methods were 

unbiased, but that the estimates showed high levels of variation. Note that when simulations were 

performed using the whole genome, even higher levels of variation were observed with the GREML 

approach (data not shown). When CVs were enriched in a particular MAF or LD score category, it was 

necessary to stratify the GREML or BayesRR-RC accordingly to obtain unbiased results (i.e., using a 

LDMS approach), consistent with findings in humans (Yang et al., 2015). When GRMs were not defined 

for different MAF or LD groups, biased partitioning was indeed obtained. Importantly, the LD or MS 

groups fitted in the partitioning methods should match those that are truly enriched in CVs, an 

information that is rarely known. Other elements could further bias the results, such as the relationship 

between the MAF or LD scores of CVs and the magnitude of their effects, as previously highlighted by 
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Speed et al. (2017) or Cai et al. (2022). For example, the fitted GRMs could assume equal SNP 

contribution to the genetic variance (rare alleles having then larger effects) or comparable effect sizes 

for all SNPs regardless of MAF (common SNPs having higher contribution to the genetic variance), 

whereas the true relationship between CVs and MAF could be different. Simulation results indicated 

that such different between simulated and fitted architecture can sometimes be compensated by the use 

of an LDMS approach. Next, we ran simulations in which multiple functional categories contributed to 

the phenotypic variation with different levels of enrichment. The estimators still showed high levels of 

variation, especially for the classes with few variants, but we also observed systematic biases due to 

confounding between some functional categories, the strongest between OCR and UDR. Estimators 

were better for variants in IGR, as their GRM was less similar to the GRM of other categories. This is 

important because it implies that confounding is higher for functional categories that are expected to 

contribute most to the genetic variance, and thus their estimates are less precise. We also tested a strategy 

estimating the %SNP heritability of each category individually (running one TC-GREML per category) 

and observed very strong biases, probably due to confounding. The estimated %SNP heritabilities were 

greatly overestimated for most categories. Although this two-component strategy reduces computational 

costs and allows fitting a LDMS model, it is therefore not recommended. This is an important 

observation as this is a common strategy (Cai et al., 2022; de las Heras-Saldana et al., 2020; Edwards et 

al., 2015; Koufariotis et al., 2014; Lingzhao et al., 2017; Xiang et al., 2023, 2019a).  

The high levels of variation in heritability enrichment estimates could also be due to the 

similarity between GRMs from different functional or LDMS categories, or due to LD between 

neighboring SNPs from different categories. This problem is likely to be more severe in livestock species 

because the additive genetic relationships rxy between pairs of individuals x and y are spread over a wider 

range, including unrelated individuals (rxy = 0), half-sibs (rxy = 0.25), full-sibs (rxy = 0.5), parent-

offspring (rxy = 0.5) and even monozygotic twin (rxy = 1) pairs. The high levels of relatedness will drive 

the correlations between elements from the different GRMs and may mask more subtle correlations due 

to short-range LD between SNPs. It has been shown that the properties of heritability estimators are 

different when individuals are unrelated and LD is high only at short distances (Campos et al., 2015). 

When GRMs from different fitted categories are more distant, the problem of bias due to confounding 

between categories is likely to be less. This would be the case, for example, in studies evaluating the 

contribution from each autosome separately (Bhuiyan et al., 2018; Robinson et al., 2013; Yang et al., 

2011b), or from specific chromosomes of interest such as the sex chromosomes (Kadri et al., 2022). For 

example, GRM from sex chromosomes are based on different segregation rules and are less correlated 

with GRMs obtained from autosomes (Druet and Legarra, 2020; Yang et al., 2011b). Similarly, 

relationship matrices could be estimated for mitochondria or chloroplasts in plants to assess their 

contribution to the genetic variance.  
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4.5.2 Comparison of evaluated methods. 

Our evaluation focused on two methods, GREML and BayesRR-RC. For GREML, we estimated 

the GRM using the rules from Yang et al. (2011a). Different GRM construction rules can lead to 

different estimators. For example, the GRM may be based on different relationships between the 

variance of marker effects and their MAF (by defining a parameter called “α”), LD score, or their 

genotyping accuracy (Speed et al., 2017, 2012). The accuracy of GREML with different values of α has 

previously been evaluated in a livestock population by Cai et al. (2022). In preliminary tests, we obtained 

less accurate estimates with the LDAK-Thin model recommended for non-human organisms (Speed et 

al., 2012), and therefore selected original rules from Yang et al. (2011a), assuming that each marker has 

an equal expected contribution to heritability (i.e., independent of MAF), to construct our GRM. 

Nevertheless, in additional simulations, we observed that a mismatch between the function used to 

compute the GRM and the simulated relationship between CV effects and their MAF or LD scores could 

bias the results, more so when the relationship with LD scores was suboptimal and with GREML (data 

not shown). Unfortunately, the relationships remain unknown and, based on our results, the use of 

BayesRR-RC and LDMS models is recommended in such situations. The LD regression score (LDRS) 

is another method that allows heritability partitioning (Finucane et al., 2015). It is computationally 

efficient because it relies on summary statistics. Nevertheless, heritability estimates from LDRS have 

higher standard errors than those from GREML (Bulik-Sullivan, 2015; Speed et al., 2017), and the 

approach has not been shown to be more efficient than GREML or BayesRR-RC in several studies 

(Patxot et al., 2021; Speed and Balding, 2019). The properties of LDRS need to be evaluated in livestock 

populations, where the extent of LD is very different from humans and where markers may be in linkage 

equilibrium with CVs due to the presence of high levels of relatedness. For instance, Xiang et al. (2023) 

obtained poor results with LDRS in dairy cattle. In addition, obtaining summary statistics in livestock 

populations is more computationally demanding because LMM must be used for GWAS to correct for 

stratification and polygenic background. Due to these high computational requirements and based on 

previous comparison results, we did not evaluate LDRS in our study.  Compared to BayesRR-RC, 

GREML produced more accurate results in the first set of simulations where OCR variants accounted 

for 50% of the heritability. In similar cases, LDMS models are recommended to obtain unbiased results. 

However, with many different fitted components, 500 iterations of the EM algorithm were sometimes 

insufficient to achieve convergence. These problems could be reduced by fitting a two-component 

model, but this produced biased results (see above). When we fitted models with multiple functional 

categories, BayesRR-RC outperformed the GREML approach. However, Bayes-RR-RC has higher 

computational costs and the number of iterations that can be run is relatively small. Convergence 

diagnostic plots and comparisons with longer chains suggest that this number of iterations already 

provides good estimates for most parameters although these had high levels of variation (see Additional 

file 2: Figures S10 and S11). This is consistent with the results of Orliac et al. (2022) who concluded 

that less than 5,000 iterations are required to estimate variance components and for genomic predictions. 



Chapter 4  Experimental section – Study 2 

 

102 

In the most complex scenarios, the estimator for some parameters was not fully stabilized after 5,000 

iterations (Additional file 2: Figure S11). This suggests that more iterations may be required for livestock 

species due to the higher LD and relatedness levels. Nevertheless, comparisons of the results obtained 

with 5,000 versus 50,000 iterations for 25 simulations from 2 scenarios show that the distributions of 

the estimated parameters are very similar. Overall, we observed that, with a total of 5,000 iterations, 

Bayes-RR-RC performed better than GREML, but we cannot exclude that longer chains could further 

improve the results.   

 

4.5.3 Heritability partitioning for muscularity and height in Belgian Blue beef cattle 

Despite the high standard errors in the simulations, the estimated heritability enrichments and 

their ranking remain informative, especially when averaged over multiple traits, as done in other studies 

(Finucane et al., 2015; Gusev et al., 2014). With both GREML and BayesRR-RC, variants present in 

OCR had by far the largest contribution to heritability (> 45%). Regulatory regions have also been 

shown to have the largest contribution to genetic variance for complex traits in humans (Gusev et al., 

2014) and to be important in cattle (Koufariotis et al., 2014; Xiang et al., 2019a). Recently, Xiang et al. 

(2023) evaluated that regulatory variants explained up to 70% of the genetic variance in cattle. In terms 

of heritability enrichment, coding variants had the highest average per-variant contribution to the 

heritability (> 25-fold on average), variants in the OCR also showed substantial enrichment (~5-fold), 

whereas intronic and intergenic variants had enrichment values below 1 (0.6 and 0.2-fold, respectively). 

This ranking is in line with expectations and is consistent with results obtained in several studies of 

complex traits in humans (Finucane et al., 2015; Gusev et al., 2014). The observation of large effects 

associated with coding variants is in agreement with the findings of Gualdron Duarte et al. (2023), who 

identified several such variants associated with the same traits and accounting for a large proportion of 

the genetic variance. Heritability partitioning could be refined by using more specific functional classes 

such as coding variants or eQTLs, but care must be taken as we have shown the limitations of 

partitioning approaches when too small or too many categories were fitted. Similarly, heritability 

enrichment could be applied to other types of categories such as conservation scores, differentiation 

scores, evidence of selection, or age of alleles.  

 

4.6 Conclusions 

Here we have shown that heritability partitioning approaches should be used cautiously in 

livestock populations and that accuracy assessment is strongly recommended. Estimators were 

particularly imprecise for small categories, so models with too many and small functional categories 

should not be used. In addition, two-component approaches that fit only one functional category at a 

time produced biased estimates and should not be used. Nevertheless, the estimates and their ranking 

were still informative about the contribution of the functional classes we fitted. We therefore applied 
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the methods to real phenotypes for muscular development and height. We estimated that, on average, 

variants in open chromatin regions had a higher contribution to the genetic variance, while variants in 

coding regions had the strongest individual effects. Conversely, variants in intergenic or intronic regions 

showed lower levels of enrichment. The results are consistent with those obtained in humans. 
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4.9 Supplementary figures 

 

 

Figure S1. Estimation of %SNP heritability when causal variants are enriched in specific MAF or LD score 

categories. Variants in open chromatin regions (OCR) accounted for 50% of heritability. Causal variants were 

enriched in A) common variants (MAF > 0.20), B) high LD variants (LD score above the 3rd quartile), and C) low 

MAF (MAF <0.05) and high LD (LD score above the 3rd quartile) variants. The %SNP heritability was estimated 

with GREML for simulations using the whole genome (GREML – FULL) and with GREML and BayesRR-RC 

for simulations using a subset of the genome. The methods were applied without correction for MAF or LD score 

(noLDMS), and with MAF stratified (MS), LD stratified (LDS) and both MAF and LD stratified (LDMS) 

approaches. 

 

 

 

Figure S2. Estimation of %SNP heritability using different GRM computation methods and for the two 

scenarios where SNP effect size is a function of allele frequency. Simulation rule 1: SNP effects increase as 

allele frequencies decrease (corresponding to the default rule). Simulation rule 2: SNP effects are drawn from the 

same distribution regardless of allele frequency (corresponding to the rules proposed by VanRaden [29]). 

Partitioning GRM rule 1: GRMs used in the heritability partitioning are computed using the default rules from 

GCTA. Partitioning GRM rule 2: GRMs used in heritability partitioning are computed using the VanRaden rules 

from.  
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Figure S3. Estimation of %SNP heritability when causal variants are enriched in a single functional 

annotation class. Causal variants were located in A) upstream and downstream regions (UDR), B) intergenic 

regions (IGR), and C) intronic regions (IOR). The %SNP heritability was estimated using GREML and BayesRR-

RC with the following functional classes: coding sequence (CDS), 3’ and 5’ UTRs (UTR), UDR, IOR, IGR and 

open chromatin regions (OCR). 
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Figure S4. Scatterplot of estimated versus true heritability enrichment across simulation scenarios where 

SNPs from different functional classes contribute to genetic variance. The comparison is made separately for 

each functional class. Heritability enrichment was estimated using GREML and BayesRR-RC with the following 

functional classes: coding sequence (CDS), 3’ and 5’ UTRs (UTR), upstream and downstream regions (UDR), 

intronic regions (IOR), intergenic regions (IGR) and open chromatin regions (OCR). 

  



Chapter 4  Experimental section – Study 2 

 

107 

 

 

Figure S5. Estimation of %SNP heritability of variants in intergenic regions (IGR) using a two-component 

strategy. Estimation was performed in complex simulation scenarios in which SNPs from multiple functional 

classes contribute to genetic variance (Panel A for the scenario without enrichment and Panels B-D for complex 

scenarios 1 to 3, respectively). Heritability enrichment was estimated using GREML and BayesRR-RC with the 

following two functional classes (IGR versus other categories). In addition, methods were run with unstratified 

(US), MAF stratified (MS), LD stratified (LDS) and both MAF and LD stratified (LDMS) approaches. 

 

 

 

Figure S6. Estimation of %SNP heritability of variants in coding sequence (CDS) using a two-component 

strategy. Estimation was performed in complex simulation scenarios in which SNPs from multiple functional 

classes contribute to genetic variance (Panel A for the scenario without enrichment and Panels B-D for complex 

scenarios 1 to 3, respectively). Heritability enrichment was estimated using GREML and BayesRR-RC with the 

following two functional classes (CDS versus other categories). In addition, methods were run without correction 

for MAF or LD score (noLDMS), and with MAF stratified (MS), LD stratified (LDS) and both MAF and LD 

stratified (LDMS) approaches. 
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Figure S7. Estimation of %SNP heritability of variants in intronic regions (IOR) using a two-component 

strategy. Estimation was performed in complex simulation scenarios in which SNPs from multiple functional 

classes contribute to genetic variance (Panel A for the scenario without enrichment and Panels B-D for complex 

scenarios 1 to 3, respectively). Heritability enrichment was estimated using GREML and BayesRR-RC with the 

following two functional classes (IOR versus other categories). In addition, methods were run without correction 

for MAF or LD score (noLDMS), and with MAF stratified (MS), LD stratified (LDS) and both MAF and LD 

stratified (LDMS) approaches. 

 

 

 

Figure S8. Estimation of %SNP heritability of variants in upstream and downstream regions (UDR) using 

a two-component strategy. Estimation was performed in complex simulation scenarios in which SNPs from 

multiple functional classes contribute to genetic variance (Panel A for the scenario without enrichment and Panels 

B-D for complex scenarios 1 to 3, respectively). Heritability enrichment was estimated using GREML and 

BayesRR-RC with the following two functional classes (UDR versus other categories). In addition, methods were 

run without correction for MAF or LD score (noLDMS), and with MAF stratified (MS), LD stratified (LDS) and 

both MAF and LD stratified (LDMS) approaches. 
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Figure S9. Scatterplot of estimated versus true %SNP heritability when using a two-component strategy. 

Estimates were compared across simulation scenarios where SNPs from different functional classes 

contribute to genetic variance. The contribution for each category is shown in Table 4.1. The comparison is 

made separately for each functional class. %SNP heritability was estimated using GREML and BayesRR-RC with 

the following two functional classes (one versus other categories) and a MAF and LD stratified (LDMS) approach. 

Fitted functional categories were coding sequence (CDS), 3’ and 5’ UTRs (UTR), upstream and downstream 

regions (UDR), intronic regions (IOR), intergenic regions (IGR) and open chromatin regions (OCR). 
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Figure S10. Comparison of BayesRR-RC results obtained with 5,000 versus 50,000 iterations in a simple 

scenario. The model was run on data from a simple scenario where OCR contributed to 50% of the genetic 

variance. The 5,000 iterations correspond to the values used in the present study (burn-in from iterations 1-2,000), 

while 50,000 iterations correspond to a longer run (burn-in from iterations 1-5,000). A) Estimated %SNP 

heritability per iteration. Iterations used for parameter estimation in the standard run are delimited by the two blue 

dashed lines located at iterations 2,001 and 5,000. B) Distribution of %SNP heritability estimates in iterations 

2,001-5,000 (standard run) and 5,001-50,000 (long run). C) %SNP heritability estimates for 25 simulations 

estimated using BayesRR-RC with 5,000 versus 50,000 iterations. 
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Figure S11. Comparison of BayesRR-RC results obtained with 5,000 versus 50,000 iterations in the first 

complex scenario. The 5,000 iterations correspond to the values used in the present study (burn-in from iterations 

1-2,000), while 50,000 iterations correspond to a longer run (burn-in from iterations 1-5,000). A) Estimated %SNP 

heritability per iteration for the six components. Iterations used for parameter estimation in the standard run are 

delimited by the two blue dashed lines located at iterations 2,001 and 5,000. B) %SNP heritability estimates for 

the six components estimated using BayesRR-RC with 5,000 versus 50,000 iterations in 25 simulations.
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5 Experimental section: Study 3 

5.1 Summary 

The availability of large cohorts of whole-genome sequenced individuals, combined with 

functional annotation, is expected to provide opportunities to improve the accuracy of genomic selection 

(GS). However, such benefits have not often been observed in initial applications. The reference 

population for GS in Belgian Blue Cattle (BBC) continues to grow. Combined with the availability of 

reference panels of sequenced individuals, it provides an opportunity to evaluate GS models using whole 

genome sequence (WGS) data and functional annotation. Here, we used data from 16,508 cows, with 

phenotypes for five muscular development traits and imputed at the WGS level, in combination with in 

silico functional annotation and catalogs of putative regulatory variants obtained from experimental 

data. We evaluated first GS models using the entire WGS data, with or without functional annotation. 

At this marker density, we were able to run two approaches, assuming either a highly polygenic 

architecture (GBLUP) or allowing some variants to have larger effects (BayesRR-RC, a Bayesian 

mixture model), and observed an increased reliability compared to the official GBLUP model at medium 

marker density (on average 0.016 and 0.018 for GBLUP and BayesRR-RC, respectively). When 

functional annotation was used, we observed slightly higher reliabilities with an extension of the 

GBLUP that included multiple polygenic terms (one per functional group), while reliabilities decreased 

with BayesRR-RC. We then used large subsets of variants selected based on functional information or 

with a linkage disequilibrium (LD) pruning approach, which allowed us to evaluate two additional 

approaches, BayesCπ and Bayesian Sparse Linear Mixed Model (BSLMM). Reliabilities were higher 

for these panels than for the WGS data, with the highest accuracies obtained when markers were selected 

based on functional information. In our setting, BSLMM systematically achieved higher reliabilities 

than other methods. GS with large panels of functional variants selected from WGS data allowed a 

significant increase in reliability compared to the official genomic evaluation approach. However, the 

benefits of using WGS and functional data remained modest, indicating that there is still room for 

improvement, for example by further refining the functional annotation in the BBC breed. 

  



Chapter 5  Experimental section – Study 3 

 

116 

5.2 Introduction 

 The implementation of genomic selection (Meuwissen et al., 2001) in livestock species has been 

made possible by the development of high-throughput genotyping technologies. Indeed, the availability 

of low-cost genotyping arrays has led to the rapid adoption of genomic selection in many livestock 

species and breeds (Meuwissen et al., 2016). However, the availability of whole genome sequence 

(WGS) should make it possible to further improve the accuracy of genomic selection, as causative 

variants would be included in the model. Furthermore, with sequence-based genomic selection, the 

accuracy of predictions would remain high over multiple generations, as the linkage disequilibrium (LD) 

between markers and causative variants would not decay over generations. With the ability to sequence 

large reference panels of individuals (Daetwyler et al., 2014; Ros-Freixedes et al., 2022) and the 

availability of efficient genotype phasing and imputation tools (Browning et al., 2018; Das et al., 2016; 

Delaneau et al., 2019; Rubinacci et al., 2020), it is becoming increasingly common to have imputed 

WGS data for large cohorts of individuals. However, in early studies based on either simulated or real 

data, the use of imputed WGS data resulted in no or small improvements in prediction accuracy when 

the prediction methods were not changed (Druet et al., 2014b; Frischknecht et al., 2018; Pérez-Enciso 

et al., 2015; van Binsbergen et al., 2015; Veerkamp et al., 2016), whereas predictions using only the 

causative variants provided a significant improvement (Pérez-Enciso et al., 2015), especially when they 

were rare (Druet et al., 2014b). 

To fully exploit the potential of whole genome sequence information, other strategies are 

needed. Two main directions have been proposed in the literature: 1) using additional information to 

classify variants into different functional categories having different effect sizes; 2) selecting a subset 

of markers that are more likely to be causative from the whole-genome sequence data, either to reduce 

model dimensionality or to add the markers to custom genotyping arrays. Two main groups of methods 

developed to apply the first strategy are commonly used. The first group includes extensions of the 

genomic best linear unbiased prediction (GBLUP) that fit multiple polygenic terms with their own 

genomic relationship matrix (GRM), such as the genomic feature BLUP (GFBLUP) (Edwards et al., 

2016; Sørensen et al., 2014). With the GFBLUP, annotation groups are fitted one by one (next to a 

polygenic term that fits the rest of the genome), but models that fit more than two annotation groups are 

possible, as in the MultiBLUP model (Speed and Balding, 2014). The second group includes extensions 

of the BayesR model (Erbe et al., 2012), a Bayesian mixture of Gaussian distributions associated with 

different SNP effect sizes, including BayesRC (MacLeod et al., 2016), BayesRCO (Mollandin et al., 

2022) and BayesRR-RC (Patxot et al., 2021) models. With both approaches, genetic variants are 

classified into different annotation groups, which may have group-specific parameters such as effect 

variances or mixture parameters. The GFBLUP approach has been used to perform heritability 

partitioning and genomic prediction using different features, such as genome-wide association studies 

(GWAS) results, expression QTLs (eQTL) (Ehsani et al., 2016) and Gene Ontology categories 
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(Lingzhao et al., 2017). GFBLUP was found to be more accurate than GBLUP in several studies, 

although not systematically. McLeod et al. (2016) used BayesRC using annotation categories related to 

coding and putative regulatory variants, specific to lactation genes or not, and achieved slightly higher 

accuracies compared to a traditional BayesR model. A method similar to BayesRC has also been shown 

to be efficient for predicting complex traits in humans (Orliac et al., 2022; Patxot et al., 2021). However, 

these annotation-aware approaches have rarely been applied to complete whole-genome sequence data 

in livestock species (especially the Bayesian approach), and strategies based on marker pre-selection are 

often implemented. After this marker selection step, genomic predictions can be applied with or without 

grouping variables according to relevant features. It is common to select markers based on GWAS 

results (Brøndum et al., 2015; Frischknecht et al., 2018; A. Liu et al., 2020a; Ros-Freixedes et al., 2022; 

VanRaden et al., 2017; Veerkamp et al., 2016), but other criteria have also been used such as coding 

variants (Frischknecht et al., 2018; A. Liu et al., 2020a), eQTL (de las Heras-Saldana et al., 2020), 

putative regulatory regions (A. Liu et al., 2020a) or more general genomic annotations based on position 

relative to genes (VanRaden et al., 2017). Xiang et al. (2019a) used probably the most complete set of 

criteria in cattle, including functional and evolutionary information, and proposed a global score for 

each marker. Finally, although most of the time genotypes from selected markers are imputed, there are 

sometimes included on custom genotyping arrays (Khansefid et al., 2020; A. Liu et al., 2020a). 

The main objective of the present study was to evaluate strategies to improve the accuracy of 

genomic selection in Belgian Blue cattle (BBC) using imputed whole genome sequence data and 

functional annotation. This breed is mainly selected for muscular development traits, with the fixation 

of an 11-bp deletion in the myostatin (MSTN) gene associated with double muscling. Recent studies 

have improved our knowledge of the genetic architecture of these traits. First, selective sweeps revealed 

that large effect variants have been fixed by selection (Druet et al., 2014a, 2013), but only two of the 

identified hard sweeps were associated with complex traits, and only one was breed-specific and related 

to muscularity (the MSTN mutation). This is consistent with the review by Kemper and Goddard (2012), 

who stated that most loci associated with complex traits in cattle have small effects, but that variants 

with larger effects can occasionally segregate in the population. Next, a recent sequence-based GWAS 

study (Gualdrón Duarte et al., 2023) showed that the significant associations are enriched for common 

coding variants with large effects. However, these correspond to a relatively small number of variants 

(< 15), those with the largest effects, and contribute only to a small proportion of the genetic variance. 

In line with this, Yuan et al (2024) estimated that putative regulatory variants have the highest 

contribution to heritability and that coding variants have the highest enrichment levels (i.e. have the 

largest effects on average). The high contribution of regulatory variants is consistent with the findings 

of Xiang et al. (2023), who recently estimated that gene expression and RNA splicing explain large 

proportions of the heritability for complex traits. Therefore, we will place more emphasis on coding and 

regulatory variants in the strategies evaluated. A particular focus will be on putative regulatory elements 

detected in muscle, as the breed is primarily selected for muscular development. 
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5.3 Material and methods 

5.3.1 Data 

Our study used a cohort of 18,324 BBC genotyped cows that we imputed at the sequence level. 

The genotyping data and methodology are very similar to those described in Gualdrón Duarte et al. 

(2023), where further details can be found. Briefly, cows were genotyped on 10 distinct genotyping 

arrays, including five versions of the Illumina Bovine Low Marker Density (LMD) genotyping arrays 

(ranging from 9077 to 16,381 SNPs) and five versions of the EuroGenomics Medium Marker Density 

(MMD) arrays (ranging from 48,699 to 68,454 SNPs). The number of individuals per array are reported 

in Additional file 1: Table S1 (only individuals with a call rate > 0.90 were selected for this study). 

The phenotypes included four linear classification scores, that assessed the muscular 

development of the shoulder, top and buttocks (rear and side view) of the animals on a scale of 0 to 50. 

To derive the overall score for muscular development, the individual scores were combined with 

different weights (1 for top and shoulder muscling, 2 for buttock muscling). These phenotypes, available 

for 16,508 of the cows, were corrected for fixed effects from the official genetic evaluation as described 

in Gualdrón Duarte et al. (2023).Two reference panels of bulls were available for genotype imputation, 

including a group of 717 AI bulls genotyped with the Illumina BovineHD genotyping array and whole-

genome sequence data from 230 bulls. Details of the bioinformatic analysis of the sequence data, 

including read mapping and variant calling and filtering, can be found in Gualdrón Duarte et al. (2023) 

The final Variant Calling file (VCF) from the 230 sequenced bulls included 15,332,952 variants 

(12,830,339 SNPs and 2,502,613 indels). From these, we selected only bi-allelic autosomal variants. 

 

5.3.2 Genotype imputation 

A multi-step genotype imputation procedure was applied. First, SNP filtering was performed 

separately for each LMD and MMD array. SNPs with low call rate (<0.95), with minor allele frequency 

(MAF) < 0.01 or with significant deviations from Hardy-Weinberg proportions (p > 0.001) were filtered 

out. We first performed imputation from the LMD arrays to the MMD level, one array at a time. The 

MMD panel consisted of all individuals genotyped on one of the five MMD arrays. After filtering SNPs 

based on the rules described above, 36,849 autosomal markers with MAF > 0.01 and a maximum of 5 

Mendelian inconsistencies in duos or trios, common to these five arrays and also present on commercial 

Illumina MMD arrays were retained to define the reference MMD panel. The different LMD arrays had 

7246, 7505, 7711, 7632 and 7775 SNPs in common with the reference MMD panel, respectively. The 

target and reference panels were then phased using ShapeIT4.2 (Delaneau et al., 2019) and imputation 

in the target panel was achieved using Minimac4 (Das et al., 2016). After imputation, we excluded 

markers with a MAF < 0.02 or an imputation accuracy below 0.90 (for each array separately), and MMD 

genotypes from all individuals were merged. After selecting markers shared with the High Marker 
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Density (HMD) reference panel, 31,112 were available for the second imputation step. We used the 

HMD reference panel previously prepared by Gualdrón Duarte et al. (2023), which contained 890 

individuals (717 genotyped and 173 sequenced bulls) and 611,322 markers. The same imputation and 

filtering procedure was applied as in the first imputation step. Finally, the cows were imputed to the 

sequence levels using 578,934 markers and the reference panel of 230 sequenced bulls from the study 

of Gualdrón Duarte et al. (2023). After this last imputation step, we selected variants imputed with 

imputation accuracy > 0.90, MAF > 0.01 and segregating according to HWE rules (p > 0.001), leaving 

11,280,414 autosomal bi-allelic SNPs and indels for subsequent analyses. 

 

5.3.3 Genomic prediction models 

General genomic prediction models. We first describe models that don't use functional 

annotation, including GBLUP and three Bayesian models. In this case, the annotation information can 

be used, for example, to pre-select the variants to be included in the genomic prediction models. 

In the GBLUP model, phenotypes are modelled as: 

 

𝒚 = 𝟏𝝁 + 𝒈 + 𝒆, 

 

where y is the vector of individual phenotypes, 𝟏 is a vector of 1’s, 𝜇 is the mean effect, g is the vector 

of individual polygenic terms, and e is the vector of individual independent random error terms, 

normally distributed, 𝒆 ~ 𝑁(0, 𝑰𝜎𝑒
2) where I is the identity matrix and 𝜎𝑒

2 is the residual variance. The 

polygenic effects are normally distributed, 𝒈 ~ 𝑁(0, 𝑮𝜎𝑔
2) where G is the GRM and 𝜎𝑔

2 is the variance 

of polygenic effects. The GRM can be computed using the matrix Z of centered genotypes, 

corresponding to the first rules proposed by VanRaden (2008) and assuming that the distribution of SNP 

effect does not depend on allele frequencies: 

 

𝐆 =
𝐙𝐙′

∑ 2𝑓𝑗(1−𝑓𝑗)𝑁
𝑗=1

, 

 

where fj is the allele frequency at marker j and N is the number of markers. Alternatively, the GRM can 

be obtained using the matrix X of centered and scaled (or “standardized”) genotypes as described in 

Yang et al. (2011a):  

𝐆 =
𝐗𝐗′

𝑁
. 

In this case, rare alleles have larger effects and all variants contribute equally to the genetic 

variance. We will use GBLUP-C and GBLUP-S to refer to GBLUP with centered and standardized 

genotypes, respectively. The GRM and GBLUP prediction calculations were performed using LDAK 
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(Speed et al., 2012). For the GBLUP model, the variance components were estimated using a restricted 

maximum likelihood (REML). 

For the Bayesian models, phenotypes are described as: 

 

𝒚 = 𝟏𝜇 + 𝒁𝜷 + 𝒆, 

 

where β is the vector of SNP effects. The models can be applied with centered or standardized (replacing 

Z by X) genotypes. A key difference between the Bayesian models is the distribution of SNPs effects 

𝛽𝑗. In BayesCπ (Habier et al., 2011), a fraction π of SNPs have a null effect: 

 

𝛽𝑗~𝜋 𝛿0 + (1 − 𝜋)𝑁(0, 𝜎𝛽
2), 

 

where δ0 is a discrete probability mass at 0. The proportion of SNPs with zero effect (π) and the common 

variance of SNP effects 𝜎𝛽
2 are estimated from the data. BayesCπ was run using the GCTB software 

(Zeng et al., 2018) with default settings. 

In the Bayesian Sparse Linear Mixed Model (BSLMM) (Zhou et al., 2013), SNP effects are also 

distributed as a mixture of two distributions, with all SNPs having at least a small effect and a few SNPs 

having a large effect: 

𝛽𝑗~𝜋 𝑁(0, 𝜎𝑎
2 + 𝜎𝑏

2) + (1 − 𝜋)𝑁(0, 𝜎𝑏
2), 

 

where 𝜎𝑏
2 is the variance of small effects, 𝜎𝑎

2 is the additional variance associated with large effects. The 

parameter π is now the proportion of SNPs with large effects. As in BayesCπ, the parameters are 

estimated. The model is implemented by modelling a polygenic term and using the associated GRM. 

BSLMM was run using the GEMMA software (Zhou et al., 2013) with default settings. 

Finally, in BayesR (Erbe et al., 2012), the SNP effects are sampled from a mixture of four 

distributions: 

𝛽𝑗~𝜋1𝛿0 + 𝜋2𝑁(0, 10−4𝜎𝑔
2) + 𝜋3𝑁(0, 10−3𝜎𝑔

2) + 𝜋4𝑁(0, 10−2𝜎𝑔
2), 

 

where π1, π2, π3 and π4 are the proportions of SNPs in the four categories. Where π1 is the proportion of 

SNPs with null effects and π4 is the proportion of SNPs with the largest effects, corresponding to one 

percent of the polygenic variance. The variances associated with each category are predetermined as 

fixed proportions of the polygenic variance which is estimated from the data as the mixture proportions. 

BayesR was run using the GMRM software (Patxot et al., 2021) without annotation (see below for more 

information). 

Genomic predictions models exploiting prior biological information. Two methods were 

applied to perform whole genome predictions using directly information from functional annotations. 
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For this purpose, each SNP is assigned to one of the annotation groups, referred to as genomic features 

(GFs) to align with the terminology used in the literature (Edwards et al., 2016; Sørensen et al., 2014), 

described in the next section. First, we used a GBLUP, in which a distinct polygenic term is defined for 

each GF. The principle is similar to the MultiBLUP model described by Speed and Balding (2014) and 

the GFBLUP which fits most often a single GF at a time. We therefore call this model a Multiple 

Genomic Feature BLUP (MGFBLUP), and implement it as follows: 

 

𝒚 = 𝟏𝜇 + ∑ 𝒈𝑠
𝑆
𝑠=1 + 𝒆, 

 

where gs is the vector of individual polygenic terms associated to GF s, S is the total number of fitted 

GF. Each polygenic component is normally distributed, 𝒈𝑠 ~ 𝑁(0, 𝑮𝑠𝜎𝑠
2)  where Gs is the GRM 

computed using the variants present in GF s and 𝜎𝑠
2 is the variance of polygenic effects from the GF. As 

for the GBLUP, centered or standardized GRM can be used (MGFBLUP-C versus MGFBLUP-S). The 

genetic parameters, including the variances associated with each GF and the residual variance, were 

estimated using a REML approach as implemented in LDAK (Speed et al., 2012).  

The second approach is a Bayesian grouped mixture of regressions model (GMRM), also called 

BayesRR-RC (Patxot et al., 2021) and derived from BayesR (Erbe et al., 2012) and BayesRC (MacLeod 

et al., 2016). In this model, phenotypes are described as: 

 

𝒚 = 𝟏𝜇 + ∑ 𝑿𝑠
𝑆
𝑠=1 𝜷𝑠 + 𝒆, 

 

where Xs is the matrix of centered and scaled genotypes for markers in GF s and βs is the vector of 

marker effects for GF s, that are modelled as a mixture of null effects (spike probability at zero) and 

Gaussian distributions: 

 

𝛽𝑠𝑗
~𝜋0𝑠

𝛿0 + 𝜋1𝑠
𝑁(0, 𝜎1𝑠

2 ) + 𝜋2𝑠
𝑁(0, 𝜎2𝑠

2 ) + … + 𝜋𝐿𝑠
𝑁(0, 𝜎𝐿𝑠

2 ), 

 

where j is the marker index, L is the number of Gaussian distributions in the mixture, 

{𝜋0𝑠
, 𝜋1𝑠

, 𝜋2𝑠
, … , 𝜋𝐿𝑠

} are the mixture proportions for GF s, {𝜎1𝑠

2 , 𝜎2𝑠

2 , … , 𝜎𝐿𝑠

2 } are the mixture variances 

for GF s, proportional to 𝜎𝑠
2, the variance explained by the GF. Here, L is equal to 3, with variances 𝜎𝑙𝑠

2 

equal to 0.0001, 0.001 and 0.01 𝜎𝑠
2, respectively. The hyper-parameters vary for variants from different 

GFs, and the variances 𝜎𝑠
2 are estimated from the data. This model was run using the GMRM software 

(Patxot et al., 2021) with a Gibbs sampling scheme for 5,000 iterations with a burn-in period of 2,000 

iterations. This setting corresponds to the values used by Patxot et al. (2021) and Orliac et al. (2022). 

When BayesRR-RC is used without annotation, we will refer to it as a BayesR model. 
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With these two approaches exploiting functional annotation, it is possible to define two 

parameters related to the contribution of a category to heritability and the relative size of effects in a 

category. First, the proportion of genetic variance explained by a category, also called percentage of 

heritability or %SNP heritability (Gusev et al., 2014), estimated as 𝜎𝑠
2  divided by 𝜎𝑔

2 . Second, the 

enrichment level in category i, defined by Gusev et al. (2014) as the percentage of heritability in category 

i divided by the proportion of variants in the same category. 

 

5.3.4 Annotation 

We considered protein-coding variants to be those that alter the protein (e.g. change in amino 

acid sequence, truncations, alternative splice sites). To identify such variants, we ran Variant Effect 

Prediction (VEP) v95.0 (McLaren et al., 2016) on our VCF file. The most common coding consequences 

were missense, splice site (donor and acceptor), frameshift and stop-gain variants. VEP also provides 

the predicted effect from the variants, which is MODERATE or HIGH for coding variants and 

MODIFIER or LOW for other variants. Therefore, this first category contains all the variants with the 

highest predicted impacts. 

We used three sources of information to identify putative regulatory variants. EQTLs provide 

the most direct evidence, as these variants present significant association with expression levels. 

Therefore, we extracted all cis-eQTLs from the cattle Genotype-Tissue Expression atlas (cGTEx) data 

base (Liu et al., 2022). For each eQTL we selected the lead SNP. This resulted in the selection of 22,817 

eQTLs, including 4,889 eQTLs identified in muscle. In addition, variants located in open chromatin 

regions represent potential regulatory variants. Therefore, we used the catalogue of regulatory elements 

detected by the assay for transposase accessible chromatin using sequencing (ATAC-Seq) generated by 

Yuan et al. (2023). This organism-wide catalogue contains 976,813 cis-acting regulatory elements in 68 

bovine tissues types. Variants located in these peaks represented 10% of the genome space. Finally, 

regulatory elements identified by Kern et al. (2021) in eight tissues, including muscle, were also 

considered as possible regulatory variants. These regulatory elements were identified thanks to 

epigenetic data for four histone modifications and one DNA binding protein (CTCF), and by applying 

ChromHMM (Ernst and Kellis, 2012) to predict genome-wide chromatin states in each tissue. Among 

the identified states, we selected active regulatory element states, including “CTCF / Active TSS”, 

“Active TSS”, “CTCF / promoters”, “Active promoters”, “CTCF / enhancers” and “Active enhancers”, 

where TSS stands for transcription start sites. All of these active marks are associated with the co-

occurrence of at least two histone modifications and/or CTCF binding, and broad marks (e.g. associated 

only with the histone modification H3K27me3) were excluded.  

We relied on the General Transfer Format (GTF) file of the bovine genome assembly available 

from Ensembl (v105) to classify the remaining variants. First, TSS and transcription termination sites 

(TTS) were obtained using Homer (Heinz et al., 2010) and all transcripts from the genes. Upstream and 

downstream regions were then defined as 1 kb upstream and downstream of the TSS and TTS, 
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respectively. Variants were then classified into three additional groups including ”Exon-associated 

elements” (encompassing exons and neighboring regions such as untranslated regions (UTRs) and 

regions upstream or downstream of genes), intronic regions, and intergenic regions corresponding to the 

remaining unannotated regions. Note that the Exon-associated elements contain only non-coding 

variants (e.g. synonymous variants) and putative regulatory regions that were not detected by the 

functional assays (i.e. not in the eQTL or regulatory element lists). There is in fact a hierarchy between 

the defined groups; if a variant can be associated with more than one group, we have chosen the group 

with the highest expected effect. The ranking of the groups, from most to least impactful, includes 

coding variants, eQTLs, regulatory elements (identified by ATAC-Seq or with epigenetic data), exon-

associated elements, intronic and intergenic variants. 

 

5.3.5 Experimental design 

To assess the prediction accuracy of different models, we performed a cross-validation analysis 

and divided our data set into a reference and a target population corresponding to 13,461 and 3047 cows 

born before and after 1st January 2019, respectively. We then applied the different models with different 

marker panels and using different annotation groups. In most cases, we limited the number of annotation 

groups to 8 because more groups could lead to convergence problems with REML (or to null variances). 

Accuracy was obtained as the correlation between genomic estimated breeding values (GEBV) and trait 

deviations, while reliability was obtained as the squared correlation divided by the heritability of the 

trait. 

As done by Meuwissen et al. (2024), we used a bootstrapping strategy to evaluate the 

significance of the difference in reliability between different methods or when using different marker 

panels. We created a table with the GEBVs of the > 3000 target individuals (rows) for all tested methods 

(columns). We then sampled the validation individuals with replacement 10,000 times and estimated the 

correlation between GEBVs and trait deviations, and estimated the reliability or reliability difference 

for each sample. The 2.5th and 97.5th quantiles were used to define the confidence intervals. Differences 

were considered significant if one method was higher in 97.5% or more of the samples. 

Genomic prediction using whole-genome sequence data. We started by using all 11,280,414 

variants available at the sequence level without annotation and ran centered and standardized GBLUP 

and BayesR. BayesCπ and BSLMM were not run on the full sequence for computational reasons. Next, 

we defined a first functional annotation model with eight groups (FAN1): coding variants, eQTLs, 

variants in regulatory elements identified by both ATAC-Seq and with epigenetic data, variants in 

regulatory elements detected with epigenetic data only, variants in regulatory elements detected by 

ATAC-Seq only, exon-associated elements, intronic regions and intergenic regions. With the second 

annotation model, we investigated whether separating regulatory variants identified in muscle from 

those identified only in other tissues improved prediction. In this case, the putative regulatory variants 

group contained variants in regulatory elements identified by ATAC-Seq or with epigenetic data. This 
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resulted in the following eight annotation groups (FAN2): coding variants, muscle eQTLs, other eQTLs, 

variants in muscle regulatory elements, variants in other regulatory elements, exon-associated elements, 

intronic and intergenic regions. In addition, we tested whether a stratification model based on LD and 

MAF (LDMS) improved prediction accuracy, as Orliac et al. (2022) have shown that these groups are 

important to include. We defined three MAF categories (0.01 < 0.05; 0.05 - 0.10; 0.10 - 0.50) and four 

LD-based categories (defined based on the LD score quartiles). These LD scores were calculated using 

GCTA (Yang et al., 2011a). We also combined the LDMS and FAN1 models, resulting in 8 x 12 groups. 

Note that this last model was only run with GMRM (Patxot et al., 2021), as we previously observed that 

the REML approach often had convergence problems when fitting a model with 12 or more groups 

(Yuan et al., 2024). These different models are described in Table 5.1, including the (functional) groups 

fitted in the models, and the number of variants per group. 

Finally, the BayesRR-RC model was run twice with the FAN1 model to assess the variability in 

heritability partitioning across functional classes and prediction accuracy. In order to identify possible 

confounding between classes, we computed the correlations between the variances estimated in different 

iterations. 

Use of biological information to pre-select markers. We then used the functional annotation 

groups to pre-select variants from the WGS data, as has been done in several studies (MacLeod et al., 

2016; Xiang et al., 2021b, 2021a, 2019b). This is an indirect approach to include biological information 

with models that can’t incorporate it directly (GBLUP, BayesCπ, BayesR and BSLMM), and amounts 

to assume that variants in unselected categories have a null effect. More importantly, it allows the data 

set and computational costs to be reduced, thus allowing the use of other models such as BayesCπ and 

BSLMM. Here, we selected a large subset of markers. This was done to include a high proportion of 

coding and regulatory variants and still capture the majority of sequence-level variants through LD. 

Our first selection (Panel FUN1) included markers from the MMD panel currently used in the 

genomic evaluation and all coding and putative regulatory variants, including eQTLs and variants in 

regulatory elements detected by ATAC-Seq or with epigenetic data, resulting in a selection of 1,715,587 

variants. We also defined a second panel (Panel FUN2) with fewer markers. It was generated using the 

same rules as above, except that putative regulatory elements were identified only based on the open 

chromatin regions defined by Yuan et al (2023). This amounts to using only one catalogue of putative 

regulatory elements and resulted in a panel with 1,284,915 markers. Similarly, we defined Panel-FUN3 

using instead the catalogue of regulatory elements from Kern et al. (2021) and obtained 863,615 

markers. For comparison, we generated other panels obtained by performing LD pruning (based on the 

r² measure) with thresholds of 0.99, 0.98, 0.95, 0.90 and 0.80, resulting in selection of 1,899,123, 

1,708,694, 1,436,932, 1,203,927 and 923,968 variants, respectively (Panels LD99 to LD80). In addition, 

we selected all markers present on commercial bovine genotyping arrays extracted from the SNPchiMp 

data base (Nicolazzi et al., 2014), resulting in 868,195 polymorphic SNPs (Panel ARRAY). Table 5.2 

summarizes all the defined panels, their size and how the markers were selected. 
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For all panels, we first ran models without annotation, including centered and standardized 

GBLUP, BayesCπ, BSLMM and BayesR. For panels FUN1, FUN2 and FUN3, we ran BayesRR-RC 

and MGFBLUP with similar functional groups as for the sequence data, but adapted as some categories 

were removed from the data. FAN1 now contained four groups (MMD markers, coding variants, eQTLs, 

variants in regulatory elements) while FAN2 still contained six groups (MMD markers, coding variants, 

muscle eQTLs, other eQTLs, variants in muscle regulatory elements, variants in other regulatory 

elements). 



 

 

 

Table 5.1. Description of the different annotation models and their respective categories. 

 

Model Annotation Group Number of variants Proportion in the genome 

FAN1: eight functional annotation 

groups allowing distinct effect sizes for 

coding and regulatory variants 

Coding variants 41,866 0.37% 

eQTLs 31,521 0.28% 

Regulatory elements detected by ATAC-Seq 855,103 7.58% 

Regulatory elements detected with epigenetic data 431,616 3.83% 

Regulatory elements detected with both techniques 333,877 2.96% 

Exon-associated elements 732,544 6.49% 

Intronic 2,994,362 26.54% 

Intergenic 5,859,525 51.94% 

FAN2: eight functional annotation 

groups similar to FAN1 but with 

specific categories for regulatory 

elements detected in muscle 

Coding variants 41,866 0.37% 

eQTLs detected in muscle 4,761 0.04% 

eQTLs detected in other tissues 26,760 0.24% 

Regulatory elements detected in muscle 80,378 0.71% 

Regulatory elements detected in other tissues 1,540,218 13.65% 

Exon-associated elements 732,544 6.49% 

Intronic 2,994,362 26.54% 

Intergenic 5,859,525 51.94% 

LDMS: 12 groups based on the 

combination of four LD groups based 

on LD score and three MS groups 

based on MAF values 

LD: Four equal groups based on LD score quartiles 2,820,104 25.00% 

MS: Minor allele frequency between 0.01 and 0.05 2,193,621 19.45% 

MS: Minor allele frequency between 0.05 and 0.10 1,663,801 14.75% 

MS: Minor allele frequency between 0.10 and 0.50 7,422,992 65.80% 

LDMS x FAN1: interaction between 

FAN1 and LDMS model 

96 groups based on the combination of the 12 

LDMS groups and the 8 FAN1 groups 

From 29 to 1,446,999 From 0.00% to 12.83%  
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Table 5.2. Description of the different selected marker panels. 

 

Panel Selection criteria Number of 

variants 

WGS All whole-genome sequence variants 11,280,414 

FUN1 Coding variants, eQTLs, variants in regulatory elements detected 

by ATAC-Seq or epigenetic data and markers on MMD array 

1,721,775 

FUN2 Coding variants, eQTLs, variants in regulatory elements detected 

by ATAC-Seq only and markers on MMD array 

1,292,091 

FUN3 Coding variants, eQTLs, variants in regulatory elements detected 

by epigenetic data only and markers on MMD array 

870,858 

LD99 Selection based on LD pruning with a threshold of r² > 0.99 1,899,123 

LD98 Selection based on LD pruning with a threshold of r² > 0.98 1,708,694 

LD95 Selection based on LD pruning with a threshold of r² > 0.95 1,436,932 

LD90 Selection based on LD pruning with a threshold of r² > 0.90 1,203,927 

LD80 Selection based on LD pruning with a threshold of r² > 0.80 923,968 

ARRAY Variants from different commercial bovine genotyping arrays 868,195 
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5.4 Results 

5.4.1 Genomic prediction models using all sequence-level variants 

Reliabilities obtained with GBLUP-C using the MMD panels were 0.792, 0.674, 0.686, 0.750 

and 0.705 for shoulder, top, buttock (side view), buttock (rear view) and overall muscling, respectively. 

As the GBLUP-C is the approach currently used in genomic evaluation, we used these as the baseline 

or reference values and presented results from models using the full sequence data as the difference from 

these baseline values (Figure 5.1). We first evaluated models using the 11 million imputed variants 

(Figure 5.1; Additional File 2: Table S8). This was only possible with GBLUP (without annotation) and 

MGFBLUP (fitting one polygenic term per annotation group) approaches using either centered or 

standardized genotypes, and with the GMRM program fitting the BayesR (without annotation) and 

BayesRR-RC (with annotation) models. Compared to MMD arrays, the use of WGS data consistently 

resulted in higher accuracy for the three annotation-free models and for all traits (Additional File 2: 

Table S8). With the GBLUP, the use of centered genotypes (GBLUP-C) gave better results (+1.6% 

reliability on average) than standardized genotypes (GBLUP-S) (+0.6% on average). Prediction 

accuracies achieved with BayesR (+1.8% on average), implemented using standardized genotypes, were 

systematically higher than those obtained with GBLUP-S, suggesting advantages of the Bayesian 

approach. However, the superiority was less pronounced when compared with GBLUP-C. Although 

these trends were consistent across traits, only a few of these differences were significant (Additional 

File 3: Figure S1). 

 
 

Figure 5.1. Gain of reliability obtained when using whole-genome sequence data, with or without functional 

annotation. The gain in reliability compared to a GBLUP-C model with a medium marker density (MMD array). 

GBLUP and BayesR correspond to models without functional annotation, while the Multiple Genomic Feature 

BLUP (MGFBLUP) and BayesRR-RC refer to extensions of these models that make use of functional annotation. 

For the GBLUP and MGFBLUP models, the extensions ‘-C’ and ‘-S’ indicate whether the used GRMs were 

constructed with centered and standardized genotypes, respectively. Genomic predictions were performed using 

different panels (MMD and whole-genome sequence – WGS) and models including models without annotation, 

two models incorporating functional annotation (FAN1 & FAN2), a model based on LD and MAF stratification 

(LDMS), and a combination of LDMS and FAN1 models. Further details of these models are provided in Table 

5.1. Error bars indicate the 95% confidence interval of the bootstrapped differences. 
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Compared to GBLUP, the reliabilities obtained using functional annotation with the MGFBLUP 

approach were higher (Figure 5.1), although the differences were rarely significant (Additional File 3: 

Figure S1). For example, with centered genotypes, the MGFBLUP reliabilities were on average +1.2% 

higher for the two functional annotation models tested (FAN1 and FAN2). The opposite trend was 

observed for the Bayesian models, the reliabilities of BayesRR-RC with the FAN1 and FAN2 models 

being on average –0.8% and –0.6% lower than those obtained with BayesR (without annotation). When 

groups were defined based on LD and MAF (LDMS models), lower reliabilities were obtained with 

MGFBLUP-C (-1.6% on average) and BayesRR-RC (-3.0% on average) compared to the corresponding 

models without annotation. Reliabilities obtained with BayesRR-RC were particularly low when fitting 

96 groups with the LDMS x FAN1 model (-4.1% on average). Overall, of all the methods tested, the 

MGFBLUP-C model with functional annotation achieved the highest accuracies for each of the traits.  

The proportion of variance allocated to different functional categories and the enrichment levels 

of variants with different annotations allow a better understanding of how the models use the functional 

information. For example, estimated parameters from the first model (FAN1) using functional 

annotation (see Table 3 for average values and Additional File 1: TableS2-6 for values per trait) showed 

that coding variants and eQTLs had larger effects per SNP on average (average enrichment levels above 

15-fold and 20-fold, respectively), followed by variants in putative regulatory elements with average 

enrichment levels ranging from 1.7 to 3.9-fold depending on the method (Table 5.1). With MGFBLUP 

models, eQTLs had even larger effects than coding variants (e.g. 16.1-fold versus 70.5-fold when using 

centered genotypes). Nevertheless, these relatively small groups (each containing less than 0.4% of the 

variants) together accounted for only 10-25% of the genetic variance, whereas intergenic and intronic 

variants still accounted for a large proportion of the genetic variance (about 40%), as together they 

represent more than 75% of the variants in our data set. With MGFBLUP and the second annotation 

model (FAN2), variants associated with eQTLs or regulatory elements detected in muscle had higher 

enrichment levels than variants in the same elements detected in other tissues (e.g. muscle eQTL 

enrichment levels were on average higher than 100-fold), whereas the opposite was observed for eQTLs 

with BayesRR-RC (Table 5.3). Some unexpected results were observed, such as reduced enrichment 

levels for coding variants with the FAN2 model and BayesRR-RC, or a null variance associated with 

the category of exon-associated elements when estimated with MGFBLUP (Table 5.3). Such results 

indicate that parameters can be difficult to estimate (see also Yuan et al., 2024) and that enrichment 

levels used in predictions may not always reflect true biological enrichment levels. The variation in 

estimated parameters across traits (Additional File1: TableS2-6; Figure 5.2A) confirmed this technical 

difficulty. Interestingly, this variation had little effect on the relative performance of the different 

models. To further understand aspects of convergence with BayesRR-RC, we ran an additional 

independent chain for the FAN1 model (including more iterations), generated some diagnostic plots, 

and assessed the level of confounding between categories from their correlation across iterations (Figure 

5.2A-D). Estimated genetic variances for different functional categories showed differences across 
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independent runs (Figure 5.2A), particularly for coding variants, while diagnostic plots suggested that 

convergence may not have been achieved for all parameters (Figure 5.2C), possibly due to confounding 

between some parameters (e.g. between eQTLs and variants in regulatory elements detected by ATAC-

Seq categories; Figure 5.2D). Despite these differences in estimated enrichment levels, similar 

prediction accuracies were obtained with the two independent chains and when more iterations were run 

(Figure 5.2B). 



 

 

 

Table 5.3. Average estimated %SNP heritability (proportion of genetic variance explained by a category) and enrichment levels (relative 

variant effect size per category) for different functional categories with the two functional annotation models, FAN1 and FAN2. MGFBLUP 

models were applied with GRMs constructed with either centered or standardized genotypes. 

 

 Annotation Group 

(compartment where variants 

are located) 

%SNP heritability Enrichment 

 MGFBLUP 

Centered 

MGFBLUP 

Standardized 
BayesRR-RC 

MGFBLUP 

Centered 

MGFBLUP 

Standardized 
BayesRR-RC 

FAN1 

Coding variants 5.98 7.65 7.99 16.11 20.61 21.54 

eQTLs 14.91 17.33 4.36 70.50 81.93 20.59 

Regulatory elements detected with 

both techniques 
7.87 8.21 11.59 2.65 2.77 3.91 

Regulatory elements detected by 

ATAC-Seq 
20.48 12.96 13.13 2.70 1.71 1.73 

Regulatory elements detected with 

epigenetic data 
8.74 6.89 11.74 2.28 1.80 3.06 

Exon-associated elements 0.22 0.07 7.09 0.03 0.01 1.09 

Intronic regions 26.87 31.11 21.60 1.01 1.17 0.81 

Intergenic regions 14.94 15.78 22.49 0.29 0.30 0.43 

FAN2 

Coding variants 5.88 8.03 3.45 15.84 21.64 9.28 

eQTLs detected in muscle 4.57 4.71 0.24 108.22 111.56 5.71 

eQTLs detected in other tissues 11.28 12.72 5.82 57.89 65.27 29.86 

Regulatory elements detected in 

muscle 
9.35 9.52 13.69 13.11 13.35 19.19 

Regulatory elements detected in other 

tissues 
24.46 18.14 19.99 1.79 1.33 1.46 

Exon-associated elements 0.49 0.10 12.26 0.08 0.02 1.89 

Intronic regions 27.15 30.24 22.03 1.02 1.14 0.83 

Intergenic regions 16.83 16.55 22.53 0.32 0.32 0.43 
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Figure 5.2. Comparison of results of BayesRR-RC with two independent chains. A) Percentage heritability 

(%SNP heritability) of different functional categories estimated in two independent runs. B) Accuracy of GS in the 

two independent chains for the FAN1 model compared to accuracy with WGS (without annotation); results are also 

reported with 10,000 iterations for the second chain (instead of 5,000). C) Evolution of estimated parameters over 

iterations for four functional categories. D) Correlations between estimated parameters for different functional 

categories in different iterations (when estimated for buttock – side view). 

 

5.4.2 Genomic prediction models using subsets of the sequence data  

We compared different strategies for selecting large subsets of the sequence data, large enough to 

still capture the full sequence level while allowing the use of additional, more computationally demanding 

software, including GCTB for BayesCπ (Habier et al., 2011) and GEMMA for BSLMM (Zhou et al., 2013). 

For all methods, the highest accuracy was achieved in the vast majority of cases with an LD pruning level 

of r² > 0.99 (1.9 M variants) (Figure 5.3A; Additional File 2: Table S9). Accuracy was even higher than 

with full sequence data (for BayesR and GBLUP approaches). Reliabilities decreased only slightly when 

stronger LD pruning was applied and the number of variants was further reduced (< 1% on average). For 

traits such as buttock muscling (side view), the reliabilities remained almost the same even when using an 

LD pruning level of r² > 0.80 (0.9 M variants), whereas the greatest reduction in reliability was observed 

for shoulder muscling. However, the differences between the largest and smallest marker panels were not 

always significant, depending on the method (Additional File 3: FigureS2). 
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Figure 5.3. Comparison of reliability of different methods when using different marker panels. A) Comparison 

of the reliability of five tested methods using panels selected on the basis of LD pruning. The panels are whole-genome 

sequence (WGS - no pruning) and LD99, LD98, LD95, LD90 and LD80 obtained when pruning was applied with 

thresholds of r² > 0.99, 0.98, 0.95, 0.90 and 0.80, respectively. B) Reliability obtained using panels selected on the 

basis of functional annotation. The panels included coding variants, eQTL, variants in regulatory elements and markers 

from the medium density genotyping array. The FUN1 panel included variants in regulatory elements detected by 

ATAC-Seq or epigenetic data, while the FUN2 and FUN3 panels include only those detected by either ATAC-Seq or 

epigenetic data, respectively. The results were compared to those obtained with panels of equal size selected by LD 

pruning. The horizontal line corresponds to the reliability obtained with the ARRAY panel, obtained by selecting 

markers present on commercial bovine genotyping arrays, with approximately the same number of variants as the 

FUN3 panel. Further details on the different panels and their size are given in Table 5.2. 

 

At all LD pruning levels, BSLMM was systematically the best approach (with a single exception, 

BayesR achieving slightly higher reliabilities for buttock side when using a LD pruning level of 0.99), while 

BayesCπ and GBLUP-S were often the least accurate (Figure 5.3A). The ranking between the BayesR and 

GBLUP approaches was consistent with that observed with the full sequence data, BayesR achieving on 

average higher reliability than both GBLUP approaches (for LD pruning levels of 0.95 or higher) and 

GBLUP-C being superior to GBLUP-S (Figure 5.3A). At the r² > 99 pruning level, the accuracies obtained 

with BSLMM were significantly higher than those achieved with BayesR, GBLUP-C, GBLUP-S, and 

BayesCπ for several traits (with the exception of buttock side with BayesR; Figure 5.3A; Additional File 

3: Figure S3).  

With BSLMM, the average number of variants with a large effect fitted in the model ranged from 

22 to 138 (mean = 71.0) per trait (LD99), while with BayesR and BayesCπ, the average number of variants 

with a non-zero effect ranged from 10,990 to 11,507 (mean = 11,193) and 121,759 to 124,891 (mean = 

135,818), respectively (LD99). With BayesR, the number of variants with a medium or large effects (0.001 

and 0.01 x 𝜎𝑔
2) were low, 3.8 and 1.5 on average, indicating that it was not able to exploit large effect 
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variants as well as BSLMM. Note that the definition of large effect variants is however not directly 

comparable between these two methods. With stronger LD pruning, the number of large effect variants 

increased slightly with BSLMM (85.8 and 105.4 on average for LD98 and LD80, respectively), while the 

proportion of non-zero effects (corresponding to π) remained relatively stable with BayesCπ (π remained 

close to 0.05). This was also the case for the number of medium and large effect variants with BayesRR-

RC (e.g. 3.9 and 0.8 for LD80). 

We then compared the reliabilities obtained with marker panels selected based on functional 

annotation (called FUN1-3 panels) with panels of equivalent size selected based on LD pruning (LD panels) 

or panels containing markers present on commercial bovine genotyping arrays (870K SNPs) (Figure 5.3B; 

Additional File 2: Table S9). For most methods, marker selection based on functional annotation resulted 

in slightly higher or equivalent accuracy than LD-based marker selection (Figure 5.3B), although the 

differences were almost never significant when compared at equal density (Additional File 3: Figure S4). 

In particular, the FUN1 and FUN2 panels were often more efficient than the corresponding LD panels. In 

BSLMM, the advantage of the FUN panels was observed for all traits and marker sizes. Higher reliabilities 

were systematically obtained with the ARRAY panel when using GBLUP-S or BayesCπ (except for buttock 

– side view), while for GBLUP-C and BayesR the accuracy was very close to that obtained with the two 

largest FUN panels. Importantly, the ARRAY panel was in most cases significantly superior to other panels 

of equivalent size for these four methods. With BSLMM, the use of the FUN1 and FUN2 panels resulted 

in higher reliabilities than the use of the ARRAY panel, while for the FUN3 panel the reliabilities obtained 

were either higher or equal to those obtained with the ARRAY panel (Figure 5.3B). Note that the use of 

FAN1 and FAN2 models incorporating functional annotation (BayesRR-RC and MGFBLUP) with the 

FUN1 and FUN2 panels did not improve the reliability of genomic prediction, while at best a slight 

improvement was observed when using the FUN3 panel (Figure 5.4; Additional File 2: Table S10). 
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Figure 5.4. Reliability of models incorporating functional annotation applied to subsets of markers. Results 

were obtained using the three functional panels (FUN1-3) and applying GBLUP-C or BayesR without functional 

annotation or with the Multiple Genomic Feature BLUP (MGFBLUP) and BayesRR-RC models with the two 

functional models (FAN1 and FAN2 models). The FUN1 panel (top) includes variants in regulatory elements detected 

by ATAC-Seq or epigenetic data, while the FUN2 (middle) and FUN3 (bottom) panels include only those detected by 

either ATAC-Seq or epigenetic data, respectively. The FAN1 model has four groups, including coding variants, 

eQTLs, variants in regulatory elements and markers from the medium density genotyping array. In the FAN2 model, 

two additional categories are obtained by dividing eQTLs and variants in regulatory elements into those detected in 

muscle and those detected in other tissues. Details of the models and marker panels are given in Tables 5.1 and 5.2. 

 

Overall, the highest reliabilities were obtained using BSLMM with variants selected based on their 

functional annotation, closely followed by BSLMM with LD panels. Compared with GBLUP-C using 

MMD markers, the reliabilities obtained with BSLMM for the FUN1 panel were significantly 0.052, 0.038, 

0.036, 0.038 and 0.049 higher for top, shoulder, buttock (side and rear view) and overall muscling, 

respectively (Additional File 1: Table S7). Similar benefits were also obtained with the LD99 panel 

(Additional File 1: Table S7). With the FUN1 and FUN2 panels, the number of large effect variants ranged 

from 30 to 91 (mean = 63.9) and from 33 to 200 (mean = 86.2), respectively. The %SNP heritability 

associated with the large effect variants was 14.3% and 16.2% on average with the FUN1 and FUN2 panels, 

respectively. We investigated which regions contained variants with high posterior inclusion probabilities 

(PIP) when using the FUN2 panel (the reliabilities with the FUN2 panel were virtually identical to those 

with the FUN1 panel, but had the advantage of using fewer variants). We summed the PIP over 1 Mb 

windows to account for the possibility that different variants in LD might capture the same effect, and 

identified regions with a cumulative PIP > 0.5 (e.g., regions that had a large effect in more than half of the 

iterations) (e.g. Barbieri and Berger, 2004). We identified 5 to 12 regions per trait, many of which 

overlapped with the 15 large effect variants fine-mapped by Gualdrón Duarte et al. (2023). 
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5.5 Discussion 

5.5.1 Increased prediction accuracy with whole-genome sequence data 

In this study, we used whole-genome sequence data, with or without annotation, to improve the 

accuracy of genomic prediction of muscular development traits in BBC. Contrary to some previous studies 

(Ros-Freixedes et al., 2022; van Binsbergen et al., 2015; Veerkamp et al., 2016), the use of full-sequence 

data increased the reliability of breeding values compared to the use MMD arrays. Several factors may 

explain this improvement, including more reliable genotype imputation due to ever-expanding reference 

panels and improving imputation software, and the benefits of ever-larger reference populations for 

genomic prediction. Although the benefit of sequence data was systematic, it remained relatively modest 

(e.g., +1.8% reliability on average with BayesR) and was not always significant. This is consistent with our 

previous findings on simulated data (Druet et al., 2014b), which showed that the use of whole-genome 

sequence data allowed to increase reliability mainly when rare variants contributed to genetic variance and 

were accurately genotyped or imputed. Conversely, little gain was obtained when common variants 

accounted for the largest proportion of genetic variance, as observed here. The segregation of common 

variants with large effects on muscular development traits in BBC or height has been previously described 

(Gualdrón Duarte et al., 2023), while it remains difficult to study the importance of rare variants. Indeed, 

the imputation accuracy for rare variants remains low and we discarded variants with MAF < 0.01 or with 

low imputation accuracy. Therefore, we could not fully exploit the variation associated with rare variants. 

 

5.5.2 Relative performance of prediction models  

Our study was also informative about the differences between methods. With full sequence data, 

BayesR and BayesRR-RC were the only Bayesian models to individually fit all the SNPs that could be run 

on our cluster, thanks to their implementation in the GMRM software. BayesR had slightly higher 

reliabilities than GBLUP-S (+1.2% on average), while the differences were even smaller when compared 

to GBLUP-C (+0.2% on average). Indeed, in our study, the use of centered genotypes consistently 

performed better than standardized genotypes (commonly used in human studies). This ranking is in 

agreement with previous studies that have been carried out in BBC (Gualdrón Duarte et al., 2020) and in 

some other cattle breeds (e.g., Su et al., 2014). In agreement, we also observed that selecting common 

variants (ARRAY panel) with methods using standardized genotypes and giving more weight to rare alleles 

(e.g., GBLUP-S) increased the reliability. The relationship between MAF and effect size has previously 

been linked to ongoing selection in the populations analyzed, with the architecture corresponding to 

standardized genotypes (i.e. rare variants having larger effects) being associated with purifying selection, 

whereas centered genotypes (i.e. common variants accounting for large proportions of genetic variance) are 
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associated with directional selection (Zeng et al., 2018). Overall, these results therefore suggest directional 

selection for muscular development traits in BBC and support the use of centered genotypes. Bayesian 

models that allow for variants with large effects are expected to perform better than GBLUP when such 

variants contribute to the genetic architecture (Hayes et al., 2010). In the present case, however, the benefit 

remained modest. Although the reasons remain unknown, several elements may explain this observation. 

First, the fact that as the sample size increases, the priors have less influence on the estimated effects (i.e. 

the large effect variants are also well captured in the SNP-BLUP (e.g. Pocrnic et al., 2024)). Second, the 

frequency of some of the large effect variants previously identified in BBC and associated with recessive 

deleterious effects has decreased (see Additional File 3: Figure S5) as a result of selection against carrier 

bulls (i.e. there are fewer large effect variants in the target population). Thirdly, muscular development 

traits in BBC tend to be polygenic, more so than height for example (Gualdrón Duarte et al., 2023). We 

must also bear in mind that estimating the effects of more than 10 million variants simultaneously with 14K 

genotyped individuals remains a challenging task and may require further iterations. Importantly, the 

reliability of BayesRR-RC could be further increased when using centered genotypes in livestock species. 

When using a subset of SNPs, the BSLMM approach (Zhou et al., 2013) was consistently the best of all 

approaches, suggesting that a model combining a polygenic model with a few large effect variants is 

efficient. We also tested two other similar models fitting a polygenic term and a group of large effect 

variants, Bolt-LMM (Loh et al., 2015b) and BayesGC (Meuwissen et al., 2021), but these did not perform 

as well as BSLMM (data not shown). In fact, such approaches could also be fitted with the BayesR 

framework, as the number of mixtures and their relative variance can be modified. Note also that BayesR 

and various extensions, including BayesRC (MacLeod et al., 2016) or BayesRCO (Mollandin et al., 2022), 

have been implemented in different programs (Breen et al., 2022; Mollandin et al., 2022; Moser et al., 2015) 

and that some of these may achieve higher accuracy, due to differences in model assumptions, settings or 

genotype coding (centered versus standardized genotypes). For example, we previously observed smaller 

differences between BSLMM and BayesR on a smaller data set with fewer markers, although BSLMM was 

still more accurate on average (Gualdrón Duarte et al., 2020). 

 

5.5.3 Benefits of using functional annotation  

This study is one of the first to use full sequence data to perform genomic prediction using models 

that incorporate functional information from experimental data in livestock species and using a relatively 

large cohort of individuals. For Bayesian mixture models, this was possible thanks to the development of 

software such as GMRM. However, this approach did not result in the strong improvement in reliability 

reported for humans (Márquez-Luna et al., 2021; Patxot et al., 2021; Zheng et al., 2024). This may be due 

to differences in population structure and past selection history (see above). In livestock species, effective 
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population size is generally lower (e.g. Hayes et al., 2003; MacLeod et al., 2013), while LD extends at 

longer range (e.g. Gautier et al., 2007) and relatedness is higher, as evidenced by the level of inbreeding 

observed in BBC (Solé et al., 2017). This makes it more difficult to disentangle contributions from different 

functional classes, which are more confounded, as shown in the present study or previously in Yuan et al. 

(2024). As a result, the estimated enrichment levels are imprecise and the functional annotation is less 

optimally used. Another major difference is that the sample sizes used in human studies are much larger, 

providing more information to estimate different parameters. The genetic architecture also differs, as we 

have previously observed. While coding variants with large effects are rare and common variants have 

small effects and are generally regulatory in complex traits studied in humans (Eyre-Walker, 2010; Marouli 

et al., 2017; Zeng et al., 2018), common coding variants with large effects are regularly observed in 

livestock species (Gualdrón Duarte et al., 2023; Hayes et al., 2010; Kemper and Goddard, 2012). In 

addition, rare variants remain more difficult to exploit in livestock species due to low imputation accuracies 

and smaller reference panels. Finally, the amount and quality of functional information available in human 

studies is still much higher than in livestock species, allowing more genomic features to be fitted, such as 

in the so-called LD-baseline model including up to 53 groups. Better functional annotation could be 

achieved for the BBC breed by generating breed-specific regulatory variant catalogues using large numbers 

of individuals. Finally, additional categories could be considered, such as conservation scores, which have 

been shown to be relevant in both humans and livestock (Finucane et al., 2015; Xiang et al., 2019b). 

When analyzing muscular development traits in BBC, the parameters estimated by models 

incorporating functional information were highly variable across traits and methods, and sometimes 

difficult to interpret biologically (e.g. null variance associated with some categories). These parameters 

should thus be interpreted with caution (Yuan et al., 2024), especially for small categories such as coding 

variants or eQTLs. In addition, the estimates are highly dependent on the definition of the different 

functional categories, which may differ between studies, making comparisons difficult. Although the 

enrichment levels of the different categories are ranked as expected, we do not recommend evaluating their 

absolute values. 

In such settings, the MGFBLUP framework produced slightly higher accuracies than GBLUP, 

probably because these models had greater flexibility, whereas BayesRR-RC tended to decrease accuracy 

compared to BayesR. Even without annotation, this Bayesian approach already has great flexibility (i.e. 

allowing some variants to have larger effects), and there may be less benefit in adding more flexibility, 

especially when more parameters need to be estimated and the reference population is not large enough. 

We have observed the difficulties and challenges of estimating all these parameters and individual variant 

effect simultaneously with BayesRR-RC. A potential disadvantage of BayesRR-RC is that when annotation 

is used, the variance used to model the SNP effects is reduced. For example, without annotation, the largest 
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effects of coding variants are sampled from a distribution corresponding to 1% of the total genetic variance, 

whereas with annotation this becomes 1% of the variance explained by coding variants (i.e., if coding 

variants account for 10% of the SNP heritability, the effects are sampled from a distribution with a 10 times 

lower variance). This problem can be addressed in BayesRR-RC by fine-tuning the parameters of the model, 

as done by Orliac et al. (2022). Note also that the BayesRC model (MacLeod et al., 2016) uses the total 

genetic variance to model the SNP effects, which makes the model more robust to this problem and has the 

advantage of reducing the number of parameters to be estimated. Overall, in our setting, the accuracy of the 

models seems to result from their ability to capture the polygenic terms and the large effect variants, even 

with non-causal markers in LD with the causative variants, rather than from their ability to exploit the 

functional information. 

 

5.5.4 Future directions  

Using BSLMM on large subsets of variants, selected based on their functional annotation or LD 

pruning, gave the highest reliabilities and significantly improved genomic predictions. With BSLMM, 

about 50 to 100 variants with large effects were fitted in each iteration. Ideally, we should identify these 

50-100 variants, or eventually a few more, and fit a model with a polygenic term and only these additional 

variants. It remains difficult to identify these variants with simple functional annotation because many of 

the functional classes are too large and lack specificity. For example, the number of coding variants and 

eQTLs is much larger (even if we target the 1,000 variants with the largest contribution to genetic variance), 

although they do not include all the large effect variants. Improved fine-mapping approaches using 

functional annotation are needed to identify more of these variants, as in general only a handful of causative 

variants are currently unambiguously identified. Further improvements in functional annotation are 

therefore needed, including experimental data in the most relevant tissues, experiments on relatively large 

samples of individuals from the same breeds, and finer annotation levels. For example, by defining 

categories that combine motifs of transcription factor that are specific to the correct pathway and their levels 

of conservation. It would also be important to be able to identify which synonymous variants, assumed to 

be neutral, have an effect on the traits of interest. Finally, additional work is required to better exploit rare 

variants, for which imputation accuracy remains low, in genomic prediction. 

 

5.6 Conclusions 

Compared to the GBLUP approach using medium maker density, as in the current genomic 

evaluation, the use of imputed whole-genome sequence data allowed to increase the reliability of genomic 

predictions for muscular development traits in BBC (+1.8% on average with the best method). Selection of 

subsets of markers based on functional annotation or LD pruning, allowed equivalent accuracy to be 
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achieved at lower computational cost, allowing more methods to be applied. Overall, a strategy using a 

large panel of pre-selected functional variants, including coding variants, eQTLs and variants in regulatory 

elements, with a Bayesian model fitting a polygenic term combined with fewer than 200 large effect variants 

achieved the highest accuracies (+4.2% on average). Therefore, fine-mapping of these large effect variants 

may prove effective in improving genomic prediction accuracy. Models directly incorporating functional 

annotation only slightly improved reliability at best. This suggests that better annotation categories should 

be used than in the present study, and that further efforts are needed to improve functional annotation in 

BBC. In addition, more work is needed to exploit the genetic variance associated with rare variants, which 

remain difficult to impute accurately.  
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5.8 Supplementary tables 

 

Table S1. Number of individuals and markers per genotyping array. 

 

Genotyping array Number of individuals Number of variants Marker density 

LMD1 2,467 9,077 Low 

LMD2 570 12,023 Low 

LMD3 1,511 12,638 Low 

LMD4 8,165 15,749 Low 

LMD5 583 16,381 Low 

MMD1 4,930 48,699 Medium 

MMD2 13,036 54,748 Medium 

MMD3 1,843 62,227 Medium 

MMD4 1,690 68,454 Medium 

MMD5 1,394 49,229 Medium 



 

 

 

Table S2. Estimated %SNP heritability (proportion of genetic variance explained by a category) and enrichment levels (relative variant 

effect size per category) for different functional categories with two annotation models, FAN1 and FAN2, when applied to shoulder muscling. 

MGFBLUP models were applied with GRMs constructed with either centered or standardized genotypes, respectively. The annotation categories 

are described in the Methods section. 

 

 Annotation Group 

(compartment where variants 

are located) 

%SNP heritability Enrichment 

 MGFBLUP 

Centered 

MGFBLUP 

Standardized 
BayesRR-RC 

MGFBLUP 

Centered 

MGFBLUP 

Standardized 
BayesRR-RC 

FAN1 

Coding variants 2.36 5.06 0.01 6.35 13.63 0.03 

eQTLs 17.53 20.07 5.76 82.88 94.85 27.25 

Regulatory elements detected with 

both techniques 
0.79 7.17 14.19 0.27 2.42 4.78 

Regulatory elements detected by 

ATAC-Seq 
23.19 17.18 10.36 3.06 2.26 1.36 

Regulatory elements detected with 

epigenetic data 
11.41 0.02 12.81 2.98 0 3.34 

Exon-associated elements 0.06 0.04 9.1 0.01 0.01 1.4 

Intronic regions 28.54 34.47 24.14 1.07 1.3 0.91 

Intergenic regions 16.12 15.99 23.63 0.31 0.31 0.45 

FAN2 

Coding variants 1.28 3.98 0 3.46 10.73 0 

eQTLs detected in muscle 7.07 8.01 0.69 167.43 189.87 16.36 

eQTLs detected in other tissues 13.45 14.13 10.7 69.03 72.52 54.92 

Regulatory elements detected in 

muscle 
8.63 11.25 14.17 12.09 15.77 19.86 

Regulatory elements detected in other 

tissues 
18.94 7.11 21.74 1.39 0.52 1.59 

Exon-associated elements 0.07 0.08 13.97 0.01 0.01 2.15 

Intronic regions 30.35 35.51 21.11 1.14 1.34 0.79 

Intergenic regions 20.21 19.93 17.63 0.39 0.38 0.34 

 

 



 

 

Table S3. Estimated %SNP heritability (proportion of genetic variance explained by a category) and enrichment levels (relative variant 

effect size per category) for different functional categories with two annotation models, FAN1 and FAN2, when applied to top muscling. 

MGFBLUP models were applied with GRMs constructed with either centered or standardized genotypes, respectively. The annotation categories 

are described in the Methods section. 

 

 Annotation Group 

(compartment where variants 

are located) 

%SNP heritability Enrichment 

 MGFBLUP 

Centered 

MGFBLUP 

Standardized 
BayesRR-RC 

MGFBLUP 

Centered 

MGFBLUP 

Standardized 
BayesRR-RC 

FAN1 

Coding variants 10.88 13.57 16.76 29.32 36.58 45.17 

eQTLs 15.81 18.13 1.58 74.71 85.69 7.46 

Regulatory elements detected with 

both techniques 

1.91 0.00 12.91 0.64 0.00 4.35 

Regulatory elements detected by 

ATAC-Seq 

21.32 16.68 9.27 2.81 2.20 1.22 

Regulatory elements detected with 

epigenetic data 

14.29 11.87 8.70 3.73 3.10 2.27 

Exon-associated elements 0.62 0.17 7.38 0.10 0.03 1.13 

Intronic regions 24.00 26.88 19.00 0.90 1.01 0.72 

Intergenic regions 11.17 12.70 24.41 0.21 0.24 0.47 

FAN2 

Coding variants 11.07 14.16 1.25 29.83 38.16 3.37 

eQTLs detected in muscle 1.84 4.75 0.02 43.58 112.57 0.44 

eQTLs detected in other tissues 13.56 13.38 5.01 69.61 68.65 25.74 

Regulatory elements detected in 

muscle 

14.13 14.68 19.19 19.81 20.59 26.90 

Regulatory elements detected in other 

tissues 

19.09 8.94 4.36 1.40 0.65 0.32 

Exon-associated elements 10.88 13.57 16.76 29.32 36.58 45.17 

Intronic regions 15.81 18.13 1.58 74.71 85.69 7.46 

Intergenic regions 21.32 16.68 9.27 2.81 2.20 1.22 

 

  



 

 

 

Table S4. Estimated %SNP heritability (proportion of genetic variance explained by a category) and enrichment levels (relative variant 

effect size per category) for different functional categories with two annotation models, FAN1 and FAN2, when applied to buttock muscling 

(side view). MGFBLUP models were applied with GRMs constructed with either centered or standardized genotypes, respectively. The annotation 

categories are described in the Methods section. 

 

 Annotation Group 

(compartment where variants 

are located) 

%SNP heritability Enrichment 

 MGFBLUP 

Centered 

MGFBLUP 

Standardized 
BayesRR-RC 

MGFBLUP 

Centered 

MGFBLUP 

Standardized 
BayesRR-RC 

FAN1 

Coding variants 6.77 4.70 10.71 18.24 12.68 28.87 

eQTLs 13.13 15.28 2.73 62.06 72.25 12.89 

Regulatory elements detected with 

both techniques 

13.11 10.42 0.76 4.42 3.51 0.26 

Regulatory elements detected by 

ATAC-Seq 

24.32 19.43 19.15 3.21 2.56 2.52 

Regulatory elements detected with 

epigenetic data 

5.75 10.35 15.65 1.50 2.70 4.08 

Exon-associated elements 0.02 0.02 6.82 0.00 0.00 1.05 

Intronic regions 18.78 21.89 20.28 0.71 0.82 0.76 

Intergenic regions 18.11 17.90 23.89 0.35 0.34 0.46 

FAN2 

Coding variants 7.34 5.79 0.01 19.77 15.61 0.03 

eQTLs detected in muscle 2.21 0.03 0.26 52.39 0.80 6.05 

eQTLs detected in other tissues 10.07 12.86 6.34 51.67 65.99 32.56 

Regulatory elements detected in 

muscle 

8.21 8.09 15.78 11.51 11.34 22.13 

Regulatory elements detected in other 

tissues 

32.72 34.55 26.01 2.39 2.53 1.90 

Exon-associated elements 0.02 0.03 11.40 0.00 0.00 1.75 

Intronic regions 19.49 20.95 16.36 0.73 0.79 0.62 

Intergenic regions 19.94 17.70 23.85 0.38 0.34 0.46 

 

  



 

 

 

Table S5. Estimated %SNP heritability (proportion of genetic variance explained by a category) and enrichment levels (relative variant 

effect size per category) for different functional categories with two annotation models, FAN1 and FAN2, when applied to buttock muscling 

(rear view). MGFBLUP models were applied with GRMs constructed with either centered or standardized genotypes, respectively. The annotation 

categories are described in the Methods section. 

 

 Annotation Group 

(compartment where variants 

are located) 

%SNP heritability Enrichment 

 MGFBLUP 

Centered 

MGFBLUP 

Standardized 
BayesRR-RC 

MGFBLUP 

Centered 

MGFBLUP 

Standardized 
BayesRR-RC 

FAN1 

Coding variants 1.86 2.80 11.84 5.02 7.54 31.91 

eQTLs 15.32 19.30 3.05 72.43 91.23 14.43 

Regulatory elements detected with 

both techniques 

2.06 0.00 14.40 0.70 0.00 4.85 

Regulatory elements detected by 

ATAC-Seq 

14.09 2.60 13.69 1.86 0.34 1.80 

Regulatory elements detected with 

epigenetic data 

10.97 12.17 10.72 2.86 3.17 2.80 

Exon-associated elements 0.32 0.08 0.01 0.05 0.01 0.00 

Intronic regions 38.87 43.94 24.29 1.46 1.65 0.91 

Intergenic regions 16.50 19.11 21.99 0.32 0.37 0.42 

FAN2 

Coding variants 1.67 3.15 0.00 4.51 8.48 0.00 

eQTLs detected in muscle 6.08 4.82 0.00 144.01 114.10 0.06 

eQTLs detected in other tissues 9.86 14.61 3.27 50.60 75.01 16.77 

Regulatory elements detected in 

muscle 

4.77 1.33 12.38 6.69 1.86 17.35 

Regulatory elements detected in other 

tissues 

21.75 16.83 27.21 1.59 1.23 1.99 

Exon-associated elements 0.31 0.16 4.11 0.05 0.03 0.63 

Intronic regions 38.39 41.86 28.25 1.45 1.58 1.06 

Intergenic regions 17.17 17.24 24.78 0.33 0.33 0.48 

 

  



 

 

 

Table S6. Estimated %SNP heritability (proportion of genetic variance explained by a category) and enrichment levels (relative variant 

effect size per category) for different functional categories with two annotation models, FAN1 and FAN2, when applied to global muscling 

score. MGFBLUP models were applied with GRMs constructed with either centered or standardized genotypes, respectively. The annotation 

categories are described in the Methods section. 

 

 Annotation Group 

(compartment where variants 

are located) 

%SNP heritability Enrichment 

 MGFBLUP 

Centered 

MGFBLUP 

Standardized 
BayesRR-RC 

MGFBLUP 

Centered 

MGFBLUP 

Standardized 
BayesRR-RC 

FAN1 

Coding variants 8.01 12.11 0.63 21.59 32.62 1.70 

eQTLs 12.78 13.88 8.65 60.43 65.63 40.91 

Regulatory elements detected with 

both techniques 

21.45 23.48 15.71 7.23 7.91 5.29 

Regulatory elements detected by 

ATAC-Seq 

19.47 8.91 13.21 2.57 1.17 1.74 

Regulatory elements detected with 

epigenetic data 

1.29 0.04 10.83 0.34 0.01 2.82 

Exon-associated elements 0.06 0.03 12.14 0.01 0.01 1.87 

Intronic regions 24.15 28.36 20.29 0.91 1.07 0.76 

Intergenic regions 12.78 13.18 18.54 0.25 0.25 0.36 

FAN2 

Coding variants 8.02 13.08 15.97 21.62 35.23 43.03 

eQTLs detected in muscle 5.64 5.93 0.24 133.68 140.44 5.64 

eQTLs detected in other tissues 9.46 8.60 3.76 48.57 44.16 19.29 

Regulatory elements detected in 

muscle 

11.00 12.25 6.94 15.42 17.18 9.73 

Regulatory elements detected in other 

tissues 

29.79 23.27 20.64 2.18 1.70 1.51 

Exon-associated elements 0.06 0.04 12.38 0.01 0.01 1.90 

Intronic regions 22.52 24.93 19.72 0.85 0.94 0.74 

Intergenic regions 13.50 11.90 20.36 0.26 0.23 0.39 
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Table S7. Gain of reliability achieved with BSLMM when using panel FUN1 and LD99. 

Reliabilities were compared to those obtained with GBLUP using centered genotype and medium 

density array. Significance levels were estimated by 10,000 bootstraps. 

 

Traits 
FUN1 LD99 

Gain of reliability P-value Gain of reliability P-value 

Top 0.052 <0.0001 0.043 <0.0001 

Shoulder 0.038 0.0026 0.031 0.0082 

Buttock (rear) 0.038 0.0014 0.033 0.0048 

Buttock (side) 0.036 <0.0001 0.029 0.0008 

Global score 0.049 <0.0001 0.043 <0.0001 



 

 

 

Table S8. Reliability obtained using whole-genome sequence data, with or without annotation, compared to that obtained using a medium 

marker density panel 

 
 
Panel Model Method Shoulder Top Buttock side Buttock rear Global score 

MMD Without annotation 

GBLUP-C 0.792 0.674 0.686 0.75 0.705 

GBLUP-S 0.785 0.67 0.684 0.741 0.697 

BayesR 0.793 0.678 0.69 0.75 0.707 

WGS Without annotation 

GBLUP-C 0.811 0.694 0.7 0.758 0.724 

GBLUP-S 0.799 0.681 0.697 0.749 0.712 

BayesR 0.806 0.695 0.71 0.766 0.726 

WGS FAN1 

MGFBLUP-C 0.818 0.708 0.718 0.77 0.732 

MGFBLUP-S 0.807 0.695 0.717 0.762 0.72 

BayesRR-RC 0.795 0.69 0.71 0.75 0.715 

WGS FAN2 

MGFBLUP-C 0.819 0.708 0.718 0.769 0.734 

MGFBLUP-S 0.807 0.697 0.717 0.761 0.722 

BayesRR-RC 0.794 0.694 0.715 0.753 0.715 

WGS LDMS 

MGFBLUP-C 0.802 0.689 0.701 0.748 0.717 

MGFBLUP-S 0.799 0.688 0.702 0.749 0.719 

BayesRR-RC 0.774 0.67 0.686 0.729 0.689 

WGS LDMS x FAN1 BayesRR-RC 0.758 0.666 0.683 0.709 0.677 

 

 

 

 

 



 

 

Table S9. Reliability of different methods when using different marker panels selected via functional annotation or with an LD pruning strategy  

Traits Method WGS LD99 LD98 LD95 LD85 LD80 FUN1 FUN2 FUN3 ARRAY 

Shoulder 

BayesCπ NA 0.795 0.795 0.792 0.785 0.782 0.795 0.799 0.784 0.809 

BayesR 0.806 0.806 0.804 0.803 0.795 0.792 0.807 0.809 0.793 0.815 

BSLMM NA 0.823 0.822 0.82 0.811 0.814 0.83 0.83 0.818 0.82 

GBLUP-C 0.811 0.809 0.808 0.806 0.804 0.803 0.811 0.813 0.8 0.815 

GBLUP-S 0.799 0.796 0.794 0.792 0.788 0.786 0.796 0.799 0.781 0.811 

Top 

BayesCπ NA 0.685 0.68 0.677 0.676 0.674 0.685 0.684 0.668 0.691 

BayesR 0.695 0.697 0.695 0.695 0.686 0.685 0.701 0.7 0.691 0.701 

BSLMM NA 0.718 0.717 0.716 0.712 0.712 0.726 0.724 0.716 0.711 

GBLUP-C 0.694 0.695 0.694 0.693 0.691 0.691 0.701 0.699 0.689 0.697 

GBLUP-S 0.681 0.683 0.681 0.679 0.675 0.673 0.684 0.684 0.67 0.692 

Buttock 

side 

BayesCπ NA 0.703 0.703 0.705 0.7 0.7 0.715 0.714 0.716 0.707 

BayesR 0.71 0.716 0.716 0.715 0.713 0.712 0.721 0.72 0.723 0.715 

BSLMM NA 0.716 0.716 0.716 0.715 0.715 0.722 0.72 0.724 0.711 

GBLUP-C 0.7 0.707 0.708 0.707 0.706 0.706 0.716 0.715 0.714 0.703 

GBLUP-S 0.697 0.704 0.704 0.703 0.701 0.699 0.714 0.711 0.714 0.704 

Buttock 

rear 

BayesCπ NA 0.755 0.749 0.752 0.744 0.752 0.751 0.752 0.746 0.766 

BayesR 0.766 0.767 0.766 0.765 0.759 0.758 0.768 0.767 0.763 0.773 

BSLMM NA 0.783 0.78 0.782 0.78 0.778 0.787 0.786 0.784 0.778 

GBLUP-C 0.758 0.764 0.764 0.764 0.763 0.762 0.764 0.765 0.758 0.767 

GBLUP-S 0.749 0.753 0.753 0.752 0.75 0.747 0.753 0.752 0.746 0.765 

Global 

score 

BayesCπ NA 0.711 0.709 0.702 0.71 0.708 0.711 0.712 0.705 0.727 

BayesR 0.726 0.729 0.727 0.727 0.723 0.72 0.728 0.728 0.723 0.735 

BSLMM NA 0.748 0.746 0.743 0.74 0.739 0.754 0.754 0.744 0.746 

GBLUP-C 0.724 0.725 0.725 0.724 0.723 0.722 0.725 0.726 0.716 0.731 

GBLUP-S 0.712 0.713 0.712 0.711 0.708 0.706 0.712 0.712 0.703 0.726 
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Table S10. Reliability obtained using marker panels selected on the basis of functional information 

and for models with or without the incorporation of functional annotation 

 

Panel Approach Model Shoulder Top 
Buttock 

side 
Buttock 

rear 
Global 
score 

FUN1 

GBLUP-C 
Without 

annotation 
0.811 0.701 0.716 0.764 0.725 

BayesR 
Without 

annotation 
0.807 0.701 0.721 0.768 0.728 

MGFBLUP-C FAN1 0.812 0.701 0.713 0.766 0.726 

BayesRR-RC FAN1 0.795 0.691 0.711 0.755 0.712 

MGFBLUP-C FAN2 0.807 0.699 0.713 0.764 0.726 

BayesRR-RC FAN2 0.793 0.692 0.714 0.76 0.714 

FUN2 

GBLUP-C 
Without 

annotation 
0.813 0.699 0.715 0.765 0.726 

BayesR 
Without 

annotation 
0.809 0.7 0.72 0.767 0.728 

MGFBLUP-C FAN1 0.812 0.701 0.714 0.766 0.726 

BayesRR-RC FAN1 0.798 0.692 0.711 0.759 0.715 

MGFBLUP-C FAN2 0.806 0.696 0.714 0.764 0.726 

BayesRR-RC FAN2 0.792 0.689 0.714 0.759 0.715 

FUN3 

GBLUP-C 
Without 

annotation 
0.8 0.689 0.714 0.758 0.716 

BayesR 
Without 

annotation 
0.793 0.691 0.723 0.763 0.723 

MGFBLUP-C FAN1 0.807 0.698 0.709 0.761 0.722 

BayesRR-RC FAN1 0.794 0.692 0.716 0.755 0.713 

MGFBLUP-C FAN2 0.806 0.698 0.708 0.761 0.722 

BayesRR-RC FAN2 0.793 0.69 0.714 0.756 0.71 

 

  



Chapter 5  Experimental section – Study 3 

 

151 

5.9 Supplementary figures 

 

 

Figure S1. Significance levels of difference in reliabilities obtained with methods using whole-genome 

sequence data, with or without annotation.Comparisons were also made with medium marker density (MMD) 

array prediction. The names of the pair of methods compared are indicated on the left, with the extensions ‘-C’ 

and ‘-S’ indicating whether the GRMs used in GBLUP and MGFBLUP models were constructed with centered 

and standardized genotypes, respectively, WGS referring to the use of the whole-genome sequence data without 

annotation, FAN1 and FAN2 referring to the two models incorporating functional annotation (describing in Table 

1). P-values of differences were obtained by bootstrapping and are presented on a -log10 scale, the dashed line 

indicates the significance threshold at p=0.05. The colors facilitate the reading of the results and indicate which 

pairs of methods are compared: gray for comparisons between WGS and MMD, blue for comparisons of the three 

methods at the sequence level, green for comparisons of GBLUP-S (without functional annotation) and 

MGFBLUP-S (with functional annotation) models, purple and brown for the same comparisons with GBLUP-C 

versus MGFBLUP-C models and with BayesR versus BayesRR-RC models, respectively. 
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Figure S2. Significance levels of the difference in reliabilities obtained for each method when using subsets 

of markers selected based on LD pruning with different thresholds. The comparisons are made per method, 

with different selected subsets of markers. The names of the compared method pairs are given on the left, where 

GBLUP-S and GBLUP-C refer to GBLUP with centered and standardized genotypes, WGS refers to the use of 

whole-genome sequence data, and LD80 to LD99 refer to marker panels selected by LD pruning with the threshold 

set at r² > 80 to 99, respectively. P-values of differences were obtained by bootstrapping and are presented on a -

log10 scale, the dashed line indicates the significance threshold at p=0.05. 
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Figure S3. Significance levels of the difference in reliabilities obtained between different methods when 

using a subset of markers selected based on LD pruning with of threshold at r² > 0.99. The names of the 

compared method pairs are given on the left, where GBLUP-S and GBLUP-C refer to GBLUP with centered and 

standardized genotypes, LD99 refers to marker panels selected by LD pruning with the threshold set at r² > 99. P-

values of differences were obtained by bootstrapping and are presented on a -log10 scale, the dashed line indicates 

the significance threshold at p=0.05. 
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Figure S4. Significance levels of the difference in reliability obtained for each method when using subsets of 

markers selected based on functional annotation, LD pruning or their presence on commercial arrays. The 

comparisons are made per method, with different selected subsets of markers. The names of the compared method 

pairs are given on the left, where the extensions ‘-C’ and ‘-S’ indicate whether the GRM used in that GBLUP 

model was constructed with centered and standardized genotypes, respectively, FUN1 to FUN3 refer to marker 

panels selected based on functional annotation, ARRAY refers to markers present on commercial genotyping 

arrays, and LD80, LD90, and LD98 refer to marker panels selected by LD pruning with the threshold set at r² > 

80, 90, and 98, respectively (see Table 2 for more details on the marker panels). FUN and LD panels were 

compared for panels of approximately the same size, with the number of markers on the ARRAY panel being 

approximately the same as on the FUN3 and LD80 panels. P-values of differences were obtained by bootstrapping 

and are presented on a -log10 scale, the dashed line indicates the significance threshold at p=0.05. 
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Figure S5. Evolution of the frequency of five known recessive deleterious variants with positive effect on 

muscular traits in heterozygotes. These five recessive deleterious variants associated with congenital muscular 

dystonia (CMD), crooked tail syndrome (CTS) or stunted growth have previously been shown to confer a 

heterozygote advantage. Heterozygotes do indeed have higher muscular development. The reduction in frequency 

suggests that although these large effect variants account for a substantial proportion of the genetic variance in the 

reference population, their influence in the target population is now much less. 
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6 Discussion - Perspectives 

6.1 Identifying the Bovine Regulatory Element and Perspectives 

Extensive research in humans has highlighted the important role of regulatory variants in 

shaping complex traits (Boix et al., 2021; Meuleman et al., 2020; Trynka et al., 2015). However, the 

detection of regulatory elements in cattle has primarily been limited to a few tissues and developmental 

stages, preventing a comprehensive understanding of the full spectrum of regulatory elements and their 

activity (Foissac et al., 2019; Halstead et al., 2020a, 2020b; Kern et al., 2021; Ming et al., 2021; Powell 

et al., 2023). During my PhD, I contributed to the generation of a comprehensive catalog of regulatory 

elements using 104 samples covering 63 bovine tissue types. For tissues with a major role in 

agronomically important traits, such as the mammary gland, we included multiple individual samples to 

better capture their diversity. To my knowledge, this is the most comprehensive catalog of open 

chromatin regions in cattle to date, including novel tissues such as the immune and digestive systems. 

The entire catalogue accounts for approximately 10% of genome, in line with findings in humans. We 

defined core and consensus regions of open chromatin following Meuleman et al. (2020). Core regions 

are detected as open in more tissues, ensuring the authenticity of the signal and indicating activation 

across multiple tissue types. They also showed greater enrichment of eQTL signals compared to the 

broader consensus regions, consistent with Meuleman's observation of higher enrichment of genetic 

signals associated with complex traits in their core regions. To build a comprehensive map of regulatory 

elements, we also integrated results from previous studies by downloading publicly available data. We 

demonstrated the benefit of adding additional tissues to discover new peaks and obtained a saturated 

map when more than 90 tissue samples were included. Although most of the data from other studies did 

not pass our quality checks, some tissues, such as embryonic tissue from Halstead et al. (2020b), 

provided substantial information. Indeed, embryonic tissues showed a markedly different open 

chromatin landscape compared to other tissues, with approximately 200,000 specific peaks that were 

absent in other tissue types. This highlights the importance of including different tissue types and 

developmental stages to comprehensively mine regulatory elements. Based on the genomic locations of 

ATAC-Seq peaks, we classify them into distal and proximal regulatory elements, which are 

characterized by different roles and mechanisms. Previous studies have shown that proximal regulatory 

elements are mainly promoters, while distal elements include enhancers, insulators, and silencers, 

among others (Maston et al., 2006). In the present work, we found that proximal peaks are much less 

abundant than distal peaks. Although a possible explanation is the smaller genomic space used to define 

proximal peaks, this alone cannot explain the difference. Other factors, such as the greater abundance 

of enhancers compared to promoters, as highlighted by previous ENCODE studies, may also play a role 

(Field and Adelman, 2020). Compared to distal peaks, proximal peaks are larger and more accessible. 

Interestingly, proximal peaks are active in more tissues than distal peaks, suggesting that distal peaks 

are more responsible for tissue-specific activity. This is consistent with previous studies indicating that 



Chapter 6  Discussion – Perspectives 

 

160 

distal regulatory elements exhibit high tissue specificity (Liu et al., 2017). In contrast to previous studies, 

the inclusion of a wide range of tissue types covering different biological processes allowed us to 

interpret the biological activity of regulatory elements. Using the method proposed by Meuleman et al 

(2020), we compressed the matrix indicating the presence of each peak in all samples into 16 main 

factors representing different biological activities. We then inferred peak functions based on their 

dominant components (i.e. tissues). This information could, for example, help to identify causative 

regulatory variants associated with specific complex traits associated with these tissues. Among these 

dominant components, 12 were clearly associated with tissues that could be readily assigned to 

recognizable body systems corresponding to different biological processes, accounting for a total of 

64.5% of the peaks. For example, we identified 58,078 peaks assigned to the mammary gland-associated 

component, suggesting a role in lactation, and 49,988 muscle-related peaks that are likely to be involved 

in muscle growth and development. Figure 6.1 shows two examples of how such information is relevant 

to the identification of tissue-specific regulatory variants. These correspond to two open chromatin 

segments close to the lactalbumin alpha gene (LALBA) and myosin heavy chain 1 (MYH1) genes, which 

have been assigned to the mammary-gland and muscle components, respectively. The availability of 

different tissue types has the advantage of clearly demonstrating that these signals are specifically 

detected in the corresponding tissues. 

Our catalog and its annotation are a valuable resource for the scientific community. Our link, 

available on the UCSC Genome Browser, facilitates the visualization of regulatory elements and their 

function, providing insight into their implications in genetics, evolution, and related fields. In our 

dataset, most regulatory elements exhibited highly dynamic activity across tissues, with only a small 

fraction of peaks being ubiquitous, suggesting that specific peaks may play critical roles in tissue-

specific functions. This again highlights the importance of including a variety of tissue types to 

adequately capture these functionally specific peaks. Tissue-specific regulation has also been observed 

in other breeds, such as indicine cattle (Alexandre et al., 2021), while it has also been reported that these 

tissue-specific regulations are conserved across vertebrates (Kern et al., 2021). Our results show that 

over 213,000 peaks are specific to embryonic stages and their accessibility has been reported to change 

dramatically during development, for example between 2-4 cell embryos and morula stage embryos 

(Halstead et al., 2020b; Ming et al., 2021). This highlights the critical role of regulatory activity in 

development and differentiation, particularly in early life stages. Importantly, changes in chromatin 

accessibility also play a critical role in regulating gene expression in response to stress and 

environmental changes (Boschiero et al., 2022; Fang et al., 2019; Johnston et al., 2021). Therefore, 

future research efforts will need to include samples across all developmental stages and environmental 

conditions to effectively elucidate stage- and context-specific gene regulation, requiring dynamic data 

sampling strategies. In addition, recent studies comparing regulatory elements associated with the 

bovine immune system across breeds have highlighted the benefits of including individuals with diverse 

genetic backgrounds (Powell et al., 2023). Besides adding more samples as described above, future 
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studies may benefit from complementary techniques. While ATAC-Seq stands out as the most efficient 

method for uncovering regulatory elements, its combination with ChIP-seq of other epigenetic marks 

could significantly improve our understanding of their specific regulatory roles by inferring chromatin 

states (Ernst and Kellis, 2012). Furthermore, these combined approaches may help to identify regulatory 

elements that ATAC-Seq alone may miss, such as the unbound site of CTCF (Oomen et al., 2019). For 

example, Kern et al. (2021) combined ATAC-Seq data with other histone marks to identify the 

transcription factor footprints within regulatory elements, showing significant enrichment of known 

motifs. Furthermore, the integration of ATAC-Seq data from larger numbers of individuals with other 

omics datasets, such as transcriptomics, would allow the study of the association of gene expression 

with open chromatin information, thereby facilitating the detection of causal variants perturbing gene 

expression and the deciphering of gene regulation (Boix et al., 2021; Kim et al., 2024; Kumasaka et al., 

2016). The inclusion of a large number of individuals with different phenotypes and for multiple tissues, 

together with other omics data, will be crucial to link phenotypes in different environments to regulatory 

elements that control the gene response to stress (Alasoo et al., 2018; Arthur et al., 2024; Boix et al., 

2021; Kumasaka et al., 2016; Meuleman et al., 2020). However, it seems impossible to perform this 

labor- and cost-intensive task in a single laboratory. It is clear that a collaborative effort is required to 

generate the large-scale data needed to systematically identify regulatory elements and investigate their 

dynamic changes across tissues, developmental stages, individuals and environments. For these reasons, 

several major consortia such as BovReg and FAANG have been established (Andersson et al., 2015; 

Moreira et al., 2022). These have already generated large datasets covering more tissues from more 

individuals and in more conditions, as well as additional epigenetic data, and their first results show 

promise for the future. Finally, the recent advent of single-cell technology combined with ATAC-Seq 

(scATAC-Seq) (Buenrostro et al., 2015; Hu et al., 2023; Mezger et al., 2018) or ChIP-seq (Grosselin et 

al., 2019; Rotem et al., 2015) approaches provides new opportunities to study cell type-specific 

regulatory elements that control distinct cellular functions and contribute to cellular diversity. These 

new approaches have already allowed us to map causal variants to specific cell populations (Lake et al., 

2018) and to distinguish the regulatory networks of different cell types in the same microenvironment, 

such as malignant and immune cells of basal cell carcinoma (Satpathy et al., 2019). In cattle, the 

availability of scATAC-Seq data is gradually expanding, allowing studies of regulatory elements for 

specific cell populations, such as cell types involved in processes such as bovine skeletal muscle 

development (Cai et al., 2023), immune responses (Gao et al., 2022b; Wang et al., 2023), and somatic 

cell nuclear transfer (Huang et al., 2023). In the future, ongoing advances in single-cell technologies 

hold the promise that integrating data on transcriptional and epigenetic states at the single-cell level will 

greatly enhance our understanding of the regulatory dynamics underlying complex traits. 
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Figure 6.1. UCSC Genome Browser view of tissue-type-specific ATAC-Seq peaks and their Negative Matrix 

Factor based annotations (https://www.gigauag.uliege.be/cms/c_4791343/en/gigauag-diagnostics-software-

data) around (A) a mammary gland specific gene, LALBA (Lactalbumin Alpha) and (B) a muscle specific gene, 

MYH1 (Myosin Heavy Chain 1) where chromatin is opened in a tissue specific way across the genes. 
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6.2 Characteristics of Variants Located within ATAC-Seq Peaks 

To lay the groundwork for using regulatory variants to enhance genomic selection, we 

characterized variants mapping to ATAC-Seq peaks in 264 Dutch Holstein Friesians. A total of 

1,390,391 variants were identified, of which 67% were common variants with a minor allele frequency 

(MAF) > 0.05. These ATAC-Seq peaks are expected to be enriched for regulatory elements that are 

functionally important. Therefore, they should have lower levels of polymorphism and greater 

evolutionary conservation compared to other regions of the genome. We observed an over-dispersed 

distribution of GERP scores in ATAC-Seq peaks, suggesting a higher proportion of constrained 

elements, consistent with numerous studies indicating that regulatory regions are evolutionarily 

conserved (Kern et al., 2021). For example, a recent comparative genomic study of central placental 

mammals (Christmas et al., 2023) found that most constrained bases in the genome are located within 

regulatory elements, while coding regions are the most enriched in constrained bases (Sullivan et al., 

2023). However, this was accompanied by a higher proportion of less constrained regions, supporting 

an accelerated mutation rate. Compared to the flanking regions, we indeed observed a higher mutation 

rate in these regions, which has not been previously reported in cattle or even in livestock. We 

hypothesized that this was due to a higher mutation rate in ATAC-Seq regions and rigorously tested this 

using a variety of approaches. A recent study of mutation rates in Arabidopsis revealed epigenomic 

features that correlate with mutation rates, with open chromatin emerging as one of the most highly 

correlated features associated with elevated mutation rates (Monroe et al., 2022). This observation has 

also been made in human cells, such as somatic cells (Luquette et al., 2022) or human spermatogonia 

(Kaiser et al., 2021). One possible explanation for this is that the reduced efficiency of Pol-δ-mediated 

displacement of error-prone Pol-α-synthesized primers is due to the presence of a barrier on the DNA, 

such as a DNA-bound protein (Reijns et al., 2015). During DNA replication, double-stranded DNA is 

separated into two single strands by the replicative helicase, forming a replication fork (Leman and 

Noguchi, 2013). New strands are synthesized using these single strands as templates. The new DNA 

synthesized in the 5’ to 3’ direction is known as the leading strand, which uses the 3’ to 5’ template 

strand. This synthesis proceeds in the same direction as the replication fork, allowing it to be continuous 

and requiring only one primer at each replication fork. In contrast, the other strand, called the lagging 

strand, is synthesized in the opposite direction of the growing replication fork (Snedeker et al., 2017). 

As a result, multiple primers are used and many small fragments, known as Okazaki fragments, are 

synthesized in parallel. These fragments are later linked together to form the lagging strand (Figure 6.2). 

The primers for the leading strand and the Okazaki fragments are synthesized by different DNA 

polymerases, with Pol-α responsible for the synthesis of primers for the Okazaki fragments (Snedeker 

et al., 2017). However, Pol-α has low fidelity and a higher error rate due to its lack of 3’ to 5’ 

proofreading exonuclease activity. During replication (Snedeker et al., 2017), the DNA primers 

synthesized by Pol-α are removed and replaced by more accurate DNA fragments synthesized by Pol-δ. 
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Notably, the rapid binding of DNA-binding proteins to the Okazaki fragments can interfere with this 

replacement process, resulting in the retention of primers synthesized by the low-fidelity Pol-α (Figure 

6.3). The retention of the fragment synthesized by Pol-α is thought to lead to a higher mutation rate in 

the binding sites of the regulatory factors (Reijns et al., 2015). In addition, DNA-binding proteins such 

as transcription factors have been reported to interfere with nucleotide excision repair, which may be 

another reason for the increased mutation rate in the regulatory regions (Sabarinathan et al., 2016). Our 

data do not support the hypothesis that the number of variants in DNA binding sites identified by their 

associated motifs is higher. We hope that in the future, more motifs of DNA binding sites will be 

obtained from experimental approaches, providing more accurate results compared to the in silico 

predicted motif binding sites we used. Overall, the observed higher mutation rate remains inconsistent 

with the functional importance of regulatory regions. To further investigate this apparent contradiction, 

we compared the site frequency spectrum (SFS) of different categories of variants and found that 

variants in regulatory regions are under purifying selection, supporting their functional importance. A 

higher selection strength was observed for indels compared to SNVs. Variants in regulatory elements 

thus appear to be under more complex selection pressures and mutation rates than we initially thought. 

This suggests that conservation scores are only useful to identify a fraction of regulatory elements that 

are highly conserved across species and under strong selection. Experimental methods such as ATAC-

Seq will therefore remain essential to identify species-specific regulatory elements or those that are less 

conserved as a result of weak selection. These elements may exhibit higher sequence diversity across 

species due to a higher mutation rate. 

 

  

 

Figure 6.2. Process of DNA replication.  Double-strand DNA first is unwound by helicase (orange triangle) from 

the center to both sides, forming a bubble known as the replication fork. Then the leading strand and the Okazaki 

fragment are synthesized using the primer shown in green. For the lagging strand, the primer is synthesized by 

DNA polymerases, Pol-α. This image has been copied from https://passel2.unl.edu/view/lesson/6f214d098527/13 
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Figure 6.3. Schematic representation of the Pol-α tract retention hypothesis. During replication, the lagging 

strand, DNA at the beginning of the Okazaki fragment, is synthesized by the low-fidelity polymerase Pol-α (the 

red line in the left panel). It is replaced by the new DNA fragment synthesized by Pol-δ when linking the Okazaki 

fragment shown in the upper right panel, but remain in the lagging strand when this primer is occupied by DNA-

binding protein that increase the mutiont rate compared to the flank region. This figure has been obtained from 

Reijns et al. (2015). 

 

6.3 Enrichment of regulatory variants in ATAC-Seq peaks 

To estimate the enrichment of regulatory variants in ATAC-Seq peaks, we first conducted eQTL 

analyses in two tissues, blood and liver, to detect regulatory variants. In total, we identified 7817 and 

6172 eQTLs and their credible sets in blood and liver, respectively. These credible sets are assumed to 

include causative variants as well as variants in LD with causative variants. Using Trynka’s method 

(Trynka et al., 2015), we demonstrated that these credible sets are indeed more frequent in ATAC-Seq 

peaks. Importantly, we showed that this enrichment is not due to positional confounding, such as 

proximity to transcription start sites. Of particular interest, the overlap with the tissue-specific NMF was 

predominantly associated with distant regulatory elements. This finding is consistent with previous 

studies indicating that the distal regulation of gene expression has pronounced tissue-specific features 

(Liu et al., 2017). However, there is no difference between distant and proximal regulatory elements in 

terms of overlap with the ubiquitous NMF. To further estimate the proportion of regulatory variants 

mapped to regulatory regions and the proportion of variants within regulatory regions that are truly 

regulatory, we developed a maximum likelihood approach integrating eQTL and ATAC-Seq data. We 

estimated that only one third of the regulatory variants mapped in the existing ATAC-Seq catalog, which 

already covers almost all tissue types. A plausible explanation is the mismatch in developmental stages 

between our ATAC-Seq catalog and the eQTL data. Therefore, future studies including samples from 

different developmental stages are essential to elucidate the dynamics of regulatory elements during 

development. In addition, other factors may explain our observation. For example, ATAC-Seq may not 

capture all regulatory elements, potentially missing small regions that are open but not effectively 

amplified, silencers/insulators that are sometimes undetectable, or eQTL signals associated with splicing 

mutations. The inefficiency of ATAC-Seq in silencer detection was illustrated by the lack of ATAC-
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Seq signal associated with the regulatory variant previously identified in IGF2. Although 24 out of 25 

variants in ATAC-Seq are non-regulatory, this knowledge is still useful for identifying causative 

regulatory variants. It is also possible that incorporating eQTL data from other tissues would increase 

the proportion of variants in ATAC-Seq estimated to be regulatory, but publicly available eQTL 

resources such as cGTEx rely on genotype imputation based on RNA-seq data, which may not meet the 

requirements of our study. 

 

6.4 Evaluation of heritability partitioning methods in livestock 

Heritability partitioning plays a central role in investigating the genetic architecture underlying 

complex traits, allowing a deeper understanding of the genetic factors associated with these traits, and 

providing opportunities to improve genomic selection (Loh et al., 2015a; Yang et al., 2011b). Currently, 

heritability partitioning methods have been mainly developed and validated using human data (Finucane 

et al., 2015; Patxot et al., 2021; Yang et al., 2015), but they are widely used in livestock genetic studies 

with limited validation. Livestock species, such as cattle, are subject to intensive selection and exhibit 

significant differences in demographic history and genomic characteristics compared to humans. These 

differences include small effective population size (Hayes et al., 2003; MacLeod et al., 2013), high 

levels of inbreeding (Leroy, 2014) and relatedness, and long-range linkage disequilibrium (Gautier et 

al., 2007). To date, the GREML approach has only been evaluated for heritability partitioning in cattle 

in a single study using less than 3000 individuals and a limited number of scenarios (Cai et al., 2022). 

Therefore, our study, which evaluates state-of-the-art approaches with a large cohort and using 

(imputed) sequence data, provides valuable insights into the properties of heritability partitioning 

methods and their accuracy in different scenarios, both with and without stratification, when applied to 

livestock. Overall, our results indicate lower levels of precision in cattle compared to human studies, for 

both GREML and BayesRR-RC methods. Higher standard errors were observed even in the simplest 

scenarios, where a lower bias was observed for the LDMS model, although all the models we tested 

provided good estimation. We speculate that a major factor in this discrepancy is the high level of LD 

and individual relatedness, where differences between individuals are small. In human studies, one 

individual from each pair with a relatedness greater than 0.025 is typically excluded to ensure higher 

resolution (Speed et al., 2012). However, using such a threshold in cattle would result in the exclusion 

of most individuals due to the reduced effective population size resulting from domestication and 

artificial selection, resulting in higher relatedness between individuals. In scenarios where causative 

variants were enriched in certain LD score and MAF categories, models accounting for stratification 

provided unbiased results in agreement with previous studies (Yang et al., 2015), but the methods 

remained imprecise. This high level of variation in estimates was also observed and even more 

pronounced in Cai's simulation study in Holstein cattle (Cai et al., 2022), across scenarios with and 

without MAF stratification, and was particularly evident in the simplest scenarios where we did not use 



Chapter 6  Discussion – Perspectives 

 

167 

functional annotation. In addition, we found that for GREML, assuming the same relationship between 

effect size and LD score or allele frequency to construct the GRM and to simulate the phenotype led to 

improved results, although the true relationship on real data remains unknown. Interestingly, LDMS 

models appeared robust when the rules used to construct the GRM were different from those used in the 

simulations. When enrichment levels of multiple functional categories were estimated simultaneously, 

accurate heritability partitioning was achieved only in scenarios with no enrichment (equal level for all 

categories) and with 100% enrichment (a single category contributing to genetic variation). In the most 

complex scenarios, where multiple functional groups had different enrichment levels, high variation in 

estimates was observed, especially for small annotation groups. Despite the poor estimation in these 

complex scenarios, the results remained informative and reflected the true ranking. Strong confounding 

between certain functional groups, such as variants upstream and downstream of genes and variants in 

OCR, led to systematic biases in their estimators for both BayesRR-RC and GREML methods. In human 

studies, this confounding effect has also been observed for annotation groups that are short in length and 

in high LD with other groups (Gusev et al., 2014). Correlations between elements from the GRMs were 

used in our study to quantify the degree of confounding between categories and showed that the category 

of intergenic variants had less similarity to other annotation groups. This may explain why higher 

accuracies were observed when %SNP heritability was estimated for this category using the two-

component model. Other parameters, such as the number of causative variants, SNP heritability, and the 

distribution of effect sizes in different categories, may also affect the accuracy of parameter estimation. 

However, it remains difficult to comprehensively simulate all parameter combinations. Nevertheless, 

compared to previous studies in cattle, our research provides new insights by using finer annotation 

levels, e.g. by including a large catalog of experimentally obtained functional data, by including more 

individuals with sequence-level data, and by exploring more complex scenarios. 

Several methods have been developed to estimate the levels of enrichment of different 

functional groups. GREML and BayesRR-RC are the most commonly used methods that use individual 

data to directly estimate the heritability explained by each category. GREML has been widely used in 

livestock studies due to its lower computational requirements and its ability to handle genotype data at 

the sequence level. Recently, methods based on summary statistics have emerged as powerful tools for 

partitioning heritability in human studies, but are rarely used in livestock (Wray et al., 2019). Recently, 

lower accuracy was reported in a study conducted in cattle (Xiang et al., 2023). Obtaining summary 

statistics in livestock species is also computationally demanding, as GWAS must be performed using 

linear mixed models due to the high levels of relatedness and stratification. BayesRR-RC is the first 

software to allow partitioning of heritability in large cohorts with sequence-level data using a Bayesian 

model in a reasonable time (Patxot et al., 2021). Running these two approaches in livestock with 

different models (e.g., LDMS, MS, LDS, annotation groups) allows understanding whether there is 

stratification among variant effects and which categories have a higher contribution to the genetic 

variance of a complex trait. In our study, GREML had a lower standard deviation than BayesRR-RC in 
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simple scenarios, but BayesRR-RC provided a better estimate with higher resolution in complex 

scenarios. In particular, the rules used to simulate the phenotypes (i.e., the relationship between effect 

size and MAF) in the simpler scenarios matched the rule used to construct the GRM, which may have 

favored GREML. In fact, the performance of GREML began to degrade when using a GRM constructed 

based on different rules. Unlike LDMS, which corrects for stratification by grouping variants, LDAK 

takes a quantitative approach by weighting variants based on their LD (Speed et al., 2012). However, 

the weighting parameters are estimated based on human data and require further study to extrapolate to 

other species due to different LD patterns in non-human genomes. In our study, when using the LDMS 

approach with GREML, nearly half of our simulations failed to converge due to the excessive number 

of parameters to be estimated. This problem has been reported elsewhere (Finucane et al., 2015; Speed 

et al., 2017), and fitting a large number of categories can also lead to a huge demand on computational 

resources. While EM-GREML has been reported to converge where AI-GREML fails (Misztal, 2008), 

its computational inefficiency hinders widespread implementation. In contrast, BayesRR-RC allows the 

estimation of more hyperparameters. However, when fitting models with fewer categories, GREML 

shows greater computational efficiency than BayesRR-RC, as sampling in BayesRR-RC becomes more 

time consuming. In our simulations, the two-component model corresponding to the GFBLUP, which 

is widely used to include annotations in variance component estimation or genomic prediction models 

(Edwards et al., 2016), consistently produced biased results in the most complex scenarios, regardless 

of LDMS correction. Therefore, we advocate the use of more categories instead of just two to mitigate 

overestimation due to absorption of effects from neighboring categories, especially for categories close 

to functional categories enriched in causal variants, such as coding sequence. Following the approach 

of Orliac et al. (2022), we ran 5000 iterations for BayesRR-RC in our analysis, which proved sufficient 

for parameter convergence, as evidenced by convergence diagnostic plots showing detailed equilibrium. 

In addition, in our simulations we observed only subtle differences in parameter estimation compared 

to running longer chains of 50,000 iterations. Slow parameter convergence was observed in some 

simulations of complex scenarios, and in some cases the parameters did not reach convergence even 

after 5,000 iterations. This may be due to high levels of confounding between different categories that 

are closely related, or to the complexity of the mixture distribution of effect sizes for certain categories 

of livestock (which ultimately requires more distributions to fit the wide range of effect sizes). It is 

therefore suggested that the sampling chain should be extended. However, as the number of iterations 

increases, so do the computational and storage requirements, making it impractical to handle large 

cohorts at the sequence level. In summary, when computational resources are plentiful and the amount 

of data to be processed is limited, it is recommended to use a longer chain, as this may provide more 

accurate estimates. However, in cases where computational resources are limited, the use of 5,000 

iterations in bovine studies still provides reasonable estimates compared to those obtained from longer 

chains. 
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6.5 Heritability partitioning for complex traits in cattle 

In humans, the genetic architecture of height and disease has been extensively studied using 

heritability partitioning across chromosomes (Yang et al., 2011b), genomic locations (Loh et al., 2015a), 

and functional annotations (Finucane et al., 2015; Gusev et al., 2014; Patxot et al., 2021; Zhang et al., 

2021). Studies have shown significant enrichment of heritability for quantitative traits, such as complex 

diseases, in regulatory elements, coding sequences, and conserved regions compared to intergenic or 

intronic regions (Finucane et al., 2015; Gusev et al., 2014; Patxot et al., 2021; Zhang et al., 2021). In 

cattle, heritability partitioning studies based on functional annotation have been less common. In 

addition, the functional classes used in these studies, based on gene ontology (GO) (Lingzhao et al., 

2017), eQTL analyses (Xiang et al., 2023) and the Ensembl database (Bhuiyan et al., 2018), are often 

defined at a lower resolution than in humans. Furthermore, cattle lack a comprehensive annotation 

catalog that is widely used across studies, making it difficult to reuse and compare results from different 

studies. Nevertheless, these studies provide valuable insights into the genetic architecture of complex 

traits in cattle and other livestock species and have been used to select markers for genomic prediction. 

Xiang et al (2019a) developed the FAETH score to quantify the importance of each variant based on the 

enrichment levels estimated for different (functional) categories, and showed that conserved sequences 

and eQTLs have some of the largest SNP effects (Xiang et al., 2019a). Later, Xiang et al. (2023) 

estimated that eQTLs account for a significant proportion of heritability, further highlighting the 

importance of regulatory variants in the genetic variation of complex traits. However, the two-

component approaches used in their studies may be subject to bias (e.g., risk of overestimation), as 

demonstrated in this thesis. They then used this information to select markers with larger genetic 

contributions to create a custom array for genomic selection (Xiang, 2021; Xiang et al., 2021b). In the 

present work, using multiple annotation groups simultaneously, we found that coding variants showed 

the highest per-SNP heritability for muscle-related traits and size (consistently across multiple analyses). 

Although both studies estimate that regulatory variants have the largest contribution to genetic variance, 

we found higher enrichment levels per SNP for coding variants. The estimated importance of eQTLs 

also differs between the two studies. In Xiang et al (2023), eQTL variants were estimated to explain up 

to 70% of the heritability, whereas we estimated that cis-eQTLs accounted for about 10% of the 

heritability explained by cis-eQTLs using GREML and BayesRR-RC. These discrepancies between our 

results and those of Xiang et al. (2023) may be due to differences in populations, traits, and annotations 

used. In humans, Luke et al. (2017) found that the %SNP heritability associated with cis-eQTLs across 

30 traits was 21%, while Qi et al. (2022) reported a value of approximately 10% for both cis-eQTLs and 

cis-sQTLs across 12 traits. Our results are also consistent with those of Gualdrón Duarte et al. (2023), 

who observed in an association study in the BBC population that coding variants accounted for a 

substantial fraction of the genetic variance. We also showed that muscle-related regulatory elements had 

higher enrichment levels than other regulatory elements, and the same trend was observed for eQTLs. 
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This means that it is important to include this information in heritability partitioning studies. As 

functional annotation continues to improve, thanks to resources generated by consortia such as BovReg 

(Moreira et al., 2022) or FAANG (Andersson et al., 2015), or as more complete catalogs of eQTLs 

become available from cGTEx, a standardized and well-annotated catalog similar to that available for 

humans may be developed. Such a functional atlas could improve our understanding of the genetic 

architecture of different traits beyond muscle-related traits. Matching functional annotations such as 

eQTL data or ATAC-Seq from the BBC itself is promising, as the catalog we used mostly consists of 

data not generated in the BBC. Indeed, if functional annotation is breed specific, heritability partitioning 

studies will yield less informative results. Currently, most of these studies in cattle use imputed 

genotypes rather than sequencing data, which may not accurately capture rare variants and thus affect 

the accuracy of parameter estimation, especially for models with MAF stratification. The combination 

of improved annotation with high quality genotypes could lead to more accurate and useful results. 

However, we urge caution in interpreting these results for cattle and other livestock species due to the 

large standard errors observed for both GREML and Bayesian approaches in our study. 

 

6.6 The use of functional annotation in genomic selection 

Genomic selection has been widely adopted in cattle breeding due to its higher accuracy and its 

ability to significantly reduce the generation interval. It has recently been implemented in BBC, where 

one of the main selection criteria is muscular development. A single mutation in the myostatin gene 

(MSTN) causing the double muscling phenotype has been fixed, but estimated heritability and continued 

response to selection indicate that genetic variation is still present in the population, providing 

opportunities for further genetic improvement. In my thesis, I performed genomic selection based on 

imputed whole genome sequence data for muscular development traits in BBC. In addition, we 

incorporated functional annotation information using several models to further improve the performance 

of genomic selection. Compared to the accuracy based on MMD arrays used in the official evaluation, 

we observed systematically higher prediction accuracy – approximately 0.018 and 0.016 - for Bayesian 

and GBLUP models, repectively, although this difference was not always statistically significant. As 

discussed in the introduction, there is ongoing debate about the benefits of using sequence-level data for 

genomic selection, especially when considering the costs. The lack of significant improvement using 

sequence-level genotypes suggests that markers on MMD arrays are highly efficient at tagging 

ungenotyped variants, likely due to the high LD patterns in cattle. Consequently, the use of full sequence 

data alone does not show a clear advantage in our analysis, which is consistent with some other studies. 

However, in a recent GWAS in BBC, the use of sequence-level data increased the power (i.e. the 

significance levels). It is important to note that in our comparison, the model for full sequence data only 

considered polygenic effects, where all variants were equally weighted. By leveraging the fact that 

causative variants are unevenly distributed across different functional annotations, and that full 
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sequencing allows us to accurately assign functional annotations to each variant, we can incorporate this 

information as a prior in both GBLUP and Bayesian models. This approach can help better distinguish 

genetic contributions from different categories, potentially improving the accuracy of genomic selection. 

We observed systematically higher accuracy using a GBLUP model in which variants were partitioned 

based on their functional annotations. Further benefits are expected by refining the annotation process. 

In our second annotation approach, we divided eQTL and regulatory variants based on whether they 

were detected in muscle, since our phenotypes of interest were muscular development traits. However, 

the results were almost the same, although we observed a higher per SNP heritability for the regulatory 

variants detected in muscle. Nevertheless, we cannot conclude that annotation tuning is ineffective. For 

example, the use of relevant functional annotations has improved association signals in cattle (Jiang et 

al., 2019). In addition, colocalization of GWAS signals and eQTLs from relevant tissues in cGTEx 

demonstrated the benefits of using tissue-specific catalogs (Liu et al., 2022). In our study, the limited 

benefits of tuning annotations may be due to the small number of these variants detected in muscle, 

resulting in a limited overall impact despite larger effects per SNP. Furthermore, the effect size of 

variants in high LD with them may be reduced, resulting in a similar overall contribution for the same 

segment, thus maintaining the estimated breeding value for that segment. In cases where passenger SNPs 

are closely linked to causal SNPs, the benefit of knowing the causal variant becomes less significant. 

Another explanation is that the catalog we used is currently imperfect compared to that for humans. For 

example, the eQTL variant catalog used here was derived from a pilot study of the cGTEx project, which 

used a small group of individuals with variants called from RNA-seq data. Although the overlap of 

eQTL and GWAS signals has been demonstrated in a tissue-relevant manner, the limited data may affect 

the results. In the future, with the inclusion of leading SNPs from an improved catalog (e.g., more 

accurate, breed-matched, and well-matched developmental stages and tissues), we may observe 

improved accuracy. However, lower accuracy was observed when using functional annotation with 

BayesRR-RC, although BayesRR-RC is generally superior to GBLUP in annotation-free models. This 

is inconsistent with findings in humans, where using annotation with BayesRR-RC outperformed 

annotation-free predictions in most cases (Orliac et al., 2022). A possible explanation is that there is a 

high degree of confounding between different annotation groups, and more iterations than we specified 

are needed to achieve convergence. Indeed, we observed some confounding between our functional 

categories, such as confounding between eQTLs and other regulatory variants. However, even after 

doubling the number of iterations, we observed similar prediction accuracies, and the computation time 

increased to about 10 days for our data. In future, using improved annotation or extending the annotation 

to include true causal variants by using a probabilistic approach to assigning variants to groups and 

allowing variants to be assigned to more than one group instead of hard grouping could be beneficial. 

BayesRCO has shown that allowing flexibility in variant grouping improves prediction (Mollandin et 

al., 2022). A non-significant improvement when comparing BayesRC with and without specified 

annotation was also reported by Xiang et al. (2021). However, using annotation with BayesRR-RC 
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achieved higher prediction for stature, another complex trait we studied. This suggests that no single 

method may be suitable for all traits. When the LDMS approach was used to group variants in the models, 

we did not observe LDMS stratification in heritability estimation. However, in contrast to human studies, 

reduced prediction accuracy was observed when LDMS models were used for genomic prediction in 

cattle. Nevertheless, when we pruned the variants inspired by the LDAK model, we observed that 

appropriate trimming is beneficial. Although not statistically significant, this improvement was 

systematically observed. These results obtained with LD pruning and LDMS models seem somewhat 

contradictory. I suspect that heritability is overestimated in some LDMS categories and underestimated 

in others. This could lead to an overall improvement in heritability estimation, but not in genomic 

prediction. Improving genomic selection in animal breeding through functional annotation remains 

challenging, as methods commonly borrowed from human studies often perform worse in animals. 

Additionally, as the number of annotation groups increases, particularly when considering LD and MAF 

stratification simultaneously, we must be cautious about over-parameterization when using annotations. 

To gain insight in improving the routine genomic selection, where whole genome sequence is 

not the first priority, we selected subsets of variants based on functional annotation or LD pruning. 

Variant selection offers two major advantages: significant reduction in data dimensionality, thereby 

reducing computational burden, and allowing the use of other models. Our results show that LD pruning 

reduces the number of SNPs to one-fifth without compromising accuracy; in fact, it often improves 

performance. Interestingly, different methods yielded different levels of performance, with the BSLMM 

consistently outperforming others. Overall, the best results were obtained from the subset of variants 

identified by functional annotation. Our study highlights that marker trimming and selection are critical 

not only for computational efficiency, but also for improving prediction accuracy. 

The objective of my thesis was to investigate whether the accuracy of genomic prediction 

models could be improved using whole-genome sequence data and functional annotation. This was done 

in a setting where all individuals were genotyped, and is therefore only an exploratory step. If such 

additional information is found to be valuable, further steps should be taken before application in the 

field. Indeed, unlike human genetic studies where all individuals are genotyped, there are large numbers 

of ungenotyped individuals in livestock genetic evaluations. The ssGBLUP approach is able to exploit 

their information (phenotypes and pedigree) and combine it with the genomic information to achieve 

higher accuracy than a GBLUP (using only genotyped individuals), and is therefore the reference 

method in routine genomic evaluation models. Therefore, for practical field application, it will be 

important to use methods that can exploit whole-genome sequence data and functional information with 

a ssGBLUP approach. One possible strategy to do this is to give different weights to SNPs when building 

the GRM, a strategy that can be applied in both GBLUP and ssGBLUP settings. This method, also 

known as weighted ssGBLUP, uses information such as functional annotations or statistical results to 

assign weights to markers when calculating the GRM (Teissier et al., 2018). However, studies on the 

performance of weighted ssGBLUP have shown inconsistent results, with some reporting no significant 
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improvement over ssGBLUP (A. Liu et al., 2020b; Mehrban et al., 2021; Santana et al., 2023; Teissier 

et al., 2018). An alternative approach, featured ssGBLUP, has been proposed by extending GFBLUP to 

ssGBLUP (A. Liu et al., 2020b). Liu et al. 2020 compared featured ssGBLUP and weighted ssGBLUP 

with ssGBLUP in genomic prediction of milk and protein yield in dairy cattle, but found no significant 

differences in prediction reliability (A. Liu et al., 2020b). Marker preselection, also investigated in my 

PhD thesis, is an alternative to weighted ssGBLUP. It was investigated in ssGBLUP and slightly better 

results were obtained by including coding variants (Fragomeni et al., 2017) or variants in or near genes 

(Teng et al., 2022). As expected, all these approaches are derived from extensions of GBLUP, which 

means that they are likely to inherit properties from their GBLUP-based origins. Therefore, testing 

genomic data and functional annotations in GLUBP-based prediction models is informative about their 

extensions to ssGBLUP. As such, the model and annotation explored in the present study also provide 

further insight into their application in routine animal breeding. 

Finally, an important consideration for routine field applications using whole-genome sequence 

data or functional annotation is the genetic correlation between all relevant traits, not only production 

traits but also traits related to fitness or environmental aspects. Recently, it has been shown that 

accelerating selection for primary traits (e.g. performance traits) with genomic selection could 

deteriorate correlated secondary traits for several reasons, including mismatched management, changing 

heritabilities and genetic correlations (Misztal and Lourenco, 2024). These aspects could be further 

amplified if functional information is incorporated into genomic selection, as it could accelerate further 

genetic gains and because more information may be available for certain traits. Such considerations are 

important in the Belgian Blue genomic evaluation as most of the recorded traits are performance traits 

and genomic selection was originally implemented only for these traits. Conversely, multiple-traits 

models that jointly consider more phenotypes may have the potential to better exploit functional 

information by using more data to estimate parameters and variant effects. 
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