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Résumé

Depuis qu'elle a été proposée en 2001, la sélection génomique (SG) a été mise en ceuvre avec
succés dans plusieurs grandes espéces d’élevage. Cependant, ses performances peuvent encore étre
améliorées, par exemple en termes de précision. Les modéles couramment utilisés donnent en effet le
méme poids a tous les variants, malgré leurs différences biologiques. 1l a cependant été démontré que
I'ampleur de l'effet d'un variant varie considérablement en fonction de sa catégorie fonctionnelle, les
variants codants ayant des effets plus importants. En outre, des études récentes sur les caracteres
complexes chez I'nomme ont mis en évidence l'importance des variants régulateurs qui affectent
I'expression des génes. De méme, l'inclusion d'informations d'annotation fonctionnelle dans les modéles
de prédiction génomique a permis d'améliorer leur précision chez I'hnomme. Enfin, I'identification des
éléments régulateurs et des variants régulateurs est également essentielle pour l'identification des
variants causaux dans les études d'association.

Les objectifs de cette thése étaient de contribuer a l'annotation fonctionnelle du génome bovin
en générant un catalogue de variants régulateurs, et d'utiliser cette annotation fonctionnelle pour étudier
I'importance de différentes catégories fonctionnelles dans la variation génétique de caractéres complexes
d'intérét chez les bovins blanc bleus belges (BBB). Enfin, j'ai cherché a savoir si I'incorporation de ces
informations fonctionnelles dans les modeles de prédiction génomique pouvait améliorer leur précision.

Dans la premiére partie de cette étude, 104 échantillons provenant de 63 types de tissus ont été
analysés par ATAC-Seq, l'une des approches les plus utilisées pour la détection d'éléments régulateurs.
Au total, 976 813 pics ont été détectés, représentant 10,0 % du génome. Les pics proximaux (c'est-a-
dire proches des génes) étaient plus ouverts et actifs dans un plus grand nombre de types de tissus que
les pics distaux, qui sont plus éloignés des génes et plus spécifiques aux tissus. Les scores GERP, qui
reflétent les contraintes évolutives, ont une distribution dispersée dans les régions de chromatine ouverte
(RCO), ce qui suggére un processus évolutif complexe. Pour faciliter I'interprétation biologique des pics
observés, nous avons compressé la matrice contenant les 976 813 pics de 104 échantillons en 16
composantes par factorisation matricielle non négative. La plupart des composantes résultantes ont pu
étre facilement attribuées a un processus biologique car elles regroupaient des tissus anatomiguement et
fonctionnellement similaires. Nous avons ensuite caractérise les variants dans les RCO en utilisant les
données de séquence de 264 individus Holstein. Sur les 11030905 variants nucléotidiques détectés dans
cette cohorte, 1256997 correspondaient a des pics ATAC-Seq. Malgré le nombre plus faible de variants
attendus dans les RCO en raison de la sélection purifiante, nous avons observé un niveau plus élevé de
polymorphismes. Cela pourrait étre d0 a un taux de mutation plus élevé dans les RCO, hypothése
supportée par la fréquence des ‘singletons’ et des mutations de novo 1,3 fois plus élevée dans ces
régions. Nous avons ensuite utilisé 7 817 eQTLs sanguins et 6 172 eQTLs hépatiques pour évaluer si
les RCO étaient enrichies en variants régulateurs. En utilisant une méthode de permutations pour

quantifier I'enrichissement, nous avons constaté que les eQTLs ont tendance a chevaucher les RCO plus
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souvent que par hasard, et que cet enrichissement est spécifique au tissu. Nous avons estimé que la
proportion de variants régulateurs correspondant aux pics ATAC-Seq est d'environ 1 sur 3, et que la
proportion de variants dans les pics ATAC-Seq qui sont régulateurs est d'environ 1 sur 25, ce qui suggére
gue ce catalogue peut étre utile pour la SG.

L'objectif de la deuxieme partie de la thése était d'estimer la proportion de variance génétique
associée aux éléments régulateurs pour les caractéres de développement musculaire en utilisant environ
15000 vaches BBB dont les génotypes ont été imputés au niveau de la séquence. Bien que des méthodes
telles que GREML et BayesRR-RC permettent un tel partitionnement de I'héritabilité, leur précision n'a
pas été étudiée de maniére approfondie chez les espéces animales, qui ont une structure tres différente
de celle des données humaines en termes de taille effective de la population, de niveaux de parenté et
de déséquilibre de liaison (DL). Nous avons donc évalué ces méthodes sur la base d'une étude de
simulation utilisant la structure de nos données. En I'absence de stratification, nous avons constaté que
les méthodes étaient non biaisées et imprécises. Comme chez I'nomme, des modeéles plus complexes
avec davantage de catégories de variants étaient nécessaires en présence d'une stratification due au DL
ou aux fréquences alléliques. Dans des scénarios plus complexes, avec plusieurs groupes d'annotation
ayant des tailles d'effet différentes, nous avons observé qu'il pouvait y avoir une confusion entre les
différentes catégories et que les estimateurs étaient imprécis. Néanmaoins, ils étaient toujours indicatifs
des tendances globales. Enfin, lorsque les méthodes ont été appliquées a des caractéres de
développement musculaire, nous avons constaté que les RCO contribuaient significativement a la
variance génétique et que les variants codants avaient les effets les plus importants par SNP, ce qui
plaide en faveur de I'utilisation de ces informations dans la GS.

Dans le dernier chapitre, j'ai évalué les avantages de l'utilisation des données de séquence et
d’annotation fonctionnelle pour améliorer la précision de la SG. L'utilisation de la séquence a légérement
augmenté la fiabilité de la SG, et une légére augmentation supplémentaire a été observée avec lors de
I'incorporation de l'annotation fonctionnelle dans le modéle GBLUP. Jai ensuite testé une stratégie
alternative en sélectionnant des sous-ensembles de marqueurs. Cette stratégie a permis d'utiliser
davantage de modéles. En particulier, le Bayesian Sparse Linear Mixed Model (BSLMM), combinant
un effet polygénique avec quelques variants majeurs, a permis d’obtenir une plus grande précision pour
tous les caracteres. Les meilleurs résultats ont été obtenus lorsque les informations fonctionnelles ont
été utilisées pour sélectionner les marqueurs. J'ai également observé qu'une plus grande précision était
obtenue avec des génotypes centrés qu'avec des génotypes standardisés, ce qui indique une relation
différente entre la taille de I'effet du marqueur et la fréquence de I'alléle que chez I'hnomme, probablement
en raison de la sélection directionnelle et de la présence de quelques variants communs a grand effet.

Pour conclure, cette thése a démontré I'importance des variants régulateurs chez les bovins et

qu'ils peuvent étre utilisés pour améliorer la précision de la SG, bien qu'il reste des progrés a faire.
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Summary

Since it was first proposed in 2001, genomic selection (GS) has been successfully implemented
in several major livestock species and has had a major impact on livestock breeding. However, its
performance can be further improved, for example in terms of accuracy. The models commonly used in
GS give equal weight to all variants, despite their biological differences. In fact, the effect size of a
variant has been shown to vary significantly as a function of the functional category of the variant, with
coding variants having larger effects. In addition, recent studies of complex traits in humans have
highlighted the importance of regulatory variants that affect traits by perturbing gene expression in a
guantitative manner. Consistently, the inclusion of functional annotation information in genomic
prediction models has led to improved prediction accuracy in humans. Finally, the identification of
regulatory elements and regulatory variants is also essential for the identification of causative variants
in association studies.

The objectives of this thesis were to contribute to the functional annotation of the bovine genome
by generating a catalog of regulatory variants, and to use this functional annotation to study the
importance of different functional categories in the genetic variation of complex traits of interest in
Belgian Blue cattle (BBC). Finally, I investigated whether incorporating this functional information into
genomic prediction models could improve their accuracy when applied to the same set of traits.

In the first part of this study, 104 samples from 63 tissue types were subjected to transposase
accessible chromatin using sequencing (ATAC-Seq), one of the most widely used approaches for the
detection of regulatory elements. A total of 976,813 peaks were detected, representing 10.0% of the
genome (5% for the core regions of the peaks). Proximal peaks (i.e., close to genes) were more open
and active in more tissue types than distal peaks, which are more distant from genes and more tissue
specific. Genomic evolutionary rate profiling (GERP) scores, reflecting evolutionary constraints, had a
dispersed distribution in open chromatin regions (OCR), suggesting a complex evolutionary process. To
facilitate biological interpretation of the observed peaks, we compressed the matrix containing the
976,813 peaks from 104 samples into 16 components by non-negative matrix factorization. Most of the
resulting components could be easily assigned to a biological process as they grouped anatomically and
functionally similar tissues. We then characterized variants in OCR using sequence data from 264
Holstein individuals. Of the 11,030,905 single nucleotide variants detected in this cohort, 1,256,997
mapped to ATAC-Seq peaks, including 847,831 common variants. Despite the lower expected number
of variants in OCR due to evolutionary constraints resulting from purifying selection, we observed a
higher level of polymorphisms. This could be due to an increased mutation rate in OCRs, a hypothesis
supported by a 1.3-fold increase in the frequency of singletons and de novo mutations in these regions,
in agreement with recent findings in humans and Arabidopsis. We then used 7,817 blood and 6,172 liver
expression quantitative trait loci (eQTLs) and their credible sets, obtained from an experiment with more

than 170 samples, to evaluate whether OCR were enriched in the regulatory variant. Using a
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permutation-based method to quantify enrichment, we found that credible sets tend to overlap with
ATAC-Seq more often than by chance alone, and that this enrichment is tissue-specific. We estimated
that the proportion of regulatory variants mapping to ATAC-Seq peaks is approximately 1 in 3, and that
the proportion of variants in ATAC-Seq peaks that are regulatory is approximately 1 in 25, suggesting
that this catalog may be useful for GS.

The objective of the second part of the thesis was to estimate the proportion of genetic variance
associated with regulatory elements for muscular development traits in BBC using a cohort of ~15,000
BBC cows with imputed genotypes at the sequence level. Although methods such as genomic restricted
maximum likelihood (GREML) and BayesRR-RC allow for such heritability partitioning, their accuracy
has not been thoroughly studied in livestock species, which have a very different structure compared to
human data in terms of effective population size, relatedness levels, and linkage disequilibrium (LD)
patterns. Therefore, we started an evaluation of these methods based on a simulation study using the
structure of our data sets. Overall, we found that the methods were unbiased and imprecise in the absence
of stratification. As in humans, more complex models with more categories of variants were required in
the presence of LD or allele frequency stratification. In more complex simulation scenarios, with
multiple annotation groups having different effect sizes, we observed that there could be confounding
between the different categories and that the estimators were imprecise. Nevertheless, they were still
indicative of global trends. Finally, when the methods were applied to muscular development traits, we
found that OCR accounted for a large fraction of the genetic variance and that coding variants had the
largest effects per single nucleotide polymorphisms (SNPs), arguing for the use of this information in
GS.

In the final chapter, | evaluated the benefit of using whole-genome sequence (WGS) data and
functional annotation to improve the accuracy of GS, with a particular emphasis on coding and
regulatory variants and on elements detected in muscle, the tissue of interest in BBC. Using WGS data
slightly increased the reliability of GS, and a slight additional increase was observed with GBLUP when
incorporating functional annotation into the model, but not with BayesRR-RC. | then tested an
alternative strategy by selecting subsets of markers. This strategy allowed more models to be used, as
GBLUP and BayesRR-RC were the only approaches that could be run on the full sequence. In particular,
the Bayesian Sparse Linear Mixed Model (BSLMM), a model that fits a polygenic effect combined with
a few large effect variants, achieved the highest reliabilities across all traits. The best results were
obtained when the functional information was used to select the marker panels. | also observed that
higher accuracy was obtained with centered genotypes compared to standardized genotypes, indicating
a different relationship between marker effect size and allele frequency than in humans, probably due to
directional selection and the presence of a few common large-effect variants. Here, only 50 to 200 large-
effect variants were fitted by BSLMM in the best models.

Overall, the thesis has shown the importance of regulatory variants in cattle and that they can

be used to improve the accuracy of GS although there is still room for improvement.
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General Preamble

Animal breeding has seen significant advances over the years, from pedigree based breeding
value estimation, through marker assisted selection (MAS), to genomic selection, enabling continuous
increases in livestock productivity (Georges et al., 2019; Meuwissen et al., 2016). In recent years,
genomic selection has been widely adopted and has had a tremendous impact on livestock breeding,
including changes in breeding programs (e.g. Garcia-Ruiz et al., 2016). The key feature of genomic
selection, proposed by Meuwissen et al. in 2001, is its ability to use dense variant maps that allow the
effects of quantitative trait loci (QTLs) associated with the trait of interest to be captured. Its main
advantages are increased accuracy of breeding values coupled with a reduced generation interval, and
the ability to select for traits that are more difficult to measure or for sex-specific traits (Goddard and
Hayes, 2007; Meuwissen et al., 2016). The cost of genotyping and sequencing technologies has fallen
dramatically over the last 20 years, making it possible to genotype large cohorts of individuals and
perform large-scale resequencing of entire genomes on hundreds of individuals (Quackenbush, 2022).
Accordingly, the number of animals genotyped and whole genome sequenced has steadily increased
over the last decade, greatly facilitating the use of genomic selection. Combining these data with
efficient missing genotype imputation techniques allows genome-wide association studies and genomic
selection to be performed at the sequence level in large cohorts, with the potential to increase the power
of association studies and the accuracy of genomic predictions (Quick et al., 2020). In cattle, for
example, the whole genome sequence data from 2,703 individuals covering the major ancestors of
several breeds gathered in the 1000 Bull Genomes Project provides a valuable resource for genotype
imputation, greatly accelerating the identification of causative variants (Daetwyler et al., 2014).

Nevertheless, the accuracy of genomic selection using sequence-level data remains inferior to
what can be achieved given the heritability of the selected traits. This could have a number of causes,
including the size and composition of the reference population, the accuracy of imputation or the
contribution of dominance and epistasis to the genetic architecture of the traits of interest. Another factor
is that all variants are generally given equal weight in the computation of the additive relationship
between animals required for GBLUP analyses, or equal prior probabilities of variant effects in Bayesian
approaches. Yet, only a minority of variants are causative, the remainder being at best passenger variants
in LD with one or more of the causative variants. The extent of LD between causative and passenger
variants is bound to be population or even sub-population specific and is likely to vary over time, which
may partly account for the observed limitations in selection accuracy. It is generally accepted that
causative variants are essentially coding and regulatory variants, although our understanding of complex
traits remains partial and other mechanisms may be at play. Coding variants, including missense,
nonsense, frameshift, splice site variants and deletions, are easily identified using bioinformatic
annotation tools. They account for only a small proportion of the genome, and their contribution to
genetic variance of complex phenotypes in livestock species, has been estimated to be modest
(Koufariotis et al., 2014). Regulatory variants can act either by perturbing the expression profile of genes

located in cis, or possibly, by perturbing the gene regulatory network and affecting the expression profile
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of a restricted number of core genes in trans. Therefore, comprehensive genome annotations, which
allows the identification of coding and more importantly regulatory variants, are critical for identifying
the causative variants. More generally, it is widely accepted that variants in different functional classes
contribute heterogeneously to genetic variation (Finucane et al., 2015). To gain further insight into the
genetic architecture of complex traits in humans and livestock, heritability partitioning methods have
been extensively used in combination with available functional annotations, although further
investigation is needed to estimate the exact contribution of different functional categories to genetic
variance, especially in livestock. Such knowledge would facilitate the use of biological priors to
prioritize or weight variants to further improve the accuracy of genomic prediction.

Several collaborative efforts have been undertaken to identify functional elements and variants
in the human genome, including the Encyclopedia of DNA Elements (ENCODE) (de Souza, 2012),
Roadmap Epigenomics (Kundaje et al., 2015) and the Genotype-Tissue Expression (GTEX) (GTEXx
Consortium, 2020) projects. Results from these projects have highlighted the importance of regulatory
elements, which have been found to underlie a large proportion of (Genome-wide association studies)
GWAS hits and contribute substantially to the heritability of complex diseases and traits, confirming the
potential benefit of prioritizing these variants in genome prediction. Consistently, more and more tools
are being developed to incorporate functional annotations as priors in genomic prediction models. In
animal species, similar consortia such as Functional Annotation of Animal Genomes (FAANG)
(Andersson et al., 2015), Farm animal Genotype-Tissue Expression (FarmGTEXx) (Liu et al., 2022), the
regulatory GENomE of SWine and Chicken (GENE-SWitCH) (Acloque et al., 2022) and BovReg
(Moreira et al., 2022) have produced similar catalogues of functional elements for livestock and poultry
genomes. As in humans, heritability partitioning approaches using the available biological information
revealed an enrichment of coding and regulatory variants among those associated with complex traits
(Bhuiyan et al., 2018; Koufariotis et al., 2014). However, to date, functional annotations for regulatory
elements in cattle are only available for a few tissues and developmental stages, which is insufficient
for biological interpretation and severely limits their use in understanding the mechanism underlying
complex traits.

The overall objective of my thesis is to better understand the contribution of different functional
classes, with a focus on regulatory variants, to genetic variation and how this information can be used
to improve reliability of genomic predictions. Therefore, in my thesis | have (1) contributed to the
generation of a comprehensive catalogue of regulatory elements for the bovine genome to complement
its functional annotation and tested its sensitivity and accuracy in identifying regulatory variants, (2)
evaluated heritability partitioning methods in cattle and estimated the genetic contribution of different
functional categories to the heritability of complex traits in Belgian Blue cattle (BBC), (3) evaluated
strategies for using biological information, including the newly discovered regulatory elements, to
improve genomic predictions. My manuscript begins with an introduction that gives an overview of

these aspects in livestock and presents the BBC breed.
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Chapter 1 Introduction

1 Introduction

1.1 Belgian Blue beef cattle
1.1.1 The breed

Belgian Blue cattle (BBC), a breed found mainly in Belgium, are famous for their extreme
muscle development, known as "double muscling” (see example in Figure 1.1), which results from a
significantly increased number of muscle fibres rather than an increased fibre diameter (Grobet et al.,
1997). The BBC originated from a cross between a local breed and a British Shorthorn breed, initially
to improve the local breed for both dairy and beef production (Cheville, 1999; Kolkman, 2010). At the
time, the population was small, with only about three thousand individuals reported. In the 20th century,
market demand for meat products gradually shifted the focus of selection from dual-purpose to a more
beef-oriented breed (Kolkman, 2010). At the same time, BBC individuals with the double-muscling
phenotype, which is associated with increased muscle mass, became more common, highlighting their
potential to improve meat production (Hanset, 2004; Kolkman, 2010). Intensive selection, combined
with the widespread use of double-muscling bulls as sires through artificial insemination, accelerated
the fixation of the trait and made it the iconic characteristic of the breed. Grobet et al. (1997)
demonstrated that this double muscling trait was due to an 11-bp deletion in the myostatin gene (MSTN).
However, there were problems with parturition in double-muscled cows and reduced semen quantity
and quality in bulls (De Tavernier et al., 2001; Hoflack et al., 2008). Despite these challenges, the
population increased significantly from 40,000 in 1970 to 450,000 in 1994, marking the first stage of
genetic improvement as the use of this mutation was driven by the visible phenotypic changes in
homozygous individuals. Research has shown that after 1985 this natural mutation is almost fixed in the
new BBC population (Druet et al., 2014a). Interestingly, a significant variation in muscular traits has
been observed in the new BBC population and further genetic gains have been achieved through genetic
improvement (e.g. Druet et al., 2014a). Notably, the heritability of these traits remains above 30% even

when excluding the effect of the double muscling mutation, which is now fixed.

Figure 1.1. A double-muscled Belgian Blue sire. The bull is Adajio de Bray, born in 2007. Figure downloaded
from https://belgianbluegroup.com/bull/adajio-de-bray/
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1.1.2 Genetic evaluation in Belgian Blue beef cattle

Until recently, genetic evaluation in BBC was based on pedigrees and progeny testing. Traits
are mainly measured at three time points, including a first visit at birth, a second visit at around 14
months and a linear classification in adult cows (Hanset, 2004). At birth, conformation, gestation length
and birth weight are recorded, while at the second visit, individuals are phenotyped for height, weight
(predicted from thoracic perimeter) and conformation. In addition to these traits, so-called functional
traits, such as drinking ability and defects, are reported. The heritability of these traits is not always high
as the phenotypes can have some drawbacks. For example, until recently, birth weight has been
evaluated by the eye of the breeder, whereas gestation length is influenced by caesarean section.

Linear scoring consist of visual inspection of the cows by trained technicians. Animals are
scored (from O to 50) for 19 individuals traits that are grouped in three categories. In addition, skin
thickness is manually assessed and height is measured. As a result, 7, 6 and 8 phenotypes are related to
the size of the animal, the muscle development and to the bone structure and posture, respectively (see
Figure 1.2). For genetic evaluation, multiple-trait models with canonical transformation are used
(Hanset, 2004).

Figure 1.2. Linear classification traits recorded in adult cows. A-G. Traits related to body dimension including
body length (A), height (B), chest width (C), pelvis width (D), rib shape (E), rump (F) and tail set (G). H-L. Traits
related to muscular development including shoulder muscling (H), top muscling (1), buttock muscling — side view
(J), pelvis length (K) and buttock muscling — rear view (L). Traits related to bone structure and posture including
top line (M), bone (O), shoulder bone (P), hock (Q) and legs stance (R-T). Figure adapted from
http://www.belgianblue.cz/fr/index.php?page=page&kid=22
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The use of these breeding values has allowed a further increase in muscle mass, but this selection
has also resulted in a negative trend in the height and length of the animals (Figure 1.3). The BBC is

therefore an interesting example of a breed selected for reduced height.

Index

wwwww

Year of birth

Figure 1.3. Genetic trends for muscular development and height. The figure represents the evolution of
breeding values for muscling score, meaty type and height from 1989 to 2002 (copied from Hanset, (2004))

1.1.3 Use of molecular and genomic information in the breeding program

High levels of inbreeding resulting from intensive use of elite sires can lead to outbreaks of
recessive genetic defects. This was the case in BBC where Charlier et al. (2008) reported first three
genetic defects including congenital muscular dystonia 1 & 2 (CMD1 & CMD2) and crooked tail
syndrome (CTS). Fortunately, with the development of genetic arrays and sequencing technologies, it
is possible to identify the causative variants and develop genetic tests to manage such recessive alleles
in the population. With the help of the Unit of Animal Genomics, such a strategy has been implemented
in BBC, where it was decided to exclude all carrier bulls from the breeding program.

The causative variant causing CTS was characterized by Fasquelle et al (2009). Causative
variants for other genetic defects have subsequently been identified in BBC, including a splice site
variant of the Ring Finger Protein 11 (RNF11) gene associated with proportional dwarfism (Sartelet et
al., 2012), a missense mutation in the CIC-7 Chloride Channel (CLCN7) gene causing osteopetrosis with
gingival hamartomas (Sartelet et al., 2014), and a variant in the phosphatidylinositol glycan anchor
biosynthesis class H (PIGH) gene causing arthrogryposis (Sartelet et al., 2015). Intriguingly, some of
these defects segregated at high frequencies in the breed, with 25 and 26 percent of carriers for CTS and
dwarfism, respectively (Fasquelle et al., 2009; Sartelet et al., 2012). Such high frequencies may result
from the heavy use of popular sires carrying these defects (e.g. Précieux and Galopeur for CTS and
dwarfism, respectively) and subsequent high levels of inbreeding. Nevertheless, statistical analyses
taking into account the pedigree structure have shown by allele dropping in the true genealogy that the
the heavy use of certain sires is not sufficient to explain the observed frequencies and that carriers are
positively selected. In addition, Fasquelle et al. (2009) found that carriers of the CTS variants had higher

muscular development, consistent with the selective advantage of carriers, whereas the origin of the
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selective advantage for the variant causing dwarfism remained unidentified (Sartelet et al., 2012). Using
a large sample of 593 progeny tested sires born between 1970 and 2010, Druet et al. (2014a) showed
that the variant in mannose receptor C type 2 (MRC2) causing the CTS was associated with one of the
major QTL for muscular development in BBC, and that the frequency of carriers increased from less
than 20% before 1980 to more than 40% in the years 2000. More recently, Gualdron Duarte et al. (2023,
2020) performed GWAS and genomic predictions in a larger cohort of genotyped cows. Bayesian
variable selection models indicated that variants associated with four recessive defects, including
variants in MRC2, RNF11, ATP2A1 (associated with CMD) and WWP1, had large effects on muscular
development traits or height. The variant in WWP1 was previously identified in a reverse genetic screen
by Charlier et al. (2016). This variant segregated had relatively high frequency but presented a depletion
in homozygotes, suggesting a recessive effect. As for other variants, evidence of balancing selection
was also found as the variant was associated with some muscular development traits. Importantly, the
study also identified several recessive embryonic lethal variants.

Given the large number of recessive deleterious variants, including the embryonic lethal variant,
it was important to genotype all the sires in the population. Therefore, many young sires were genotyped
each year and genomic technologies were rapidly adpoted in the breed. This allowed to rapidly reduce
frequency of carriers in the population (Table 1.1). However, the exclusion of sires carrying genetic
defects reduced the number of bulls in use, with potentially negative effects on genetic diversity and
inbreeding levels.

Table 1.1. Evolution of the number of bulls carrying identified genetic defects. The number in
brackets indicates the number of bulls genotyped for the corresponding defect (CMD = congenital
muscular dystonia; CTS = crooked tail syndrome; DWA = dwarfism; HAM = hamartoma; PG =
prolonged gestation; AP = arthrogryposis). The red line in the table indicates the introduction of genetic
testing for each defect. Data and table taken from Sartelet (2013).

Yearof CMD1I CMD2 CTS DWA HAM PG AP
birth (559)  (556)  (539)  (528)  (532)  (522)  (521)
<2000 17 7 32 17 4 18 1
2000 10 3 41 36 7 11 0
2001 17 4 39 23 8 5 0
2002 14 5 46 28 15 8 5
2003 12 1 32 26 15 12 6
2004 2 5 29 24 11 10 2
2005 2 2 20 26 7 18 5
2006 0 0 13 33 5 5 5
2007 0 0 0 30 14 6 3
2008 0 0 0 6 9 6 3
2009 0 0 0 0 3 3 0
2010 0 0 0 0 0 0 0
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The first genomic evaluation in BBC was established in 2016 (Inovéo, 2020). The situation is
different from dairy cattle where bulls don't have records for milk production and a long progeny testing
was previously required. In beef cattle, many phenotypes of interest have relatively high heritability and
own records are available earlier in life, allowing 'visual' selection of young bulls. In addition, in BBC
there are fewer progeny tested bulls, not enough to build a large reference population to ensure high
reliability. It was therefore decided to build a reference population based on phenotyped cows in a series
of reference farms, called genomic farms. Genomic selection was first applied to the linear scoring traits
for which convincing results were obtained. The initial goal was to have a reference population of 10,000
genotyped cows with linear scoring phenotypes, an objective that has been clearly achieved since more
than such 18,000 cows were available in 2024. Initially the focus was on genotyping animals with as
many phenotypes as possible (e.g. adult cows). In parallel, a reference population was also established
for carcass traits, including both males and females. After demonstrating the limitations of visual
assessment of birth weight, it was decided to properly record birth weight using scales on the genomic
farms, and more than 30,000 true birth weights are now available, including 20,000 genotyped animals.

The accumulated datasets allow the genetic architecture of traits recorded in the BBC, such as
height or muscular development, to be studied. For example, Gualdron Duarte et al. (2023) performed
multiple trait GWAS at the sequence level and identified several coding variants with large effects. The
data also allow to test some genomic prediction selection models or the benefit of using functional
annotation, as will be done in the present study.

1.2 Functional annotation of the bovine genome

The completion of genome assemblies for many species, including humans, has revolutionized
our understanding of genetics and its role in complex traits. Most genes within these newly assembled
genomes have been automatically predicted using a combination of ab initio methods and expressed
sequence tag (EST) based evidence (Ashurst and Collins, 2003). In addition, the advent of tools such as
QTL mapping and GWAS has enabled us to identify genomic regions or variants associated with
phenotypes, greatly improving our understanding of the genetic basis of complex traits. However, results
from an increasing number of GWAS have shown that many leading SNPs are located outside coding
regions (Morova et al., 2022), once thought to be 'junk DNA', expanding our appreciation of the
complexity of the genome and its impact on biological processes and phenotypes. Therefore, a
comprehensive annotation of the genome sequence is required to gain further insight into how genomic
variants, including non-coding ones, are translated into phenotypic differences. This is why several
major collaborative efforts such as ENCODE (de Souza, 2012), Roadmap Epigenomics project
(Kundaje et al., 2015), the International Human Epigenome Consortium (IHEC) (Stunnenberg et al.,
2016) and others have been launched (Forrest et al., 2014; GTEx Consortium, 2020). Unlike the coding

regions of the genome, functional elements in non-coding regions often lack easily identifiable features
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that would allow their function to be predicted from sequence analysis alone (Birney et al., 2007; Zhen
and Andolfatto, 2012). To address this challenge, these consortia have relied on a variety of experimental
techniques, including genomic, transcriptomic and epigenomic approaches. In particular, the integration
of multiple omics data allows the identification of these functional elements within non-coding regions
based on their associations with specific genomic features and their regulatory roles. In parallel with
these efforts to understand the functional components of the human genome, several consortia have been
established to explore the genomes of livestock and poultry species, including initiatives such as Model
Organism ENCyclopedia Of DNA Elements (modENCODE) (Roy et al., 2010), FAANG (Andersson et
al., 2015) or GENE-Switch (Vos et al., 2023). Specifically, these consortia refine our understanding of
genome functionality by pinpointing gene locations, discovering novel genes and elucidating alternative
coding mechanisms (e.g., alternative transcription start sites), as well as uncovering non-coding
transcripts such as microRNAs (miRNAs) and long non-coding RNAs (IncRNAs). Most often, these
consortia focus on identifying regulatory regions that orchestrate gene expression, such as promoters
and enhancers, which are emerging as critical elements alongside protein-coding regions (Andersson et
al., 2015). They harbor regulatory elements that interact with transcription factors, chromatin modifying
enzymes and other essential components, as highlighted by ENCODE (Pennisi, 2012). In the first part
of my thesis, | contributed to the identification of regulatory elements in the bovine genome. Therefore,
| start with an overview of these regulatory regions, the methods used to identify them and their

importance in complex traits.

1.2.1 What are regulatory elements?

Coding regions account for less than 2% of the human genome, and the remainder was initially
considered to be non-functional "junk DNA" (Dunham et al., 2012; Pennisi, 2012), although it has since
been shown that non-coding mechanisms play an important role in complex traits. Indeed, the correct
spatial and temporal expression of genes involved in a wide range of biological processes, such as
differentiation, development and response to stress and stimulation, is central to life (Maston et al.,
2006). Perturbations in the regulation of gene expression have also been shown to cause disease and
abnormal development (Epstein, 2009; Grant et al., 1996; Van Laere et al., 2003), highlighting their
importance. Thanks to the development of sequencing technologies, the ENCODE consortium has
identified non-coding regions located in the remaining 98% of the genome that have biochemical
activities and serve as landing sites for proteins that coordinate gene expression, both near and far from
genes, and defined them as regulatory elements. The published catalogue of identified regulatory

elements has allowed significant advances in the understanding of complex traits in humans and mice.

18



Chapter 1 Introduction

PIC

TFIH  TFIE

Mediator

Co-
activator

Actnvator@/

&€ -

===
|TATA ISs)
Core
promoter

/ Maston GA, et al. 2006.
L\ Annu. Rev. Genomics Hum. Genet. 7:29-59

Figure 1.4. The assembly of transcriptional machinery. Activators, which are site-specific DNA-binding
transcription factors, bind via their DNA-binding domains (DBDs) to specific sequences upstream of the promoter,
known as transcription factor binding sites (TFBSs). These activators facilitate the binding of general transcription
factors to the promoter region. General transcription factors, including RNA polymerase Il and several auxiliary
components such as TFIIA, TFIIB and TFIID, interact to form a transcription preinitiation complex (PIC). This
complex assembles at the core promoter, guides RNA polymerase Il to the transcription start site (TSS) and
initiates transcription. Figure adapted from Maston et al. (2006).

Regulatory elements can be defined as non-coding genomic regions that coordinate the level
and spatio-temporal dynamics of gene expression. They have specific DNA sequences that are
recognised by transcription factors, providing high binding affinities (Boeva, 2016; Nagy and Nagy,
2020). In most cases, the transcription factor binds a specific motif and interacts with so-called co-
regulators to form a multi-protein complex that plays a role in the regulatory process (see Figure 1.4).
The variation of gene expression levels in different cell types and at different developmental stages
reflects the dynamic activity of regulatory elements mediated by their cell-specific transcription factor
binding sites (Barral and Déjardin, 2023). Regulatory elements vary in size, most commonly ranging
from tens to hundreds of base pairs in length, but rarely exceeding thousands of base pairs. Although
regulatory elements have been reported to be located upstream of coding sequences, in introns or even
far away from genes, they are significantly enriched in transcription start site (TSS) regions. These
regions are responsible for the expression profile of the neighbouring gene(s) and correspond to the so-
called proximal promoter. Conversely, studies have reported a depletion of regulatory elements in
heterochromatin. The activity of regulatory elements has been shown to be associated with histone
modifications (spicuglia and Vanhille, 2012), while chromatin architecture and nucleosomal positioning

have been found to influence their accessibility to the transcriptional machinery.
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1.2.2 Categories of regulatory elements

Regulatory elements can be classified according to their mechanism (e.g. enhancers versus
silencers) and their location (e.g. promoters). They can also be divided into cis- and trans-regulatory
elements, affecting nearby and distant genes respectively. Here | will focus on cis-regulatory elements,
which can be further categorised into several primary types based on their function, including promoters,

enhancers, silencers and insulators (Chatterjee and Ahituv 2017, see Figure 1.5).

e

Promoter | Gene

Silencer

Figure 1.5. The different types of regulatory elements. Promoters directly regulate gene transcription.
Enhancers interact with promoters to increase gene expression, while silencers do the same but decrease gene
expression. Insulators and CTCF can cooperate to inhibit the function of enhancers (Figure adapted from
Chatterjee and Ahituv, 2017).

Promoters are located upstream of genes and are DNA sequences to which RNA polymerase
and transcription factors bind to initiate transcription of the corresponding downstream gene. Promoter
sequences define the direction of transcription and indicate which strand of DNA is being transcribed.
Although the definition of promoter boundaries is not clear, promoters are recognised as regions of
approximately 81-1000 bp in length (Xiao et al., 2019) that recruit the transcriptional machinery and
serve as its 'landing site’. Their affinity profiles play a crucial role in controlling gene expression, as
variation in affinity has been shown to correlate significantly with tissue-specific expression patterns
(Molineris et al., 2011). Although the level of conservation of DNA sequences is lower in regulatory
regions than in coding regions, mutations in promoters can have a high impact, including on phenotypic
morphology (Karim et al., 2011; Zhu et al., 2023).
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Enhancers represent a distinct type of regulatory element and are found in non-coding sequences
that contain dense clusters of transcription factor binding motifs. They are cis-acting regulatory elements
that can be distant from their target genes, up to 1 Mbp (Lettice et al., 2003; Panigrahi and O’Malley,
2021). They increase the expression of a target gene in specific tissues or at specific developmental
stages (Blobel et al., 2021; Neyret-Kahn et al., 2023). Enhancers are first recognized and bound by a
transcription factor, to trigger the formation of a chromosome loop that allows the enhancer to interact
with the promoter, thereby increasing the expression of the target gene. Enhancers have been identified
predominantly in intergenic and intronic regions, and less frequently in exons (Panigrahi and O’Malley,
2021). Epigenetic studies have shown that enhancers are almost invariably associated with open
chromatin regions and active enhancers are associated with specific histone modifications (Blobel et al.,
2021; Sethi et al., 2020). Enhancers have been found to occur in clusters and act in an additive,
synergistic or redundant manner to regulate target genes. These clusters are commonly referred to as
super-enhancers (Blobel et al., 2021). These super-enhancers are for example significantly associated
with tumor-specific genes (Neyret-Kahn et al., 2023). Although reversed genomic orientation of
enhancers does not affect their function in gene transcription, subtle modifications in the affinity of
enhancers can disrupt the expression of target genes and result in severe and penetrant phenotypes (Lim
etal., 2024).

Unlike promoters and enhancers, which positively regulate gene expression, silencers reduce
expression by binding to specific transcription factors called repressors. In general, silencers have
similar characteristics to those described for enhancers, but with the opposite function (Srinivasan and
Atchison, 2004). Silencers are usually located upstream of their gene, but can also be found in introns,
exons or in the 3' untranslated region (UTR). Silencers can recruit repressors to compete with activators
for the same site, thereby reducing gene transcription or blocking activator binding (Harris et al., 2005;
Li and Davie, 2010). Alternatively, these repressors recruited by silencers can reduce the accessibility
of a promoter and prevent transcription. This is achieved by altering the chromatin structure, either
through histone modifications or chromatin stabilising activities (Harris et al., 2005). Finally, distal
silencers can interact with promoters through chromosome loops (Maston et al., 2006).

Finally, insulators are long-range regulatory elements that isolate the independent regulatory
domain to prevent environmental noise signals from misleadingly influencing the transcription process
(West et al., 2002). An insulator varies in size from 300 bp to 2,000 bp (Allison and Allison, 2008) and
regulates the transcription of genes located on the same or a different chromosome that are brought close
to the insulator by its looping activity (Allison and Allison, 2008). Two types of insulators have been
described, acting either as enhancer blockers or as barriers (West et al., 2002). Insulators that act as
enhancer blockers must be located between the enhancer and the promoter (West et al., 2002).
Conversely, insulators that act as barriers prevent the expansion of nearby condensed chromatin
associated with a silencer. This allows the DNA sequence to have a distinct transcription pattern

compared to the nearby region covered by the silencer (West et al., 2002). The CTCF protein is the most
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important insulator characterized in vertebrates (Kim et al., 2007; West et al., 2002; Yang and Corces,
2011). CTCF, also known as CCCTC-hinding factor, contains an 11-zinc finger (ZF) DNA-binding
domain and was identified as an insulator in vertebrates in 1991 (Bell et al., 1999). CTCF also plays an
essential role in development and differentiation, is ubiquitously expressed in different cell types and is
conserved across species (Kim et al., 2007; Moon et al., 2005). Disregulation of CTCF has been reported
to affect histone modification (Fedoriw et al., 2004) and to be associated with a variety of cancers
(Filippova et al., 2002, 1998).

1.2.3 Methods to identify regulatory elements

Advances in technologies for the experimental and computational identification of regulatory
elements allow for a deeper investigation of their role. In particular, the advent of high-throughput
sequencing technologies provides information at the genome-wide level. Reporter gene assays, which
use a vector carrying both the sequence of interest and the target gene, are widely used to confirm the
regulatory activity of a specific DNA sequence (Kornberg, 1974). However, the focus of my thesis is to
generate a catalogue of regulatory elements for the bovine genome, so high-throughput methods are
more relevant.

Genomic DNA is hierarchically packed into chromatin, which allows it to be stored in the
nucleus but renders most DNA inaccessible (Kornberg, 1974; Richmond and Davey, 2003). However,
accessibility and affinity for transcription factors are fundamental features of active regulatory elements.
Therefore, chromatin accessibility has been widely used as a marker to identify regulatory elements in
the non-coding part of genomes.

Taking advantage of high-throughput sequencing technologies, several approaches have been
established to assess chromatin accessibility and identify putative regulatory elements. These include
formaldehyde-assisted isolation of regulatory elements followed by sequencing (FAIRE-seq), DNase |
hypersensitive sites sequencing (DNase-seq), ATAC-Seq and micrococcal nuclease sequencing
(MNase-seq) (see Figure 1.6 for an overview of these methods). One of the major differences between
these methods is the distinction between nucleosomal and nucleosome-free regions. In the FAIRE-seq
approach, samples are cross-linked with formaldehyde, the DNA is then sheared and a phenol-
chloroform extraction is used to recover unfixed DNA fragments in the aqueous phase, corresponding
to nucleosome-free DNA, prior to sequencing. As shown in large scale studies, these DNA fragments
are significantly enriched for regulatory elements (Giresi et al., 2007; Nagy et al., 2003). DNase-Seq
takes advantage of the fact that DNA fragments wrapped by histone octamers are more resistant to
deoxyribonuclease | than DNA fragments in open chromatin regions, allowing DNase | hypersensitive
sites to be used to identify open chromatin regions. A major advance in the use of DNase-Seq as a
method for genome-scale regulatory element detection has been the adaptation of the sequencing
technology after DNase | digestion. In recent years, the DNase-Seq approach has been used in large-
scale studies, including the ENCODE project (Boyle et al., 2008; Meuleman et al., 2020). ATAC-Seq
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also uses a cleavage enzyme, a hyperactive Tn5 transposase, to cut DNA sequences of higher
accessibility. The hyperactive Tn5 transposase simultaneously marks the binding site by inserting a
sequence adaptor (Figure 1.7). The Tnb5 target region is amplified using the inserted primers and the
amplified fragments, corresponding to the open chromatin regions, are sequenced. Further details of the
procedure are shown in Figure 1.7. Compared to DNase-Seq and FAIRE-Seq, the ATAC-Seq protocol
requires fewer and simpler experimental steps and less starting material, making it the most popular
approach for open chromatin detection. Thanks to these advantages, ATAC-Seq allows the study of
larger samples, covering more tissues or individuals, but also the study of open chromatin at the single
cell level. In the MNase-seq approach, the micrococcal nuclease is first used to digest genomic DNA,
digesting the naked DNA while leaving undigested the DNA wrapped by histones or other chromatin-
bound proteins. The undigested DNA is then sequenced. Thus, unlike the other three approaches,
MNase-seq detects nucleosome positions where the interaction of cis-regulatory element and trans-
regulatory factor is hindered (Chereji et al., 2019).

ATAC

MNase

il ol e
| LT

Figure 1.6. The shematic diagram of four experimental based approaches for the detection of chromatin
accessibility. ATAC-Seq, DNase-seq, and FAIRE-seq detect open chromatin regions, while MNase-seq identifies
condensed chromatin. The arrows indicate the endpoints of the chromatin regions identified by each method. The
bars below represent the data signal for each method, reflecting chromatin accessibility (Figure adapted from
Tsompana and Buck, 2014).
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Figure 1.7. The schematic diagram of ATAC-Seq. The transposase cleaves open chromatin (with nucleosomes
shown in grey) and inserts sequencing adapters into the DNA. This enables the amplification of regions between
two insertion sites, representing open chromatin. The amplified fragments are then sequenced to determine their
positions, efficiently delineating the open chromatin regions. Fragments smaller than 146 bp are nucleosome-free,
as a single nucleosome is longer than 146 bp.

The activity of the regulatory region is controlled by interactions with transcription factors,
nucleosome positioning and DNA and histone modifications. Therefore, the identification of DNA
binding sites for transcription factors, the core transcriptional machinery, and different histone
modifications provides complementary information to study the regulation of gene expression,
especially during development and differentiation (Park, 2009). ChIP sequencing, also known as ChlP-
seq, was developed by combining chromatin immunoprecipitation assays with massively parallel
sequencing (Robertson et al., 2007). ChlIP-seq is the most universal approach to identify DNA sequences
bound by a specific protein, such as transcription factors or other chromatin-associated proteins with
different epigenetic modifications (Park, 2009). In ChlIP-seq, antibodies specific to the protein of interest
are first used to enrich the DNA fragment bound by that protein. The precipitated DNA is then subjected
to high-throughput sequencing, allowing genome-wide mapping of the region bound by that protein.
Since its development, an increasing number of studies have used ChIP-seq to decipher the
transcriptional binding map. Among these, the identification of CTCF binding sites in different tissues
and species has been of particular interest due to its critical role in regulation (Holwerda and de Laat,
2013; Oomen et al., 2019; Phillips and Corces, 2009).

In addition, epigenetic modifications including DNA methylation and histone post-translational
modifications such as acetylation, SUMOylation, phosphorylation, methylation and ubiquitination have
been reported to regulate gene expression. These modifications don't alter the DNA sequence, but affect
histone-DNA interactions, resulting in a change in chromatin state (Espinoza Pereira et al., 2023;
Kimura, 2013). In mammals, DNA methylation predominantly targets cytosine nucleotides followed by
guanine nucleotides, known as CpG sites, with up to 75% of CpGs in the genome being methylated
(Tost, 2009). However, CpG sites within CpG islands, which are regions enriched for regulatory

elements, tend to have lower levels of methylation (Moore et al., 2013). Among the many techniques
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available to detect DNA methylation, bisulfite sequencing is the most widely used and efficient method
(Li and Tollefsbol, 2011). It allows precise profiling and quantification of DNA methylation at single
base pair resolution across the genome and has been used in the Epigenomics Roadmap project. The
interplay between histones and the genome is essential for nucleosome positioning and chromatin
organisation (Parmar and Padinhateeri, 2020), and thus critical for transcriptional regulation by
influencing DNA accessibility. Modifications to histones can alter these interactions, thereby
dynamically shaping the precise programmes that govern nucleosome positioning. The role of histone
modification varies depending on the type of modification and the specific amino acid residues, resulting
in different mechanisms. For example, histone H3 lysine 4 methylation (H3K4me3) and histone H3
lysine 27 acetylation (H3K27ac) promote gene expression, whereas histone H3 lysine 9 trimethylation
(H3K9me3) represses gene expression (Kimura, 2013).

Using ChIP-seq with antibodies targeting specific histone modifications, it is possible to
accurately detect genomic regions associated with these signatures and to reveal the locations of histones
bearing these modifications along the DNA sequence. A comprehensive histone modification map of
127 cell lines and tissues covering the major cell lineages in the human body has been generated
(Kundaje et al., 2015). In addition, by integrating histone modifications with genome accessibility data,
we can delineate the chromatin state of regulatory elements and identify active elements (Boix et al.,
2021; Hoffman et al., 2013; Kern et al., 2021). In the Roadmap Epigenomics project, a hidden Markov
model, called the ChromHMM model, has been developed to identify 15 core chromatin states that
capture primary interactions between epigenetic marks, including Active TSS, Flanking Active TSS,
Strong Transcription, Genic Enhancers and more (Kundaje et al., 2015).

Although the experimental techniques available for identifying regulatory elements have been
greatly improved by high-throughput sequencing technologies, they remain labour-intensive and
expensive, and are therefore mainly accessible to model organisms. Even in these species, it remains
difficult to cover all developmental stages and cell types and to work on many individuals. Bioinformatic
approaches therefore provide an alternative and complementary approach to identifying regulatory
elements. Bioinformatic approaches could also improve experimental results by correcting some of the
environmental "noise". However, as these bioinformatic approaches are not the focus of my thesis, | will

only briefly summarise the most common methods:

1. ldentification of TF binding motifs: Short DNA sequences that are specifically
recognised by TFs are referred to as binding motifs (Leporcq et al., 2020). The most
commonly used methods for finding TF binding sites are based on position weight
matrices (PWMs) defined for a given set of known motifs (Staden, 1984). A weight
matrix records the score of four nucleotides at each position of a given motif, allowing
a guantitative assessment of the potential of sequences of interest to be a motif (Staden,

1984). Nowadays, the increasing availability of PWMs for known motifs in public
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databases such as JASPAR (Sandelin et al., 2004) and the TRANSFAC database
(Wingender et al., 2000) greatly facilitates the prediction of TF binding sites. In
addition, PWMs of de novo motifs have also been derived from de novo motif discovery
programmes, for example from ChlP-seq data (Leporcq et al., 2020).

2. ldentification of regulatory elements using phylogenetic footprinting: Phylogenetic
footprinting, another experimental-free technology, identifies regulatory elements by
analysing the conservation of orthologous regulatory regions across species (Tagle et
al., 1988). Regulatory regions are thought to be more conserved than other non-coding
genomes because of their functional importance in controlling gene expression
(Wasserman and Sandelin, 2004). The phylogenetic footprint hypothesis relies on the
assumption that regulatory mechanisms for a given gene remain consistent across
species. Various methods embodying this approach have been developed (Bailey and
Elkan, 1995; Blanchette and Tompa, 2002; Hertz and Stormo, 1999) and have been
extensively used to reveal the regulatory elements of genes (Leung et al., 2000; Loots
et al., 2000; Manen et al., 1994). As the number and quality of reference genome
assemblies increase, they serve as a valuable resource for inferring regulatory elements
on a genome-wide scale. Christmas et al. (2023) have predicted cross-species cis-
regulatory elements at the tissue and cell type level by aligning hundreds of placental

mammalian genomes.

1.2.4 Ildentification of regulatory variants

To fully understand the regulatory architecture and gain insight into how regulatory elements
contribute to complex diseases and traits, projects have been initiated to generate additional information
that complements the identification of regulatory elements. One prominent initiative is the GTEX project
(GTEx Consortium, 2020). GTEx aims to elucidate how genetic variants affect gene expression in
different tissues and individuals, providing critical insights into the role of regulatory variants. GTEX
has investigated the effect of genetic variants on gene expression using eQTL analysis. This analysis
helps to identify variants in the regulatory element that are associated with differences in gene
expression levels between individuals. By studying eQTLs in different tissues and populations, GTEx
is improving our understanding of the regulatory landscape that controls gene expression. In addition,
GTEX has been extended to different species (Guan et al., 2023; Liu et al., 2022; Teng et al., 2024),
allowing comparative analyses to reveal evolutionary conservation and divergence in regulatory
mechanisms, facilitating the identification of conserved regulatory elements and their functional
significance across species.

In the GTEX study, two primary types of eQTL signals were identified: cis-eQTL and trans-
eQTL (GTEx Consortium, 2015). Cis-eQTL refer to genetic variants located in proximal regulatory

regions that influence the expression of nearby genes and are the predominant type of eQTL observed.
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These variants are typically located within cis-regulatory elements. Conversely, trans-eQTLs refer to
variants that affect the expression levels of multiple genes located distally, and many of these eQTLs
are associated with transcription factors. It's worth noting that splicing eQTLs are excluded from our
analysis as they fall outside the scope of this study. Importantly, the majority of eQTLs operate across
multiple tissues and regulatory variants may disrupt the expression of more than one gene. Cis-eQTLs
generally show larger effect sizes on gene expression compared to trans-eQTLs and have a higher

replication rate across different tissue types (Vosa et al., 2021).

1.2.5 The advances of functional annotation in cattle

In cattle, efforts have also been made to improve the functional annotation of the reference
genome since its completion (Pareek et al., 2011). These efforts have focused on gaining deeper insights
into the regulation and biological functions of various genes, particularly their roles in the intricate
biological processes underlying differentiation and development. As mentioned above, the advent of
improved sequencing technologies has led to the generation of vast amounts of data over the past few
decades. Among these, two prominent consortia, namely FAANG, launched in 2015 (Andersson et al.,
2015), and BovReg, part of Euro FAANG, launched in 2020 (Moreira et al., 2022), have made
significant contributions to advancing our understanding of the bovine genome and its functional
elements. Using data from the FAANG project, researchers have extensively studied chromatin
accessibility in different tissues and under different conditions, including different breeds, and compared
them with those of other domesticated animals, revealing conserved regulatory patterns (Fang et al.,
2019; Foissac et al., 2019; Kern et al., 2021). The BovReg project, similar to the ENCODE project in
humans, aims to create a comprehensive regulatory map of the bovine genome across tissues, ages and
populations by integrating data on gene expression, epigenetic modifications and chromatin accessibility
(Moreira et al., 2022). Recently, a new catalogue of transcription start sites across different tissues has
been annotated by BovReg (Salavati et al., 2023). In addition, other studies have investigated more
specific aspects such as chromatin accessibility in Indicine cattle (Alexandre et al., 2021), the immune
epigenome of different breeds (Powell et al., 2023) and chromatin dynamics in different tissues (Gao et
al., 2022a; Halstead et al., 2020b). In line with the human GTEx project, the cattle GTEx (cGTEX)
initiative has published the results of its pilot study (Liu et al., 2022). This includes a catalog of
regulatory variants that provides insights into how genetic variation affects gene expression in different
bovine tissues (Liu et al., 2022). These studies are making a significant contribution to our knowledge
of specific regulatory elements and their dynamics in bovine biology. Despite extensive efforts, the
annotation of the bovine genome remains less advanced than that of the human genome. This lack of
thorough annotation poses a challenge in identifying and understanding the functional elements that

contribute to complex traits.
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1.3 Heritability partitioning using functional annotation

The proportion of phenotypic variance attributable to genetic variation is termed heritability and
is commonly estimated using pedigree or genomic information (Visscher et al., 2008). The heritability
captured by genotyped variants, mainly variants in LD with causal variants and, less frequently, some
causal variants, is referred to as SNP heritability (Yang et al., 2017). Heritability estimation is essential
for genetic evaluation and genomic prediction. Despite the widespread use of GWAS to identify variants
associated with complex traits, the genetic variance explained by the identified SNPs remains far below
the total heritability for most traits (Eichler et al., 2010; Yang et al., 2011b). To better estimate SNP
heritability and account for the collective contribution of multiple genetic variants, several methods have
been developed to fit all genetic variants simultaneously, such as the genomic restricted maximum
likelihood (GREML) approach (Yang et al., 2011a) and BayesR (Moser et al., 2015). Extensions of
these methods allow the contribution of different categories of variants to the SNP heritability to be
estimated, potentially improving our understanding of the genetic architecture of complex traits. For
instance, SNP categories could be defined based on their location (e.g. chromosomes), minor allele
frequencies (MAF), levels of LD with other variants, GC content or functional annotation (Gusev et al.,
2014; Lee et al., 2012; Yang et al., 2011b). The continuing increase in the number of whole-genome
sequenced individuals, coupled with improvements in the functional annotation of livestock genomes,
provides an unprecedented opportunity to apply such approaches to partition the heritability of important

agronomic traits.

1.3.1 Method used for heritability partitioning

To date, three main approaches have been developed to perform heritability partitioning:
methods based on GREML (Yang et al., 2011a), Bayesian mixture models (Patxot et al., 2021), and so-
called LD score regressions (Finucane et al., 2015) (the LD score associated with a SNP is defined as
the sum of the LD levels of that SNP with other SNPs in the region). Of these, GREML and Bayesian
mixture models allow the use of both individual-level data and summary statistics, whereas LD score
regression is primarily restricted to the use of summary statistics and is commonly used in human genetic
research.

GREML is an approach proposed by Yang et al. (2011a) that uses REML to estimate variance
components from a linear mixed model (LMM) containing one or more polygenic terms associated with
a genomic relationship matrix (GRM). Following common practice (e.g., Mrode), | use GBLUP to
denote such an LMM with a single polygenic term modelled using genomic information, although Best
Linear Unbiased Prediction (BLUP) refers to the estimation of breeding values with LMM in general
(e.g., with an animal model). Thus, in my thesis, GBLUP will refer to a model, while GREML will refer
to the estimation by REML of the variance components of a GBLUP model (or other genomic LMMs).

The standard GBLUP models assume a priori that all SNPs contribute equally to the genetic variance
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(Meuwissen et al., 2001) or according to their respective allele frequencies (see below). This model can
be written as:

y=1u+g +e,

where y is the vector of individual phenotypes, 1u is the intercept term (i.e. the mean effect), g is the
vector of individual polygenic effects, and e is the vector of individual random error terms. The
polygenic effects are normally distributed, g ~ N (0, Ga;) where G is the genomic relationship matrix
(GRM). The calculation of G relies on the n x m genetic dosage matrix M, which indicates how many
alternate alleles the n individuals carry at each of the m markers. The dosage of individual i and marker
J, mjj is typically 0, 1 or 2 when relying on genotypes, but other values are possible when working with
genotype probabilities. Note also that different allele coding can be used, such as reference versus
alternate allele, ancestral versus derived allele, major versus minor allele or A versus B allele. To
construct the GRM, the centred dosage matrix Z or the centred and scaled dosage matrix X are generally
used. The allele frequencies are used to centre the genotypes as z;; = m;; — 2f;, where fj is the allele

frequency of the alternate allele at marker j. The scaling of individual centred dosages is achieved as:

mij—2fj

J2F;a-Fj)

xij =

Using the centred dosages, the GRM is estimated as:

YA/
T 2fia=fp)’

G=
where the denominator is used to scale G like the additive relationship matrix A (VanRaden, 2008).

With the scaled and centred dosages, the GRM is obtained as:

Although these rules have been described in several studies (Speed and Balding, 2015;
VanRaden, 2008; Yang et al., 2011a), the centred GRM is often referred to as "VanRadenl", while the
scaled and centred GRM is referred to as "Yang" (although it also corresponds to "VanRaden 2"). In the
first case, the effect sizes of markers are independent of their allele frequencies, and common alleles
consequently have higher contributions to genetic variance. In the second case, standardisation ensures
that each marker has an equal expected contribution to genetic variance, and rare alleles will have large

effect sizes.
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For heritability partitioning, the LMM is extended to multiple polygenic terms, one per
annotation group (e.g., different categories of genetic variants classified according to their allele
frequency, function, etc.), allowing the genetic variance associated with each of these groups to be

estimated:

S
y=1u+ng+e,
s=1

where g;s is the vector of individual polygenic effects associated with annotation group s, S is the total
number of fitted annotation groups. Each polygenic component is normally distributed,
gs ~ N(0,G402) and has its own GRM Gs, computed using only the variants present in category s, and
its own variance o2. In this model, the additive polygenic variance, agz, is equal to the sum of the

variances associated with each annotation groups:

S
2 2
=St
s=1

The contribution of annotation group s to the genetic variance, called %SNP heritability, is
estimated as:

on2 = %,
9y

As described above, different rules have been proposed to construct the GRM, the most
commonly used being the so-called "VanRaden1" and "Yang" rules. These rules correspond to different
assumptions about the relationship between allele frequency and SNP effect size. However, the true
properties of causal variants in terms of MAF or LD levels remain unknown and may differ from the
assumptions made in GREML. This has been reported to affect heritability estimation (Speed et al.,
2012) and therefore several GREML-based approaches have been developed to allow for more general
assumptions and greater flexibility, such as the GREML-LDMS (Yang et al., 2015) and LDAK (Speed
et al., 2012). In the GREML-LDMS approach (Yang et al., 2015), SNPs are assigned to multiple
annotation groups based on their LD scores and MAF. Each category has a different distribution of SNP
effects, allowing more flexibility in the relationship between LD and MAF and SNP effect sizes. The
model thus accounts for LD and MAF stratification (LDMS). In LDAK, LD and MAF effects are
adjusted by weighting the variants used to calculate the GRM based on their LD score and allele
frequency (Zhang et al., 2021). These derived models show reduced bias and improved robustness in
heritability estimation. Consequently, LD and MAF corrections are commonly used in partitioning

approaches. However, the increased number of variance components to be estimated poses
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computational challenges, particularly for the largest cohorts. For example, the average information-
REML (AI-REML) algorithm allows faster convergence (Gilmour et al., 1995), but can have
convergence problems when parameters are close to the boundary of the parameter space (e.g. negative
variances or correlations > 1). Expectation—maximization-REML (EM-REML) is more stable and can
converge even in scenarios where AI-REML fails, but at a slower rate (Misztal, 2008) and with a
potential risk of becoming trapped in local maxima. To address the computational challenges posed by
large datasets, RHE-mc (based on Haseman-Elston regression) (Pazokitoroudi et al., 2020) and BOLT-
REML (Loh et al., 2015a) have recently been developed. REML-based approaches are unable to
efficiently handle large datasets, making methods like RHE-mc and BOLT-REML more practical for
big dataset in future. These methods are faster and capable of analyzing large datasets, which can lead
to higher accuracy due to the increased number of individuals being analyzed.

Bayesian mixture models allow the construction of more complex and realistic models of
heritability partitioning by (1) estimating parameters using non-infinitesimal hypotheses that allow only
a subset of SNPs to have genetic effects, (2) incorporating flexible SNP effects with non-Gaussian
distributions that include both small and large effects, and (3) allowing the specification of priors for all
parameters in the model. A variety of Bayesian models are commonly used in genomic prediction, such
as BayesB (Meuwissen et al., 2001), BayesCn (Habier et al., 2011) and BayesR (Erbe et al., 2012).
These models have been reported to improve the accuracy of genomic prediction over GBLUP due to
their ability to better define SNP effects and to accurately incorporate the number of SNPs with a non-
zero effect into the model (Moser et al., 2015). However, only a few of these approaches have been
extended to accommodate different annotation groups, as required for heritability partitioning, including
BayesRC (MacLeod et al., 2016), BayesRCO (BayesRCn and BayesRC+) (Mollandin et al., 2022), and
BayesRR-RC (Patxot et al., 2021). These methods are derived from BayesR and use different effect
sizes (large, medium, small and zero) to better represent the realistic distribution of SNP effects. Of
these, only BayesRR-RC has the ability to directly estimate the variance contributed by each SNP group.
In BayesRR-RC, phenotypes are modelled as:

y=1u+Y5_X;B; +e,
where X; is the matrix of centred and scaled genotypes for markers in category s and s is the vector of
marker effects for category s. These are modelled as a mixture of null effects (spike probability at zero)

and L Gaussian distributions:

Bs;~™0,80 + m1,N(0,08) + m, N(0,0%) + ...+ 1, N(0,02),
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where j is the marker index, &0 is a discrete probability mass at 0, L is the number of Gaussian

distributions in the mixture, {nos,nls,nzs, ...,nLS} are the mixture proportions for annotation group s,
{0125, 0225, ) ULZS} are the mixture variances for group s and correspond to predefined proportions of 62,

the variance explained by the group estimated directly from the data. The proportion of heritability

associated with each group is then estimated as:

(o)
%h? = ———.
o 0=10%
Compared to BayesRR-RC, BayesRC lacks the explicit estimation of the variance for each
annotation group in the model. Indeed, the group-specific variances o are replaced by the total additive
genetic variance ag"’. Therefore, Xiang et al. (2023) used an indirect approach to compute ¢ using the

following formula:
0f = 0.0001 oZm;, + 0.001 o, + 0.01 gfms,,

where 0.0001, 0.001 and 0.01 correspond to the predefined proportions of aj associated with the three
distributions he fitted per annotation group in his model.

Unlike BayesRC and BayesRR-RC, which explicitly assign each SNP to a single annotation
group, a process that can be subjective, BayesRCO (Mollandin et al., 2022) allows variants to have
multiple annotation groups. The probability of a SNP to belong to each group is modelled as an
additional variable and estimated in parallel with other parameters.

While Bayesian-based methods offer a better defined variance scheme, GREML remains
prevalent in many analyses on individual-level data (i.e., with individual phenotypes for each genotyped
individual) due to its faster computational times compared to Bayesian mixture approaches, which often
require longer sampling chains to reach equilibrium. Two recently developed software GMRM (Patxot
et al., 2021) and BayesR3 (Breen et al., 2022) use a different strategy to improve speed, making
heritability partitioning at the sequence level feasible. Conversely, convergence problems become more

frequent with GREML when too many annotation groups are fitted simultaneously.

In some cases, however, genetic analyses rely on summary statistics rather than individual-level
data. LD score regression (Bulik-Sullivan et al., 2015) (or LDSC) is an approach that can be used to
estimate heritability and perform heritability partitioning with summary statistics. It is based on the
principle that in association studies, the estimated effect of a genetic variant results from the combination
of its own effect and that of other variants that are in LD, but also from other factors such as population

stratification. LDSC distinguishes between inflation due to polygenic effects and the consequences of
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cryptic relatedness or population stratification by modelling the relationships between test statistics and
LD scores. More specifically, the expected association statistic for variant j has a y? distribution (Bulik-
Sullivan et al., 2015):

E[)(ﬂlj] = nh*l;/m +na + 1,

where n is the total sample size, m is the number of markers, h?is the heritability, L =Xk rﬁc isthe LD
Score of variant j(rﬁc is the LD between markers j and k), a is the contribution of confounding biases

such as stratification and cryptic relatedness to the test statistic.
This approach can be extended to partition heritability according to functional annotation
(Finucane et al., 2015). In this case, the test statistic is modelled as:

E[)(]Z] =nY)tl(j,s) +na+1,

where s is the annotation group index, I(j, s) is the LD Score of marker j with respect to category s (i.e.

1(j,s) = Ykes rﬁ(), T, is the per-SNP contribution to heritability of annotation group s.

Each of the three approaches has its own advantages. A key feature of LDSC is that only a
simple regression is required to estimate t., significantly reducing computational time and resources
compared to GREML and Bayesian mixture models, even for large cohorts. This allows analysis based
on large numbers of individuals and annotation groups. For example, Finucane et al. (2015) successfully
implemented LDSC to perform heritability partitioning for 17 complex diseases and traits across 53
annotation categories, which would be computationally intractable with GREML. They also showed
that including more annotation groups improves the accuracy of heritability partitioning. In addition,
stratified LDSC offers greater flexibility in group specification, allowing a variant to be assigned to
multiple groups, whereas GREML and Bayesian approaches, with the exception of BayesRCO, only
allow one annotation group for each SNP. It is worth noting that, unlike these GREML and Bayesian
mixture models, LDSC can distinguish population structure from polygenic effects, resulting in
improved heritability estimation in the presence of population stratification. However, LDSC only
works with summary statistics, and if the genotype data of the individuals used to generate these
statistics are not available, it is crucial that the individuals used to calculate LD scores have similar LD
patterns to those used in the GWAS. Although LDSC has proven effective in human genetics and has
been further improved over the years, it is rarely used in animal breeding. Importantly, LDSC has been
reported to be inferior to approaches based on individual-level data in both humans (Patxot et al., 2021)
and cattle (Xiang et al., 2023). For example, in the study by Patxot et al. (2021), heritability partitioning
using LDSC was found to be less accurate than BayesRR-RC and Bolt-REML, which use individual-

level data. GREML assigns the same variance parameter to all SNPs in the same annotation group,

33



Chapter 1 Introduction

whereas Bayesian mixture models offer greater flexibility at the expense of more parameters to estimate.
GREML generally results in faster computation, but the number of annotation groups that can be fitted
simultaneously remains limited. Indeed, partitioning with a large number of annotation groups
dramatically increases the computational time and often results in convergence problems (Finucane et
al., 2015). Bayesian mixture models are generally slower due to the time-consuming sampling process
required for each SNP. However, Bayesian methods provide additional posterior inclusion probability
(PIP) information and SNP effects for each SNP, which can be used for fine mapping and provide higher
resolution than standard LMM-based GWAS. Finally, BayesRR-RC showed comparable accuracy in
heritability partitioning to Bolt-REML and higher accuracy than RHEmc in the simulation study by
Paxtot et al. (2021).

1.3.2 Applications of heritability partitioning in humans and livestock populations

The development of these techniques has allowed the contribution of different genomic features
and functional elements to genetic variance to be studied, providing a better understanding of complex
traits in humans, model organisms and livestock species. The first partitioning approaches investigated
the contribution of different chromosomes to genetic heritability. For example, Yang et al. (2011b) used
GREML to partition the heritability of human height and body mass index (BMI) across chromosomes
and found that the contribution from each chromosome was correlated with its length, suggesting highly
polygenic traits. Similar studies were later applied to other traits (Loh et al., 2015a) and in livestock
(Bhuiyan et al., 2018; Jensen et al., 2012; Pimentel et al., 2011). For example, extreme polygenicity has
been observed for schizophrenia (Loh et al., 2015a). In contrast, a few traits showed a different
architecture, where a single gene was associated with most of the genetic variation, such as the ABO
locus for plasma von Willebrand factor (vWF) levels (Yang et al., 2011b). Next, partitioning approaches
were used with annotation group associated with LD score or MAF categories (Bhuiyan et al., 2018;
Yang et al., 2015). In humans, the use of such LDMS approaches was shown to be necessary to obtain
unbiased estimates of heritability (Yang et al., 2015). In addition, results from GREML-LDMS suggest
that the heritability of human height is enriched for variants with a MAF < 0.1.

With the increased functional information available, partitioning approaches have been used to
estimate the contribution of different functional classes to complex traits. These studies have mostly
been carried out in humans. For example, Gusev et al. (2014) used GREML to estimate the contribution
of six functional categories, including coding, UTR, promoter, DNasel hypersensitivity sites (DHS),
intronic and intergenic, to 11 common diseases. Their analysis showed that variants in coding regions
had the highest levels of per-SNP heritability (i.e. the proportion of genetic variance explained by a SNP
in that category), while regulatory elements explained the largest proportion of genetic variation (their
collective contribution). Furthermore, in another study using the LDSC approach to unravel the genetic
architecture of 49 disease and complex traits (van de Geijn et al., 2020), transcription binding sites

within regulatory regions were found to make a substantial contribution to heritability. Using the same
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approach and data set, Hujoel et al. (2019) showed that conserved regulatory elements had higher
enrichment levels compared to broad regulatory elements. The use of Bayesian mixture models to
partition heritability is more recent. For example, Patxot et al. (2021) used BayesRR-RC to investigate
the genetic architecture of four complex traits including cardiovascular disease (CAD) outcomes, type
2 diabetes (T2D), BMI and height. Their analysis revealed a slightly different genetic architecture, with
a large proportion of heritability associated with intronic, exonic and distal regulatory regions, and less
than 10% associated with proximal regulatory regions. Their study also confirmed that common variants
explain a substantial proportion of heritability. The variant effect sizes from each category showed a
parallel trend to the proportion of heritability associated with the categories (e.g. intronic and exonic
regions had larger effect sizes). Finally, partitioning approaches based on summary statistics allow more
annotation groups to be included in the model. For example, a baseline model with more than 50
annotation groups has been used in several human studies (Finucane et al., 2015; Speed et al., 2020;
Speed and Balding, 2019; Zheng et al., 2024). These analyses revealed substantial heritability
enrichment levels in conserved regions for several complex traits (Finucane et al. 2015). Surprisingly,
this enrichment exceeded that of coding variants, although Speed et al. (2019) pointed out a possible
overcorrection.

Similar studies have been carried out in cattle, although functional annotation is not as complete
and accurate as in humans. First, genome partitioning of genetic variation per chromosome with
GREML showed a weak correlation between length and associated variance for traits such as milk
production and composition (Pimentel et al., 2011) and fitness (Jensen et al., 2012) recorded in dairy
cattle. This suggests an uneven distribution of QTL and the presence of large effect variants, which is
not consistent with findings in humans. Similar results have been observed for carcass traits in beef
cattle (Bhuiyan et al., 2018; Niu et al., 2021). Functional heritability partitioning has also been applied
to livestock species. For example, Koufariotis et al. (2014) performed one of the first studies in dairy
and beef cattle. However, they mainly used high-density genotyping arrays and in silico prediction of
functional classes (as obtained with the Variant Effect Predictor - VEP (McLaren et al., 2016)). They
found that variants in coding and regulatory regions contributed significantly more to heritability,
consistent with findings in humans (Gusev et al., 2014). To do this, they estimated the contribution of
only one category at a time by fitting a GREML with two annotation groups (the target category versus
the rest of the genome). In fact, this strategy has been used in most studies carried out in livestock species
to estimate the contribution of different genomic features, both in cattle (Edwards et al., 2015; Lingzhao
et al., 2017) and in other species such as pigs (Sarup et al., 2016; Ye et al., 2020), and is the core of the
so-called Genomic Feature BLUP (GFBLUP) (Edwards et al., 2016). More recently, Xiang et al. (2023)
used a Bayesian mixture model to highlight the important role of regulatory variants in complex traits
in cattle. Compared to many of the previous studies, they relied on more advanced functional
information, including information from the cattle GTEx (cGTEX) database. Overall, the results from

different studies in cattle have been highly variable, with the estimated contribution of each class varying
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significantly from trait to trait (Xiang et al., 2023). Sometimes unexpected results have been reported,
such as synonymous variants explaining a larger proportion of the genetic variance of carcass traits than
non-synonymous variants (Bhuiyan et al., 2018). Finally, the LDSC approach has been used very rarely
in livestock species, where it has been reported to achieve low accuracy (Xiang et al., 2023).

It's worth noting that these analyses were carried out using methods developed in the human
genetic community and tested mainly on human data. Although these methods have been widely used
in livestock species, their accuracy has not been fully validated in this context. To my knowledge, the
only study in livestock that has evaluated the accuracy of GREML for estimating the variance associated
with different annotation groups was performed by Cai et al. (2022). The study focused only on LDMS
stratification in a relatively small dataset (~2000 individuals), not at the sequence level, and only with a
two variance component approach (not by fitting all annotation groups simultaneously). However,
livestock populations have very different characteristics from human data at the genomic level. For
example, they typically exhibit characteristics such as long distance LD, small effective population size,
and high levels of inbreeding and relatedness between individuals. Such characteristics can significantly
affect the efficiency and accuracy of heritability partitioning methods. Therefore, a comprehensive
evaluation of the properties of these methods in livestock populations would be valuable.

1.4 Using biological priors in genomic selection models

1.4.1 Introduction to genomic selection

The concept of GS, originally introduced by Meuwissen et al. (2001), is based on the use of
high-density genotyping to capture all QTLs across the genome. GS is designed to simultaneously
capture the effects of all causal variants distributed across the genome, including those with small effects
that don't reach significance levels in GWAS. Compared to conventional breeding approaches based on
phenotypic and pedigree data, or to Marker-Assisted Selection (MAS), which uses a limited number of
markers to capture only large effects - QTL or genome-wide significant associations - GS offers the
potential to achieve significantly higher prediction accuracies for complex traits in plant and animal
breeding (Garcia-Ruiz et al., 2016; Georges et al., 2019; Meuwissen et al., 2001; Zhao et al., 2012). In
addition, GS can also increase genetic progress by reducing the generation interval. In practice, the
advent of low-cost commercial genotyping arrays, such as the SNP 50K bovine chip, has greatly
accelerated the application of GS, making large-scale genotyping feasible. Accordingly, the adoption of
GS has become widespread among breeding companies, particularly in cattle, as a replacement for
laborious and costly progeny testing (de Koning, 2016; Georges et al., 2019). In the US dairy industry,
Garcia-Ruiz et al. (2016). reported a twofold increase in annual genetic gains for milk, fat and protein
yields and a significant reduction in the generation interval for selection of sires of bulls and cows when
comparing periods before and after the introduction of genomic selection in 2010 (Garcia-Ruiz et al.,

2016). Similar trends were observed for the Montbeliarde, Normande and Holstein breeds in France
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(Doublet et al., 2019). The trend reported for Holstein bulls was accompanied by a marked reduction in
genetic diversity, exceeding the acceptable rate of inbreeding defined in the FAO guidelines (Doublet
et al., 2019). The decrease in genetic diversity could be compensated by increasing the number of new
bulls and by optimising the use of genomic information in breeding programmes, e.g. to balance the
level of inbreeding and genetic gain (Doublet et al., 2019). The implementation of GS in the beef
industry presents unique challenges compared to dairy cattle, such as the ability to directly observe
phenotypes in young males or the lower use of artificial insemination. In addition, the presence of
multiple breeds results in smaller population sizes per breed, which complicates prediction efforts.
Compared to dairy cattle, the reference population of genotyped animals remains small, especially
compared to the Holstein breed, and phenotypes may also be of lower quality in beef breeds (Meuwissen
et al., 2016; Van Eenennaam et al., 2014). Although the use of a multi-breed reference population
strategy has shown marginal improvements in accuracy (when the same phenotypes are recorded in the
different breeds), the presence of shared QTLs becomes crucial when performing such cross-breed GS.
In addition, the accuracy of multibreed prediction decreases significantly when using a 50K SNP panel
due to differences in LD phases between breeds (Meuwissen et al., 2016). Although GS has been
adopted in other species such as pigs, poultry, sheep or fish (Georges et al., 2019; Ibafiez-Escriche et al.,
2014; Meuwissen et al., 2016), this adoption is not as widespread as in cattle. Finally, similar techniques,
called polygenic risk scores, are being investigated in human genetics, for example to predict disease
risk (de los Campos et al., 2010).

1.4.2 Statistical approaches used in genomic selection

Some of the models used for GS have already been introduced because they are similar to
approaches used for heritability partitioning. The SNP-BLUP and GBLUP, two equivalent LMM
models as previously shown (see for instance Goddard, 2009; Strandén and Garrick, 2009; Strandén and
Christensen, 2011), are standard approaches when all individuals are genotyped. In the SNP-BLUP,
already proposed by Meuwissen et al. (2001), the phenotypes in the vector y are modelled as a function

of all individual SNP effects ;, which have the same variance UEZ

y= 1M+Z§V=1xj.8j+e,

where x; is the vector of centred and scaled genotypes for marker j. The model can also be applied using
centred genotypes z;. The SNP effects are normally distributed as ;~N (0, aﬁ). The genomic estimated

breeding values (GEBV) correspond to the polygenic effects stored in g and can be estimated as:

9 =251 % Bj.
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In this model, the variance of the phenotypes is:
var(y) = XX'af + IoZ.

The SNP effect variance is a function of the total genetic variance aj, where ag = aj/M. This

model, sometimes called ridge regression, is equivalent to the GBLUP presented earlier, where

phenotypes are modelled directly as a function of individual polygenic terms g; stored in g:
y=1u+g +e.

These polygenic terms are normally distributed g~ (0, Gaj), where G is the GRM (see previous
section for more details).

Note that when A, the pedigree relationship matrix, is used instead of G, the model corresponds
to the ‘traditional’ selection used before GS. In animal breeding, the GRM computed using centred
genotypes (“VanRadenl”) is most commonly used (VanRaden, 2008), whereas in humans, GRM are
more often computed using scaled and centred genotypes (“Yang” or “VanRaden2”) (Yang et al.,
2011a). Other rules for constructing GRMs have been proposed (e.g. Speed et al., 2012), where markers
are “optimally” weighted according to their MAF or LD scores.

In animal breeding, extensions of GBLUP and SNP-BLUP have been developed to use
information from ungenotyped animals with phenotypes (Christensen and Lund, 2010; Legarra et al.,
2009). These represent often the largest fraction of the population. These extensions called single step
GBLUP (ssGBLUP) (Christensen and Lund, 2010; Legarra et al., 2009) or SNP-BLUP combine
pedigree and genomic BLUP. Integration of these ungenotyped individuals results in higher prediction
accuracy and can also correct for some biases. In addition, this procedure has been shown to be more
efficient that multistep procedures where GBLUP is first run and information from pedigree BLUP are
integrated in a second step (Bradford et al., 2019). Therefore, ssGBLUP is the approach used for
genomic evaluations in many countries.

In addition to GBLUP, a rather large alphabet of Bayesian models has been developed for whole
genome prediction. A key feature of these models is that SNP effects can have different variances
(Figure 1.8), and priors are used to estimate these SNP-specific variances. In BayesA, the variance of
SNP effects has an inverse chi-squared distribution y 2 (v, S) (Meuwissen et al., 2001), where v and S
are the number of degrees of freedom and the scale parameter, respectively. In BayesB (Meuwissen et
al., 2001), only a fraction (1-m) of the SNPs have a non-zero effect. This model better reflects the sparse
distribution of QTL effects and allows some variants to have a large effect. However, in both BayesA
and BayesB, the posterior distribution of the SNP effect variance for each locus is heavily influenced

by the prior distribution because the data provide little information per marker. Therefore, the results
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are strongly influenced by the choice of prior. In addition, the proportion of SNPs with non-zero effects
is typically fixed rather than learned from the data, which further affects the flexibility and adaptability
of the model to traits with different genetic architecture (Gianola et al., 2009; Habier et al., 2011). To
overcome these limitations, BayesCn and BayesDn (Habier et al., 2011) define m as an unknown
parameter that must be inferred from the data. In addition, effect sizes have the same variance in
BayesCn, making it less sensitive to the choice of priors, whereas each locus still has its own variance
in BayesDn. To capture different effect sizes of causal variants without increasing computational

complexity, BayesR (Erbe et al., 2012) defines marker effects §; as a mixture of four normal

distributions with different variances:

p(Bj|m, 02)~myN(0,0 * 62) + m,N(0,107* x 62) + m3N(0,10730) + m4,N(0,107202).

The model includes a null effect distribution and markers can contribute up to 1% of the genetic variance
although different models with different numbers of distributions and effect sizes can be defined (Erbe
et al., 2012; Moser et al., 2015). The proportions of variants within the four categories are estimated
from the data. Although the same distribution is used for all markers to improve computational
efficiency, the use of a mixture of four distributions has been shown to improve performance in both
prediction and mapping (Moser et al., 2015). Finally, a number of models are based on a mixture of two
Gaussian distributions designed to capture small polygenic effects (associated with most markers) and
large marker effects (for only a few loci). This is the case for example of the Bayesian Sparse Linear
Mixed Model or BSLMM (Zhou et al., 2013), Bolt-LMM (Loh et al., 2015b), BayesGC (Meuwissen et
al., 2021). Although the models have common features, their implementation may differ. For example,
Bolt-LMM tests a predefined set of 18 parameter combinations to increase computational efficiency.

Other models have been proposed but are not presented as it is not my aim to review them all.

GBLUP BSLMM BayesR

A N

Effect size of variant

Figure 1.8. The prior distributions of SNP effect sizes are different for each model. GBLUP uses a single
normal distribution, BSLMM employs a mixture of two normal distributions, and BayesR utilizes a mixture of
three normal distributions and one point mass at zero.
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1.4.3 Incorporation of genomic features in genomic prediction models

The original GBLUP and SNP-BLUP approaches assume the same effect size distribution for
all SNP effects, although variant effect sizes may vary along the genome or across functional categories.
To account for heterogeneity in SNP effect variance, several extensions of GBLUP have been proposed.
In the genomic feature BLUP or GFBLUP (Edwards et al., 2016), SNPs are assigned to two groups
based on genomic features or functional priors, the variants within and outside the fitted functional

group. Two independent polygenic terms are then defined, one for each group:

y=1lu+gr+grte,

where gr and g.r are the polygenic terms associated with the feature and the rest of the genome. These
terms are normally distributed, gr~(0, GpojF) and gz~(0, G,gaj,;) where Gr and Gt are the GRM
estimated with the markers within and outside the functional category, respectively. The marker effects

from the two different categories also have different variances, ajF and a;,;, which need to be estimated,

e.g. by GREML.

In the MultiBLUP model (Speed and Balding, 2014), several groups of variants are fitted
simultaneously, each with its own variance. The groups can be defined according to their position along
the genome or according to different functional categories.

As mentioned in the section on heritability partitioning, BayesR has been extended to
incorporate information from functional annotation. This was first done in BayesRC (MacLeod et al.,
2016), then in BayesRCO (Mollandin et al., 2022), and finally in BayesRR-RC (Patxot et al., 2021). The
main idea of these methods is that the mixture proportions are a function of the annotation group. In
addition, in BayesRR-RC, each annotation group has its own variance parameter. However, both
BayesRC and BayesRR-RC have the disadvantage that the SNPs are manually assigned to the different
annotation groups prior to the analysis. BayesRCO is derived from BayesRC and provides two new
options implemented in BayesRC+ and BayesRCn. These options allow variants to be assigned to

multiple annotation groups (Mollandin et al., 2022).

1.4.4 Application of genomic prediction models using functional information in livestock
species
The ever-increasing number of whole-genome sequenced individuals, which provide reference
populations for missing genotype imputation, combined with the improving functional annotation of
genomes in several species, makes it possible to incorporate this functional information into genomic
selection to further improve its accuracy. The use of whole genome sequence is expected to increase the

accuracy of genomic selection by including causal variants in the dataset, which is particularly important
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for multi-population predictions. In addition, accuracy is expected to be maintained over multiple
generations as the LD between markers and causal variants does not decrease with each generation due
to the recombination process. However, first attempts in livestock species did not systematically achieve
higher prediction accuracy (Raymond et al., 2018; van Binsbergen et al., 2015; VanRaden et al., 2017).
Some simulation studies have shown that higher accuracy is obtained when the causative variants are
known, whereas using all variants from the sequence data gives at best modest improvements (Druet et
al., 2014b; Meuwissen and Goddard, 2010; Pérez-Enciso et al., 2015). In addition, little gain is expected
when causative variants are common and well tagged by markers from genotyping arrays. Higher gains
are expected when causative variants are rare, but unfortunately these remain more difficult to impute
(e.g. Druet et al., 2014b). These initial results support the use of functional annotation to improve the
accuracy of genomic prediction when using sequence data.

Although genomic selection models using information from functional annotations have already
been applied to livestock species, there is still a need for further investigation. Indeed, these studies have
some limitations as they have rarely been carried out at the sequence level and on large cohorts. In
several cases, commercial genotyping arrays have been used (Nayee et al., 2018; Rincon et al., 2011),
although marker selection is then biased (i.e. not all functional variants are equally likely to be selected).
These panels are enriched for common variants and capture only a small subset of causative variants,
particularly when medium density arrays are used . Such marker panels may be useful for initial testing,
but the use of whole genome sequence data is required to make best use of the biological information.
Even when (imputed) full sequence data are available, subsets of markers have been used in a few studies
(Lopez et al., 2021; VanRaden et al., 2017; Veerkamp et al., 2016) to reduce the computational burden,
although this may lead to some bias and loss of causative variants, making the use of functional
annotation less relevant. It is also important to remember that large datasets are required to fully exploit
whole genome sequence data and functional information, but this is not always the case (Do et al., 2015).
In addition, annotation information was rarely obtained from functional experiments, but rather from in
silico predicted annotations, typically using VEP or similar tools, where variants are classified according
to their position relative to genes (e.g. exonic, intronic, intergenic) (Lopez et al., 2021) or their predicted
effect (e.g. missense variants) (MacLeod et al., 2016). Gene ontology information was also used in
several studies (Edwards et al., 2016; Lingzhao et al., 2017), whereas conservation information was used
less frequently (e.g. Xiang et al., 2021b, 2019a). A few studies used catalogues of eQTL (Xiang et al.,
2021b, 2019a) that have strong evidence of regulatory effect, but represent only a fraction of the true
eQTL, as their identification depends on the power of the study (eventually reduced by the burden of
multiple testing). Ideally, these eQTL should have been identified in a large sample of the target
population and in the relevant tissue. Overall, the list of genomic features included in the model remains
limited compared to recent human studies based on a so-called baseline model including 24 elements
(Finucane et al., 2015; Gazal et al., 2017; Speed et al., 2020).
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In all these studies, the genomic feature BLUP was the most commonly used, often in
combination with gene ontology information. This means that hundreds of models are tested (one per
tested ontology) and that several of these may improve prediction accuracy (Edwards et al., 2016;
Lingzhao et al., 2017). However, the approach does not provide a solution for combining these identified
ontologies to perform prediction in a single model. In addition to GFBLUP, BayesRC has also been
used in a limited number of studies, but never with the full sequence data. Another strategy commonly
used to exploit biological priors is to perform a pre-selection of markers based on their annotation and
then apply 'classical' models that don't exploit the biological information (MacLeod et al., 2016; Xiang,
2021). This strategy has the advantage of being more computationally efficient, but does not optimally
exploit the functional information. Overall, it remains difficult to determine which strategies lead to a
consistent improvement in prediction accuracy, as a variety of approaches have been applied to different
traits in different populations. There is a large variation in results even for the same method, and in many
cases the use of functional annotation in livestock species has not resulted in higher prediction accuracy
(Abdollahi-Arpanahi et al., 2017; Xiang, 2021). Recent studies in human genetics have reported greater
and more consistent benefits from using functional annotation for genomic prediction (Orliac et al.,
2022; Zhang et al., 2021), suggesting that there may be further room for improvement in livestock

species, particularly where more functional information is available.
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2 Objectives

Genomic selection has more than doubled genetic progress in cattle breeding over the past
decade. However, the GBLUP method widely used in genomic selection still needs improvement.
Improving functional annotation and integrating it into genomic selection models has the potential to
significantly increase the accuracy of genomic selection. GWAS and heritability partitioning studies in
human genetics are increasingly highlighting the importance of regulatory variants in complex traits.
Therefore, the identification of regulatory variants in cattle holds great promise for pinpointing causative
regulatory elements and improving the accuracy of genomic prediction. While significant progress has
been made in human genetics with the establishment of several large consortia that are accelerating our
understanding of the genetic architecture of complex traits through the identification of regulatory
elements, parallel efforts in cattle are notably limited. The lack of a comprehensive regulatory map
hinders our ability to unravel the genetic mechanisms controlling complex traits in cattle and to improve

genomic selection methods. Therefore, this thesis has three main objectives.

The first objective of this thesis is to generate a comprehensive map of regulatory elements using
a large number of samples covering almost all tissues, including those associated with economically
important traits, and to use this map to identify regulatory variants. This will involve generating a catalog
of regulatory regions in the bovine genome using ATAC-Seq and identifying variants within open
chromatin regions. To assess the relevance of the catalog, | will then evaluate its enrichment in
regulatory variants. In addition, this first study will evaluate the specificity and precision of using
ATAC-Seq to identify regulatory variants, and will examine the utility of these regulatory variants for

identifying causative variants.

The second objective is to investigate the genetic contribution of different functional categories
of variants to the genetic variation of complex traits in Belgian Blue cattle. This will involve a
comprehensive evaluation of heritability partitioning approaches in livestock populations, followed by
their use to estimate the heritability explained by different functional categories for muscular

development traits and height, with a focus on the contribution of regulatory elements.

The third objective is to explore strategies for using functional annotation, in particular the
catalog of identified regulatory elements, to improve the accuracy of genomic selection. This will
include evaluating the accuracy of genomic selection for muscular development traits in Belgian Blue
cattle using whole-sequence data, evaluating the performance of genomic prediction models that use
functional annotations as priors, and evaluating the accuracy of genomic selection when using subsets

of variants selected based on functional annotation.
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3 Experimental section: Study 1

3.1 Summary

We herein report the generation of an organism-wide catalogue of 976,813 cis-acting regulatory
elements for the bovine detected by the Assay for Transposase Accessible Chromatin using sequencing
(ATAC-Seq). We regroup these regulatory elements in 16 components by non-negative matrix
factorization. Correlations between the genome-wide density of peaks and transcription start sites,
between peak accessibility and expression of neighboring genes, and enrichment in transcription factor
binding motifs supports their regulatory potential. Using a previously established catalogue of
12,736,643 variants, we show that the proportion of single nucleotide polymorphisms mapping to
ATAC-Seq peaks is higher than expected and that this is due to an ~ 1.3-fold higher mutation rate within
than outside peaks. Their site frequency spectrum indicates that variants in ATAC-Seq peaks are subject
to purifying selection. We generate eQTL datasets for liver and blood and show that variants that drive
eQTL fall into liver and blood-specific ATAC-Seq peaks more often than expected by chance. We
combine ATAC-Seq and eQTL data to estimate that the proportion of regulatory variants mapping to
ATAC-Seq peaks is approximately 1 in 3, and that the proportion of variants mapping to ATAC-Seq
peaks that are regulatory is approximately 1 in 25. We discuss the implication of these findings on the

utility of ATAC-Seq information to improve the accuracy of genomic selection.
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We report the generation of an organism-wide catalog of 976,813 cis-acting regulatory elements for the bovine detected by
the assay for transposase accessible chromatin using sequencing (ATAC-seq). We regroup these regulatory elements in 16
components by nonnegative matrix factorization. Correlation between the genome-wide density of peaks and transcription
start sites, correlation between peak accessibility and expression of neighboring genes, and enrichment in transcription fac-
tor binding motifs support their regulatory potential. Using a previously established catalog of 12,736,643 variants, we show
that the proportion of single-nucleotide polymorphisms mapping to ATAC-seq peaks is higher than expected and that this
is owing to an approximately 1.3-fold higher mutation rate within peaks. Their site frequency spectrum indicates that var-
iants in ATAC-seq peaks are subject to purifying selection. We generate eQTL data sets for liver and blood and show that
variants that drive eQTL fall into liver- and blood-specific AT AC-seq peaks more often than expected by chance. We com-
bine ATAC-seq and eQTL data to estimate that the proportion of regulatory variants mapping to ATAC-seq peaks is ap-
proximately one in three and that the proportion of variants mapping to ATAC-seq peaks that are regulatory is
approximately one in 25. We discuss the implication of these findings on the utility of ATAC-eq information to improve

the accuracy of genomic selection.
[Supplemental material is available for this article.]

Genomic selection has had a tremendous impact on livestock
breeding in the past 10 yr (e.g., Garcia-Ruiz et al. 2016).
Nevertheless, the accuracy of selection remains inferior to what
may be achievable given the heritability of the selected traits.
This could have a number of causes, including the size and compo-
sition of the reference population or the contribution of domi-
nance and epistasis to the genetic architecture of the traits of
interest. Another factor is that all variants are generally given an
equivalent weight in computing the additive relationship between
animals needed for GBLUP analyses or equivalent prior probabili-
ties of variant effects in Bayesian approaches. Yet, only a minority
of variants are causative (having a direct effect on gene function
and hence phenotype), with the remainder being, at best, passen-
ger variants in linkage disequilibrium (LD) with one or more of the
causative variants. The extent of LD between causative and passen-
ger variants is bound to be population specific, or even subpopula-
tion specific, and is likely to fluctuate over time, and this may
account in part for the observed limits in selection accuracy. It is
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of this paper.
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generally believed that knowing the causative variants, or at least
those that are more likely to be, may help to further improve the
accuracy of genomic selection (Xiang et al. 2019).

Causative variants encompass coding and regulatory vari-
ants. Coding variants, including missense, nonsense, frameshift,
splice site variants, and deletions, are easily recognized yet only ac-
count for a limited part of the genetic variance for complex pheno-
types, including production traits. It is increasingly apparent that
most of the genetic variation for complex traits is owing to regula-
tory variants that act either by perturbing the expression profile of
genes located in cis (standard polygenic model) or, possibly, by
perturbing the gene regulatory network and affecting the expres-
sion profile of a restricted number of core genes in frans (omni-
genic model) (Liu et al. 2019). Regulatory variants are more
difficult to identify as the effect of polymorphisms on the func-
tionality of proximal and distant cis-acting regulatory elements re-
mains difficult to predict. However, it is reasonable to assume that
most regulatory variants are located within or in close proximity to
regulatory elements, which account for an estimated ~5%-20% of
genome space (Meuleman et al. 2020; The ENCODE Project

© 2023 Yuan et al. This article is distributed exclusively by Cold Spring Harbor
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Regulatory elements and variants in cattle

Consortium et al. 2020). Active regulatory elements can be recog-
nized by virtue of evolutionary constraint (Lindblad-Toh et al.
2011) and epigenetic features, including chromatin accessibility,
specific histone codes, transcriptional activity, their participation
in loop structures, and transcription factor (TF) occupancy
(Meuleman et al. 2020; The ENCODE Project Consortium et al.
2020).

In an effort to identify putative regulatory variants in the bo-
vine, we herein report (1) the generation of a comprehensive cata-
log of bovine regulatory elements identified using assay for
transposase accessible chromatin using sequencing (ATAC-seq)
(Buenrostro et al. 2013) in 63 tissue types; (2) the generation of a
catalog of common bovine variants that map to identified proxi-
mal and distal regulatory elements; (3) the demonstration that var-
iants driving expression quantitative trait loci (eQTL) in liver and
blood are more likely to map to regulatory elements that are active
in the cognate tissues and, hence, that variants in these regulatory
elements are more likely to be causative; (4) estimates of the pro-
portion of regulatory variants that map to ATAC-seq peaks as
well as the proportion of variants mapping to ATAC-seq peaks
that are regulatory; and (5) a retrospective evaluation of the utility
of this catalog for the identification of regulatory variants known
in livestock species.

Results

Generating a catalog of bovine cis-acting gene regulatory elements

To generate a bovine catalog of open chromatin regions using
ATAC-seq, we collected 106 samples corresponding to 68 tissue
types (Fig. 1A; Supplemental Tables S1, 52). Most samples (73%)
were collected from the same juvenile Holstein male. The remain-
der (27% including gonads and mammary gland) were collected
from nine additional animals (Supplemental Tables S1, S2). Fresh
and frozen samples were subjected to ATAC-seq using standard
procedures with two concentrations of tagmentation enzyme
(Buenrostro et al. 2013; Corces et al. 2017). We sequenced a total
of 185 libraries to an average of 31.8 million paired-end reads per
library (Supplemental Table S3). To these in-house-generated
data, we added publicly available ATAC-seq data (15 data sets)
from five additional tissues/cell types (Fang et al. 2019; Halstead
et al. 2020a,b; Johnston et al. 2021). Reads were mapped to the bo-
vine genome (ARS-UCDI1.2) with Bowtie 2 (Langmead and Salz-
berg 2012) and ATAC-seq peaks called with MACS2 (Zhang et al.
2008) following ENCODE’s recommendations (https://www
.encodeproject.org/atac-seq/). Data sets passing quality control
(89/106 in-house-generated data, i.e., 84%) and corresponding to
technical replicates were merged (per biosample), resulting in a to-
tal of 104 ATAC-seq data sets (89 in-house and 15 public) repre-
senting 63 tissue types (58 in-house and five public). Pearson's
correlations between technical and biological replicates (normal-
ized read counts across 500-bp windows covering the entire ge-
nome) exceeded 0.89 and 0.85, respectively (Supplemental Figs.
S1, 82).

MACS?2 yielded an average of 76,919 peaks per sample in
ATAC-seq mode (range: 15,420-238,210 peaks) and 51,838 peaks
per sample in ChIP-seq mode (range: 14,594-201,757 peaks) (Sup-
plemental Fig. S3; Supplemental Table S4). We merged ATAC-seq-
mode and ChIP-seq-mode peaks separately across 104 samples fol-
lowing the method of Meuleman et al. (2020), and joined the re-
sulting peaks (when overlapping). This yielded a total of 976,813
reference peaks (excluding the Y Chromosome and unanchored

scaffolds) with core and consensus segments (empirical confi-
dence bounds of aggregates of peak summits and regions, respec-
tively) (Supplemental File 51; Meuleman et al. 2020). Core and
consensus segments amounted, respectively, to 134 Mb and 264
Mb, or 5.1% and 10.0% of genome space. Of these, 41,841 peaks
(4.3%) were located in promotor regions (defined as 1 kb upstream
of to 0.1 kb downstream from the transcription start sites [TSSs]) of
33,579 Ensembl reference transcripts (out of 43,512) and were re-
ferred to as “proximal,” whereas the remaining 934,972 peaks were
considered “distal.” The median consensus size of the proximal
peaks (306 bp) was larger than that of the distal peaks (216 bp;
Pywitcoxon < 2.2 % 1071°) (Fig. 1B). The proximal peaks were “open”
in more tissues than the distal peaks (i.e., distal peaks were more
often tissue-specific; Pwiicoxon < 2.2 % 107'°) (Fig. 1C). The accessi-
bility of “open” peaks was higher for proximal (14.0-fold increase
of read depth over background) than for distal peaks (7.3-fold in-
crease of read depth over background; Pyiicoxon =4.3 x 107'%) (Fig.
1D). Of note, the distribution of genomic evolutionary rate profil-
ing (GERP) scores (Cooper et al. 2005; Davydov et al. 2010) was
overdispersed for both proximal and distal peaks, showing an ex-
cess of positions with higher and lower substitution rates than ex-
pected (under neutrality) compared with flanking regions (Fig. 1E).

ATAC-seq peaks were unevenly distributed across the ge-
nome, both between and within chromosomes (Supplemental
Fig. S4A,B). The density of ATAC-seq peaks was highest for Chro-
mosome 19 and lowest for Chromosomes 6 and 12. Chromosome
X was also particularly poor in ATAC-seq peaks, but this could be
owing to its hemizygosity in a majority of male samples. The den-
sity of ATAC-seq peaks was highly correlated with the density of
TSSs (r=0.52) (Supplemental Fig. S4C).

We used unsupervised nonnegative matrix factorization
(NMF) according to the method of Meuleman et al. (2020) to
decompose the 976,813-peak x 104-sample matrix in 16 compo-
nents (Fig. 1F; Supplemental Tables S5, $6; Supplemental File 51;
Supplemental Figs. 55, 56). NMF converts each sample and each
peak into a linear combination of these 16 components, that is,
a weighted sum of the 16 components. Twelve of the 16 compo-
nents could be readily assigned to recognizable bodily systems as
they would be dominant (>30% of the weight) in anatomically re-
lated samples. They were labeled accordingly: central nervous sys-
tem (CNS), cerebellum, immune system, digestive tract, ruminal
epithelium, lower respiratory, upper respiratory, muscle, liver, en-
docrine, mammary gland, and testis. Accordingly, these 12 com-
ponents dominated about 629,870 ATAC-seq peaks (64.5%)
characterized by tissue-specific accessibility. Three components
corresponded, respectively, to eight-cell embryo, morula, and in-
ner cell mass (ICM) and dominated a very distinct set of about
213,305 ATAC-seq peaks (21.8%), of which 54,498 (5.6%),
76,175 (7.8%), and 14,108 (1.4%) were eight-cell, morula, and
ICM specific, respectively. A set of 26,414 (2.7%) peaks was shared
by multiple, yet at first glance, anatomically unrelated samples.
The meaning of this 16th component, whether biological or tech-
nical, remains unclear. It is referred to as “undefined.” Of note, the
16th component dominated the sample types that were hard to
dissociate. Finally, one group corresponded to about 107,224
(11.0%) peaks that were shared by the majority of samples and
characterized by uniform weights for the 16 components (<30%
for any component). They are referred to as “ubiquitous” peaks
and account for 59.6% of proximal peaks assigned to housekeep-
ing genes (Supplemental Table S6).

NMF decomposition uses a binary matrix summarizing the
presence (1) versus absence (0) of the 976,813 peaks in the 104
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Figure 1. Generation of an organism-wide catalog of cis-acting regulatory elements for the bovine. (A) Sixty-three tissue types with ATAC-seq data an-
alyzed in this work. Novel ATAC-seq data were generated for 58 tissue types (89 samples), and public ATAC-seq data were downloaded for five (15 samples).
Tissue types are grouped and colored based on the nonnegative matrix factorization (NMF) analysis described in D. Tissues are parenthesized when the
largest NMF component in the tissue explains <50% of the total weight. This figure was created with BioRender (https://www.biorender.com). (B) Size
distribution of proximal (green) and distal (red) ATAC-seq peaks (consensus peaks). (C) Distribution of the number of samples in which proximal (green)
and distal (red) ATAC-seq peaks are open. (D) Distribution of the accessibility (fold-increase in coverage over background) of proximal (green) and distal
(red) ATAC-seq peaks. The vertical dotted lines in B, C, and D correspond to the medians. (E) Distribution of GERP scores for nucleotide positions within
proximal (solid green) and distal (solid red) ATAC-seq peaks, within sequence segments of same size immediately flanking proximal (dotted green) and
distal (dotted red) ATAC-seq peaks, and across the entire genome (gray). The proportion of nucleotide positions without GERP score is not shown. (F)
Decomposition of the 976,813-peak x 104-sample matrix in 16 components by nonnegative matrix factorization (NMF) following the method of
Meuleman et al. (2020). As a result, each peak and each tissue sample are represented as a linear combination of the 16 components, which are color-coded
in the graph. The lengths/heights of the bars measure the loading factor of the corresponding component for each of the tissue samples/peaks.
Anatomically related samples typically have the same dominant component and have been ordered accordingly (Supplemental Table S5). The peaks
that are predominantly active in the cognate tissue samples are dominated by the same component and are ordered accordingly. Thirty-one samples
did not show clear tissue-specific peaks; their ATAC-seq profiles were dominated by the “ubiquitous” peaks shared by nearly all samples and, to a lesser
extent, by a group of peaks assigned to the 16th “undefined” NMF component (shown in gray).
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samples. We also performed hierarchical clustering of the samples
(Ward D2 method) (R Core Team 2023) based on a quantitative
measure of the accessibility of distal peaks. This approach grouped
the samples largely by the NMF component (Supplemental Fig.
§7). Of note, the cerebellar samples (assigned to the
NMFO7_Cerebellum group) formed a distinct cluster yet were clos-
est to the remaining CNS samples (NMFO1_CNS group). Also, the
ruminal epithelial primary cells (NMF02_Ruminal epithelium)
formed a distinct cluster, with embryonic samples (rather than di-
gestive tract samples) as sister clade. This suggests that culturing
these cells profoundly affects the epigenetic profile of these cells,
apparently toward a proliferative stem-cell like phenotype.

We evaluated the added value of analyzing extra samples, first
in terms of discovery of new ATAC-seq peaks. To that end, we
ranked samples by the decreasing number of newly uncovered
ATAC-seq peaks (Supplemental Fig. S8A). When limiting ourselves
tothe 97 postnatal tissue samples, the number of newly discovered
peaks saturated at about 725,000 after approximately 75 samples,
suggesting that our library of ATAC-seq peaks includes the major-
ity of regulatory elements accessible after birth. However, adding
only three embryonic samples (and, to a lesser extent, primary cul-
tured cells) uncovered an extra tier of around 200,000 peaks. This
suggests that substantially more developmental stage-specific reg-
ulatory elements remain to be uncovered and that the analysis of
additional fetal samples, for instance, is warranted. An additional
value in analyzing more tissue types is to determine in which tis-
sue types known regulatory elements are accessible and in which
tissues they are not (Supplemental Fig. $6). The majority of peaks
uncovered in a given sample are neither unique for the sample
nor shared with all others but rather shared with a variable number
of other samples (not necessarily from the same NMF component)
which are, hence, not obvious to predict (Supplemental Fig. S8B,
C). Finally, we examined the relative merits of analyzing more
sample types with ATAC-seq only versus fewer sample types with
multiple assays. To that end, we evaluated the overlap between
the peaks identified by Kern et al. (2021) in eight tissue types
(adipose, cerebellum, brain cortex, hypothalamus, liver, lung, skel-
etal muscle, spleen) using ATAC-seq combined with ChlIP-seq
(H3K4mel, H3K4me3, H3K27ac, CTCF) with our own catalog.
To make for a better comparison, we reanalyzed Kern’s ATAC-seq
data in “narrow-peak” mode (as opposed to the “broad-peak”
mode used by Kern et al.). The vast majority (93.5%) of Kern's
ATAC-seq peaks overlapped with ours, as expected. Kern's ATAC-
seq peaks overlapped with 69% of their H3K4me3 peaks (i.e., ac-
tive promotors), 43% of their H3K4mel peaks (i.e., active enhanc-
ers), 44% of their H3K27ac peaks (i.e., active promotors and
enhancers), and 42% of their CTCF peaks. Similarly, a subset of
our ATAC-seq data from the corresponding eight tissues over-
lapped with 76% of H3K4me3 peaks, 50% of H3K4mel peaks,
49% of H3K27ac peaks, and 48% of CTCF peaks. In comparison,
our complete ATAC-seq peak catalog overlapped with 89% of
H3K4me3 peaks, 73% of H3K4mel peaks, 71% of H3K27ac peaks,
and 69% of CTCF peaks (Supplemental Fig. S8D). Thus, it appears
that analyzing more sample types by ATAC-seq compensates to
some extent for the use of a single assay as it recovers regulatory el-
ements that are missed if performing only ATAC-seq on fewer sam-
ple types. This finding also suggests that the same regulatory
element may adopt distinct epigenetic configurations, presumably
associated with distinct functional states, captured by distinct as-
says in different tissues.

We searched for TF binding motifs enriched in tissue-specific
and ubiquitous ATAC-seq peaks using HOMER (Fig. 2A; Supple-

mental Tables §7, S8; Heinz et al. 2010). For each component,
binding motifs were found to be very significantly enriched, in
good agreement with previous reports for bovine tissue-specific
cis-acting regulatory elements and/or tissue-specific function of
the corresponding TF in other species. Moreover, using publicly
available RNA-seq information, we found that 35 of the cognate
TFs were more highly expressed in the corresponding tissues com-
pared with all other ones (Supplemental Table 57).

We matched 91 of our tissue-specific ATAC-seq data with
publicly available RNA-seq data from 56 bovine tissues (Supple-
mental Table $9), and computed correlations between gene expres-
sion and accessibility of ATAC-seq peaks mapping within 1 Mb
from the gene’s TSS (Fig. 2B). Correlations were overdispersed,
showing too many positive but also negative correlations. Indeed,
any peak that is specific for a given tissue type will be positively
correlated with any gene that is specifically expressed in that
same tissue type. These correlations are therefore not indicative
of cis interactions between peaks and their target gene(s). However,
positive correlations were increasing in numbers (and becoming
more significant) as the distance between peak and gene decreased.
This inflation of positive correlations over the background (i.e., at
distances > 750 kb) was highly significant for gene-peak distances
up to ~250 kb. This supports the common occurrence of direct cis
interactions between enhancer peaks and target genes, at least up
to such distances. The effect was slightly more pronounced for
peaks located downstream from the TSSs than peaks located up-
stream of the TSSs. The same trend was not observed when repeat-
ing the same analyses with negative correlations (Fig. 2B). In fact,
we observed a slight deflation of negative correlations (becoming
less negative and less significant) as the distance between the
peak and gene decreased below ~40 kb. This suggests that few
ATAC-seq peaks act as cis silencers on target genes.

Generating a catalog of common variants mapping to cis-acting
regulatory elements

We used a previously established catalog of 11,030,905 single-nu-
cleotide variants (SNVs) and 1,705,738 short (<265-bp) insertion—
deletion variants (indels) obtained by analyzing 264 Holstein-
Friesian (HF) whole-genome sequences (average, 25.2-fold depth;
range, 15.2 to 47.1) (Oget-Ebrad et al. 2022) using GATK (Poplin
et al. 2018). Of these, 1,256,997 SNVs (11.4%) and 133,394 indels
(7.8%) mapped to ATAC-seq peaks (Supplemental File 52).

We studied the proportion of indels falling within versus out-
side ATAC-seq peaks separately for the following genome compart-
ments: TSSs, 100 bp upstream of to 1 kb downstream from
transcription termination sites (TTSs), exons, introns, and inter-
genic regions (Fig. 3B). The proportion of indels mapping to
ATAC-seq peaks was significantly below expectations for TSSs
(i.e., proximal peaks) (P=1.4 x 107%), TTSs (P=1.2 x 107°%), introns
(P<1.0x107'%%), and intergenic regions (P< 1.0 x 107'%%). These ef-
fects were even stronger when considering common indels only
(minor allele frequency [MAF]|>0.05). This is the expected signa-
ture of purifying selection acting on functionally important ele-
ments. Of note, the proportion of all indels (but not common
indels) was slightly higher than expected (p=0.18) for the exonic
compartment. This effect became significant (P=1.8 x 107'°) when
restricting the analysis to open reading frames (ORFs) (i.e., ignor-
ing 5" and 3’ untranslated regions).

In contrast, the proportion of SNVs mapping to ATAC-seq
peaks was significantly higher than expected for all five genomic
compartments: TSSs (P=2.7 x 10721), TTSs (P=3.9x107"%), exons
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Figure2. Open chromatin regions are enriched in cis regulatory elements. (A) TFs (x-axis) whose binding motifs are enriched in tissue type—specific ATAC-
seq peaks assigned to the corresponding NMF components (y-axis). The color code measures the excess in the percentage of peaks encompassing the
corresponding motif over background, scaled (Z-score) across NMF components. TFs that are also more strongly expressed in tissues corresponding to
that component compared with other tissues (Supplemental Table 57) are marked by asterisks. (B) Proportion of significant, across tissue type, correlations
(P<107°) between ATAC-seq peak accessibility and gene expression as a function of the distance between the TSS and the peak. Green indicates positive

correlations; red, negative correlations.

(P=4.4x107*"), introns (P<1.0x107'%°), and intergenic regions
(P<1.0x107'%) (Fig. 3A). The effect was reduced when consider-
ing common SNVs only but was still significant for TTSs (P=2.6
x107%), exons (P=8.7x107°), introns (P<107'%), and intergenic
regions (P<107'%). This is counter-intuitive as ATAC-seq peaks
are assumed to be functionally important elements and, hence,
subject to purifying selection that should result in fewer than ex-
pected number of variants. Only for TSSs were common SNV sig-
nificantly underrepresented in ATAC-seq peaks (P=8.2x107'").
These observations corroborate recent findings in Arabidopsis
thaliana (Monroe et al. 2022) and humans (Kaiser et al. 2021;

Luquette et al. 2022). They may be related to the reduced efficiency
of RNase H2-dependent repair of erroneously incorporated nucleo-
tides during pol a-dependent initiation of DNA replication of
Okazaki fragments (Reijns et al. 2015), or of nucleotide excision re-
pair (Sabarinathan et al. 2016), at sites where proteins, including
TFs, bind DNA. In agreement with this hypothesis, the density of
singletons (supposed to be enriched in recent mutations and hence
used as surrogate for de novo mutations [DNMs]) was higher in
ATAC-seq peaks than in flanking sequences (Fig. 3C,D). Knowing
that the expected number of singletons per base pair equals 4Nu in-
dependently of sample size (Nielsen and Slatkin 2013), and under
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Figure 3. Open chromatin regions are mutational hotspots yet are subject to purifying selection. (A) Proportion of SNVs that map in ATAC-seq peaks for
different genome compartments (x-axis: TSS, TTS, exon, intron, intergenic). Gray indicates the proportion of a corresponding genome compartment that
is occupied by ATAC-seq peaks; dark purple, all SNVs; and light purple, common SNVs (MAF > 0.05). (***) P<0.001, (*) P<0.05. (B) As in Afor indels. Gray
indicates the proportion of a corresponding genome compartment that is occupied by ATAC-seq peaks; dark green, all indels; and light green, common
indels (MAF>0.05). (***) P<0.001, (NS) nonsignificant. (C) Number of singleton SNVs (per interrogated base pair) in 264 whole-genome-sequenced
Holstein-Friesian (HF) animals in nonoverlapping 200-bp windows at increasing distances from the center of ATAC-seq peaks. The shaded area corresponds
to 2 x SD for the corresponding window. Fluctuation increases with distance as the number of windows decreases. (D) As in C for singleton indels. The
excess near the ATAC-seq peak centers is clearly visible despite the drop at their very center (assumed to reflect purifying selection). (E) Folded SFS (0.0
<MAF <0.1) for SNVs mapping within ATAC-seq peaks assigned to different genome compartments (purple range indicates TSS, TTS, exon, intron, inter-
genic) compared with SNVs outside peaks. (***) P<0.001. (F) Folded SFS (0.0 < MAF < 0.1) for indels mapping within ATAC-seq peaks assigned to different
genome compartments (green range indicates TSS, TTS, exon, intron, intergenic) compared with indels outside peaks. (***) P<0.001.

some simplifying assumptions, the SNV mutation rate may be to be because of hampered nucleotide excision repair by bound
about 1.3 times higher within than outside ATAC-seq peaks. TFs (Sabarinathan et al. 2016). To verify whether the excess of

In melanoma, the rate of somatic mutations is increased SNVs in our ATAC-seq peaks was likewise concentrated in TF bind-
about fivefold at accessible TF binding sites, and this is thought ing motifs, we identified 386,812 NMF component-specific peaks

Genome Research 1853
www.genome.org

57



Chapter 3

Experimental section — Study 1

Downloaded from genome.cshlp.org on November 21, 2023 - Published by Cold Spring Harbor Laboratory Press

Yuan et al.

(weight of one component >90%) and, within those, the positions
of the 10 most enriched binding motifs for that component (de
novo enrichment analysis) (Supplemental Table S8). We then
checked whether SNVs mapping to the corresponding peaks
would fall more often within than outside of the binding motifs.
There was no evidence for a preferential location of SNVs in bind-
ing motifs, whether at the motif, NMF component, or global level.
If any trend, the proportion of SNVs in binding motifs was slightly
inferior to their corresponding peak occupancy (global P=0.06)
(Supplemental Table S10).

To further check whether variants mapping to ATAC-seq
peaks, including SNVs, might be under purifying selection as ex-
pected, we compared the folded site frequency spectrum (SFS) of
variants mapping within ATAC-seq peaks for the five genomic
compartments in the 264 sequenced animals, with the folded
SFS of all variants flanking peaks. The proportion with MAF <
0.01 was higher for variants mapping in ATAC-seq peaks, and
this applied both to indels and to SNVs. The effect was strongest
for TSSs and exons (Fig. 3E,F).

Taken together, our data support the notion that ATAC-seq
peaks are mutational hotspots, explaining the observed excess of
SNVs, yet are subject to enhanced purifying selection, accounting
for the depletion in indels and the shift of the SFS toward low fre-
quencies for both SNVs and indels. This hypothesis may also ac-
count for the overdispersed GERP scores (Fig. 1E).

Of the 1,390,391 genetic variants mapping to ATAC-seq
peaks, 847,831 SNVs and 86,673 indels are common with MAF >
0.05 in the sequenced animals (Supplemental File S2). These are
prime candidates to receive particular attention when computing
genomic breeding values in genomic selection.

Identifying bovine cis eQTL in liver and blood

To evaluate whether our catalog of “ATAC-seq variants” is en-
riched in regulatory variants, we performed eQTL analyses. We col-
lected whole-blood and liver samples from, respectively, 224 and
176 HF cows and performed RNA-seq using standard procedures
(Supplemental Table S11; Lee et al. 2021; Wathes 2021a,b). The
reads were mapped to the bovine genome (ARS-UCD1.2) using
HISAT2 (Kim et al. 2015) and read coverage for 27,233 reference
genes (bosTau9.ensGene.gtf, v101) estimated using StringTie
(Pertea et al. 2015). Gene count data were normalized within sam-
ple using DESeq2 (Love et al. 2014) following the method of
Anders and Huber (2010) and across samples using inverse normal
transformation. After filtering out lowly expressed genes, 14,289
genes were retained for eQTL analyses in blood and 15,458 in liver.
All samples were genotyped with a high-density SNV array interro-
gating 777,962 variants and imputed to whole genome using
Minimac4 (Das et al. 2016) and the 264 sequenced Holstein ani-
mals as reference. This yielded usable genotypes for 8.4 million
SNVs and 1.3 million indels with MAF>0.02. Cis eQTL analyses
(variants within 1 Mb from gene’s TSS) were conducted using resid-
uals corrected for hidden PEER factors (Stegle et al. 2010), country
(of origin of the samples), and polygenic effects estimated with
GenABEL (Aulchenko et al. 2007), under an additive model using
QTLtools (Delaneau et al. 2017). Nominal P-values were corrected
for multiple testing within the 2-Mb cis window by permutation.
The best-corrected P-value was retained for each gene and convert-
ed to FDR value by tissue type. Cis eQTLs with FDR < 0.05 were con-
sidered significant.

We obtained 7817 significant cis eQTLs in blood and 6172 in
liver (Supplemental Table 5§12). These numbers correspond to

39.9% and 54.7% of interrogated genes, respectively, and are com-
parable to findings in humans (https://gtexportal.org/home/
tissueSummaryPage). Leading variants tended to concentrate
(and —log(p) values hence to be highest) in the vicinity of the
TSSs (Supplemental Fig. $9). The proportion of significant blood
eQTLs that would also operate in liver was estimated at 67% using
n; following the method of Storey and Tibshirani (2003), whereas
the proportion of significant liver eQTLs that would also operate in
blood was estimated at 78%.

We defined “credible variant sets” (i.e., sets of variants that
are more likely to include the causative variants that are function-
ally driving the observed cis eQTL effect) as the leading variant plus
the variants in LD with it at threshold r>-value of 0.9. The median
size of credible sets was 12, ranging from one to 2870.

Variants driving eQTL are preferentially mapping in ATAC-seq
peaks

If variants mapping to ATAC-seq peaks are indeed enriched in
causative variants, they should be enriched in the credible sets
driving cis eQTL effects. The significance of the overlap between
cis eQTL credible sets and ATAC-seq peaks was evaluated by permu-
tation following the method of Trynka et al. (2015) (Fig. 4A,B;
Supplemental Table S13). Analyses were conducted by NMF com-
ponent (assigning peaks to their dominant component). Credible
sets for blood-specific c¢is eQTLs were most significantly (P<
0.0001) enriched in variants mapping to ATAC-seq peaks assigned
to the immune and ubiquitous NMF components. Credible sets for
liver-specific cis eQTLs were most significantly (P<0.0001) en-
riched in variants mapping to ATAC-seq peaks assigned to the liver
and ubiquitous NMF components. The enrichment in tissue-spe-
cific ATAC-seq peaks (immune for blood eQTL, and liver for liver
eQTL) was driven by distal peaks, whereas the enrichment in ubig-
uitous ATAC-seq peaks was driven by both proximal and distal
peaks (Fig. 4A,B; Supplemental Table 513).

Estimating the proportion of regulatory variants mapping in
ATAC=eq peaks and the proportion of variants mapping in
ATAC-seq peaks that are regulatory

The utility of ATAC-seq data for the identification of regulatory
variants underpinning the heritability of complex traits depends
on the proportion of regulatory variants that map to ATAC-seq
peaks (i.e., the sensitivity or ratio of true positives/[true positives
+false negatives]), and the proportion of regulatory variants
among variants mapping to ATAC-seq peaks (i.e., the precision
or ratio of true positives/[true positives + false positives]). The com-
bination of ATAC-seq and cis eQTL information provides an op-
portunity to estimate these parameters. For example, if all cis
eQTLs are driven by a regulatory variant mapping to an ATAC-
seq peak, all credible sets should contain at least one variant map-
ping to an ATAC-seq peak. We developed a maximum likelihood-
based approach (see Methods) to estimate the proportion of cis
eQTLs driven by regulatory variants in ATAC-seq peaks from the
observed excess of credible set variants mapping in ATAC-seq
peaks (over the proportion of the genome occupied by ATAC-seq
peaks). The parameters estimated by this approach were then
used to estimate the proportion of regulatory variants among
those that map to ATAC-seq peaks (see Methods).

We applied this approach to the 7817 blood and 6172 liver
eQTLs. It yielded estimates of 0.34 (blood) and 0.32 (liver) for sen-
sitivity, and 0.044 (blood) and 0.041 (liver) for precision. In other
words, approximately one out of three regulatory variants maps to
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Figure4. Open chromatin regions are enriched in cis-regulatory variants. Enrichment of variants map-
ping to NMF component-specific ATAC-seq peaks in credible sets (r* > 0.9 with the lead variant) of 3857
blood-specific and 2212 liver-specific cis eQTL, evaluated by following the method of Trynka et al.
(2015). The x-axis shows statistical significance (log(1/p)) of the enrichment; y-axis, NMF component.
Green indicates proximal peaks; red, distal peaks. (A) Blood-specific eQTLs. (B) Liver-specific eQTLs.

port for the causality of the correspond-
ing variant, and the significance of this
finding—if any—remains unclear (Fig.
5B). The third example concerns a credi-
ble set of eight noncoding variants affect-
ing bovine stature and several other traits
by perturbing the expression of PLAG1
and possibly other genes in its vicinity
(Karim et al. 2011). Of the eight variants,
only the two that map to the supposedly
bidirectional promotor between PLAGI
and CHCHD7 (1520982 1678: (CCG)9/
(CCG)11 microsatellite and rs210030
313: A/G SNV) overlap with strong ubig-
uitous ATAC-seq peaks (Fig. 5C). Of note,
previously conducted reporter and EMSA
assays supported the causality of both
variants (Karim et al. 2011). Further sup-
porting their causality, the ATAC-seq
data reveal an allelic imbalance for the
rs210030313 SNV (Fig. 5D) that is consis-
tent with the observed effects on gene ex-
pression (G=Q allele=higher PLAGI/
CHCHD7 expression=more accessible;
A=q allele=lower PLAG1/CHCHD7 ex-
pression = less accessible). Moreover, the
rs209821678 variant lies in a trough re-
vealed in the ATAC-seq mode profile,

an ATAC-seq peak, and approximately one in 25 variants mapping
to ATAC-seq peaks is regulatory.

Retrospective evaluation of the utility of ATAC-seq information
for the identification of known regulatory variants in livestock

Prior positional cloning studies conducted in livestock identified
at least three regulatory variants influencing economically impor-
tant quantitative traits. The first is the IGF2-intron3-3072 variant
in the pig that precludes binding of the ZBED®6 repressor to a con-
served silencer element in intron 3 of the IGF2 gene, leading to il-
legitimate postnatal expression of the paternal IGF2 allele in
striated muscle and, hence, muscular hypertrophy (Van Laere
et al. 2003; Markljung et al. 2009). The sequence conservation of
the corresponding silencer element suggests that it operates in a
similar manner across species. Nevertheless, there was no evidence
in our ATAC-seq peak catalog of any peak overlapping the orthol-
ogous position of the quantitative trait nucleotide (QTN; bosTau9
Chr 29: 49,408,409), whether tissue specific (including in muscle)
or tissue shared (Fig. 5A). The second is the ovine rs10721113 cal-
lipyge QTN that perturbs the function of a putative silencer ele-
ment highly conserved among placental mammals, located in
the GTL2-DLK1 intergenic region, that—in wild-type sheep—sup-
presses postnatal muscular expression of a cluster of imprinted
genes (including the paternally expressed DLK1 and PEG11 genes).
Animals inheriting this mutation from their sire express the calli-
pyge muscular hypertrophy (Freking et al. 2002; Georges et al.
2004). There was no clear evidence of a peak overlapping the
orthologous position of the QTN (bosTau9 Chr 21: 65,691,395)
in postnatal skeletal muscle ATAC-seq peaks, as would be expected.
There was such a peak in testes and to a lesser extend in tongue, but
—in hindsight—this would not have been considered strong sup-

suggesting that the corresponding seg-

ments mediated binding to a frans-acting
factor. In this case, ATAC-seq data would therefore have been help-
ful in pinpointing the causative variants.

Discussion

We herein report the most complete catalog of open chromatin re-
gions for cattle to date (Fig. 1; Supplemental File S1; e.g., Foissac
et al. 2019; Halstead et al. 2020a,b; Kern et al. 2021; Ming et al.
2021). It comprises more than 976,000 ATAC-seq peaks detected
in one or more of 63 tissue types representing pregastrulation em-
bryos, endoderm, ectoderm, and mesoderm. To facilitate its use by
the community, the data are made accessible via a custom track on
the UCSC Genome Browser (via https:/genome.ucsc.edu/s/
Animal_Genomics_ULiege/ATAC_hub_V1 or https://www.gigaua
g.uliege.be/cms/c_4791343/en/gigauag-diagnostics-software-data).
The vast majority of ATAC-seq peaks (about 840,000) show tissue-
specific accessibility, dominated by one of 16 NMF components
(weight of the largest NMF component >0.3). Of note, nearly
213,000 of these are specific for preimplantation embryonic stag-
es. This clearly indicates that, as expected, chromatin accessibility
is very dynamic, warranting the analyses of multiple tissues during
fetal development in future studies. By studying across-tissue cor-
relation between gene expression (using publicly available RNA-
seq data) and accessibility of neighboring peaks, we show a clear
signal of enhancer and/or promotor activity (excess of positive cor-
relations with decreasing distance) but not of silencer activity
(depletion of negative correlations with decreasing distance).
This either indicates that silencers only account for a small minor-
ity of cis-acting regulatory elements or that silencers are not effec-
tively identified using assays relying on chromatin openness (see
also hereafter).
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Figure 5. A retrospective evaluation of the utility of the ATAC-seq catalog for identifying regulatory variants. ATAC-seq peaks at three genomic loci en-
compassing regulatory QTNs previously identified in domestic animals. Chromosome coordinates, gene annotations, QTN positions, core and consensus
reference peak regions (thick bars and horizontal lines, respectively; color-coded based on their highest NFM component), and peaks (ChIP-seq mode tag
coverage unless otherwise mentioned) from at least one tissue sample representing each NMF component group with corresponding color code. Positions
of the QTNs are highlighted as vertical gray bands. Track height measures the normalized tag coverage (1,000,000/[total tag count]). (A) The bovine
orthologous region encompassing the /GF2-intron3-3072 QTN identified in pigs (A/G at susScr11: Chr 2: 1,483,817; bosTau9: Chr 29: 49,408,408)
(Van Laere et al. 2003; Markljung et al. 2009) that maps to a 16-bp motif highly conserved among placental mammals disrupts interaction of the
ZBEDG repressor, resulting in an approximately threefold up-regulation of /GF2 in postnatal skeletal muscle affecting muscle growth, heart size, and fat
deposition. None of ATAC-seq peaks overlapping the 16-bp motif were called across the 104 ATAC-seq data analyzed in this study. (B) The bovine orthol-
ogous region encompassing the callipyge (CLPG) muscular hypertrophy mutation identified in sheep (A/G at oviAri4: Chr 18: 64,294,536; bosTau9: Chr
21:65,691,397) (Freking et al. 2002; Smit et al. 2003). The mutation is located in a 12-bp highly conserved motif among placental mammals and is con-
sidered to disrupt a muscle-specific long-range control element (a silencer) that causes ectopic expression of a 327-kb cluster of imprinted genes in post-
natal skeletal muscle. ATAC-seq peaks overlapping the mutation site were called only in testis and tongue samples but not in skeletal muscle. (C) Bovine
PLAG1 promoter region encompassing two out of eight candidate QTNs influencing bovine stature identified by Karim et al. (2011) (rs209821678 [alter-
natively ss319607405]: (CCG)11/(CCG)9 at bosTau9: Chr 14: 23375648-23375650; rs210030313 [ss319607406]: G/A at bosTau9: Chr 14: 23375692).
The two QTNss reside in a strong 1044-bp-long ubiquitous peak between the PLAGT and CHCHD7 TSSs. Regions encompassing the other six credible var-
iants do not map to any called peak in our ATAC-seq data and, hence, are not shown. (D) Enlargement of the two QTN loci for three animals that are Qq
heterozygous at rs210030313. Peaks called with ATAC-seq and ChiP-seq modes, as well as allelic imbalance in mapped reads, are shown. The two QTNs
reside in a footprint of the ATAC-seq mode peak, which is recovered by a ChIP-seq mode peak, indicating the presence of trans-acting factor(s) in the region
hindering cleavage events by transposases. Allelicimbalance at rs210030313 (Q=G; q=A) indicates that the Q allele is more accessible compared with the
q allele. Previous work showed that the two regulatory variants affect bidirectional promoter strength and that the Q allele, associated with bigger stature,
showed approximately 1.5-fold higher promoter activity compared with the q allele in a luciferase assay. Figures were created using the Integrative
Genomics Viewer (Robinson et al. 2011).
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One of the main motivations to establish open chromatin
catalogs in livestock is to identify regulatory variants that might
underpin the heritability of agronomically important traits.
Indeed, it is hoped that knowledge of these regulatory variants
may increase the accuracy of genomic selection. We identified
1,390,391 variants mapping to open chromatin regions, of which
938,374 (67%) are common variants with MAF>0.05 in Dutch
HFs (Supplemental File 52). Instead of prioritizing variants map-
ping to ATAC-seq peaks indiscriminately for genomic selection,
our catalog can be used to define sets of variants that are accessible
in tissue types that are relevant for the trait under consideration.
For instance, variants mapping to ATAC-seq peaks that are specif-
ically accessible in, for instance, the mammary gland, hypothala-
mus, pituitary gland, and liver might be particularly relevant
when targeting milk production traits.

We note that the proportion of SNVs (as opposed to indels)
mapping to ATAC-seq peaks is significantly higher than the pro-
portion of genome space occupied by ATAC-seq peaks (Fig. 3).
We provide evidence that this is owing to an approximately 1.3-
fold higher DNM rate in ATAC-seq peaks compared with the rest
of the genome, corroborating recent findings in other eukaryotes
(Kaiser et al. 2021; Luquette et al. 2022; Monroe et al. 2022).
Shifts toward lower MAFs compared with variants in flanking re-
gions support the operation of purifying selection on open chro-
matin regions and, hence, their functional importance (Fig. 3).

To further examine the regulatory function of open chroma-
tin regions, we identified 7817 and 6172 sets of credible variants
assumed to include causative variants driving the same number
of cis eQTLs detected in blood and liver, respectively (Supplemen-
tal Table 512). As anticipated, variants in these credible sets tend to
map to open chromatin regions more often than expected by
chance alone (as evaluated by permutation following the method
of Trynka et al. 2015). Furthermore, the enrichment was not ran-
dom with respect to the NMF component (Fig 4; Supplemental Ta-
ble 513). Credible sets corresponding to blood eQTLs tended to
overlap ATAC-seq peaks assigned to the immune and ubiquitous
NMEF, whereas liver eQTLs tended to overlap ATAC-seq peaks as-
signed to the liver and ubiquitous NMF. The overlap with the tis-
sue-specific NMF (immune and liver) was primarily owing to
distant regulatory elements, whereas the overlap with the ubiqui-
tous NMF was equally owing to distant and proximal regulatory el-
ements (Fig. 4).

These results tell us that variants that map to ATAC-seq peaks
are more likely to be regulatory variants than variants that map
outside of ATAC-seq peaks. However, they do not really tell us
how sensitive and precise ATAC-seq assays are to identify regulato-
ry variants, We summarized this interrogation with two specific
questions: (1) what fraction of regulatory variants map to ATAC-
seq peaks (sensitivity), and (2) what fraction of variants in ATAC-
seq peaks are regulatory (precision). We developed a maximum
likelihood framework using eQTL information to estimate both
parameters. Sensitivity was estimated at one in three, and precision
at one in 25. Thus, as many as two out of three regulatory variants
may lie outside of ATAC-seq peaks inventoried in our catalog
(Supplemental File 52). A first possible explanation of this observa-
tion is that our catalog still misses a substantial proportion of bo-
vine gene switches. This could be because, in particular, we did
not explore sufficient developmental stages, or ATAC-seq peaks
do not capture all gene switches (e.g., silencers). A second possible
explanation is that variants lying outside of ATAC-seq peaks may
nevertheless affect the functionality of (nearby) gene switch com-
ponents that are identified by ATAC-seq peaks (e.g., by affecting

the formation of secondary structures involving the switch).
Finally, some variants are known to affect transcript levels not
by perturbing gene switches but by affecting transcript stability,
including stop gains and splice variants. For example, the K232A
mutation in DGATI affects transcript abundance by affecting
splicing (Fink et al. 2020). The one in 25 precision indicates that
the majority of variants falling in ATAC-seq peaks are probably
neutral. It is possible that some eQTLs are driven by more than
one causative variant, which would slightly increase precision.
Contrary to coding variants, which can be identified quite accu-
rately based on our understanding of the genetic code and splicing
mechanisms, predicting the effect of SNVs on the functionality of
cis-acting regulatory elements is still in its infancy.

Taken together, our results indicate that the knowledge of
open chromatin regions in the bovine genome is a first step toward
the identification of regulatory variants, vet this knowledge will
likely have to be complemented with additional information to
more effectively pinpoint the causative regulatory variants and
thereby have a major impact on the accuracy of genomic selection.

Methods

Ethical approvals, sample collection, and processing

All relevant procedures using animals were approved by the animal
care and use committee (ACUC) of the University of Liége (approv-
al no. 17-1948 and 17-1949) or the Ruakura ethics committee,
Hamilton, New Zealand (approval no. AEC 12845) and performed
in accordance with the relevant guidelines and regulations of the
committees, Blood samples were collected from the tail or jugular
vein of animals using K2-EDTA blood collection tubes. White
blood cells (WBCs) were enriched by lysing erythrocytes using
eBioscience 10X RBC lysis buffer (Thermo Fisher Scientific).
Peripheral blood mononuclear cells (PBMCs) were prepared by
density gradient centrifugation using either Ficoll-Paque plus
(Cytiva) or Lymphoprep (Stemcell Technologies) with SepMate-
50 tubes (Stemcell Technologies). For tissue collections, animals
were humanely euthanized, and tissues were collected in ice-cold
Belzer UW cold storage solution (Bridge to Life) until processing
as described below or were otherwise snap-frozen in liquid nitro-
gen. Details of bovine samples can be found in Supplemental
Tables S1 and S2. To optimize protocols, one C57BL/6] x A/] F1
mouse (male, 1 yr old) was euthanized by cervical dislocation.
Four tissues (liver, spleen, kidney, muscle) were collected in the
UW cold storage solution and processed as described below. We
processed/stored samples in three ways: fresh, slow-frozen, and
snap-frozen conditions.

Fresh samples

Tissues collected in the UW cold storage solution were directly
used for constructing ATAC-seq libraries on the day of sampling
(17 biosamples with “fresh” in their names) (Supplemental Table
$3).

Cryopreserved samples

Tissues were cut into ~27-mm? cubes and transferred to cryotubes
filled with 1 mL of STEM-CELLBANKER DMSO-free cell freezing
media (Amsbio). The tubes were kept on ice for ~10 min and trans-
ferred to a cryo-box in dry ice while other samples were processed.
The samples were then stored in a —80°C freezer until use (55 bio-
samples with “slow” in names) (Supplemental Table 53).
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Snap-frozen samples

Tissues were cut into ~27-mm?® cubes and transferred to cryotubes.
The samples were snap-frozen in liquid nitrogen and stored
at —80°C until use (34 biosamples with “snap” in names)
(Supplemental Table S3).

ATACG-seq library construction

ATAC-seq libraries were constructed following the Omni ATAC-seq
protocol (Corces et al. 2017) with some modifications.

Tissue homogenization

A cryopreserved tissue in a vial was quickly thawed in a water bath
and transferred to an excess amount of ice-cold Dulbecco’s phos-
phate buffered saline (DPBS). The cryopreserved or fresh tissue
samples were dissociated into a single-cell suspension using a
gentleMACS dissociator (Miltenyi Biotec) by running one or two
cycles of program B1 with 3 mL of ice-cold Omni 1 x homogeniza-
tion buffer in a gentleMACS C-tube. Snap-frozen samples were pul-
verized using a mortar and pestle chilled in liquid nitrogen. The
cell suspension or pulverized tissue was transferred to a Dounce tis-
sue grinder (Merck D9063) on ice with 3 mL of ice-cold Omni 1 x
homogenization buffer. Samples were homogenized with an A-
pestle until resistance went away and further with a B-pestle (three
to 10 strokes each) so as to disrupt cellular plasma membranes. Cell
debris were removed by passing the sample through stackable cell
strainers (100-, 70-, and 30-um MACS SmartStrainers, Miltenyi
Biotec). The flow-through was further clarified by a brief centrifu-
gation at 100g for 1 min at 4°C. The supernatant was mixed with
an equal volume of ice-cold Omni 50% iodixanol solution (final,
25% iodixanol).

Purification of nuclei

Two layers of iodixanol cushions were prepared in a 2-mL LoBind
tube (Eppendorf) by placing 600 uL of ice-cold 40% iodixanol sol-
ution on the bottom (marking the surface of the bottom layer fa-
cilitated sample collection later) and overlaying 600 pL of ice-
cold 29% iodixanol solution using a wide-bore tip. On the top,
800 pL of the cell suspension (containing 25% iodixanol) was
placed. Density gradient centrifugation was performed using a ta-
ble-top centrifuge (Eppendorf 5430R) with a swing rotor at 6000g
for 30 min at 4°C and a soft brake setting. Top layers were carefully
removed down to ~2 mm above the bottom layer. The nuclear frac-
tion, between the bottom and middle layers, was collected (~400
uL) to a new LoBind tube on ice. The number of nuclei was count-
ed by mixing 20 pL of the sample with 20 pL of 100 x diluted
Hoechst 33342 (Thermo Fisher Scientific) using a hemocytometer
under a fluorescence microscope.

Tagmentation

Approximately 50,000 nuclei were transferred to two 1.5-mL
LoBind tubes filled with 1 mL of ice-cold Omni-ATAC-RSB +
0.1% Tween-20 buffer and centrifuged at S00g for 10 min at 4°C.
After carefully removing the supernatant, nuclei were resuspended
in 50 pL of Omni-ATAC reaction mix containing TnS transposase
TDE1 enzyme (Illumina). As the effectiveness of transposase varied
slightly among samples, we used two different amounts of the en-
zyme per sample (Supplemental Table $3). After mixing the sample
by pipetting six times using a P200 fine tip, tagmentation reaction
was performed using an Eppendorf ThermoMixer at S00 rpm for
30 min at 37°C. The reaction was stopped by adding 300 pL of
PB buffer in a MinElute PCR purification kit (Qiagen) and 10 pL
of 3 M sodium acetate (pH 5.2). The sample was mixed, kept at

room temperature for 10 min, and stored at —20°C until DNA pu-
rification. Libraries for two blood samples (WBC, PBMC) were gen-
erated with an alternative ATAC-seq protocol (Buenrostro et al.
2013) during the pilot experiment phase. A genomic DNA
(gDNA) control library was also prepared using 50 ng of purified
gDNA from one animal (HOL1_m) by following the Nextera
DNA sample preparation guide (Illumina). The tagmented DNA
was purified and eluted in 21 pL elution buffer using the
MinElute PCR purification Kit.

Library preparation

The purified DNA was amplified using NEBNext high-fidelity 2X
PCR master mix with the Ad1 and Ad2 primers (Buenrostro et al.
2013) for 13 (for ATAC-seq library) or five PCR-cycles (gDNA li-
brary), respectively. The amplified libraries were purified and elut-
ed in 50 pL elution buffer using the MinElute PCR purification kit.
Library size distribution was monitored using 10 uL of the library
by QIAxcel capillary electrophoresis (Qiagen). Large DNA frag-
ments were eliminated using AMPure XP magnetic beads
(Beckman Coulter) by a right-side size selection using 0.55 x fol-
lowed by 1.5 x volume ratio of beads to sample. Library concentra-
tion was estimated using the KAPA library quantification kit (Kapa
Biosystems). The libraries were sequenced with 2 x 38-bp paired-
end reads using a NextSeq 500 sequencer, or 2x51-bp paired-
end reads on a NovaSeq 6000 (Illumina) instrument. In total,
185 ATAC-seq libraries were sequenced, yielding 31.8 million
paired-end fragments on average (range: 2.5-117.2 million frag-
ments) (Supplemental Table S3). ATAC-seq FASTQ files were ob-
tained from the EMBL-EBI ArrayExpress (https://www.ebi.ac.uk/
biostudies/arrayexpress) under accession number E-MTAB-9872
(Lee etal. 2021) or generated in this study and submitted under ac-
cession numbers E-MTAB-11825 and E-MTAB-11826 (see Data ac-
cess). In addition, we downloaded publicly available ATAC-seq
data from the NCBI BioProject database (https://www.ncbi.nlm
.nih.gov/bioproject/) under accession numbers PRJNAS31214,
PRJNA665194, PRINA601200, PRINA595394, and PRINA622966
(Supplemental Table S1; Fang et al. 2019; Halstead et al. 2020a,b;
Johnston et al. 2021) and analyzed these in a similar way.

ATACGC-seq peak calling

ATAC-seq peaks were called following the recommendations of the
ENCODE ATAC-seq pipeline (“ATAC-seq Data Standards and
Processing Pipeline”) (https://www.encodeproject.org/atac-seq/).

Trimming

Sequences with low sequence quality, residuals of library adaptors,
and bases >38 bp (to uniform read length across data) were trimmed
using Trimmomatic (ILLUMINACLIP:NexteraPE-PE.fa:2:30:5:1:true
SLIDINGWINDOW:4:15 MINLEN:20 CROP:38) (Bolger et al. 2014).
Proportions of reads remaining after trimming averaged 98.7%
(range: 96.8-99.5%) (Supplemental Table S3).

Mapping

The trimmed reads were aligned to the bovine genome assembly
ARS-UCD1.2 using Bowtie 2 (--local -mm). Overall mapping rate
averaged 95.5% (range: 36.4%-99.4%).

Filtration

Reads mapping to the mitochondrial chromosome were filtered out
using SAMtools (samtools idxstats file.bam | cut -f 1 | grep -v chrM |
xargs samtools view -b file.bam) (Danecek et al. 2021). The propor-
tion of mitochondrial reads averaged 16.1% (range: 0.8%-61.9%).
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PCR/optical duplicates were removed using Picard toolkit (java -jar
picard.jar MarkDuplicates REMOVE_DUPLICATES = true OPTICAL_
DUPLICATE_PIXEL_DISTANCE=100 [2500 for NovaSeq data]
VALIDATION_STRINGENCY = LENIENT) (http://broadinstitute
.github.io/picard/). Duplicate read rate averaged 12.7% (range:
4.9%-23.1%). Properly aligned reads with high sequencing quality
were selected with SAMtools (for paired-end reads, samtools view -f
3 -F 1284 -q 30; for single-end reads after trimming, samtools view -f
9 -F 260 -q 30), resulting in an average of 35.3 million informative
reads per library (range: 3.4-141.5 million).

Fractionation

Reads were partitioned into two bins based on their mapped frag-
ment lengths using BamTools filter function (Barnett et al. 2011):
(1) short reads generated from putative nucleosome-free regions of
DNA (<146 bp) and (2) longer reads likely from nucleosome-asso-
ciated DNA (=146 bp).

Peak calling

ATAC-seq peaks were called using MACS2 in two ways
(Supplemental Fig. S3): First, in ATAC-seq mode: the genomic lo-
cus cleaved by the transposase (a tag) was defined as a 38-bp region
centered either 4 bp (for a plus strand read) or 5 bp (for a minus
strand read) downstream from the read’s 5-end (Adey et al.
2010; Buenrostro et al. 2013). Peaks (open chromatin regions)
were identified by comparing the tag distribution of a sample to
one from a purified gDNA control (macs2 callpeak --format BED
--control --nomodel --shift -19 --extsize 38 --qvalue 0.05 --gsize hs
—keep-dup all --max-gap 38 —SPMR --bdg). Second, in ChlP-seq
mode, to recover regions protected from transposase cleavage
events owing to binding of trans-regulatory factor(s) like a TF (so-
called footprints in the ATAC-seq mode analysis), peaks were
called using general settings used for ChIP-seq analysis (MACS2
piles up entire sequencing fragments instead of focusing on trans-
posase cleavage sites close to 5'-ends of reads). To avoid covering
nucleosome positions, only the nucleosome-free fraction of se-
quence fragments (mapped fragment size<146 bp) was used
(macs2 callpeak --format BAMPE --control --qvalue 0.05 --gsize hs
--keep-dup all --max-gap 38) for ChlIP-seq mode.

Quality control

In-house ATAC-seq data (peak-called with the ATAC-seq mode)
were evaluated using commonly used ATAC-seq quality-control
measurements (Supplemental Table S3): the fraction of reads in
called peak regions (FRiP; average: 0.212; range: 0.004-0.591)
and TSS enrichment (average: 16.1; range: 2.14-46.2). Irreproduc-
ible discovery rates (IDRs) that measure reproducibility in score
ranking between peaks, as well as rescue ratios that measure consis-
tency between replicates (average: 1.23; range: 1.02-1.96), were
calculated using samples with technical replicates.

Low-quality libraries with the number of filtered reads of few-
er than 10 million per sample, FRiP less than 0.07, TSS enrichment
less than 7.0, and a self-consistency ratio more than two, as well as
some technical duplicates with less quality, were excluded from
further analyses (36 libraries out of 185).

Final peak calling per biosample

Reads of libraries from the same biosample that passed the quality
control were merged, and peaks were called afresh as described
above in ATAC-seq and ChIP-seq modes. We also integrated 15
high-quality public data sets in our analysis (Fang et al. 2019;
Halstead et al. 2020a,b; Johnston et al. 2021). P-value thresholds

for final peak selection for all samples (with and without technical
replicates) were determined as the median of the lowest log(1/P)-
values of peaks with IDR < 0.1 across samples with technical repli-
cates (—logyo(P-value)=8.01 and 9.28 for ATAC-seq and ChlIP-seq
modes, respectively).

Reproducibility

Reproducibility of peak calling was evaluated by measuring Pear-
son’s correlation of genome-wide read coverage in 500-bp win-
dows between technical (range: 0.89-0.99) and biological
replicates (0.85-0.97) (Supplemental Figs. 51, 52) using deepTools’
bamCoverage (--outFileFormat bigwig --effectiveGenomeSize
2701495761 -—-normalizeUsing RPKM --ignoreForNormalization
chrX chrY), multiBigwigSummary (bins --binSize 500), and plot
Correlation (--corMethod pearson --whatToPlot heatmap -remove
QOutliers --colorMap viridis --plotNumbers) (Ramirez et al. 2016).

Defining and merging consensus and core peak components
across samples and calling modes

Core and consensus peak components were defined following the
method of Meuleman et al. (2020) as follows. Individual peak (IP)
summit positions were collated across samples separately for
ATAC-seq and ChIP-seq modes. Summits were clustered such
that the distance between clusters was >20 bp. The space covered
by each cluster was defined as the core component of a newly de-
fined “collective peak” (CP). The corresponding IP were piled up
and the limits of the consensus CP defined as the full-width at
half maximum. If by doing so some consensus CPs overlapped,
they were merged by repeating the process using all concerned
IPs. This vielded two genome-wide sets of core and consensus
CPs for ATAC-seq mode and ChlIP-seq mode, respectively. If over-
lapping, the corresponding consensus and core CPs were merged
to, in the end, yield one unique set of core and consensus “CPs”
or reference peaks used for all further analyses (Supplemental
File S1).

Nonnegative matrix factorization

NMF was conducted following the method of Meuleman et al.
(2020) using scripts downloaded from GitHub (https://github
.com/Altius/Vocabulary). Briefly, we set up an m (number of sam-
ples) x n (number of peaks) matrix (V) summarizing the accessibility
of each peak in each sample in binary mode (0 or 1, based on pres-
ence absence of an “IP” in the corresponding sample). V was de-
composed in a mxk W and kxn H matrix such that V= WxH,
where k is the number of hidden components. The value for k was
set at 16 following the method of Meuleman et al. (2020), as a
trade-off between maximizing the recapitulation of V and retaining
biological interpretability (k at elbow point of the derivative of F1
score over k). Following this procedure, each sample and each
peak were assigned a weight for each one of the k components, Sam-
ples and peaks were in general assigned to their dominant compo-
nent (with largest score), and components were assigned to
biological systems on the basis of their composite samples (Fig.
1F; Supplemental Table $5; Supplemental File S1). The peak infor-
mation is also made accessible via a custom track on the UCSC
Genome Browser (https:/genome.ucsc.edu/s/Animal_Genomics_
ULiege/ATAC_hub_V1 or https://www.gigauag.uliege.be/cms/c_
4791343/en/gigauag-diagnostics-softwar e-data).

Public RNA-seq data

RNA-seq data originated from bovine tissues similar to the ones gen-
erated in this study were downloaded from the NCBI Sequence Read
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Archive (https://www.ncbi.nlm.nih.gov/sra; for accession numbers,
see Supplemental Table 59; Graf et al. 2014; Cai et al. 2018; Dado-
Senn et al. 2018; Khansefid et al. 2018; Fang et al. 2019, 2020).
Low-quality bases, residuals of library adaptors, and short reads
<35 bp were removed using Trimmomatic (ILLUMINACLIP:adap-
tor.fa:2:30:10:4:true SLIDINGWINDOW:4:15 LEADING:10
TRAILING:10 MINLEN:36). The reads were mapped to the bovine
reference genome ARS-UCD1.2 using HISAT2 (version 2.1.0) using
genome indexes that were built along with coordinates of 2.7 mil-
lion DNA variants (2,389,896 SNVs and 176,799 indels) and refer-
ence transcripts (bosTau9.ncbiRefSeq.gtf; hisat2 --dta --no-softclip
-Xx index -S out.sam). Reads mapped to ribosomal RNA, duplicated,
or improperly mapped were filtered out using BEDTools
(intersectBed -abam -b  rRNA.bed -v), Picard toolkit
(MarkDuplicates REMOVE_DUPLICATES =true VALIDATION_STR
INGENCY =LENIENT), and SAMtools (view -f 3 -F 1284 -q 30).
Expression levels of reference transcripts on autosomes and sex
chromosomes in the gene reference file (bosTau9.ensGene.gtf,
v101) were estimated using StringTie (stringtie -G -e). A raw read
count matrix per gene (27,233 genes) was prepared using a
prepDE.py script in StringTie. Using R package DESeq2, the count
data were normalized by their library sizes after selecting genes for
which counts were more than 10 (for the TF binding motif enrich-
ment analysis) or 30 (for the peak-expression correlation analysis) in
at least one sample (Data<-Data [(rowSums (counts (Data))>
threshold) > 1]) and transformed using regularized-logarithm trans-
formation (rlog (Data, blind = TRUE)).

TF binding motif enrichment in peaks

Known and de novo DNA motifs enriched in core peaks assigned
to tissue specific components (one weight > 0.9) or the ubiquitous
component (all weights <30%) were identified using HOMER
(findMotifsGenome.pl peak.bed bosTau9_genome_directory-size
given) (Fig. 2A; Supplemental Tables S7, S8). For each of the 16
components, we then checked, for the 10 most enriched binding
motifs, whether the cognate TF was also more strongly expressed
in the tissue samples assigned to that component. This was accom-
plished by standardizing (Z-score) the expression level of the cor-
responding TF gene across 114 of the above-mentioned publicly
available RNA-seq libraries that could be assigned to one of our
16 components (Supplemental Table $7), and verifying whether
the Z-scores were higher in the tissue type assigned to the cognate
component compared with the other samples. The statistical sig-
nificance of the difference in Z-score was estimated using a permu-
tation test and ensuing P-values converted to FDR values (m set at
1) using the gvalue R package (http://github.com/jdstorey/qvalue)
to correct for multiple testing. FDRs<0.05 were deemed
significant.

Correlation between chromatin openness and gene expression

Chromatin openness

Chromatin openness of a peak in a given sample was measured as
the fold enrichment (in normalized read depth) over gDNA back-
ground at the nucleotide position in the peak with the highest
such value. This was computed with the MACS2 bdgcmp function
(-m FE -t sample_pileup.bdg -c control_lambda.bdg) and using the
bedGraph files from MACS2 ATAC-seq mode peak calling. The
highest fold enrichment value per peak was extracted using
BEDTools (map -nonamecheck -c 4 -0 max -a consensus_peak.bed
-b out.bdg). We kept peaks for which fold enrichments were more
than five at least in one sample (975,488 peaks).

Gene expression

Fifty-six bovine public RNA-seq data matched to 91 of our 104
ATAC-seq data sets were selected from the data sets mentioned
above (Supplemental Table 59). RNA-seq data were processed as de-
scribed above.

Correlation

Pearson’s correlations between openness (fold enrichment) of
peaks located within 1 Mb from TSS of a given gene and gene ex-
pression level across the 91 data sets were calculated using R stats
(R Core Team 2023).

Generating a catalog of common variants mapping to cis-acting
regulatory elements

Genome-wide variant catalog

We used a catalog of 11,030,905 SNVs and 1,705,738 short (<265
bp) indels called from whole-genome sequences of 264 HF cattle
(obtained from BioProject accession number PRJEB53518; Oget-
Ebrad et al. 2022).

Proportion of variants mapping to ATAC-seq peaks by genome-compartment

The genome was subdivided in five mutually exclusive compart-
ments (TS5, TTS, exonic, intronic, intergenic) using a gene refer-
ence file (bosTau9.ensGene.gtf, v101). Each compartment was
further subdivided in (1) a part overlapping any peak in our catalog
0f 948,566 autosomal consensus peaks and (2) the remaining part.
We then checked whether there was a significant difference in the
proportion of variants mapping to the peak part versus the propor-
tion of space occupied by the peak part using a chi-square good-
ness-of-fit test.

Density of singletons within and outside of ATAC-seq peaks

The change of singleton density as a function of the distance from
the nearest peak was determined sequentially as follows. We first
identified the size of the genome (in base pairs) that was within
100 bp from the nearest ATAC-seq peak (200-bp windows centered
on the peaks; g;), as well as the number of singletons that
mapped within this space (s,), and computed the corresponding
ratio (r;=51/¢1). We then identified the size of the genome that
was between 300 and 100 bp from the nearest ATAC-seq peaks
(200-bp windows on the left and right of window 1, excluding
what was assigned to fraction 1; g»; and gaz), as well as the number
of singletons that mapped within these spaces (sz; and s), and
computed the corresponding ratios (ra; = s21/g2; and rag = S2r/g2r).
We pursued this process for windows that were more and more dis-
tant from the nearest ATAC-seq peaks. The “confidence interval”
around the estimates was defined as the computed ratio+2 SD
(2 x SD;), where SD; was computed assuming a binomial distribu-
tion as SD; = /gi x ri x (1 —ri).

Site frequency spectrum

Variants mapping to peaks were sorted according to the five above-
mentioned compartments (TSS, TTS, exonic, intronic, intergenic).
Their SFS (0.01 bins) was compared (histogram) between compart-
ments and with that of all other variants in the genome. To check
for a shift toward lower allelic frequencies by compartment, we
compared the distribution of allelic frequencies between variants
that mapped to peaks (“peak part” above) versus variants that
did not map to peaks (but belonged to the same compartment) us-
ing a Wilcoxon rank-sum test.
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Identifying bovine cis eQTLs in liver and blood

RNA-seq and data preprocessing

We reanalyzed RNA-seq data of 176 liver and 227 whole-blood biop-
sies collected from 240 Holstein females at ~14 d postpartum in the
GplusE project (obtained from ArrayExpress; accession numbers
E-MTAB-9347 and E-MTAB-9431 for blood; E-MTAB-9348 and
E-MTAB-9871 for liver) (Lee et al. 2021; Wathes et al. 2021a,b). The
libraries were constructed with an Illumina TruSeq stranded total
RNA library prep Ribo-Zero gold kit and sequenced with 75-base sin-
gle-end reads. First, low-quality bases, residuals of library adaptors,
and short reads (<35 bp) were removed using Trimmomatic (java
-jar trimmomatic-0.36.jar SE input.fastq.gz output_trimmed.
fastq.gz ILLUMINACLIP:TruSeq3-SE.fa:2:30:10  SLIDINGWINDO
W:4:15 LEADING:3 TRAILING:3 MINLEN:36 2>>log.txt). The reads
were mapped to the bovine reference genome ARS-UCD1.2 using
HISAT2 (hisat2 --dta --no-softclip -x index -U trimmed.fastq.gz -S
output.sam --rna-strandness R 2>>log.txt). Reads mapped on ribo-
somal RNA were filtered out using SAMtools (samtools sort input.
sam -0 sorted.bam) and BEDTools (intersectBed -abam sorted.bam
-b rRNA.bed -v). BAM files from the same biosample were merged,
and properly mapped reads were kept with SAMtools (samtools
merge merged.bam sample_ID*.bam; samtools view -F 2308 -q 30
-0 clean.bam -b merged.bam; samtools sort -o clean.sorted.bam
clean.bam; samtools index clean.sorted.bam). Expression levels of
reference transcripts (bosTau9.ensGene.gtf, v101) on autosomes
and sex chromosomes were estimated using StringTie (stringtie
clean.sorted.bam --rf -G bosTau9.ensGene.nochrUn.gtf -e -o
transcripts.gtf) (Pertea et al. 2015). A raw read counts matrix by
gene (27,233 genes) was prepared using a prepDE.py script in
StringTie. Gene-specific reads counts were scaled with a “size factor”
using DESeq2 after eliminating mitochondrial gene counts. Gene
with summation of TPM lower than one and with fewer than eight
individuals with counts greater than zero were filtered out. After-
ward, counts were normalized by inverse normal transformation
by gene and across individuals.

SNV genotyping

All animals were genotyped with a high-density (about 778,000)
SNV array (Illumina BovineHD Genotyping BeadChip), and im-
puted to whole genome using SHAPEIT4 (for phasing) (Delaneau
et al. 2019) and Minimac4 using the previously mentioned
whole-genome sequences of 264 HF animals as reference.
Variants with MAF<0.02, probability of the data assuming
Hardy-Weinberg equilibrium <0.001, and imputation accuracy
(r*) <0.9 were filtered out, leaving a total of 10,257,878 usable
markers (the genotypes are available from the Zenodo open data
repository at https://doi.org/10.5281/zenodo.8339268).

eQTL analyses

We used QTLtools to ensure RNA-DNA sample matching based on
genotype concordance (Supplemental Table 511). Expression val-
ues were first corrected for hidden confounders and “country of or-
igin” using probabilistic estimation of expression residuals (PEER).
The resulting residuals were then further corrected for strati-
fication and/or polygenic effects on gene expression using
GenABEL. The ensuing “double-corrected” residuals were then
used for cis eQTL analyses using QTLtools. For each gene, we tested
all variants within 1 Mb from the TSS. Ensuing P-values were cor-
rected for multiple testing (in the window) by permutation. For
each gene, we kept the best P-value (= “lead variant”), and these
“best P-values” were converted to FDR and Q-values (hence cor-
rected for multiple testing) following the methods of Benjamini

and Hochberg (1995) and Storey and Tibshirani (2003), respective-
ly. eQTL with FDR <0.05 were deemed experiment-wide signifi-
cant. m; (the proportion of alternative hypotheses among all
tested hypotheses) was estimated according to the method of
Storey and Tibshirani (2003).

Enrichment of eQTL driving variants in ATAC-seq peaks

We first identified, for each significant cis eQTL, a credible set of
variants defined as all the variants within 1 Mb from the lead vari-
antand in LD with it with a threshold value r?,, = 0.9. We then used
the method proposed by Trynka et al. (2015) to measure the puta-
tive enrichment of credible variants in ATAC-seq peaks. The analy-
sis was performed by NMF component. Briefly, we defined, for each
cis eQTL, a region/window spanned by the credible set plus buffer
segments on either side corresponding to twice the median peak
size (=436 bp). We first counted, using the real eQTL results, for
how many eQTLs at least one credible variant mapped within an
ATAC-seq peak (assigned to the NMF component under consider-
ation). We then randomly shifted variant and peak coordinates
with respect to each other within each cis eQTL window and count-
ed for how many eQTLs at least one credible variant mapped within
an ATAC-seq peak. This “permutation” process was repeated
10,000 times, and the significance of the overlap between credible
variants and peaks observed for the real data was evaluated from the
number of occurrences of an equal or higher overlap with the per-
muted data. To evaluate the contribution of proximal rather than
distal ATAC-seq peaks to the signal, permutations were also con-
ducted separately by peak type (proximal vs. distal).

Estimating the proportion of regulatory variants mapping in
ATAC-seq peaks and the proportion of variants mapping in
ATAC-seq peaks that are regulatory

We assumed that every cis eQTL i out of T is driven by one regula-
tory variant that is part of a credible set comprising n;, variants in
the ATAC-seq peaks and n;y variants outside of the ATAC-seq
peaks. We further assumed that a fraction f of cis eQTLs is driven
by a regulatory variant mapping to an ATAC-seq peak
(Supplemental Codes S1, 52), as well as a fraction fy=1-f, by a
regulatory variant mapping outside ATAC-seq peaks, and that
ATAC-seq peaks occupy a proportion p, of the genome. The likeli-
hood of the data for eQTL i can hence be expressed as

L= fAI:(rrm +my—1 ) x pan=t (1 — pA)n.,\-:I

gy — 1

+ fN[(u,—A + NN — 1) X pa™ x (1 — P,g}”"““],

my — 1

This equation assumes that the (n;4+n;y— 1) “passenger” vari-
ants in the credible set are distributed between ATAC-seq peaks
and the rest of the genome according to the proportion of the ge-
nome occupied by these two components and following a binomial
distribution.

We used the Newton-Raphson method (R nlm function)
(R Core Team 2023) to determine the value of f; that maximizes
the likelihood of the data for all T eQTL:

r
M:Hh
i=1
fa corresponds to the above-mentioned sensitivity (s.t. 0<fy < 1),

whereas the precision was estimated as

faxT
e
> et Mia
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Data access

ATAC-seq data generated in this study have been submitted to the
EMBL-EBI ArrayExpress (https://www.ebi.ac.uk/biostudies/array
express) under accession numbers E-MTAB-11825 and E-MTAB-
11826. Imputed genotypes of animals used for eQTL analyses are
available from the Zenodo open data repository at https://doi
.org/10.5281/zenodo.8339268. Other data sets used in this study,
published previously, are described in the Methods. Key analysis
pipelines are available at GitHub (https://github.com/can11si
chuan/Bov-ATAC) and Supplemental Code S1 and 52. The UCSC
Genome Browser track hub to visualize all 104 individual and ref-
erence ATAC-seq peaks is accessible from https://genome.ucsc
.edu/s/Animal_Genomics_ULiege/ATAC_hub_V1 or https://www
.gigauag.uliege.be/cms/c_4791343/en/gigauag-diagnostics-softwa
re-data. Bovine ATAC-seq peaks and putative regulatory variants
identified in this study are found in Supplemental Files 51 and
52, respectively.
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Supplemental Figure S1: Impacts of sample storage conditions on genome-wide ATAC-seq signals were
examined using cattle (A) and mouse (B) tissues. Pearson’s correlation was calculated using normalized
read coverage in 500-bp windows spanning the entire genome. Pairwise correlation coefficients are
shown in color code between hierarchically clustered samples. Tissues were collected in the UW cold
storage solution on ice and further processed in three ways: (i) fresh: Tissues were directly subjected to
library construction on the day of sampling, (ii) slow: Tissues cut into ~ 3 mm cubes were soaked in
STEM-CELLBANKER DMSO-free cell freezing medium for ~ 10 minutes on ice and stored at -80°C until
use, and (iii) snap: Tissues cut into ~ 3 mm cubes were snap-frozen in liquid nitrogen and stored at -80°C
until use. Correlations between fresh and slow-frozen samples are slightly higher than between fresh
and snap-frozen samples. This suggests that cell freezing medium better preserves nuclear structure of
cryopreserved tissues. It is noteworthy that, for tissues that are difficult to homogenize (e.g., stomach,
nerve, vein), pulverizing snap-frozen tissues using mortar and pestle in liquid nitrogen achieved better
results (see also Supplemental Table S3).
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Supplemental Figure S2: Reproducibility of ATAC-seq data. Pairwise correlation coefficients
calculated using normalized read coverage in 500-bp windows are shown in color code for
hierarchically clustered samples. (A) Comparisons between in-house ATAC-seq data using white blood
cells (WBC) isolated from one Belgium Blue adult female (BBB1) and two Holstein juvenile male
(HOL1 and HOL2). Samples were either directly subjected to library construction (fresh) or stored in
the Stem-Cellbanker freezing media until use (slow). Tagmentation reactions were performed using
two different amounts of TDE1 transposase enzyme (1.5 ul or 2.0 ul) per 50,000 nuclei. (B)
Correlation between in-house (HOL1) and publicly available ATAC-Seq data (HRD1 and HRD2, two
adult Hereford cattle, Halstead et al., 2020). Genome-wide ATAC-Seq signal was highly reproducible
between technical (0.92 —0.99) as well as biological replicates (0.85 — 0.97).
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Supplemental Figure S4: (A) Density of ATAC-seq peaks (proportion of genome space occupied by
ATAC-seq peaks) in 0.1 Mb sliding windows across the bovine genome in pseudo-color (green: low —
red: high). Grey curves: density of TSS (number of TSS) in the same 0.1 Mb sliding windows. (B)
Distribution of density of ATAC-seq peaks in 0.1 Mb sliding windows by chromosome. (C) Correlation
between TSS (x-axis) and peak (y-axis) density in 0.1 Mb windows (r = 0.52).
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Supplemental Figure S5: UCSC Genome Browser view

of tissue-type-specific ATAC-seq peaks and

their NMF annotations (https://www.gigauag.uliege.be/cms/c_4791343/en/gigauag-diagnostics-
software-data) around (A) mammary gland specific gene, LALBA (Lactalbumin Alpha) and (B) muscle
specific gene, MYH1 (Myosin Heavy Chain 1) where chromatin is opened in a tissue specific way

across the genes.
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Supplemental Figure S6: UCSC Genome Browser view of ATAC-seq peaks and their NMF annotations

(https://www.gigauag.uliege.be/cms/c_4791343/en/gigauag-diagnostics-software-data)

around

PLCD4 (Phospholipase C Delta 4) gene. A recessive mutation in this gene has pleiotropic effects on
multiple cow phenotypes (Reynolds et al., 2021). The gene might be regulated by various
combinations of shared and tissue-type-specific regulatory elements. Peak names consist of
chromosome coordinate, largest NMF component and its weight. Peaks are color-coded as in the

main Fig. 1A and F.
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Supplemental Figure S7: Hierarchical clustering of the 104 samples using the Ward.D2 method
implemented with the hclust R function, and the accessibility (measured as the fold-enrichment over
genomic DNA background at the nucleotide position in the peak with the highest such value) of
934,972 distal (and hence more tissue specific) peaks. The samples are color-coded by their highest

NMF component as in main Fig. 1A and F. Sample

s discussed in the main text are marked.
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Supplemental Figure S8: (A) Number of additional ATAC-seq peaks that are uncovered when adding new samples. The
first 97 samples are the post-natal tissue samples, ordered by decreasing number of new peaks detected. Primary
cultured cells (green gradients) and embryonic samples (orange gradient) are added at the end. (B) Number of peaks
detected in each sample colored by degree of sharing with other samples (Constant: shared with all other samples,
Sharing: shared with at least one sample from other NMF component(s), NMF_specific: shared only with samples from
the same NMF component, Sample_specific: not shared with any other sample). (C) Number of peaks sorted by NMF
component (dominant component) and colored by the number of NMF components with whom it is shared. (D) Overlap
between ATAC-seq and ChlP-seq epigenetic marks in the dataset of Kern et al. (2021) studying eight tissue types in cattle.
H3K4me3: active promotors, H3K4me1l: active and primed enhancers, H3K27ac: active promotors and enhancers, CTCF:
boundary elements and regulators of transcription and chromatin architecture. H3K27me3, corresponding to silenced
chromatin, was not included (although studied in Kern et al.) because they do not correspond to regulatory elements
sensu stricto but rather reflect the local outcome of gene repression. Kern_ATAC_8: ATAC-seq peaks reported in Kern et
al. from the analyses of eight tissue types. Yuan_ATAC_8: ATAC-seq peaks detected in this study from the analyses of
eight tissue-types matching the Kern et al. samples. Yuan_ATAC_63: full ATAC-seq peak catalogue produced in this study.
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4 Experimental section: Study 2

4.1 Summary

Heritability partitioning approaches estimate the contribution of different functional classes,
such as coding or regulatory variants, to the genetic variance. This information allows a better
understanding of the genetic architecture of complex traits, including complex diseases, but can also
help improve the accuracy of genomic selection in livestock species. However, methods have mainly
been tested on human genomic data, whereas livestock populations have specific characteristics, such
as high levels of relatedness, small effective population size or long-range levels of linkage
disequilibrium. Here, we used data from 14,762 cows, imputed at the whole-genome sequence level for
11,537,240 variants, to simulate traits in a typical livestock population and evaluate the accuracy of two
state-of-the-art heritability partitioning methods, GREML and a Bayesian mixture model. In simulations
where a single functional class had increased contribution to heritability, we observed that the estimators
were unbiased but had low precision. When causal variants were enriched in variants with low (<0.05)
or high (> 0.20) minor allele frequency or low (below 1st quartile) or high (above 3rd quartile) linkage
disequilibrium scores, it was necessary to partition the genetic variance into multiple classes defined on
the basis of allele frequencies or LD scores to obtain unbiased results. When multiple functional classes
had variable contributions to heritability, estimators showed higher levels of variation and confounding
between certain categories was observed. In addition, estimators from small categories were particularly
imprecise. However, the estimates and their ranking were still informative about the contribution of the
classes. We also demonstrated that using methods that estimate the contribution of a single category at
a time, a commonly used approach, results in an overestimation. Finally, we applied the methods to
phenotypes for muscular development and height and estimated that, on average, variants in open
chromatin regions had a higher contribution to the genetic variance (> 45%), while variants in coding
regions had the strongest individual effects (> 25-fold enrichment on average). Conversely, variants in
intergenic or intronic regions showed lower levels of enrichment (0.2 and 0.6-fold on average,
respectively). Heritability partitioning approaches should be used cautiously in livestock populations, in
particular for small categories. Two-component approaches that fit only one functional category at a

time lead to biased estimators and should not be used.
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4.2 Introduction

In livestock species, the number of genotyped and whole-genome sequenced animals is steadily
increasing. Combining these data with missing genotype imputation techniques allows genome-wide
association studies and genomic selection to be performed at the sequence level in large cohorts. More
recently, functional annotations of the genome are becoming available for several livestock species
(Andersson et al., 2015; Clark et al., 2020). For example, transcriptome data (Fang et al., 2020; Liu et
al., 2022), chromatin accessibility maps (Kern et al., 2021; Yuan et al., 2023) or histone mark
distributions (Kern et al., 2021; S. Liu et al., 2020) are now available in cattle. In human genetics, such
information has been used to study the genetic architecture of complex traits, including complex diseases
(Finucane et al., 2015; Gusev et al., 2014). More precisely, the contribution of different functional
categories of variants to the genetic variance of these different traits has been estimated. Such
approaches are referred to as variance partitioning or heritability partitioning approaches. They have for
example highlighted the importance of regulatory variants (Finucane et al., 2015; Gusev et al., 2014).
Fewer studies have been realized in livestock species, as functional annotation maps remain limited
compared to humans, and are more recent. Nevertheless, similar approaches have been used, for
instance, in cattle (Koufariotis et al., 2014; Xiang et al., 2019a). In this context, the identification of
functional categories contributing to complex traits is also important for prioritizing variants to be used
in genomic selection and improving its accuracy.

Most methods used for heritability partitioning have been developed and tested in the context
of human genetics (Finucane et al., 2015; Patxot et al., 2021; Yang et al., 2015). Although livestock
species have specific characteristics at the genomic level, methods have often been transferred without
additional testing. As a result of their demographic history, including domestication, breed creation and
intensive selection, livestock species are indeed different in terms of effective population size (Hayes et
al., 2003; MacLeod et al., 2013), levels and extent of linkage disequilibrium (LD) (Gautier et al., 2007),
relatedness between individuals and levels of inbreeding (Leroy, 2014). The higher selection intensity
in livestock species often results in the fixation of large effect variants accompanied by large selective
sweeps (Druet et al., 2013). Importantly, previous studies in humans have relied on samples of unrelated
individuals, discarding all pairs of individuals with a relatedness level above 0.025 (Yang et al., 2015),
whereas in a typical livestock dataset these and higher relationships are common. For instance, with the
use of artificial insemination, many individuals may have a common sire or grand-sire. Similarly, the
importance of accounting for LD scores when estimating variance components (Yang et al., 2015) has
not been evaluated when high LD levels are present at long distances (Farnir et al., 2000).

We herein used a genotyped population of 14,762 Belgian Blue Beef (BBB) cows to evaluate
the accuracy of heritability partitioning approaches in a typical livestock population. Belgian Blue cattle
have indeed been intensively selected for muscular development. This has resulted in the fixation of an

11bp deletion in the myostatin gene (Grobet et al., 1997), accompanied by a large selective sweep (Druet
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et al.,, 2013). Additional genetic variation for muscular development has been exploited to further
improve this trait (Druet et al., 2014a). As in other livestock populations, the effective population size
is small, around 100 (Druet et al., 2013), and individuals have high levels of recent inbreeding associated
with long runs of homozygosity (Solé et al., 2017). The objective of the present study was to use these
data to perform realistic simulations, with characteristics of a typical livestock population, in order to
evaluate two state-of-the-art methods, a variance component approach (Yang et al., 2015) and a
Bayesian mixture model (Patxot et al., 2021). The simulations included scenarios where causal variants
were enriched in specific allele frequency, LD score or functional categories. An additional objective
was to use these approaches to perform heritability partitioning based on functional annotation for

muscular development and height traits in Belgian Blue beef cattle.

4.3 Material and methods
431 Data

For the present study we used data from 14,762 Belgian Blue beef cows with imputed genotypes
from 11,537,240 SNPs and small indels (Gualdrén Duarte et al., 2023). Cows were genotyped with
either low-density (9983 to 20,502 SNPs) or medium-density (51,809 to 57,979 SNPs) arrays and
genotype imputation to the sequence level was performed in successive steps. The reference panels
included 13,600, 890 and 230 individuals at the medium-density (28,893 SNPs selected), high-density
(572,667 SNPs selected) and sequence levels, respectively. Variants with low minor allele frequency
(MAF) (< 0.01) or with lower imputation accuracy (r? < 0.90) were filtered out, resulting in the selection
of 11,431,742 variants. More details on the imputation procedure and the data set can be found in
Gualdron Duarte et al. (2023). We used phenotypes for muscularity traits (shoulder muscularity, top
muscularity, buttock muscularity rear and side view) and height (with heritabilities of 0.30, 0.31, 0.42,
0.39 and 0.38, respectively). The four muscularity traits are scores from 51 to 100, given on the farm by
a technician based on a visual assessment (available for 14,476 individuals), while height was measured
for 12,904 individuals. In addition, a synthetic score for muscular development was obtained as a linear
combination of the four individual muscularity scores (with a weight of 1 for shoulder and top
muscularity and 2 for buttock muscularity scores). These phenotypes were corrected for fixed effects

from the evaluation model as described in Gualdron Duarte et al. (2023).

4.3.2 Variant annotation

For variant annotation, we selected categories similar to those defined by Gusev et al. (2014).
Accordingly, six functional categories were defined to classify the 11,431,742 variants. First, we
identified variants located in open chromatin regions (OCR). These regions were defined using an
organism-wide catalog of 976,813 cis-acting regulatory elements for the bovine detected by the assay

for transposase accessible chromatin using sequencing (ATAC-Seq) described in Yuan et al. (2023).
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The catalogue was generated using data from 106 samples corresponding to 68 tissue types. We
annotated as OCR variants those variants located in the 976,813 peaks, which represented 10% of the
genome space. Variants outside the OCR were classified into five additional groups corresponding to
coding sequence (CDS), untranslated regions (UTR) including both 3’ and 5° UTR, regions upstream (-
1kb) or downstream (+1kb) of genes (UDR), intronic (IOR) and intergenic (IGR) regions. The number
of variants per category is reported in Tablel. This annotation was obtained from the General Transfer
Format (GTF) file of the bovine genome assembly ARS-UCD1.2 downloaded from Ensembl (v105).
This file directly provides coordinates of genes, transcripts, exons, CDS and UTR. I0Rs were defined
as non-exonic regions in genes. Transcription start and termination sites (TSS and TTS) were obtained
using Homer (Heinz et al., 2010) and all transcripts from the genes. Upstream and downstream regions
were then defined as 1 kb upstream and downstream from TSS and TTS, respectively. IGR corresponded
to the remaining unannotated regions.

Annotation groups were also defined based on MAF and linkage disequilibrium (LD) scores
(Yangetal., 2015). Three MAF groups were defined [0.01-0.05; 0.05-0.10; 0.10-0.50]. For each variant,
LD scores were obtained using GCTA (Yang et al., 2011a) as the sum of LD r2 scores between the
variant and all variants within a 200 kb window (Yang et al., 2015). SNPs were then stratified into four
LD score groups based on quartiles. These groups thus represent SNPs that have, for example, low or
high LD levels with other SNPs in the region. SNPs in high LD groups capture the effect of more SNPs,
and potentially causal variants, than SNPs in low LD groups.

4.3.3 Heritability partitioning methods
Two methods were applied to estimate the contribution of different annotation groups to the
additive genetic variance. First, we used a genomic restricted maximum likelihood (GREML) approach

to estimate the variance components with the following linear mixed model:

y=1p+3Yi ,gs+e,

where y is the vector of individual phenotypes, 1u is the intercept term (i.e. the mean effect), g is the
vector of individual polygenic effects associated to annotation group s, S is the total number of fitted
annotation groups, and e is the vector of individual random error terms. Each polygenic component is
normally distributed, g, ~ N(0, G;62) where G is the genomic relationship matrix (GRM) computed
using the variants present in category s and ¢ is the variance of polygenic effects from the annotation
group. The GRM were computed with GCTA using centered and scaled genotypes as described in Yang
et al. (Yang et al., 2011a). The residual error terms are independent and normally distributed,
e ~ N(0,1062) where | is the identity matrix and 2 is the residual variance. The additive polygenic

variance, a;, is equal to the sum of the variances associated to each annotation groups:
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0 = Y5-107.

The contribution of annotation group s to the genetic variance, called %SNP heritability, is estimated
as:

2

g
%h? = Z.
)

Variance components were estimated using GCTA and the Average-Information (Al) algorithm
(default option). When the AI-REML did not converge, we used the EM-REML algorithm with a
maximum of 500 iterations. We follow Gusev et al. (Gusev et al., 2014) to define the enrichment of

heritability as the percentage of heritability in category s divided by the proportion of variants in the
same category.

The second approach is a Bayesian model designed for large-scale genomic data and called
BayesRR-RC (Patxot et al., 2021). The model is an extension of BayesR (Erbe et al., 2012) and BayesRC
(MacLeod et al., 2016). Variant effects are described as a mixture of null effects (spike probability at
zero) and Gaussian distributions. The hyper-parameters vary for variants from different annotation
groups. Accordingly, the variance explained by the markers and their mixture proportions are group-

specific. Phenotypes are modeled as:

y= 1”+Z§=1Xsﬂs +e,

where X is the matrix of centered and scaled genotypes for markers in category s and g is the vector of

marker effect for category s. These effects are distributed according to:
Bs;~o 80 + w1 N(0,07) + mp N(0,05) + ...+ m, N(0,02),

where j is the marker index, &o is a discrete probability mass at 0, L is the number of Gaussian
distributions in the mixture, {nos,nls,nzs, ...,an} are the mixture proportions for annotation group s,
{0125, 0225, e aLZS} are the mixture variances for group s, proportional to 2, the variance explained by the
group which is directly estimated from the data. In our study, we set L to 3, with variances 0125

respectively equal to 0.0001, 0.001 and 0.01 ¢2. This model was run using the GMRM software (Patxot
et al., 2021) with a Gibbs sampling scheme for 5,000 iterations with a burn-in period of 2,000 iterations.

This setting corresponds to the values used by the software developers in their original study (Patxot et
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al., 2021), and Orliac et al. (2022) have shown that 2,000 iterations allow to obtain good approximations
of the parameters.

Different definitions of annotation groups can be applied in both approaches. In two-component
(TC) models, two functional annotation groups are selected (e.g., OCR versus non-OCR), whereas in
multiple-component (MC) models, multiple functional annotation groups are fitted simultaneously.
Additional stratification levels can be added to these models (Yang et al., 2015). In the MAF-stratified
(MS) and LD-stratified (LDS) models, groups are defined as a function of the MAF and LD score
categories described above, respectively, whereas an LDMS model fits all combinations of functional,
MAF and LD categories. In this case, the total number of fitted components is equal to the number of
functional categories multiplied by the number of MAF groups and by the number of LD score groups.
When a model is run without correcting for MAF or LD score categories, we use the abbreviation
"noLDMS" to distinguish it from the other models.

4.3.4 Simulation study

Phenotype simulation. To obtain phenotypes with different architectures, we simulated them as:
M
y= 2:2:1 Zj=1xsjﬁsj t+e.

where y is the vector of individual simulated phenotypes, S is the number of different annotation groups,
M:s is the number of causal variants (CVs) in annotation group s, Xsj is a vector of centered individual
allele dosages for the j" variant from the s group, By is the effect of the corresponding variant and e is
a vector of individual errors terms. By default, CV effect sizes were sampled from normal distributions
with variance equal to [2p;(1-p;)]*, where p;j is the allele frequency of variant j. This is equivalent to
assuming that each CV contributes equally to the genetic variance, as in Gusev et al. (2014) and Yang
etal. (2015). This corresponds also to the default rule used by GCTA to construct the GRM. We assessed
the robustness to this assumption later (see below). To simulate variable contributions of the annotation
groups to the genetic variance, we selected the number of CVs, Ms, proportionally to the simulated
contribution.

In this model, the individual polygenic effects g; are equal to:
S Mg — V'S
g = Ys5=1 Zj=1 xs]-.st =Ys=19s
where g is the vector of individual polygenic effects and gs is the vector of individual polygenic effects
associated to annotation group s. After simulating these polygenic terms, their variance was rescaled to

obtain the simulated contribution to the genetic variance, also defined as %SNP heritability. Finally, the

individual error terms were normally distributed with a variance adjusted to obtain the simulated
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heritability. By default, M, the total number of CVs, was set equal to 10,000 and the heritability to 0.50.

This simulation code is available at https://github.com/canl1sichuan/Bov-hg/.

Simulations scenarios with causal variants enriched in OCR. In unstratified scenarios, CVs were
randomly sampled. In other scenarios, higher proportions of variants were sampled in certain annotation
groups.

We started with simulations in which OCR contributed to 50% of the heritability, without
stratification according to MAF or LD scores. Accordingly, 5,000 CVs were selected within OCR and
5,000 outside OCR. We then ran simulations in which CVs were enriched in specific MAF classes, LD-
score categories, or combinations of both (LDMS simulation scenarios). The enriched annotation groups
were defined as low MAF (MAF < 0.05), high MAF (MAF > 0.20), low LD (LD scores below the 1%
quartile) and high LD (LD scores above the 3" quartile). In these simulations, 3,000 OCR SNPs were
sampled in the enriched annotation groups and 2,000 OCR SNPs were sampled outside of these groups,
and the same sampling was applied outside of OCR. A total of six stratified scenarios were defined: 1)
low MAF, 2) high MAF, 3) low LD, 4) high LD, 5) low MAF and low LD, and 6) low MAF and high
LD.

Finally, we tested the robustness of the approaches to the relationship between SNP effects and
their MAF. In the default scenario described above, CVs have the same contribution to the genetic
variance (i.e. rare variants have larger effects). In the alternative scenario corresponding to the first rules
proposed by VanRaden (2008), the distribution of CV effects was independent of MAF (common
variants would have a higher contribution to genetic variance).

Due to the high computational demands of BayesRR-RC, we worked with a subset of the
genome. To do this, we randomly sampled 200 positions in the genome and selected all variants within
500 kb of the position (we sampled fragments rather than variants to preserve some LD structure). This
resulted in a selection of 191 Mb and 965,428 variants (we have less than 200 Mb because some
positions were less than 500 kb apart and their windows overlapped, while other positions were close to
the chromosome ends). Both BayesRR-RC and GREML were applied to these simulations to ensure fair
comparisons.

In total, each simulation scenario was repeated 100 times.

Simulation scenarios with variable contributions from different functional categories. We then
used the six functional categories in our simulations. These categories were similar to those used in the
study by Gusev et al. (2014). As in their study, we ran simulations where one of the functional categories
contributed to 100% of the genetic variance, and then simulations without enrichment, where each
category contributed proportionally to the number of variants present in the category. In addition, we
simulated three more complex scenarios in which the different functional categories had variable
contributions (Table 4.1). For these simulations, repeated 100 times per scenario, the heritability was set

to 0.70 and we selected 2,000 CVs variants. In the scenarios where a single class contributed to 100%
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of the heritability, the number of CVs was reduced to 500, as the number of SNPs in certain categories

was limited.

4.3.5 Evaluation metrics

For each scenario, we reported summary statistics (mean, median, standard deviation, quantiles,
minimum, maximum), measures of precision and accuracy (Root Mean Square Error - RMSE, and bias)
of the estimators. We also reported the number of simulations without convergence with the AI-REML
and after 500 additional iterations of the EM-REML.

4.3.6 Application to real data

Finally, we applied the approach to the five muscular development traits and height measured
on the ~15,000 genotyped Belgian Blue beef cows and imputed to the whole-genome sequence level.
We used a MC model with the same partitioning of the genome as in the simulation, except that UTR
was merged with CDS (as the variability of estimates in the small category was too high). For the
GREML approach, GRMs were computed using the rules described above (Yang et al., 2011a) or the
first rule proposed by VanRaden et al. (2008). In addition, we also estimated the %SNP heritability

associated with the different annotation classes using a TC approach.

4.4 Results

4.4.1 Estimation of proportion of genetic variance associated with a single annotation

class

We first assessed whether the approaches could estimate the proportion of genetic variance
associated with a specific category (also referred to as %SNP heritability) with TC models. For this
purpose, we selected variants located in open chromatin regions (OCR) identified by ATAC-Seq (Yuan
etal., 2023), which account for approximately 10% of the genome, and started with simulations in which
these variants accounted for 50% of the genetic variance. The architecture was independent of both
MAF and LD scores (i.e. CVs were randomly sampled within OCR and non-OCR). In Figure 4.1, we
show the proportion of genetic variance estimated with GREML or with the BayesRR-RC model
(without correction for LDMS (noLDMS), MAF-stratified (MS), LD-stratified (LDS) or LD- and MAF-
stratified (LDMS) approaches). Results for each scenario are provided in Additional File 1, including
summary statistics, measures of precision and accuracy, and convergence information.We observed that
the %SNP heritability associated with OCR was accurately estimated with the different GREML
approaches (mean = 49.7% (noLDMS), 49.7% (MS), 49.7% (LDS) and 50.4% (LDMS)), although with
relatively high imprecision of the estimators (RMSE = 5.4 (noLDMS), 5.7 (MS), 5.7 (LDS) and 5.6
(LDMS)) (Additional file 1: Table S1). For example, the estimated %SNP heritability ranged from 35.9
to 67.1% when running GREML without correction for LDMS (95% of the values were between 40.4

88



Chapter 4 Experimental section — Study 2

and 58.5%). BayesRR-RC also produced estimates close to the simulated values, but with slightly higher
levels of variation than GREML with the noLDMS, MS and LDS approaches. In this first scenario, the
bias was below 1% with both methods, except with BayesRR-RC for the LDMS approach.

Next, we investigated whether the methods were robust to MAF- or LD-dependent architectures
(MS and LDS simulations, respectively). To this end, we performed simulations in which CVs were
enriched in specific MAF classes (e.g., MAF < 0.05 or MAF > 0.20), LD-score categories (i.e., SNP
with LD score in the lower or upper quartile), or in combinations of both features (LDMS simulation
scenarios). Although the noLDMS-GREML approach provided unbiased estimates of OCR %SNP
heritability in some scenarios, such as the low MAF (Figure 4.2A) and high MAF (Additional file 2:
Figure S1A) scenario, high levels of bias were observed when CVs were enriched in certain LD classes
(Figure 4.2B-C and Additional file 2: Figure S1B). LDS-GREML was biased in MS simulations and
vice versa. Overall, only LDMS models were robust in most scenarios (Figure 4.2A-C; Additional File
1: Tables S2-7; Additional file 2: Figure S1), in agreement with previous studies (Yang et al., 2017,
2015). In this case, the estimators obtained with BayesRR-RC deviated more from the simulated values
than the GREML approach. However, convergence was not systematically achieved with the GREML
approach (with both the AI-REML algorithm and after 500 iterations of the EM-REML algorithm). This
occurred mainly with the LDMS-GREML (Additional file 1: Tables S1-7), when a higher number of
GRMs was fitted, and has also been reported in previous studies (Finucane et al., 2015; Speed et al.,
2017).
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Figure 4.1. Estimation of %SNP heritability when variants in open chromatin regions (OCR) accounted for
50% of heritability. There was no additional MAF (MS) or LD stratification (LDS) in the simulations. The %SNP
heritability was estimated with GREML and BayesRR-RC. The methods were applied without correction for MAF
or LD score (noLDMS), and with MAF stratified (MS), LD stratified (LDMS) and both MAF and LD stratified
(LDMS) approaches.

In these first simulations, each CV had the same expected contribution to the genetic variance

because its effect variance was proportional to the inverse of p; (1- p;) (where p; is the reference allele
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frequency at SNP j). This architecture is consistent with the default rule used to construct the GRM in
GCTA (i.e., the same architecture was used in the simulation and in the partitioning approach). We also
investigated whether the accuracy of heritability partitioning would be different if different rules were
used to simulate the CV effects and to construct the GRMs used in the partitioning approach. Therefore,
we performed the partitioning using GRMs constructed with the first rules proposed by VanRaden
(VanRaden, 2008), assuming that the CV effect variance is independent of allele frequency. In addition,
we used these second rules to simulate a new scenario in which common variants contribute more to the
genetic variance. In the analyses, we observed a modest bias with the noLDMS and LDS approaches
when the rules used to estimate the GRM did not match those used in the simulation (Additional file 2:

Figure S2). Interestingly, this bias could be reduced by using the MS and LDMS approaches.
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Figure 4.2. Estimation of %SNP heritability when causal variants are enriched in specific MAF or LD score
categories. Variants in open chromatin regions (OCR) accounted for 50% of heritability. Causal variants were
enriched in A) low MAF variants (MAF < 0.05), B) Low LD variants (LD score in the 1% quartile), and C) low
MAF and low LD variants. The %SNP heritability was estimated with GREML and BayesRR-RC. The methods
were applied without correction for MAF or LD score (noLDMS), and with MAF stratified (MS), LD stratified
(LDMS) and both MAF and LD stratified (LDMS) approaches.

4.4.2 Estimation of proportions of the genetic variance associated with multiple

annotation classes

In the second part of the study, we simulated more complex scenarios in which six different
annotation classes contributed to the total genetic variance to varying degrees. The selected categories
were coding regions (CDS), 3° and 5° UTR (UTRs), regions upstream and downstream of genes (+/-
1kb) called UDR, intronic regions (IOR), intergenic regions (IGR) and variants in OCR. For each
simulation, we assessed whether the model was able to estimate %SNP heritability and heritability
enrichment, defined as the ratio of the percentage of heritability contributed by the category to the

percentage of SNPs in the category. To do this, we fitted the six categories simultaneously with a MC

90



Chapter 4 Experimental section — Study 2

model, without correcting for LDMS structure for computational reasons. We started with simulations
where all the genetic variance was associated to a single class (Figure 4.3A-B; Additional file 1: Tables
S8-12; Additional file 2: Figure S3). The GREML approach identified the class contributing to the
genetic variation, but with relatively low precision and some bias (for instance, estimates ranged from
0.943 to 0.997 for CDS and from 0.657 to 0.979 for OCR). The BayesRR-RC approach was more
accurate, with exceptionally low levels of variation in estimates across simulations, except when OCR
variants accounted for 100% of the genetic variation. In this case, other categories such as CDS or UDR

captured some of the variation, suggesting some confounding between these categories.
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Figure 4.3. Estimation of %SNP heritability when causal variants are enriched in a single functional
annotation class. Causal variants were located in A) coding sequences (CDS) and B) open chromatin regions
(OCR). The %SNP heritability was estimated using GREML and BayesRR-RC with the following functional
classes: CDS, 3” and 5° UTRs (UTR), upstream and downstream regions (UDR), intronic regions (IOR), intergenic
regions (IGR) and OCR.
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Figure 4.4. Estimation of heritability enrichment in simulations where SNPs from different functional
classes had equal contribution.Heritability enrichment was estimated using GREML and BayesRR-RC with the
following functional classes: coding sequence (CDS), 3” and 5> UTRs (UTR), upstream and downstream regions
(UDR), intronic regions (IOR), intergenic regions (IGR) and open chromatin regions (OCR).

We then ran simulations without heritability enrichment, with the proportion of CVs per
category equal to their genomic proportions. For most classes, the correct levels of enrichment were
estimated by both methods (Figure 4.4; Additional file 1: Table S13), but some classes showed either
high levels of variation or even some bias. The level of variation was inversely related to the size of the
class, with the highest levels for the estimation of %SNP heritability for variants in UTRs and CDS.
Overall, the %SNP heritability associated with each class and the ranking between classes was well
estimated. We then simulated more complex and realistic scenarios with variable contributions from the
different functional categories (see Table 4.1). In these scenarios, CDS and OCR were always enriched
in causal variants, whereas intergenic and intronic regions harbored proportionally fewer causal variants.
In the first scenario, five categories contributed 10% or more of the heritability, whereas OCR and CDS
accounted for 50% or more of the genetic variation in the second and the third scenario, respectively.
Results for the three scenarios are shown in Figure 4.5A-C and Additional file 1: Tables S14-16. The
standard deviations of the estimators were around 0.04, but higher values were observed for OCR (over
0.08). The estimators showed some bias, with deviations generally around 0.01-0.04. The largest biases
were observed for OCR and UDR, which were underestimated and overestimated respectively,
confirming the confounding between these categories. In most cases, the estimators obtained with
BayesRR-RC were less variable and associated with lower biases. The average RMSE, combining
variation and bias, was equal to 0.063 and 0.053 for GREML and BayesRR-RC, respectively (Additional
file 1: Table S17). The ranking of the different categories according to their contribution to genetic
variance was not always correct, with the largest errors associated with UDR, whose contribution was
systematically overestimated, and OCR. Nevertheless, the estimators provided information about which

classes contributed most to genetic variation (for example, the relative importance of CDS or intergenic
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variants was generally close to their simulated values). Comparisons of estimators from the same
category across different scenarios (Figure 4.6) indicate that these estimators are informative despite
their low precision. The coefficient of determination from the regression of estimated versus simulated
values was 0.941 for CDS, 0.760 for intronic regions, 0.959 for intergenic regions and 0.804 for OCR
with GREML, and 0.947 for CDS, 0.708 for intronic regions, 0.965 for intergenic regions and 0.855 for
OCR with BayesRR-RC. Note that for these analyses, we did not include scenarios where classes
contribute to 100% of the genetic variance, and results for UDR are not shown because its simulated
values remained low in all scenarios. We repeated this analysis using estimated heritability enrichment
levels (Additional file 2: Figure S4).
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Figure 4.5. Estimation of %SNP heritability in complex simulation scenarios where SNPs from different
functional classes had variable contributions. The contribution for each category is shown in Table 4.1.
Heritability enrichment was estimated using GREML and BayesRR-RC with the following functional classes:
coding sequence (CDS), 3’ and 5’ UTRs (UTR), upstream and downstream regions (UDR), intronic regions (IOR),
intergenic regions (IGR) and open chromatin regions (OCR).
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Figure 4.6. Scatterplot of estimated versus true %SNP heritability across simulation scenarios where SNPs
from different functional classes contribute to genetic variance. The comparison is made separately for each
functional class. %SNP heritability was estimated using GREML and BayesRR-RC with the following functional
classes: coding sequence (CDS), 3’ and 5° UTRs (UTR), upstream and downstream regions (UDR), intronic
regions (IOR), intergenic regions (IGR) and open chromatin regions (OCR).
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Figure 4.7. Estimation of %SNP heritability of variants in open chromatin regions (OCR) using a two-
component strategy. Estimation was performed in complex simulation scenarios in which SNPs from multiple
functional classes contribute to genetic variance (Panel A for the scenario without enrichment and Panels B-D for
complex scenarios 1 to 3, respectively). Heritability enrichment was estimated using GREML and BayesRR-RC
with the following two functional classes (OCR versus other categories). In addition, methods were run with
unstratified (US), MAF stratified (MS), LD stratified (LDS) and both MAF and LD stratified (LDMS) approaches.

We then evaluated the properties of the estimators obtained with models that estimate the
contribution of only one functional category, using a model that fits a second category that includes all
other functional classes (TC models). This approach is commonly used because it reduces computational
requirements and thus allows MS, LDS or LDMS models to be applied. The approach was evaluated in
the four scenarios where several categories contribute to the genetic variance, and not for UTR as the
estimator was shown to be highly inaccurate due to the small size of the category. This strategy gave
poor results as %SNP heritability was most often overestimated for all categories (OCR, UDR, CDS,
and IOR), even when LDMS methods were used, while biases were lower for intergenic regions (Figure
4.7A-D; Additional file 1: Table S18-21; Additional file 2: Figure S5-8). The estimators showed no bias
mainly in simulations without enrichment or when the category had a null contribution in the simulation.
Bias was greater for OCR than for intergenic regions. In the vast majority of cases, heritability
partitioning with multiple annotation groups gave better results, for example in terms of RMSE
(Additional file 1: Table S22). This can also be observed when comparing estimates for a single category
across multiple scenarios (Additional file 2: Figure S9). This behavior could occur because the fitted
class captured variance associated with other classes due to their similarity (for example, in terms of
GRM). We measured the correlations between the off-diagonal elements from GRM of each category
(Additional file 1: Table S23) and observed, for example, that the GRM from IGR variants was less
correlated with other GRMs, consistent with the fact that less confounding was obtained for this
category. Other GRMs were highly correlated with the exception of the UTR GRM, probably because

it was the smallest category. However, the correlation between GRMs from OCR and UDR was not the
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highest, even though they appeared to be the most confounded indicating that other parameters influence
the confounding level. For example, relative distribution of effect sizes is probably important as we

don’t observe confounding when enrichment levels are uniform across categories.

4.4.3 Heritability partitioning for traits related to muscular development and height in

cattle

Finally, we applied the approach to the real phenotypes, as described in Material and methods.
%SNP heritabilities from the different categories were relatively variable across traits. For instance, the
contributions of intergenic or CDS-UTR variants estimated by BayesRR-RC were not consistent across
traits, ranging from 10 to 30% of the genetic variation (Figure 4.8; Additional file 1: Table S24).
Similarly, relatively large differences were observed between BayesRR-RC and GREML estimates (for
instance, the estimated %SNP heritability associated with OCR was equal to 85.5 and 45.0% for height).
Nevertheless, some trends were consistent across traits and methods. OCR contributed to more than
30% of the genetic variance for all traits with BayesRR-RC (25% with GREML) and most often had the
largest value of %SNP heritability (Figure 4.8). The contribution of UDR was generally low, while
intergenic variants had a modest contribution despite accounting for more than 50% of SNPs and indels.
As in other studies, we averaged the contributions across traits (Finucane et al., 2015; Gusev et al., 2014)
(Table 2). For CDS-UTR, OCR, IGR and IOR, the average estimated contributions were similar with
GREML and BayesRR-RC: over 45% for OCR, around 16-19% for CDS-UTR, 17% for IOR and 10-
13% for IGR. UDR had a small contribution with both approaches, but almost zero with GREML
(indicating possible problems in estimating the contribution of UDR with GREML). Except for CDS-
UTR, the relative ranking of the different functional categories was consistent with both methods. In
terms of heritability enrichment, some trends were also consistent (Figure 4.8; Table 2; Additional file
1: Table S25). CDS-UTR had the largest enrichment (around 25 to 30-fold), followed by OCR (around
5-fold on average), whereas intronic and intergenic variants had values below 1 (0.6-fold and 0.2-fold,
respectively). Partitioning with a GREML using GRMs computed with the first rules proposed by
VanRaden (VanRaden, 2008) was relatively similar to the first GREML results (Table 2; Additional file
1: Tables S24-25). The estimated contributions to heritability of CDS-UTR were on average smaller,
while those of the OCR were even larger. When we repeated the heritability partitioning with TC
approaches without LDMS stratification, we obtained higher contributions for all functional categories
(Table 4.2; Additional file 1: Tables S24-25). For example, when using GREML, the following increases
were observed: +14% for CDS-UTR, +45% for IOR, +29% for UDR, +5% for IGR and +28% for OCR.
These values are 1.5 times higher or more for all categories. The sum of the contributions estimated with
TC approaches corresponded to more than 200% of the total genetic variance (Table 4.2). Similar results
were obtained using a TC-GREML with LDMS stratification but convergence was not systematically
achieved with the GREML approach.
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Figure 4.8. Estimation of %SNP heritability and heritability enrichment in real data sets. Estimates were
obtained using GREML and BayesRR-RC with the following functional classes: coding sequence (CDS), 3’ and
5” UTRs (UTR), upstream and downstream regions (UDR), intronic regions (IOR), intergenic regions (IGR) and
open chromatin regions (OCR). Solid bars show %SNP heritability estimated when fitting simultaneously all the
functional classes, while parameters estimated using a two-component approach, which only fits one functional
category at a time, are shown with open bars.
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Table 4.1. Description of the number of variants in each functional category and their contribution to SNP heritability in the three more complex
scenarios. The annotations are coding sequence (CDS), intronic regions (IOR), 5’ and 3’ untranslated regions (UTR), up- and down-stream regions (UDR),
intergenic regions (IGR) and open chromatin regions (OCR).

Full genome Subset of the genome %SNP heritability
Annotation
Number of variants  Proportion of variants  Number of variants  Proportion of variants ~ Scenario |l ~ Scenario Il ~ Scenario I11
CDS 63,663 0.56% 4,161 0.43% 25 15 50
IOR 3,445,739 30.14% 278,021 28.80% 14 10 20
UTR 5,837 0.05% 412 0.04% 1 0.5 0
UDR 604,425 5.29% 40,423 4.19% 10 4.5 10
IGR 6,099,183 53.35% 547,980 56.76% 15 10 0
OCR 1,212,895 10.61% 94,429 9.78% 35 60 20

Table 4.2. Average %SNP heritability and heritability enrichment estimated for five functional groups and for six traits measured in Belgian Blue beef
cattle. Values were estimated by fitting all components simultaneously with multiple classes (MC) or each component in turn with two component (TC) models
and without correction for LDMS, and using BayesRR-RC or GREML (values in the parentheses correspond to the GREML partitioning when the GRMs were
computed using the first rules from VVanRaden (2008)).

%SNP heritability (MC) Heritability enrichment (MC) %SNP heritability (TC) Heritability enrichment (TC)

Annotation GREML BayesRR-RC GREML BayesRR-RC GREML BayesRR-RC GREML BayesRR-RC
CDS-UTR 18.8 (14.0) 16.1 30.9 (23.0) 26.4 33.0 33.8 54.3 55.6
IOR 16.9 (16.0) 17.4 0.6 (0.5) 0.6 62.2 58.8 2.1 1.9
UDR 0.0(1.2) 8.5 0.0(0.2) 1.6 28.7 28.1 5.4 5.3
IGR 10.4 (9.0) 12.7 0.2(0.2) 0.2 155 18.4 0.3 0.3
OCR 53.9 (59.8) 45.3 5.1 (5.6) 4.3 82.1 70.9 1.7 6.7
Total 100.0 100.0 221.5 210.0
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4.5 Discussion

4.5.1 Limitations of heritability partitioning approaches in livestock species

We herein evaluated the accuracy of GREML and BayesRR-RC in partitioning heritability
according to functional classes, defined mainly on the basis of their position relative to genes and
transcripts. Importantly, we evaluated the methods in a typical livestock population with reduced
effective population size, high levels of relatedness and inbreeding, under intensive selection, and with
high levels of long-range LD. The GREML approach has already been used in such livestock
populations, for example in cattle (Bhuiyan et al., 2018; Edwards et al., 2015; Koufariotis et al., 2014;
Lingzhao et al., 2017; Xiang et al., 2019a). Most often, this partitioning method was applied without an
evaluation of its bias and accuracy in such context. However, differences in population structure and
their impact on genome structure (e.g. LD patterns) could affect the precision and accuracy of the
methods. For example, in humans, the methods have been evaluated by carefully filtering out pairs of
individuals with levels of relatedness greater than 0.025 (Yang et al., 2015). In livestock, a large fraction
of pairs of individuals would have levels above such a threshold. Recently, Cai et al. (2022) conducted
a study to evaluate different GREML approaches for estimating heritability enrichment in a cattle
population. They used data from 2,000 Holstein bulls imputed for about 700,000 markers, and mainly
evaluated the accuracy of the estimators for three different MAF categories. Although some models
gave unbiased results, biased estimators were observed when parameters from the simulated and fitted
models did not match (Cai et al., 2022). In particular, they found that estimated enrichment values were
biased when CVs were enriched in rare alleles and that using LD scores calculated in too large windows
resulted in biased estimates. We herein performed a simulation approach based on a large cohort of
individuals. Importantly, our data were imputed at the whole-genome sequence level, providing a finer
resolution for annotation. Compared to the study by Cai et al. (2022), we included more functional
annotation groups, including information from a recently published ATAC-Seq peak catalogue (Yuan
et al., 2023), and we explored more scenarios (CVs could be enriched as a function of MAF, LD score
and functional annotation). Using this approach, we first observed that in relatively simple scenarios (no
stratification by MAF or LD, with CVs enriched for a single functional category), the methods were
unbiased, but that the estimates showed high levels of variation. Note that when simulations were
performed using the whole genome, even higher levels of variation were observed with the GREML
approach (data not shown). When CVs were enriched in a particular MAF or LD score category, it was
necessary to stratify the GREML or BayesRR-RC accordingly to obtain unbiased results (i.e., using a
LDMS approach), consistent with findings in humans (Yang et al., 2015). When GRMs were not defined
for different MAF or LD groups, biased partitioning was indeed obtained. Importantly, the LD or MS
groups fitted in the partitioning methods should match those that are truly enriched in CVs, an
information that is rarely known. Other elements could further bias the results, such as the relationship

between the MAF or LD scores of CVs and the magnitude of their effects, as previously highlighted by
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Speed et al. (2017) or Cai et al. (2022). For example, the fitted GRMs could assume equal SNP
contribution to the genetic variance (rare alleles having then larger effects) or comparable effect sizes
for all SNPs regardless of MAF (common SNPs having higher contribution to the genetic variance),
whereas the true relationship between CVs and MAF could be different. Simulation results indicated
that such different between simulated and fitted architecture can sometimes be compensated by the use
of an LDMS approach. Next, we ran simulations in which multiple functional categories contributed to
the phenotypic variation with different levels of enrichment. The estimators still showed high levels of
variation, especially for the classes with few variants, but we also observed systematic biases due to
confounding between some functional categories, the strongest between OCR and UDR. Estimators
were better for variants in IGR, as their GRM was less similar to the GRM of other categories. This is
important because it implies that confounding is higher for functional categories that are expected to
contribute most to the genetic variance, and thus their estimates are less precise. We also tested a strategy
estimating the %SNP heritability of each category individually (running one TC-GREML per category)
and observed very strong biases, probably due to confounding. The estimated %SNP heritabilities were
greatly overestimated for most categories. Although this two-component strategy reduces computational
costs and allows fitting a LDMS model, it is therefore not recommended. This is an important
observation as this is a common strategy (Cai et al., 2022; de las Heras-Saldana et al., 2020; Edwards et
al., 2015; Koufariotis et al., 2014; Lingzhao et al., 2017; Xiang et al., 2023, 2019a).

The high levels of variation in heritability enrichment estimates could also be due to the
similarity between GRMs from different functional or LDMS categories, or due to LD between
neighboring SNPs from different categories. This problemis likely to be more severe in livestock species
because the additive genetic relationships ry, between pairs of individuals x and y are spread over a wider
range, including unrelated individuals (ry = 0), half-sibs (ry, = 0.25), full-sibs (ry, = 0.5), parent-
offspring (rxy = 0.5) and even monozygotic twin (ry = 1) pairs. The high levels of relatedness will drive
the correlations between elements from the different GRMs and may mask more subtle correlations due
to short-range LD between SNPs. It has been shown that the properties of heritability estimators are
different when individuals are unrelated and LD is high only at short distances (Campos et al., 2015).
When GRMs from different fitted categories are more distant, the problem of bias due to confounding
between categories is likely to be less. This would be the case, for example, in studies evaluating the
contribution from each autosome separately (Bhuiyan et al., 2018; Robinson et al., 2013; Yang et al.,
2011Db), or from specific chromosomes of interest such as the sex chromosomes (Kadri et al., 2022). For
example, GRM from sex chromosomes are based on different segregation rules and are less correlated
with GRMs obtained from autosomes (Druet and Legarra, 2020; Yang et al., 2011b). Similarly,
relationship matrices could be estimated for mitochondria or chloroplasts in plants to assess their

contribution to the genetic variance.
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4.5.2 Comparison of evaluated methods.

Our evaluation focused on two methods, GREML and BayesRR-RC. For GREML, we estimated
the GRM using the rules from Yang et al. (2011a). Different GRM construction rules can lead to
different estimators. For example, the GRM may be based on different relationships between the
variance of marker effects and their MAF (by defining a parameter called “a”), LD score, or their
genotyping accuracy (Speed et al., 2017, 2012). The accuracy of GREML with different values of a has
previously been evaluated in a livestock population by Cai et al. (2022). In preliminary tests, we obtained
less accurate estimates with the LDAK-Thin model recommended for non-human organisms (Speed et
al., 2012), and therefore selected original rules from Yang et al. (2011a), assuming that each marker has
an equal expected contribution to heritability (i.e., independent of MAF), to construct our GRM.
Nevertheless, in additional simulations, we observed that a mismatch between the function used to
compute the GRM and the simulated relationship between CV effects and their MAF or LD scores could
bias the results, more so when the relationship with LD scores was suboptimal and with GREML (data
not shown). Unfortunately, the relationships remain unknown and, based on our results, the use of
BayesRR-RC and LDMS models is recommended in such situations. The LD regression score (LDRS)
is another method that allows heritability partitioning (Finucane et al., 2015). It is computationally
efficient because it relies on summary statistics. Nevertheless, heritability estimates from LDRS have
higher standard errors than those from GREML (Bulik-Sullivan, 2015; Speed et al., 2017), and the
approach has not been shown to be more efficient than GREML or BayesRR-RC in several studies
(Patxot et al., 2021; Speed and Balding, 2019). The properties of LDRS need to be evaluated in livestock
populations, where the extent of LD is very different from humans and where markers may be in linkage
equilibrium with CVs due to the presence of high levels of relatedness. For instance, Xiang et al. (2023)
obtained poor results with LDRS in dairy cattle. In addition, obtaining summary statistics in livestock
populations is more computationally demanding because LMM must be used for GWAS to correct for
stratification and polygenic background. Due to these high computational requirements and based on
previous comparison results, we did not evaluate LDRS in our study. Compared to BayesRR-RC,
GREML produced more accurate results in the first set of simulations where OCR variants accounted
for 50% of the heritability. In similar cases, LDMS models are recommended to obtain unbiased results.
However, with many different fitted components, 500 iterations of the EM algorithm were sometimes
insufficient to achieve convergence. These problems could be reduced by fitting a two-component
model, but this produced biased results (see above). When we fitted models with multiple functional
categories, BayesRR-RC outperformed the GREML approach. However, Bayes-RR-RC has higher
computational costs and the number of iterations that can be run is relatively small. Convergence
diagnostic plots and comparisons with longer chains suggest that this number of iterations already
provides good estimates for most parameters although these had high levels of variation (see Additional
file 2: Figures S10 and S11). This is consistent with the results of Orliac et al. (2022) who concluded

that less than 5,000 iterations are required to estimate variance components and for genomic predictions.
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In the most complex scenarios, the estimator for some parameters was not fully stabilized after 5,000
iterations (Additional file 2: Figure S11). This suggests that more iterations may be required for livestock
species due to the higher LD and relatedness levels. Nevertheless, comparisons of the results obtained
with 5,000 versus 50,000 iterations for 25 simulations from 2 scenarios show that the distributions of
the estimated parameters are very similar. Overall, we observed that, with a total of 5,000 iterations,
Bayes-RR-RC performed better than GREML, but we cannot exclude that longer chains could further

improve the results.

4.5.3 Heritability partitioning for muscularity and height in Belgian Blue beef cattle
Despite the high standard errors in the simulations, the estimated heritability enrichments and
their ranking remain informative, especially when averaged over multiple traits, as done in other studies
(Finucane et al., 2015; Gusev et al., 2014). With both GREML and BayesRR-RC, variants present in
OCR had by far the largest contribution to heritability (> 45%). Regulatory regions have also been
shown to have the largest contribution to genetic variance for complex traits in humans (Gusev et al.,
2014) and to be important in cattle (Koufariotis et al., 2014; Xiang et al., 2019a). Recently, Xiang et al.
(2023) evaluated that regulatory variants explained up to 70% of the genetic variance in cattle. In terms
of heritability enrichment, coding variants had the highest average per-variant contribution to the
heritability (> 25-fold on average), variants in the OCR also showed substantial enrichment (~5-fold),
whereas intronic and intergenic variants had enrichment values below 1 (0.6 and 0.2-fold, respectively).
This ranking is in line with expectations and is consistent with results obtained in several studies of
complex traits in humans (Finucane et al., 2015; Gusev et al., 2014). The observation of large effects
associated with coding variants is in agreement with the findings of Gualdron Duarte et al. (2023), who
identified several such variants associated with the same traits and accounting for a large proportion of
the genetic variance. Heritability partitioning could be refined by using more specific functional classes
such as coding variants or eQTLs, but care must be taken as we have shown the limitations of
partitioning approaches when too small or too many categories were fitted. Similarly, heritability
enrichment could be applied to other types of categories such as conservation scores, differentiation

scores, evidence of selection, or age of alleles.

4.6 Conclusions

Here we have shown that heritability partitioning approaches should be used cautiously in
livestock populations and that accuracy assessment is strongly recommended. Estimators were
particularly imprecise for small categories, so models with too many and small functional categories
should not be used. In addition, two-component approaches that fit only one functional category at a
time produced biased estimates and should not be used. Nevertheless, the estimates and their ranking

were still informative about the contribution of the functional classes we fitted. We therefore applied
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the methods to real phenotypes for muscular development and height. We estimated that, on average,
variants in open chromatin regions had a higher contribution to the genetic variance, while variants in
coding regions had the strongest individual effects. Conversely, variants in intergenic or intronic regions

showed lower levels of enrichment. The results are consistent with those obtained in humans.
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4.9 Supplementary figures
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Figure S1. Estimation of %SNP heritability when causal variants are enriched in specific MAF or LD score
categories. Variants in open chromatin regions (OCR) accounted for 50% of heritability. Causal variants were
enriched in A) common variants (MAF > 0.20), B) high LD variants (LD score above the 3rd quartile), and C) low
MAF (MAF <0.05) and high LD (LD score above the 3rd quartile) variants. The %SNP heritability was estimated
with GREML for simulations using the whole genome (GREML — FULL) and with GREML and BayesRR-RC
for simulations using a subset of the genome. The methods were applied without correction for MAF or LD score
(noLDMS), and with MAF stratified (MS), LD stratified (LDS) and both MAF and LD stratified (LDMS)
approaches.
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Figure S2. Estimation of %SNP heritability using different GRM computation methods and for the two
scenarios where SNP effect size is a function of allele frequency. Simulation rule 1: SNP effects increase as
allele frequencies decrease (corresponding to the default rule). Simulation rule 2: SNP effects are drawn from the
same distribution regardless of allele frequency (corresponding to the rules proposed by VanRaden [29]).
Partitioning GRM rule 1: GRMs used in the heritability partitioning are computed using the default rules from
GCTA. Partitioning GRM rule 2: GRMs used in heritability partitioning are computed using the VVanRaden rules
from.
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Figure S3. Estimation of %SNP heritability when causal variants are enriched in a single functional
annotation class. Causal variants were located in A) upstream and downstream regions (UDR), B) intergenic
regions (IGR), and C) intronic regions (IOR). The %SNP heritability was estimated using GREML and BayesRR-
RC with the following functional classes: coding sequence (CDS), 3’ and 5 UTRs (UTR), UDR, IOR, IGR and
open chromatin regions (OCR).
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Figure S4. Scatterplot of estimated versus true heritability enrichment across simulation scenarios where
SNPs from different functional classes contribute to genetic variance. The comparison is made separately for
each functional class. Heritability enrichment was estimated using GREML and BayesRR-RC with the following
functional classes: coding sequence (CDS), 3’ and 5° UTRs (UTR), upstream and downstream regions (UDR),
intronic regions (IOR), intergenic regions (IGR) and open chromatin regions (OCR).

106



Chapter 4 Experimental section — Study 2

A B C D

GREML BayesRR-RC GREML BayesRR-RC GREML BayesRR-RC GREML BayesRR-RC

so_i__ %_

=] nolLDMS
MS
LDS
LDMS

I~
o

%SNP heritability

N
o

Figure S5. Estimation of %SNP heritability of variants in intergenic regions (IGR) using a two-component
strategy. Estimation was performed in complex simulation scenarios in which SNPs from multiple functional
classes contribute to genetic variance (Panel A for the scenario without enrichment and Panels B-D for complex
scenarios 1 to 3, respectively). Heritability enrichment was estimated using GREML and BayesRR-RC with the
following two functional classes (IGR versus other categories). In addition, methods were run with unstratified
(US), MAF stratified (MS), LD stratified (LDS) and both MAF and LD stratified (LDMS) approaches.
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Figure S6. Estimation of %SNP heritability of variants in coding sequence (CDS) using a two-component
strategy. Estimation was performed in complex simulation scenarios in which SNPs from multiple functional
classes contribute to genetic variance (Panel A for the scenario without enrichment and Panels B-D for complex
scenarios 1 to 3, respectively). Heritability enrichment was estimated using GREML and BayesRR-RC with the
following two functional classes (CDS versus other categories). In addition, methods were run without correction
for MAF or LD score (noLDMS), and with MAF stratified (MS), LD stratified (LDS) and both MAF and LD

stratified (LDMS) approaches.
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Figure S7. Estimation of %SNP heritability of variants in intronic regions (IOR) using a two-component
strategy. Estimation was performed in complex simulation scenarios in which SNPs from multiple functional
classes contribute to genetic variance (Panel A for the scenario without enrichment and Panels B-D for complex
scenarios 1 to 3, respectively). Heritability enrichment was estimated using GREML and BayesRR-RC with the
following two functional classes (IOR versus other categories). In addition, methods were run without correction
for MAF or LD score (noLDMS), and with MAF stratified (MS), LD stratified (LDS) and both MAF and LD

stratified (LDMS) approaches.
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Figure S8. Estimation of %SNP heritability of variants in upstream and downstream regions (UDR) using
a two-component strategy. Estimation was performed in complex simulation scenarios in which SNPs from
multiple functional classes contribute to genetic variance (Panel A for the scenario without enrichment and Panels
B-D for complex scenarios 1 to 3, respectively). Heritability enrichment was estimated using GREML and
BayesRR-RC with the following two functional classes (UDR versus other categories). In addition, methods were
run without correction for MAF or LD score (noLDMS), and with MAF stratified (MS), LD stratified (LDS) and

both MAF and LD stratified (LDMS) approaches.
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Figure S9. Scatterplot of estimated versus true %SNP heritability when using a two-component strategy.
Estimates were compared across simulation scenarios where SNPs from different functional classes
contribute to genetic variance. The contribution for each category is shown in Table 4.1. The comparison is
made separately for each functional class. %SNP heritability was estimated using GREML and BayesRR-RC with
the following two functional classes (one versus other categories) and a MAF and LD stratified (LDMS) approach.
Fitted functional categories were coding sequence (CDS), 3° and 5° UTRs (UTR), upstream and downstream
regions (UDR), intronic regions (IOR), intergenic regions (IGR) and open chromatin regions (OCR).
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Figure S10. Comparison of BayesRR-RC results obtained with 5,000 versus 50,000 iterations in a simple
scenario. The model was run on data from a simple scenario where OCR contributed to 50% of the genetic
variance. The 5,000 iterations correspond to the values used in the present study (burn-in from iterations 1-2,000),
while 50,000 iterations correspond to a longer run (burn-in from iterations 1-5,000). A) Estimated %SNP
heritability per iteration. Iterations used for parameter estimation in the standard run are delimited by the two blue
dashed lines located at iterations 2,001 and 5,000. B) Distribution of %SNP heritability estimates in iterations
2,001-5,000 (standard run) and 5,001-50,000 (long run). C) %SNP heritability estimates for 25 simulations
estimated using BayesRR-RC with 5,000 versus 50,000 iterations.
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Figure S11. Comparison of BayesRR-RC results obtained with 5,000 versus 50,000 iterations in the first
complex scenario. The 5,000 iterations correspond to the values used in the present study (burn-in from iterations
1-2,000), while 50,000 iterations correspond to a longer run (burn-in from iterations 1-5,000). A) Estimated %SNP
heritability per iteration for the six components. Iterations used for parameter estimation in the standard run are
delimited by the two blue dashed lines located at iterations 2,001 and 5,000. B) %SNP heritability estimates for
the six components estimated using BayesRR-RC with 5,000 versus 50,000 iterations in 25 simulations.
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5 Experimental section: Study 3

5.1 Summary

The availability of large cohorts of whole-genome sequenced individuals, combined with
functional annotation, is expected to provide opportunities to improve the accuracy of genomic selection
(GS). However, such benefits have not often been observed in initial applications. The reference
population for GS in Belgian Blue Cattle (BBC) continues to grow. Combined with the availability of
reference panels of sequenced individuals, it provides an opportunity to evaluate GS models using whole
genome sequence (WGS) data and functional annotation. Here, we used data from 16,508 cows, with
phenotypes for five muscular development traits and imputed at the WGS level, in combination with in
silico functional annotation and catalogs of putative regulatory variants obtained from experimental
data. We evaluated first GS models using the entire WGS data, with or without functional annotation.
At this marker density, we were able to run two approaches, assuming either a highly polygenic
architecture (GBLUP) or allowing some variants to have larger effects (BayesRR-RC, a Bayesian
mixture model), and observed an increased reliability compared to the official GBLUP model at medium
marker density (on average 0.016 and 0.018 for GBLUP and BayesRR-RC, respectively). When
functional annotation was used, we observed slightly higher reliabilities with an extension of the
GBLUP that included multiple polygenic terms (one per functional group), while reliabilities decreased
with BayesRR-RC. We then used large subsets of variants selected based on functional information or
with a linkage disequilibrium (LD) pruning approach, which allowed us to evaluate two additional
approaches, BayesCn and Bayesian Sparse Linear Mixed Model (BSLMM). Reliabilities were higher
for these panels than for the WGS data, with the highest accuracies obtained when markers were selected
based on functional information. In our setting, BSLMM systematically achieved higher reliabilities
than other methods. GS with large panels of functional variants selected from WGS data allowed a
significant increase in reliability compared to the official genomic evaluation approach. However, the
benefits of using WGS and functional data remained modest, indicating that there is still room for

improvement, for example by further refining the functional annotation in the BBC breed.
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5.2 Introduction

The implementation of genomic selection (Meuwissen et al., 2001) in livestock species has been
made possible by the development of high-throughput genotyping technologies. Indeed, the availability
of low-cost genotyping arrays has led to the rapid adoption of genomic selection in many livestock
species and breeds (Meuwissen et al., 2016). However, the availability of whole genome sequence
(WGS) should make it possible to further improve the accuracy of genomic selection, as causative
variants would be included in the model. Furthermore, with sequence-based genomic selection, the
accuracy of predictions would remain high over multiple generations, as the linkage disequilibrium (LD)
between markers and causative variants would not decay over generations. With the ability to sequence
large reference panels of individuals (Daetwyler et al., 2014; Ros-Freixedes et al., 2022) and the
availability of efficient genotype phasing and imputation tools (Browning et al., 2018; Das et al., 2016;
Delaneau et al., 2019; Rubinacci et al., 2020), it is becoming increasingly common to have imputed
WGS data for large cohorts of individuals. However, in early studies based on either simulated or real
data, the use of imputed WGS data resulted in no or small improvements in prediction accuracy when
the prediction methods were not changed (Druet et al., 2014b; Frischknecht et al., 2018; Pérez-Enciso
et al., 2015; van Binsbergen et al., 2015; Veerkamp et al., 2016), whereas predictions using only the
causative variants provided a significant improvement (Pérez-Enciso et al., 2015), especially when they
were rare (Druet et al., 2014b).

To fully exploit the potential of whole genome sequence information, other strategies are
needed. Two main directions have been proposed in the literature: 1) using additional information to
classify variants into different functional categories having different effect sizes; 2) selecting a subset
of markers that are more likely to be causative from the whole-genome sequence data, either to reduce
model dimensionality or to add the markers to custom genotyping arrays. Two main groups of methods
developed to apply the first strategy are commonly used. The first group includes extensions of the
genomic best linear unbiased prediction (GBLUP) that fit multiple polygenic terms with their own
genomic relationship matrix (GRM), such as the genomic feature BLUP (GFBLUP) (Edwards et al.,
2016; Serensen et al., 2014). With the GFBLUP, annotation groups are fitted one by one (next to a
polygenic term that fits the rest of the genome), but models that fit more than two annotation groups are
possible, as in the MultiBLUP model (Speed and Balding, 2014). The second group includes extensions
of the BayesR model (Erbe et al., 2012), a Bayesian mixture of Gaussian distributions associated with
different SNP effect sizes, including BayesRC (MacLeod et al., 2016), BayesRCO (Mollandin et al.,
2022) and BayesRR-RC (Patxot et al., 2021) models. With both approaches, genetic variants are
classified into different annotation groups, which may have group-specific parameters such as effect
variances or mixture parameters. The GFBLUP approach has been used to perform heritability
partitioning and genomic prediction using different features, such as genome-wide association studies
(GWAS) results, expression QTLs (eQTL) (Ehsani et al., 2016) and Gene Ontology categories
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(Lingzhao et al., 2017). GFBLUP was found to be more accurate than GBLUP in several studies,
although not systematically. McLeod et al. (2016) used BayesRC using annotation categories related to
coding and putative regulatory variants, specific to lactation genes or not, and achieved slightly higher
accuracies compared to a traditional BayesR model. A method similar to BayesRC has also been shown
to be efficient for predicting complex traits in humans (Orliac et al., 2022; Patxot et al., 2021). However,
these annotation-aware approaches have rarely been applied to complete whole-genome sequence data
in livestock species (especially the Bayesian approach), and strategies based on marker pre-selection are
often implemented. After this marker selection step, genomic predictions can be applied with or without
grouping variables according to relevant features. It is common to select markers based on GWAS
results (Brgndum et al., 2015; Frischknecht et al., 2018; A. Liu et al., 2020a; Ros-Freixedes et al., 2022;
VanRaden et al., 2017; Veerkamp et al., 2016), but other criteria have also been used such as coding
variants (Frischknecht et al., 2018; A. Liu et al., 2020a), eQTL (de las Heras-Saldana et al., 2020),
putative regulatory regions (A. Liu et al., 2020a) or more general genomic annotations based on position
relative to genes (VanRaden et al., 2017). Xiang et al. (2019a) used probably the most complete set of
criteria in cattle, including functional and evolutionary information, and proposed a global score for
each marker. Finally, although most of the time genotypes from selected markers are imputed, there are
sometimes included on custom genotyping arrays (Khansefid et al., 2020; A. Liu et al., 2020a).

The main objective of the present study was to evaluate strategies to improve the accuracy of
genomic selection in Belgian Blue cattle (BBC) using imputed whole genome sequence data and
functional annotation. This breed is mainly selected for muscular development traits, with the fixation
of an 11-bp deletion in the myostatin (MSTN) gene associated with double muscling. Recent studies
have improved our knowledge of the genetic architecture of these traits. First, selective sweeps revealed
that large effect variants have been fixed by selection (Druet et al., 2014a, 2013), but only two of the
identified hard sweeps were associated with complex traits, and only one was breed-specific and related
to muscularity (the MSTN mutation). This is consistent with the review by Kemper and Goddard (2012),
who stated that most loci associated with complex traits in cattle have small effects, but that variants
with larger effects can occasionally segregate in the population. Next, a recent sequence-based GWAS
study (Gualdron Duarte et al., 2023) showed that the significant associations are enriched for common
coding variants with large effects. However, these correspond to a relatively small number of variants
(< 15), those with the largest effects, and contribute only to a small proportion of the genetic variance.
In line with this, Yuan et al (2024) estimated that putative regulatory variants have the highest
contribution to heritability and that coding variants have the highest enrichment levels (i.e. have the
largest effects on average). The high contribution of regulatory variants is consistent with the findings
of Xiang et al. (2023), who recently estimated that gene expression and RNA splicing explain large
proportions of the heritability for complex traits. Therefore, we will place more emphasis on coding and
regulatory variants in the strategies evaluated. A particular focus will be on putative regulatory elements

detected in muscle, as the breed is primarily selected for muscular development.
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5.3 Material and methods

5.3.1 Data

Our study used a cohort of 18,324 BBC genotyped cows that we imputed at the sequence level.
The genotyping data and methodology are very similar to those described in Gualdron Duarte et al.
(2023), where further details can be found. Briefly, cows were genotyped on 10 distinct genotyping
arrays, including five versions of the Illumina Bovine Low Marker Density (LMD) genotyping arrays
(ranging from 9077 to 16,381 SNPs) and five versions of the EuroGenomics Medium Marker Density
(MMD) arrays (ranging from 48,699 to 68,454 SNPs). The number of individuals per array are reported
in Additional file 1: Table S1 (only individuals with a call rate > 0.90 were selected for this study).

The phenotypes included four linear classification scores, that assessed the muscular
development of the shoulder, top and buttocks (rear and side view) of the animals on a scale of 0 to 50.
To derive the overall score for muscular development, the individual scores were combined with
different weights (1 for top and shoulder muscling, 2 for buttock muscling). These phenotypes, available
for 16,508 of the cows, were corrected for fixed effects from the official genetic evaluation as described
in Gualdrén Duarte et al. (2023).Two reference panels of bulls were available for genotype imputation,
including a group of 717 Al bulls genotyped with the Illumina BovineHD genotyping array and whole-
genome sequence data from 230 bulls. Details of the bioinformatic analysis of the sequence data,
including read mapping and variant calling and filtering, can be found in Gualdrén Duarte et al. (2023)
The final Variant Calling file (VCF) from the 230 sequenced bulls included 15,332,952 variants
(12,830,339 SNPs and 2,502,613 indels). From these, we selected only bi-allelic autosomal variants.

5.3.2 Genotype imputation

A multi-step genotype imputation procedure was applied. First, SNP filtering was performed
separately for each LMD and MMD array. SNPs with low call rate (<0.95), with minor allele frequency
(MAF) < 0.01 or with significant deviations from Hardy-Weinberg proportions (p > 0.001) were filtered
out. We first performed imputation from the LMD arrays to the MMD level, one array at a time. The
MMD panel consisted of all individuals genotyped on one of the five MMD arrays. After filtering SNPs
based on the rules described above, 36,849 autosomal markers with MAF > 0.01 and a maximum of 5
Mendelian inconsistencies in duos or trios, common to these five arrays and also present on commercial
Illumina MMD arrays were retained to define the reference MMD panel. The different LMD arrays had
7246, 7505, 7711, 7632 and 7775 SNPs in common with the reference MMD panel, respectively. The
target and reference panels were then phased using ShapelT4.2 (Delaneau et al., 2019) and imputation
in the target panel was achieved using Minimac4 (Das et al., 2016). After imputation, we excluded
markers with a MAF < 0.02 or an imputation accuracy below 0.90 (for each array separately), and MMD

genotypes from all individuals were merged. After selecting markers shared with the High Marker
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Density (HMD) reference panel, 31,112 were available for the second imputation step. We used the
HMD reference panel previously prepared by Gualdron Duarte et al. (2023), which contained 890
individuals (717 genotyped and 173 sequenced bulls) and 611,322 markers. The same imputation and
filtering procedure was applied as in the first imputation step. Finally, the cows were imputed to the
sequence levels using 578,934 markers and the reference panel of 230 sequenced bulls from the study
of Gualdron Duarte et al. (2023). After this last imputation step, we selected variants imputed with
imputation accuracy > 0.90, MAF > 0.01 and segregating according to HWE rules (p > 0.001), leaving

11,280,414 autosomal bi-allelic SNPs and indels for subsequent analyses.

5.3.3 Genomic prediction models

General genomic prediction models. We first describe models that don't use functional
annotation, including GBLUP and three Bayesian models. In this case, the annotation information can
be used, for example, to pre-select the variants to be included in the genomic prediction models.

In the GBLUP model, phenotypes are modelled as:

y=1u+g +e,

where y is the vector of individual phenotypes, 1 is a vector of 1’s, u is the mean effect, g is the vector
of individual polygenic terms, and e is the vector of individual independent random error terms,
normally distributed, e ~ N(0, I62) where | is the identity matrix and o2 is the residual variance. The
polygenic effects are normally distributed, g ~ N (O, Gaj) where G is the GRM and aj is the variance
of polygenic effects. The GRM can be computed using the matrix Z of centered genotypes,
corresponding to the first rules proposed by VanRaden (2008) and assuming that the distribution of SNP

effect does not depend on allele frequencies:

_ YA/
> 21

G
where fj is the allele frequency at marker j and N is the number of markers. Alternatively, the GRM can
be obtained using the matrix X of centered and scaled (or “standardized”) genotypes as described in
Yang et al. (2011a):

XXr
G=—.
N

In this case, rare alleles have larger effects and all variants contribute equally to the genetic
variance. We will use GBLUP-C and GBLUP-S to refer to GBLUP with centered and standardized
genotypes, respectively. The GRM and GBLUP prediction calculations were performed using LDAK
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(Speed et al., 2012). For the GBLUP model, the variance components were estimated using a restricted
maximum likelihood (REML).

For the Bayesian models, phenotypes are described as:
y=1u+2Zp +e,

where B is the vector of SNP effects. The models can be applied with centered or standardized (replacing
Z by X) genotypes. A key difference between the Bayesian models is the distribution of SNPs effects
B;. In BayesCn (Habier et al., 2011), a fraction = of SNPs have a null effect:

Bj~m &y + (1 —m)N(O, O'[%),

where 9o is a discrete probability mass at 0. The proportion of SNPs with zero effect (r) and the common
variance of SNP effects aff are estimated from the data. BayesCn was run using the GCTB software

(Zeng et al., 2018) with default settings.

In the Bayesian Sparse Linear Mixed Model (BSLMM) (Zhou et al., 2013), SNP effects are also
distributed as a mixture of two distributions, with all SNPs having at least a small effect and a few SNPs
having a large effect:

Bj~m N (O, c? + o) + (1 —m)N(0,0?),

where g is the variance of small effects, o2 is the additional variance associated with large effects. The
parameter 7 is now the proportion of SNPs with large effects. As in BayesCn, the parameters are
estimated. The model is implemented by modelling a polygenic term and using the associated GRM.
BSLMM was run using the GEMMA software (Zhou et al., 2013) with default settings.

Finally, in BayesR (Erbe et al., 2012), the SNP effects are sampled from a mixture of four
distributions:

Bi~m180 + m,N(0,107*02) + m3N(0,107302) + m,N(0,107202),

where 71, w2, w3 and 4 are the proportions of SNPs in the four categories. Where  is the proportion of
SNPs with null effects and = is the proportion of SNPs with the largest effects, corresponding to one
percent of the polygenic variance. The variances associated with each category are predetermined as
fixed proportions of the polygenic variance which is estimated from the data as the mixture proportions.
BayesR was run using the GMRM software (Patxot et al., 2021) without annotation (see below for more
information).

Genomic predictions models exploiting prior biological information. Two methods were

applied to perform whole genome predictions using directly information from functional annotations.
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For this purpose, each SNP is assigned to one of the annotation groups, referred to as genomic features
(GFs) to align with the terminology used in the literature (Edwards et al., 2016; Sgrensen et al., 2014),
described in the next section. First, we used a GBLUP, in which a distinct polygenic term is defined for
each GF. The principle is similar to the MultiBLUP model described by Speed and Balding (2014) and
the GFBLUP which fits most often a single GF at a time. We therefore call this model a Multiple
Genomic Feature BLUP (MGFBLUP), and implement it as follows:

y=1u +2§:1.gs +e,

where gs is the vector of individual polygenic terms associated to GF s, S is the total number of fitted
GF. Each polygenic component is normally distributed, g; ~ N(0, G;02) where G is the GRM
computed using the variants present in GF s and ¢ is the variance of polygenic effects from the GF. As
for the GBLUP, centered or standardized GRM can be used (MGFBLUP-C versus MGFBLUP-S). The
genetic parameters, including the variances associated with each GF and the residual variance, were
estimated using a REML approach as implemented in LDAK (Speed et al., 2012).

The second approach is a Bayesian grouped mixture of regressions model (GMRM), also called
BayesRR-RC (Patxot et al., 2021) and derived from BayesR (Erbe et al., 2012) and BayesRC (MacLeod
et al., 2016). In this model, phenotypes are described as:

y=1u +2§=1Xsﬂs +e,

where Xs is the matrix of centered and scaled genotypes for markers in GF s and s is the vector of
marker effects for GF s, that are modelled as a mixture of null effects (spike probability at zero) and

Gaussian distributions:
Bs;~mo,80 + 11 N (O, of) +m N(0,05) + ...+ m, N(0,07),

where j is the marker index, L is the number of Gaussian distributions in the mixture,
{mo, 71,75, ..., 7, } are the mixture proportions for GF s, {o£, 0%, ..., o2 } are the mixture variances
for GF s, proportional to g2, the variance explained by the GF. Here, L is equal to 3, with variances Uzzs
equal to 0.0001, 0.001 and 0.01 a2, respectively. The hyper-parameters vary for variants from different
GFs, and the variances ¢ are estimated from the data. This model was run using the GMRM software
(Patxot et al., 2021) with a Gibbs sampling scheme for 5,000 iterations with a burn-in period of 2,000
iterations. This setting corresponds to the values used by Patxot et al. (2021) and Orliac et al. (2022).

When BayesRR-RC is used without annotation, we will refer to it as a BayesR model.
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With these two approaches exploiting functional annotation, it is possible to define two
parameters related to the contribution of a category to heritability and the relative size of effects in a
category. First, the proportion of genetic variance explained by a category, also called percentage of
heritability or %SNP heritability (Gusev et al., 2014), estimated as o2 divided by g;. Second, the
enrichment level in category i, defined by Gusev et al. (2014) as the percentage of heritability in category

i divided by the proportion of variants in the same category.

5.3.4 Annotation

We considered protein-coding variants to be those that alter the protein (e.g. change in amino
acid sequence, truncations, alternative splice sites). To identify such variants, we ran Variant Effect
Prediction (VEP) v95.0 (McLaren et al., 2016) on our VVCF file. The most common coding consequences
were missense, splice site (donor and acceptor), frameshift and stop-gain variants. VEP also provides
the predicted effect from the variants, which is MODERATE or HIGH for coding variants and
MODIFIER or LOW for other variants. Therefore, this first category contains all the variants with the
highest predicted impacts.

We used three sources of information to identify putative regulatory variants. EQTLS provide
the most direct evidence, as these variants present significant association with expression levels.
Therefore, we extracted all cis-eQTLs from the cattle Genotype-Tissue Expression atlas (cCGTEX) data
base (Liu et al., 2022). For each eQTL we selected the lead SNP. This resulted in the selection of 22,817
eQTLs, including 4,889 eQTLs identified in muscle. In addition, variants located in open chromatin
regions represent potential regulatory variants. Therefore, we used the catalogue of regulatory elements
detected by the assay for transposase accessible chromatin using sequencing (ATAC-Seq) generated by
Yuan et al. (2023). This organism-wide catalogue contains 976,813 cis-acting regulatory elements in 68
bovine tissues types. Variants located in these peaks represented 10% of the genome space. Finally,
regulatory elements identified by Kern et al. (2021) in eight tissues, including muscle, were also
considered as possible regulatory variants. These regulatory elements were identified thanks to
epigenetic data for four histone modifications and one DNA binding protein (CTCF), and by applying
ChromHMM (Ernst and Kellis, 2012) to predict genome-wide chromatin states in each tissue. Among
the identified states, we selected active regulatory element states, including “CTCF / Active TSS”,
“Active TSS”, “CTCF / promoters”, “Active promoters”, “CTCF / enhancers” and “Active enhancers”,
where TSS stands for transcription start sites. All of these active marks are associated with the co-
occurrence of at least two histone modifications and/or CTCF binding, and broad marks (e.g. associated
only with the histone modification H3K27me3) were excluded.

We relied on the General Transfer Format (GTF) file of the bovine genome assembly available
from Ensembl (v105) to classify the remaining variants. First, TSS and transcription termination sites
(TTS) were obtained using Homer (Heinz et al., 2010) and all transcripts from the genes. Upstream and

downstream regions were then defined as 1 kb upstream and downstream of the TSS and TTS,
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respectively. Variants were then classified into three additional groups including ”Exon-associated
elements” (encompassing exons and neighboring regions such as untranslated regions (UTRs) and
regions upstream or downstream of genes), intronic regions, and intergenic regions corresponding to the
remaining unannotated regions. Note that the Exon-associated elements contain only non-coding
variants (e.g. synonymous variants) and putative regulatory regions that were not detected by the
functional assays (i.e. not in the eQTL or regulatory element lists). There is in fact a hierarchy between
the defined groups; if a variant can be associated with more than one group, we have chosen the group
with the highest expected effect. The ranking of the groups, from most to least impactful, includes
coding variants, eQTLs, regulatory elements (identified by ATAC-Seq or with epigenetic data), exon-

associated elements, intronic and intergenic variants.

5.3.5 Experimental design

To assess the prediction accuracy of different models, we performed a cross-validation analysis
and divided our data set into a reference and a target population corresponding to 13,461 and 3047 cows
born before and after 1% January 2019, respectively. We then applied the different models with different
marker panels and using different annotation groups. In most cases, we limited the number of annotation
groups to 8 because more groups could lead to convergence problems with REML (or to null variances).
Accuracy was obtained as the correlation between genomic estimated breeding values (GEBV) and trait
deviations, while reliability was obtained as the squared correlation divided by the heritability of the
trait.

As done by Meuwissen et al. (2024), we used a bootstrapping strategy to evaluate the
significance of the difference in reliability between different methods or when using different marker
panels. We created a table with the GEBVs of the > 3000 target individuals (rows) for all tested methods
(columns). We then sampled the validation individuals with replacement 10,000 times and estimated the
correlation between GEBVSs and trait deviations, and estimated the reliability or reliability difference
for each sample. The 2.5th and 97.5th quantiles were used to define the confidence intervals. Differences
were considered significant if one method was higher in 97.5% or more of the samples.

Genomic prediction using whole-genome sequence data. We started by using all 11,280,414
variants available at the sequence level without annotation and ran centered and standardized GBLUP
and BayesR. BayesCn and BSLMM were not run on the full sequence for computational reasons. Next,
we defined a first functional annotation model with eight groups (FAN1): coding variants, eQTLs,
variants in regulatory elements identified by both ATAC-Seq and with epigenetic data, variants in
regulatory elements detected with epigenetic data only, variants in regulatory elements detected by
ATAC-Seq only, exon-associated elements, intronic regions and intergenic regions. With the second
annotation model, we investigated whether separating regulatory variants identified in muscle from
those identified only in other tissues improved prediction. In this case, the putative regulatory variants

group contained variants in regulatory elements identified by ATAC-Seq or with epigenetic data. This
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resulted in the following eight annotation groups (FANZ2): coding variants, muscle eQTLsS, other eQTLs,
variants in muscle regulatory elements, variants in other regulatory elements, exon-associated elements,
intronic and intergenic regions. In addition, we tested whether a stratification model based on LD and
MAF (LDMS) improved prediction accuracy, as Orliac et al. (2022) have shown that these groups are
important to include. We defined three MAF categories (0.01 < 0.05; 0.05 - 0.10; 0.10 - 0.50) and four
LD-based categories (defined based on the LD score quartiles). These LD scores were calculated using
GCTA (Yang et al., 2011a). We also combined the LDMS and FAN1 models, resulting in 8 x 12 groups.
Note that this last model was only run with GMRM (Patxot et al., 2021), as we previously observed that
the REML approach often had convergence problems when fitting a model with 12 or more groups
(Yuan et al., 2024). These different models are described in Table 5.1, including the (functional) groups
fitted in the models, and the number of variants per group.

Finally, the BayesRR-RC model was run twice with the FAN1 model to assess the variability in
heritability partitioning across functional classes and prediction accuracy. In order to identify possible
confounding between classes, we computed the correlations between the variances estimated in different
iterations.

Use of biological information to pre-select markers. We then used the functional annotation
groups to pre-select variants from the WGS data, as has been done in several studies (MacLeod et al.,
2016; Xiang et al., 2021b, 2021a, 2019b). This is an indirect approach to include biological information
with models that can’t incorporate it directly (GBLUP, BayesCn, BayesR and BSLMM), and amounts
to assume that variants in unselected categories have a null effect. More importantly, it allows the data
set and computational costs to be reduced, thus allowing the use of other models such as BayesCr and
BSLMM. Here, we selected a large subset of markers. This was done to include a high proportion of
coding and regulatory variants and still capture the majority of sequence-level variants through LD.

Our first selection (Panel FUNL1) included markers from the MMD panel currently used in the
genomic evaluation and all coding and putative regulatory variants, including eQTLs and variants in
regulatory elements detected by ATAC-Seq or with epigenetic data, resulting in a selection of 1,715,587
variants. We also defined a second panel (Panel FUN2) with fewer markers. It was generated using the
same rules as above, except that putative regulatory elements were identified only based on the open
chromatin regions defined by Yuan et al (2023). This amounts to using only one catalogue of putative
regulatory elements and resulted in a panel with 1,284,915 markers. Similarly, we defined Panel-FUN3
using instead the catalogue of regulatory elements from Kern et al. (2021) and obtained 863,615
markers. For comparison, we generated other panels obtained by performing LD pruning (based on the
r2 measure) with thresholds of 0.99, 0.98, 0.95, 0.90 and 0.80, resulting in selection of 1,899,123,
1,708,694, 1,436,932, 1,203,927 and 923,968 variants, respectively (Panels LD99 to LD80). In addition,
we selected all markers present on commercial bovine genotyping arrays extracted from the SNPchiMp
data base (Nicolazzi et al., 2014), resulting in 868,195 polymorphic SNPs (Panel ARRAY). Table 5.2

summarizes all the defined panels, their size and how the markers were selected.
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For all panels, we first ran models without annotation, including centered and standardized
GBLUP, BayesCr, BSLMM and BayesR. For panels FUN1, FUN2 and FUN3, we ran BayesRR-RC
and MGFBLUP with similar functional groups as for the sequence data, but adapted as some categories
were removed from the data. FAN1 now contained four groups (MMD markers, coding variants, eQTLs,
variants in regulatory elements) while FAN2 still contained six groups (MMD markers, coding variants,
muscle eQTLs, other eQTLs, variants in muscle regulatory elements, variants in other regulatory

elements).
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Table 5.1. Description of the different annotation models and their respective categories.

Model Annotation Group Number of variants Proportion in the genome
Coding variants 41,866 0.37%
eQTLs 31,521 0.28%
FANL: eight functional annotation Regulatory elements detected_ by A_TAC-_Seq 855,103 7.582/0
groups allowing distinct effect sizes for Regulatory elements detected Wlth eplgenetlc_data 431,616 3.83%
coding and regulatory variants Regulatory elements det_ected with both techniques 333,877 2.96%
Exon-associated elements 732,544 6.49%
Intronic 2,994,362 26.54%
Intergenic 5,859,525 51.94%
Coding variants 41,866 0.37%
eQTLs detected in muscle 4,761 0.04%
FANZ2: eight functional annotation eQTLs detected in other tissues 26,760 0.24%
groups similar to FAN1 but with Regulatory elements detected in muscle 80,378 0.71%
specific categories for regulatory Regulatory elements detected in other tissues 1,540,218 13.65%
elements detected in muscle Exon-associated elements 732,544 6.49%
Intronic 2,994,362 26.54%
Intergenic 5,859,525 51.94%
LDMS: 12 groups based on the LD: Four equal groups based on LD score quartiles 2,820,104 25.00%
combination of four LD groups based MS: Minor allele frequency between 0.01 and 0.05 2,193,621 19.45%
on LD score and three MS groups MS: Minor allele frequency between 0.05 and 0.10 1,663,801 14.75%
based on MAF values MS: Minor allele frequency between 0.10 and 0.50 7,422,992 65.80%

LDMS x FAN1: interaction between
FAN1 and LDMS model

96 groups based on the combination of the 12
LDMS groups and the 8 FAN1 groups

From 29 to 1,446,999

From 0.00% to 12.83%
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Table 5.2. Description of the different selected marker panels.

Panel Selection criteria Number of
variants
WGS All whole-genome sequence variants 11,280,414

FUN1 Coding variants, eQTLs, variants in regulatory elements detected 1,721,775
by ATAC-Seq or epigenetic data and markers on MMD array
FUN2 Coding variants, eQTLs, variants in regulatory elements detected 1,292,091
by ATAC-Seq only and markers on MMD array

FUN3 Coding variants, eQTLs, variants in regulatory elements detected 870,858
by epigenetic data only and markers on MMD array

LD99 Selection based on LD pruning with a threshold of rz2 > 0.99 1,899,123

LD98 Selection based on LD pruning with a threshold of r2 > 0.98 1,708,694

LD95 Selection based on LD pruning with a threshold of r2 > 0.95 1,436,932

LD90 Selection based on LD pruning with a threshold of r2 > 0.90 1,203,927

LD80 Selection based on LD pruning with a threshold of r2 > 0.80 923,968
ARRAY Variants from different commercial bovine genotyping arrays 868,195
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5.4 Results

5.4.1 Genomic prediction models using all sequence-level variants

Reliabilities obtained with GBLUP-C using the MMD panels were 0.792, 0.674, 0.686, 0.750
and 0.705 for shoulder, top, buttock (side view), buttock (rear view) and overall muscling, respectively.
As the GBLUP-C is the approach currently used in genomic evaluation, we used these as the baseline
or reference values and presented results from models using the full sequence data as the difference from
these baseline values (Figure 5.1). We first evaluated models using the 11 million imputed variants
(Figure 5.1; Additional File 2: Table S8). This was only possible with GBLUP (without annotation) and
MGFBLUP (fitting one polygenic term per annotation group) approaches using either centered or
standardized genotypes, and with the GMRM program fitting the BayesR (without annotation) and
BayesRR-RC (with annotation) models. Compared to MMD arrays, the use of WGS data consistently
resulted in higher accuracy for the three annotation-free models and for all traits (Additional File 2:
Table S8). With the GBLUP, the use of centered genotypes (GBLUP-C) gave better results (+1.6%
reliability on average) than standardized genotypes (GBLUP-S) (+0.6% on average). Prediction
accuracies achieved with BayesR (+1.8% on average), implemented using standardized genotypes, were
systematically higher than those obtained with GBLUP-S, suggesting advantages of the Bayesian
approach. However, the superiority was less pronounced when compared with GBLUP-C. Although
these trends were consistent across traits, only a few of these differences were significant (Additional
File 3: Figure S1).

Shoulder Top Buttock (side) Buttock (rear) Global score
MMD without annotation ] !
i ]
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Figure 5.1. Gain of reliability obtained when using whole-genome sequence data, with or without functional
annotation. The gain in reliability compared to a GBLUP-C model with a medium marker density (MMD array).
GBLUP and BayesR correspond to models without functional annotation, while the Multiple Genomic Feature
BLUP (MGFBLUP) and BayesRR-RC refer to extensions of these models that make use of functional annotation.
For the GBLUP and MGFBLUP models, the extensions ‘-C’ and ‘-S’ indicate whether the used GRMs were
constructed with centered and standardized genotypes, respectively. Genomic predictions were performed using
different panels (MMD and whole-genome sequence — WGS) and models including models without annotation,
two models incorporating functional annotation (FAN1 & FAN2), a model based on LD and MAF stratification
(LDMS), and a combination of LDMS and FAN1 models. Further details of these models are provided in Table
5.1. Error bars indicate the 95% confidence interval of the bootstrapped differences.
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Compared to GBLUP, the reliabilities obtained using functional annotation with the MGFBLUP
approach were higher (Figure 5.1), although the differences were rarely significant (Additional File 3:
Figure S1). For example, with centered genotypes, the MGFBLUP reliabilities were on average +1.2%
higher for the two functional annotation models tested (FAN1 and FAN2). The opposite trend was
observed for the Bayesian models, the reliabilities of BayesRR-RC with the FAN1 and FAN2 models
being on average —0.8% and —0.6% lower than those obtained with BayesR (without annotation). When
groups were defined based on LD and MAF (LDMS models), lower reliabilities were obtained with
MGFBLUP-C (-1.6% on average) and BayesRR-RC (-3.0% on average) compared to the corresponding
models without annotation. Reliabilities obtained with BayesRR-RC were particularly low when fitting
96 groups with the LDMS x FAN1 model (-4.1% on average). Overall, of all the methods tested, the
MGFBLUP-C model with functional annotation achieved the highest accuracies for each of the traits.

The proportion of variance allocated to different functional categories and the enrichment levels
of variants with different annotations allow a better understanding of how the models use the functional
information. For example, estimated parameters from the first model (FAN1) using functional
annotation (see Table 3 for average values and Additional File 1: TableS2-6 for values per trait) showed
that coding variants and eQTLs had larger effects per SNP on average (average enrichment levels above
15-fold and 20-fold, respectively), followed by variants in putative regulatory elements with average
enrichment levels ranging from 1.7 to 3.9-fold depending on the method (Table 5.1). With MGFBLUP
models, eQTLs had even larger effects than coding variants (e.g. 16.1-fold versus 70.5-fold when using
centered genotypes). Nevertheless, these relatively small groups (each containing less than 0.4% of the
variants) together accounted for only 10-25% of the genetic variance, whereas intergenic and intronic
variants still accounted for a large proportion of the genetic variance (about 40%), as together they
represent more than 75% of the variants in our data set. With MGFBLUP and the second annotation
model (FAN2), variants associated with eQTLs or regulatory elements detected in muscle had higher
enrichment levels than variants in the same elements detected in other tissues (e.g. muscle eQTL
enrichment levels were on average higher than 100-fold), whereas the opposite was observed for eQTLs
with BayesRR-RC (Table 5.3). Some unexpected results were observed, such as reduced enrichment
levels for coding variants with the FAN2 model and BayesRR-RC, or a null variance associated with
the category of exon-associated elements when estimated with MGFBLUP (Table 5.3). Such results
indicate that parameters can be difficult to estimate (see also Yuan et al., 2024) and that enrichment
levels used in predictions may not always reflect true biological enrichment levels. The variation in
estimated parameters across traits (Additional Filel: TableS2-6; Figure 5.2A) confirmed this technical
difficulty. Interestingly, this variation had little effect on the relative performance of the different
models. To further understand aspects of convergence with BayesRR-RC, we ran an additional
independent chain for the FAN1 model (including more iterations), generated some diagnostic plots,
and assessed the level of confounding between categories from their correlation across iterations (Figure

5.2A-D). Estimated genetic variances for different functional categories showed differences across
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independent runs (Figure 5.2A), particularly for coding variants, while diagnostic plots suggested that
convergence may not have been achieved for all parameters (Figure 5.2C), possibly due to confounding
between some parameters (e.g. between eQTLs and variants in regulatory elements detected by ATAC-
Seq categories; Figure 5.2D). Despite these differences in estimated enrichment levels, similar
prediction accuracies were obtained with the two independent chains and when more iterations were run
(Figure 5.2B).
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Table 5.3. Average estimated %SNP heritability (proportion of genetic variance explained by a category) and enrichment levels (relative
variant effect size per category) for different functional categories with the two functional annotation models, FAN1 and FAN2. MGFBLUP
models were applied with GRMSs constructed with either centered or standardized genotypes.

Annotation Group %SNP heritability Enrichment
(compartment where variants  MGFBLUP ~ MGFBLUP MGFBLUP  MGFBLUP
are located) Centered  Standardized CY®SRRRC “contered  Standardized BAYESRR-RC
Coding variants 5.98 7.65 7.99 16.11 20.61 21.54
eQTLs 14,91 17.33 4.36 70.50 81.93 20.59

Regulatory elements detected with

. 7.87 8.21 11.59 2.65 2.77 3.91
both techniques
Regulatory elements detected by
EANL ATAC-Seq 20.48 12.96 13.13 2.70 1.71 1.73
Regulatory e_Iemer!ts detected with 8.74 6.89 11.74 298 1.80 3.06
epigenetic data
Exon-associated elements 0.22 0.07 7.09 0.03 0.01 1.09
Intronic regions 26.87 31.11 21.60 1.01 1.17 0.81
Intergenic regions 14.94 15.78 22.49 0.29 0.30 0.43
Coding variants 5.88 8.03 3.45 15.84 21.64 9.28
eQTLs detected in muscle 4,57 4.71 0.24 108.22 111.56 5.71
eQTLs detected in other tissues 11.28 12.72 5.82 57.89 65.27 29.86
Regulatory elements detected in 9.35 9.52 13.69 13.11 13.35 19.19
FAN? muscle _
Regulatory e'e"t‘iirs‘ffegete“ed inother 5, 46 18.14 19.99 1.79 1.33 1.46
Exon-associated elements 0.49 0.10 12.26 0.08 0.02 1.89
Intronic regions 27.15 30.24 22.03 1.02 1.14 0.83

Intergenic regions 16.83 16.55 22.53 0.32 0.32 0.43
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Figure 5.2. Comparison of results of BayesRR-RC with two independent chains. A) Percentage heritability
(%SNP heritability) of different functional categories estimated in two independent runs. B) Accuracy of GS in the
two independent chains for the FAN1 model compared to accuracy with WGS (without annotation); results are also
reported with 10,000 iterations for the second chain (instead of 5,000). C) Evolution of estimated parameters over
iterations for four functional categories. D) Correlations between estimated parameters for different functional
categories in different iterations (when estimated for buttock — side view).

5.4.2 Genomic prediction models using subsets of the sequence data

We compared different strategies for selecting large subsets of the sequence data, large enough to
still capture the full sequence level while allowing the use of additional, more computationally demanding
software, including GCTB for BayesCn (Habier et al., 2011) and GEMMA for BSLMM (Zhou et al., 2013).
For all methods, the highest accuracy was achieved in the vast majority of cases with an LD pruning level
of r2>0.99 (1.9 M variants) (Figure 5.3A; Additional File 2: Table S9). Accuracy was even higher than
with full sequence data (for BayesR and GBLUP approaches). Reliabilities decreased only slightly when
stronger LD pruning was applied and the number of variants was further reduced (< 1% on average). For
traits such as buttock muscling (side view), the reliabilities remained almost the same even when using an
LD pruning level of r2 > 0.80 (0.9 M variants), whereas the greatest reduction in reliability was observed
for shoulder muscling. However, the differences between the largest and smallest marker panels were not

always significant, depending on the method (Additional File 3: FigureS2).
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Figure 5.3. Comparison of reliability of different methods when using different marker panels. A) Comparison
of the reliability of five tested methods using panels selected on the basis of LD pruning. The panels are whole-genome
sequence (WGS - no pruning) and LD99, LD98, LD95, LD90 and LD80 obtained when pruning was applied with
thresholds of r2 > 0.99, 0.98, 0.95, 0.90 and 0.80, respectively. B) Reliability obtained using panels selected on the
basis of functional annotation. The panels included coding variants, eQTL, variants in regulatory elements and markers
from the medium density genotyping array. The FUN1 panel included variants in regulatory elements detected by
ATAC-Seq or epigenetic data, while the FUN2 and FUN3 panels include only those detected by either ATAC-Seq or
epigenetic data, respectively. The results were compared to those obtained with panels of equal size selected by LD
pruning. The horizontal line corresponds to the reliability obtained with the ARRAY panel, obtained by selecting
markers present on commercial bovine genotyping arrays, with approximately the same number of variants as the
FUNS3 panel. Further details on the different panels and their size are given in Table 5.2.

At all LD pruning levels, BSLMM was systematically the best approach (with a single exception,
BayesR achieving slightly higher reliabilities for buttock side when using a LD pruning level of 0.99), while
BayesCr and GBLUP-S were often the least accurate (Figure 5.3A). The ranking between the BayesR and
GBLUP approaches was consistent with that observed with the full sequence data, BayesR achieving on
average higher reliability than both GBLUP approaches (for LD pruning levels of 0.95 or higher) and
GBLUP-C being superior to GBLUP-S (Figure 5.3A). At the r2 > 99 pruning level, the accuracies obtained
with BSLMM were significantly higher than those achieved with BayesR, GBLUP-C, GBLUP-S, and
BayesCr for several traits (with the exception of buttock side with BayesR; Figure 5.3A; Additional File
3: Figure S3).

With BSLMM, the average number of variants with a large effect fitted in the model ranged from
22 t0 138 (mean = 71.0) per trait (LD99), while with BayesR and BayesCr, the average number of variants
with a non-zero effect ranged from 10,990 to 11,507 (mean = 11,193) and 121,759 to 124,891 (mean =
135,818), respectively (LD99). With BayesR, the number of variants with a medium or large effects (0.001

and 0.01 x aj) were low, 3.8 and 1.5 on average, indicating that it was not able to exploit large effect
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variants as well as BSLMM. Note that the definition of large effect variants is however not directly
comparable between these two methods. With stronger LD pruning, the number of large effect variants
increased slightly with BSLMM (85.8 and 105.4 on average for LD98 and LD8O0, respectively), while the
proportion of non-zero effects (corresponding to m) remained relatively stable with BayesCr (1 remained
close to 0.05). This was also the case for the number of medium and large effect variants with BayesRR-
RC (e.g. 3.9 and 0.8 for LD80).

We then compared the reliabilities obtained with marker panels selected based on functional
annotation (called FUN1-3 panels) with panels of equivalent size selected based on LD pruning (LD panels)
or panels containing markers present on commercial bovine genotyping arrays (870K SNPs) (Figure 5.3B;
Additional File 2: Table S9). For most methods, marker selection based on functional annotation resulted
in slightly higher or equivalent accuracy than LD-based marker selection (Figure 5.3B), although the
differences were almost never significant when compared at equal density (Additional File 3: Figure S4).
In particular, the FUN1 and FUN2 panels were often more efficient than the corresponding LD panels. In
BSLMM, the advantage of the FUN panels was observed for all traits and marker sizes. Higher reliabilities
were systematically obtained with the ARRAY panel when using GBLUP-S or BayesCr (except for buttock
— side view), while for GBLUP-C and BayesR the accuracy was very close to that obtained with the two
largest FUN panels. Importantly, the ARRAY panel was in most cases significantly superior to other panels
of equivalent size for these four methods. With BSLMM, the use of the FUN1 and FUN2 panels resulted
in higher reliabilities than the use of the ARRAY panel, while for the FUN3 panel the reliabilities obtained
were either higher or equal to those obtained with the ARRAY panel (Figure 5.3B). Note that the use of
FAN1 and FAN2 models incorporating functional annotation (BayesRR-RC and MGFBLUP) with the
FUN1 and FUN2 panels did not improve the reliability of genomic prediction, while at best a slight
improvement was observed when using the FUN3 panel (Figure 5.4; Additional File 2: Table S10).
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Figure 5.4. Reliability of models incorporating functional annotation applied to subsets of markers. Results
were obtained using the three functional panels (FUN1-3) and applying GBLUP-C or BayesR without functional
annotation or with the Multiple Genomic Feature BLUP (MGFBLUP) and BayesRR-RC models with the two
functional models (FAN1 and FAN2 models). The FUNL1 panel (top) includes variants in regulatory elements detected
by ATAC-Seq or epigenetic data, while the FUN2 (middle) and FUN3 (bottom) panels include only those detected by
either ATAC-Seq or epigenetic data, respectively. The FAN1 model has four groups, including coding variants,
eQTLs, variants in regulatory elements and markers from the medium density genotyping array. In the FAN2 model,
two additional categories are obtained by dividing eQTLs and variants in regulatory elements into those detected in
muscle and those detected in other tissues. Details of the models and marker panels are given in Tables 5.1 and 5.2.

Overall, the highest reliabilities were obtained using BSLMM with variants selected based on their
functional annotation, closely followed by BSLMM with LD panels. Compared with GBLUP-C using
MMD markers, the reliabilities obtained with BSLMM for the FUN1 panel were significantly 0.052, 0.038,
0.036, 0.038 and 0.049 higher for top, shoulder, buttock (side and rear view) and overall muscling,
respectively (Additional File 1: Table S7). Similar benefits were also obtained with the LD99 panel
(Additional File 1: Table S7). With the FUN1 and FUN2 panels, the number of large effect variants ranged
from 30 to 91 (mean = 63.9) and from 33 to 200 (mean = 86.2), respectively. The %SNP heritability
associated with the large effect variants was 14.3% and 16.2% on average with the FUN1 and FUN2 panels,
respectively. We investigated which regions contained variants with high posterior inclusion probabilities
(PIP) when using the FUN2 panel (the reliabilities with the FUN2 panel were virtually identical to those
with the FUN1 panel, but had the advantage of using fewer variants). We summed the PIP over 1 Mb
windows to account for the possibility that different variants in LD might capture the same effect, and
identified regions with a cumulative PIP > 0.5 (e.g., regions that had a large effect in more than half of the
iterations) (e.g. Barbieri and Berger, 2004). We identified 5 to 12 regions per trait, many of which
overlapped with the 15 large effect variants fine-mapped by Gualdron Duarte et al. (2023).
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5.5 Discussion

5.5.1 Increased prediction accuracy with whole-genome sequence data

In this study, we used whole-genome sequence data, with or without annotation, to improve the
accuracy of genomic prediction of muscular development traits in BBC. Contrary to some previous studies
(Ros-Freixedes et al., 2022; van Binsbergen et al., 2015; Veerkamp et al., 2016), the use of full-sequence
data increased the reliability of breeding values compared to the use MMD arrays. Several factors may
explain this improvement, including more reliable genotype imputation due to ever-expanding reference
panels and improving imputation software, and the benefits of ever-larger reference populations for
genomic prediction. Although the benefit of sequence data was systematic, it remained relatively modest
(e.g., +1.8% reliability on average with BayesR) and was not always significant. This is consistent with our
previous findings on simulated data (Druet et al., 2014b), which showed that the use of whole-genome
sequence data allowed to increase reliability mainly when rare variants contributed to genetic variance and
were accurately genotyped or imputed. Conversely, little gain was obtained when common variants
accounted for the largest proportion of genetic variance, as observed here. The segregation of common
variants with large effects on muscular development traits in BBC or height has been previously described
(Gualdron Duarte et al., 2023), while it remains difficult to study the importance of rare variants. Indeed,
the imputation accuracy for rare variants remains low and we discarded variants with MAF < 0.01 or with

low imputation accuracy. Therefore, we could not fully exploit the variation associated with rare variants.

5.5.2 Relative performance of prediction models

Our study was also informative about the differences between methods. With full sequence data,
BayesR and BayesRR-RC were the only Bayesian models to individually fit all the SNPs that could be run
on our cluster, thanks to their implementation in the GMRM software. BayesR had slightly higher
reliabilities than GBLUP-S (+1.2% on average), while the differences were even smaller when compared
to GBLUP-C (+0.2% on average). Indeed, in our study, the use of centered genotypes consistently
performed better than standardized genotypes (commonly used in human studies). This ranking is in
agreement with previous studies that have been carried out in BBC (Gualdrén Duarte et al., 2020) and in
some other cattle breeds (e.g., Su et al., 2014). In agreement, we also observed that selecting common
variants (ARRAY panel) with methods using standardized genotypes and giving more weight to rare alleles
(e.g., GBLUP-S) increased the reliability. The relationship between MAF and effect size has previously
been linked to ongoing selection in the populations analyzed, with the architecture corresponding to
standardized genotypes (i.e. rare variants having larger effects) being associated with purifying selection,

whereas centered genotypes (i.e. common variants accounting for large proportions of genetic variance) are
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associated with directional selection (Zeng et al., 2018). Overall, these results therefore suggest directional
selection for muscular development traits in BBC and support the use of centered genotypes. Bayesian
models that allow for variants with large effects are expected to perform better than GBLUP when such
variants contribute to the genetic architecture (Hayes et al., 2010). In the present case, however, the benefit
remained modest. Although the reasons remain unknown, several elements may explain this observation.
First, the fact that as the sample size increases, the priors have less influence on the estimated effects (i.e.
the large effect variants are also well captured in the SNP-BLUP (e.g. Pocrnic et al., 2024)). Second, the
frequency of some of the large effect variants previously identified in BBC and associated with recessive
deleterious effects has decreased (see Additional File 3: Figure S5) as a result of selection against carrier
bulls (i.e. there are fewer large effect variants in the target population). Thirdly, muscular development
traits in BBC tend to be polygenic, more so than height for example (Gualdrén Duarte et al., 2023). We
must also bear in mind that estimating the effects of more than 10 million variants simultaneously with 14K
genotyped individuals remains a challenging task and may require further iterations. Importantly, the
reliability of BayesRR-RC could be further increased when using centered genotypes in livestock species.
When using a subset of SNPs, the BSLMM approach (Zhou et al., 2013) was consistently the best of all
approaches, suggesting that a model combining a polygenic model with a few large effect variants is
efficient. We also tested two other similar models fitting a polygenic term and a group of large effect
variants, Bolt-LMM (Loh et al., 2015b) and BayesGC (Meuwissen et al., 2021), but these did not perform
as well as BSLMM (data not shown). In fact, such approaches could also be fitted with the BayesR
framework, as the number of mixtures and their relative variance can be modified. Note also that BayesR
and various extensions, including BayesRC (MacLeod et al., 2016) or BayesRCO (Mollandin et al., 2022),
have been implemented in different programs (Breen et al., 2022; Mollandin et al., 2022; Moser et al., 2015)
and that some of these may achieve higher accuracy, due to differences in model assumptions, settings or
genotype coding (centered versus standardized genotypes). For example, we previously observed smaller
differences between BSLMM and BayesR on a smaller data set with fewer markers, although BSLMM was

still more accurate on average (Gualdrén Duarte et al., 2020).

5.5.3 Benefits of using functional annotation

This study is one of the first to use full sequence data to perform genomic prediction using models
that incorporate functional information from experimental data in livestock species and using a relatively
large cohort of individuals. For Bayesian mixture models, this was possible thanks to the development of
software such as GMRM. However, this approach did not result in the strong improvement in reliability
reported for humans (Marquez-Luna et al., 2021; Patxot et al., 2021; Zheng et al., 2024). This may be due

to differences in population structure and past selection history (see above). In livestock species, effective
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population size is generally lower (e.g. Hayes et al., 2003; MacLeod et al., 2013), while LD extends at
longer range (e.g. Gautier et al., 2007) and relatedness is higher, as evidenced by the level of inbreeding
observed in BBC (Solé et al., 2017). This makes it more difficult to disentangle contributions from different
functional classes, which are more confounded, as shown in the present study or previously in Yuan et al.
(2024). As a result, the estimated enrichment levels are imprecise and the functional annotation is less
optimally used. Another major difference is that the sample sizes used in human studies are much larger,
providing more information to estimate different parameters. The genetic architecture also differs, as we
have previously observed. While coding variants with large effects are rare and common variants have
small effects and are generally regulatory in complex traits studied in humans (Eyre-Walker, 2010; Marouli
et al.,, 2017; Zeng et al., 2018), common coding variants with large effects are regularly observed in
livestock species (Gualdron Duarte et al., 2023; Hayes et al., 2010; Kemper and Goddard, 2012). In
addition, rare variants remain more difficult to exploit in livestock species due to low imputation accuracies
and smaller reference panels. Finally, the amount and quality of functional information available in human
studies is still much higher than in livestock species, allowing more genomic features to be fitted, such as
in the so-called LD-baseline model including up to 53 groups. Better functional annotation could be
achieved for the BBC breed by generating breed-specific regulatory variant catalogues using large numbers
of individuals. Finally, additional categories could be considered, such as conservation scores, which have
been shown to be relevant in both humans and livestock (Finucane et al., 2015; Xiang et al., 2019b).

When analyzing muscular development traits in BBC, the parameters estimated by models
incorporating functional information were highly variable across traits and methods, and sometimes
difficult to interpret biologically (e.g. null variance associated with some categories). These parameters
should thus be interpreted with caution (Yuan et al., 2024), especially for small categories such as coding
variants or eQTLs. In addition, the estimates are highly dependent on the definition of the different
functional categories, which may differ between studies, making comparisons difficult. Although the
enrichment levels of the different categories are ranked as expected, we do not recommend evaluating their
absolute values.

In such settings, the MGFBLUP framework produced slightly higher accuracies than GBLUP,
probably because these models had greater flexibility, whereas BayesRR-RC tended to decrease accuracy
compared to BayesR. Even without annotation, this Bayesian approach already has great flexibility (i.e.
allowing some variants to have larger effects), and there may be less benefit in adding more flexibility,
especially when more parameters need to be estimated and the reference population is not large enough.
We have observed the difficulties and challenges of estimating all these parameters and individual variant
effect simultaneously with BayesRR-RC. A potential disadvantage of BayesRR-RC is that when annotation

is used, the variance used to model the SNP effects is reduced. For example, without annotation, the largest
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effects of coding variants are sampled from a distribution corresponding to 1% of the total genetic variance,
whereas with annotation this becomes 1% of the variance explained by coding variants (i.e., if coding
variants account for 10% of the SNP heritability, the effects are sampled from a distribution with a 10 times
lower variance). This problem can be addressed in BayesRR-RC by fine-tuning the parameters of the model,
as done by Orliac et al. (2022). Note also that the BayesRC model (MacLeod et al., 2016) uses the total
genetic variance to model the SNP effects, which makes the model more robust to this problem and has the
advantage of reducing the number of parameters to be estimated. Overall, in our setting, the accuracy of the
models seems to result from their ability to capture the polygenic terms and the large effect variants, even
with non-causal markers in LD with the causative variants, rather than from their ability to exploit the

functional information.

5.5.4 Future directions

Using BSLMM on large subsets of variants, selected based on their functional annotation or LD
pruning, gave the highest reliabilities and significantly improved genomic predictions. With BSLMM,
about 50 to 100 variants with large effects were fitted in each iteration. Ideally, we should identify these
50-100 variants, or eventually a few more, and fit a model with a polygenic term and only these additional
variants. It remains difficult to identify these variants with simple functional annotation because many of
the functional classes are too large and lack specificity. For example, the number of coding variants and
eQTLs is much larger (even if we target the 1,000 variants with the largest contribution to genetic variance),
although they do not include all the large effect variants. Improved fine-mapping approaches using
functional annotation are needed to identify more of these variants, as in general only a handful of causative
variants are currently unambiguously identified. Further improvements in functional annotation are
therefore needed, including experimental data in the most relevant tissues, experiments on relatively large
samples of individuals from the same breeds, and finer annotation levels. For example, by defining
categories that combine motifs of transcription factor that are specific to the correct pathway and their levels
of conservation. It would also be important to be able to identify which synonymous variants, assumed to
be neutral, have an effect on the traits of interest. Finally, additional work is required to better exploit rare

variants, for which imputation accuracy remains low, in genomic prediction.

5.6 Conclusions

Compared to the GBLUP approach using medium maker density, as in the current genomic
evaluation, the use of imputed whole-genome sequence data allowed to increase the reliability of genomic
predictions for muscular development traits in BBC (+1.8% on average with the best method). Selection of

subsets of markers based on functional annotation or LD pruning, allowed equivalent accuracy to be
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achieved at lower computational cost, allowing more methods to be applied. Overall, a strategy using a
large panel of pre-selected functional variants, including coding variants, eQTLs and variants in regulatory
elements, with a Bayesian model fitting a polygenic term combined with fewer than 200 large effect variants
achieved the highest accuracies (+4.2% on average). Therefore, fine-mapping of these large effect variants
may prove effective in improving genomic prediction accuracy. Models directly incorporating functional
annotation only slightly improved reliability at best. This suggests that better annotation categories should
be used than in the present study, and that further efforts are needed to improve functional annotation in
BBC. In addition, more work is needed to exploit the genetic variance associated with rare variants, which

remain difficult to impute accurately.

5.7 Acknowledgements

The authors acknowledge the Walloon Breeders Association for providing the data. Tom Druet is
Research Director from the F.R.S.-FNRS. We used the supercomputing facilities of the “Consortium
d’Equipements en Calcul Intensif en Fédération Wallonie-Bruxelles” (CECI), funded by the F.R.S.-FNRS.

140



Chapter 5

Experimental section — Study 3

5.8 Supplementary tables

Table S1. Number of individuals and markers per genotyping array.

Genotyping array  Number of individuals ~ Number of variants Marker density
LMD1 2,467 9,077 Low
LMD2 570 12,023 Low
LMD3 1,511 12,638 Low
LMD4 8,165 15,749 Low
LMD5 583 16,381 Low
MMD1 4,930 48,699 Medium
MMD2 13,036 54,748 Medium
MMD3 1,843 62,227 Medium
MMDA4 1,690 68,454 Medium
MMD5 1,394 49,229 Medium
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Table S2. Estimated %SNP heritability (proportion of genetic variance explained by a category) and enrichment levels (relative variant
effect size per category) for different functional categories with two annotation models, FAN1 and FAN2, when applied to shoulder muscling.
MGFBLUP models were applied with GRMs constructed with either centered or standardized genotypes, respectively. The annotation categories
are described in the Methods section.

Annotation Group %SNP heritability Enrichment
(compartment where variants MGFBLUP  MGFBLUP MGFBLUP  MGFBLUP
are located) Centered  Standardized CVESRRRC “contered  Standardized  DOYESRR-RC
Coding variants 2.36 5.06 0.01 6.35 13.63 0.03
eQTLs 17.53 20.07 5.76 82.88 94.85 27.25
Regulatory elements_ detected with 0.79 717 14.19 0.7 242 478
both techniques
Regulatory elements detected by
EANL ATAC-Seq 23.19 17.18 10.36 3.06 2.26 1.36
Regulatory e_Iemer!ts detected with 11.41 0.02 12,81 298 0 334
epigenetic data
Exon-associated elements 0.06 0.04 9.1 0.01 0.01 1.4
Intronic regions 28.54 34.47 24.14 1.07 1.3 0.91
Intergenic regions 16.12 15.99 23.63 0.31 0.31 0.45
Coding variants 1.28 3.98 0 3.46 10.73 0
eQTLs detected in muscle 7.07 8.01 0.69 167.43 189.87 16.36
eQTLs detected in other tissues 13.45 14.13 10.7 69.03 72.52 54.92
Regulatory elements detected in 8.63 11.25 14.17 12.09 15.77 19.86
FAN? muscle _
Regulatory e'e”t‘g;fjsegetecmd inother 4894 7.11 21.74 1.39 0.52 159
Exon-associated elements 0.07 0.08 13.97 0.01 0.01 2.15
Intronic regions 30.35 35.51 21.11 1.14 1.34 0.79

Intergenic regions 20.21 19.93 17.63 0.39 0.38 0.34




Table S3. Estimated %SNP heritability (proportion of genetic variance explained by a category) and enrichment levels (relative variant
effect size per category) for different functional categories with two annotation models, FAN1 and FAN2, when applied to top muscling.
MGFBLUP models were applied with GRMs constructed with either centered or standardized genotypes, respectively. The annotation categories

are described in the Methods section.

Annotation Group %SNP heritability Enrichment
(compartment where variants  MGFBLUP ~ MGFBLUP MGFBLUP  MGFBLUP
are located) Centered _ Standardized S*RRRC “contered  Standardized  B2YeSRRRC

Coding variants 10.88 13.57 16.76 29.32 36.58 45.17

eQTLs 15.81 18.13 1.58 74.71 85.69 7.46

Regulatory elements detected with 191 0.00 12.91 0.64 0.00 4.35
both techniques

Regulatory elements detected by 21.32 16.68 9.27 2.81 2.20 1.22

FAN1 ATAC-Seq

Regulatory elements detected with 14.29 11.87 8.70 3.73 3.10 2.27
epigenetic data

Exon-associated elements 0.62 0.17 7.38 0.10 0.03 1.13

Intronic regions 24.00 26.88 19.00 0.90 1.01 0.72

Intergenic regions 11.17 12.70 24.41 0.21 0.24 0.47

Coding variants 11.07 14.16 1.25 29.83 38.16 3.37

eQTLs detected in muscle 1.84 4.75 0.02 43.58 112.57 0.44

eQTLs detected in other tissues 13.56 13.38 5.01 69.61 68.65 25.74

Regulatory elements detected in 14.13 14.68 19.19 19.81 20.59 26.90

FAN? muscle _
Regulatory elements detected in other 19.09 8.94 4.36 1.40 0.65 0.32
tissues

Exon-associated elements 10.88 13.57 16.76 29.32 36.58 45.17

Intronic regions 15.81 18.13 1.58 74.71 85.69 7.46

Intergenic regions 21.32 16.68 9.27 2.81 2.20 1.22




Table S4. Estimated %SNP heritability (proportion of genetic variance explained by a category) and enrichment levels (relative variant
effect size per category) for different functional categories with two annotation models, FAN1 and FAN2, when applied to buttock muscling
(side view). MGFBLUP models were applied with GRMs constructed with either centered or standardized genotypes, respectively. The annotation

categories are described in the Methods section.

Annotation Group %SNP heritability Enrichment
(compartment where variants  MGFBLUP ~ MGFBLUP MGFBLUP  MGFBLUP
are located) Centered _ Standardized S®RRRC “centered  Standardized  B2YeSRRRC

Coding variants 6.77 4.70 10.71 18.24 12.68 28.87
eQTLs 13.13 15.28 2.73 62.06 72.25 12.89

Regulatory elements detected with 13.11 10.42 0.76 4.42 3.51 0.26

both techniques
Regulatory elements detected by 24.32 19.43 19.15 3.21 2.56 2.52
FAN1 ATAC-Seq
Regulatory elements detected with 5.75 10.35 15.65 1.50 2.70 4.08
epigenetic data

Exon-associated elements 0.02 0.02 6.82 0.00 0.00 1.05
Intronic regions 18.78 21.89 20.28 0.71 0.82 0.76

Intergenic regions 18.11 17.90 23.89 0.35 0.34 0.46

Coding variants 7.34 5.79 0.01 19.77 15.61 0.03

eQTLs detected in muscle 2.21 0.03 0.26 52.39 0.80 6.05
eQTLs detected in other tissues 10.07 12.86 6.34 51.67 65.99 32.56
Regulatory elements detected in 8.21 8.09 15.78 1151 11.34 22.13

FAN? muscle _
Regulatory elements detected in other 32.72 34.55 26.01 2.39 2.53 1.90
tissues

Exon-associated elements 0.02 0.03 11.40 0.00 0.00 1.75
Intronic regions 19.49 20.95 16.36 0.73 0.79 0.62

Intergenic regions 19.94 17.70 23.85 0.38 0.34 0.46




Table S5. Estimated %SNP heritability (proportion of genetic variance explained by a category) and enrichment levels (relative variant
effect size per category) for different functional categories with two annotation models, FAN1 and FAN2, when applied to buttock muscling
(rear view). MGFBLUP models were applied with GRMs constructed with either centered or standardized genotypes, respectively. The annotation

categories are described in the Methods section.

Annotation Group %SNP heritability Enrichment
(compartment where variants MGFBLUP  MGFBLUP MGFBLUP  MGFBLUP
are located) Centered  Standardized CoY®RRRC centered  Standardized BAYESRR-RC

Coding variants 1.86 2.80 11.84 5.02 7.54 3191

eQTLs 15.32 19.30 3.05 72.43 91.23 14.43

Regulatory elements detected with 2.06 0.00 14.40 0.70 0.00 4.85
both techniques

Regulatory elements detected by 14.09 2.60 13.69 1.86 0.34 1.80

FAN1 ATAC-Seq

Regulatory elements detected with 10.97 12.17 10.72 2.86 3.17 2.80
epigenetic data

Exon-associated elements 0.32 0.08 0.01 0.05 0.01 0.00

Intronic regions 38.87 43.94 24.29 1.46 1.65 0.91

Intergenic regions 16.50 19.11 21.99 0.32 0.37 0.42

Coding variants 1.67 3.15 0.00 451 8.48 0.00

eQTLs detected in muscle 6.08 4.82 0.00 144.01 114.10 0.06

eQTLs detected in other tissues 9.86 14.61 3.27 50.60 75.01 16.77

Regulatory elements detected in 4.77 1.33 12.38 6.69 1.86 17.35

FAN? muscle _
Regulatory elements detected in other 21.75 16.83 27.21 1.59 1.23 1.99
tissues

Exon-associated elements 0.31 0.16 4.11 0.05 0.03 0.63

Intronic regions 38.39 41.86 28.25 1.45 1.58 1.06

Intergenic regions 17.17 17.24 24.78 0.33 0.33 0.48




Table S6. Estimated %SNP heritability (proportion of genetic variance explained by a category) and enrichment levels (relative variant
effect size per category) for different functional categories with two annotation models, FAN1 and FAN2, when applied to global muscling
score. MGFBLUP models were applied with GRMs constructed with either centered or standardized genotypes, respectively. The annotation
categories are described in the Methods section.

Annotation Group %SNP heritability Enrichment
(compartment where variants MGFBLUP  MGFBLUP MGFBLUP  MGFBLUP
are located) Centered _ Standardized S®RRRC “centered  Standardized  B2YeSRRRC

Coding variants 8.01 12.11 0.63 21.59 32.62 1.70

eQTLs 12.78 13.88 8.65 60.43 65.63 40.91

Regulatory elements detected with 21.45 23.48 15.71 7.23 7.91 5.29
both techniques

Regulatory elements detected by 19.47 8.91 13.21 2.57 1.17 1.74

FAN1 ATAC-Seq

Regulatory elements detected with 1.29 0.04 10.83 0.34 0.01 2.82
epigenetic data

Exon-associated elements 0.06 0.03 12.14 0.01 0.01 1.87

Intronic regions 24.15 28.36 20.29 0.91 1.07 0.76

Intergenic regions 12.78 13.18 18.54 0.25 0.25 0.36

Coding variants 8.02 13.08 15.97 21.62 35.23 43.03

eQTLs detected in muscle 5.64 5.93 0.24 133.68 140.44 5.64

eQTLs detected in other tissues 9.46 8.60 3.76 48.57 44.16 19.29

Regulatory elements detected in 11.00 12.25 6.94 15.42 17.18 9.73

FAN? muscle _
Regulatory elements detected in other 29.79 23.27 20.64 2.18 1.70 1.51
tissues
Exon-associated elements 0.06 0.04 12.38 0.01 0.01 1.90
Intronic regions 22.52 24.93 19.72 0.85 0.94 0.74

Intergenic regions 13.50 11.90 20.36 0.26 0.23 0.39
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Table S7. Gain of reliability achieved with BSLMM when using panel FUN1 and LD99.
Reliabilities were compared to those obtained with GBLUP using centered genotype and medium
density array. Significance levels were estimated by 10,000 bootstraps.

Traits FUN1 LD99
Gain of reliability ~ P-value  Gain of reliability ~ P-value
Top 0.052 <0.0001 0.043 <0.0001
Shoulder 0.038 0.0026 0.031 0.0082
Buttock (rear) 0.038 0.0014 0.033 0.0048
Buttock (side) 0.036 <0.0001 0.029 0.0008
Global score 0.049 <0.0001 0.043 <0.0001
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Table S8. Reliability obtained using whole-genome sequence data, with or without annotation, compared to that obtained using a medium
marker density panel

Panel Model Method Shoulder Top Buttock side Buttock rear Global score
GBLUP-C 0.792 0.674 0.686 0.75 0.705
MMD  Without annotation GBLUP-S 0.785 0.67 0.684 0.741 0.697
BayesR 0.793 0.678 0.69 0.75 0.707
GBLUP-C 0.811 0.694 0.7 0.758 0.724
WGS  Without annotation GBLUP-S 0.799 0.681 0.697 0.749 0.712
BayesR 0.806 0.695 0.71 0.766 0.726
MGFBLUP-C 0.818 0.708 0.718 0.77 0.732
WGS FAN1 MGFBLUP-S 0.807 0.695 0.717 0.762 0.72
BayesRR-RC 0.795 0.69 0.71 0.75 0.715
MGFBLUP-C 0.819 0.708 0.718 0.769 0.734
WGS FAN2 MGFBLUP-S 0.807 0.697 0.717 0.761 0.722
BayesRR-RC 0.794 0.694 0.715 0.753 0.715
MGFBLUP-C 0.802 0.689 0.701 0.748 0.717
WGS LDMS MGFBLUP-S 0.799 0.688 0.702 0.749 0.719
BayesRR-RC 0.774 0.67 0.686 0.729 0.689
WGS LDMS x FAN1 BayesRR-RC 0.758 0.666 0.683 0.709 0.677




Table S9. Reliability of different methods when using different marker panels selected via functional annotation or with an LD pruning strategy

Traits Method WGS  LD99  LD98 LD95 LD85 LD80 FUNL FUN2 FUN3 ARRAY
BayesCr NA 0795 0795 0792 0785 0782 0795 0799  0.784  0.809
BayesR 0.806 0806  0.804 0803 0795 0792 0807 0809 0793 0815
Shoulder BSLMM NA 0823 082 082 0811 0814 083 083 0818 082
GBLUP-C 0.811 0809  0.808 0806  0.804 0803 0811 0813 0.8 0.815
GBLUP-S 0799 079 0794 0792 0788 0786 0796 0799 0781 0811
BayesCnt NA 0685 068 0677 0676 0674 0685 0684 0668 0691
BayesR 0.695 0697 0695 0695 0686 0685  0.701 0.7 0691 0701
Top BSLMM NA 0718 0717 0716 0712 0712 0726 0724 0716  0.711
GBLUP-C 0.694 0695  0.694 0693 0691 0691 0701 0699  0.689  0.697
GBLUP-S 0.681 0683 0681 0679 0675 0673 0684 0684 067 0692
BayesCrt NA 0703 0703  0.705 0.7 0.7 0715 0714 0716  0.707
BayesR 071 0716 0716 0715 0713 0712 0721 072 0723 0715
ng’:k BSLMM NA 0716 0716 0716 0715 0715 072 072 0724 0711
GBLUP-C 0.7 0707 0708 0707 0706 0706 0716 0715 0714  0.703
GBLUP-S 0.697 0704 0704 0703 0701 0699 0714 0711 0714  0.704
BayesCr NA 0755 0749 0752 0744 0752 0751 0752 0746  0.766
BayesR 0.766 0767 0766 0765 0759 0758  0.768 0767  0.763  0.773
B‘:tet;’r"k BSLMM NA 0783 078 0782 078 0778 0787 0786 0784  0.778
GBLUP-C 0.758 0764 0764 0764 0763 0762  0.764 0765  0.758  0.767
GBLUP-S 0749 0753 0753 0752 075 0747 0753 0752  0.746  0.765
BayesCr NA 0711 0709 0702 071 0708 0711 0712 0705 0727
BayesR 0726 0729 0727 0727 0723 072 0728 0728 0723 0735
GSL%?Z' BSLMM NA 0748 0746 0743 074 0739 0754 0754 0744  0.746
GBLUP-C 0.724 0725 0725 0724 0723 0722 0725 0726 0716  0.731

GBLUP-S 0.712 0.713 0.712 0.711 0.708 0.706 0.712 0.712 0.703 0.726
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Table S10. Reliability obtained using marker panels selected on the basis of functional information
and for models with or without the incorporation of functional annotation

Buttock Buttock Global

Panel A h Model houl T
ane pproac ode Shoulder op side rear score
GBLUP-C Without 0811 0701 0716 0.764  0.725
annotation
BayesR Without 0807 0701 0721 0768 0.728
annotation
FUN1  mGFBLUP-C FAN1 0.812 0.701 0.713 0.766 0.726
BayesRR-RC FAN1 0795  0.691 0711  0.755  0.712
MGFBLUP-C FAN2 0.807 0.699 0713 0.764 0.726
BayesRR-RC FAN2 0793 0692 0714 076 0714
GBLUP-C Without 0.813  0.699 0715 0.765 0.726
annotation
With
BayesR Ithout 0.809 0.7 072 0767 0.728
annotation
FUN2  mGFBLUP-C FAN1 0.812 0.701 0.714 0.766 0.726
BayesRR-RC FAN1 0798  0.692 0711 0.759  0.715
MGFBLUP-C FAN2 0.806 0.696 0714 0.764  0.726
BayesRR-RC FAN2 0792  0.689 0714 0.759  0.715
GBLUP-C Without 0.8 0689 0.714 0758  0.716
annotation
BayesR Without 0793  0.691 0723 0.763  0.723
annotation
FUN3  mGFBLUP-C FAN1 0.807 0698 0709 0761 0.722
BayesRR-RC FAN1 0794  0.692 0716 0.755  0.713
MGFBLUP-C FAN2 0.806  0.698 0708 0.761  0.722
BayesRR-RC FAN2 0793 069 0714 0.756  0.71
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5.9 Supplementary figures
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Figure S1. Significance levels of difference in reliabilities obtained with methods using whole-genome
sequence data, with or without annotation.Comparisons were also made with medium marker density (MMD)
array prediction. The names of the pair of methods compared are indicated on the left, with the extensions -C’
and ‘-S’ indicating whether the GRMs used in GBLUP and MGFBLUP models were constructed with centered
and standardized genotypes, respectively, WGS referring to the use of the whole-genome sequence data without
annotation, FAN1 and FAN2 referring to the two models incorporating functional annotation (describing in Table
1). P-values of differences were obtained by bootstrapping and are presented on a -log10 scale, the dashed line
indicates the significance threshold at p=0.05. The colors facilitate the reading of the results and indicate which
pairs of methods are compared: gray for comparisons between WGS and MMD, blue for comparisons of the three
methods at the sequence level, green for comparisons of GBLUP-S (without functional annotation) and
MGFBLUP-S (with functional annotation) models, purple and brown for the same comparisons with GBLUP-C
versus MGFBLUP-C models and with BayesR versus BayesRR-RC models, respectively.
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Figure S2. Significance levels of the difference in reliabilities obtained for each method when using subsets
of markers selected based on LD pruning with different thresholds. The comparisons are made per method,
with different selected subsets of markers. The names of the compared method pairs are given on the left, where
GBLUP-S and GBLUP-C refer to GBLUP with centered and standardized genotypes, WGS refers to the use of
whole-genome sequence data, and LD80 to LD99 refer to marker panels selected by LD pruning with the threshold
set at r2 > 80 to 99, respectively. P-values of differences were obtained by bootstrapping and are presented on a -
log10 scale, the dashed line indicates the significance threshold at p=0.05.
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Figure S3. Significance levels of the difference in reliabilities obtained between different methods when
using a subset of markers selected based on LD pruning with of threshold at r2 > 0.99. The names of the
compared method pairs are given on the left, where GBLUP-S and GBLUP-C refer to GBLUP with centered and
standardized genotypes, LD99 refers to marker panels selected by LD pruning with the threshold set at r2 > 99. P-
values of differences were obtained by bootstrapping and are presented on a -log10 scale, the dashed line indicates
the significance threshold at p=0.05.
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Figure S4. Significance levels of the difference in reliability obtained for each method when using subsets of
markers selected based on functional annotation, LD pruning or their presence on commercial arrays. The
comparisons are made per method, with different selected subsets of markers. The names of the compared method
pairs are given on the left, where the extensions ‘-C’ and ‘-S’ indicate whether the GRM used in that GBLUP
model was constructed with centered and standardized genotypes, respectively, FUN1 to FUN3 refer to marker
panels selected based on functional annotation, ARRAY refers to markers present on commercial genotyping
arrays, and LD80, LD90, and LD98 refer to marker panels selected by LD pruning with the threshold set at r2 >
80, 90, and 98, respectively (see Table 2 for more details on the marker panels). FUN and LD panels were
compared for panels of approximately the same size, with the number of markers on the ARRAY panel being
approximately the same as on the FUN3 and LD80 panels. P-values of differences were obtained by bootstrapping
and are presented on a -log10 scale, the dashed line indicates the significance threshold at p=0.05.
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Figure S5. Evolution of the frequency of five known recessive deleterious variants with positive effect on
muscular traits in heterozygotes. These five recessive deleterious variants associated with congenital muscular
dystonia (CMD), crooked tail syndrome (CTS) or stunted growth have previously been shown to confer a
heterozygote advantage. Heterozygotes do indeed have higher muscular development. The reduction in frequency
suggests that although these large effect variants account for a substantial proportion of the genetic variance in the
reference population, their influence in the target population is now much less.
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6 Discussion - Perspectives
6.1 ldentifying the Bovine Regulatory Element and Perspectives

Extensive research in humans has highlighted the important role of regulatory variants in
shaping complex traits (Boix et al., 2021; Meuleman et al., 2020; Trynka et al., 2015). However, the
detection of regulatory elements in cattle has primarily been limited to a few tissues and developmental
stages, preventing a comprehensive understanding of the full spectrum of regulatory elements and their
activity (Foissac et al., 2019; Halstead et al., 2020a, 2020b; Kern et al., 2021; Ming et al., 2021; Powell
et al., 2023). During my PhD, | contributed to the generation of a comprehensive catalog of regulatory
elements using 104 samples covering 63 bovine tissue types. For tissues with a major role in
agronomically important traits, such as the mammary gland, we included multiple individual samples to
better capture their diversity. To my knowledge, this is the most comprehensive catalog of open
chromatin regions in cattle to date, including novel tissues such as the immune and digestive systems.
The entire catalogue accounts for approximately 10% of genome, in line with findings in humans. We
defined core and consensus regions of open chromatin following Meuleman et al. (2020). Core regions
are detected as open in more tissues, ensuring the authenticity of the signal and indicating activation
across multiple tissue types. They also showed greater enrichment of eQTL signals compared to the
broader consensus regions, consistent with Meuleman's observation of higher enrichment of genetic
signals associated with complex traits in their core regions. To build a comprehensive map of regulatory
elements, we also integrated results from previous studies by downloading publicly available data. We
demonstrated the benefit of adding additional tissues to discover new peaks and obtained a saturated
map when more than 90 tissue samples were included. Although most of the data from other studies did
not pass our quality checks, some tissues, such as embryonic tissue from Halstead et al. (2020b),
provided substantial information. Indeed, embryonic tissues showed a markedly different open
chromatin landscape compared to other tissues, with approximately 200,000 specific peaks that were
absent in other tissue types. This highlights the importance of including different tissue types and
developmental stages to comprehensively mine regulatory elements. Based on the genomic locations of
ATAC-Seq peaks, we classify them into distal and proximal regulatory elements, which are
characterized by different roles and mechanisms. Previous studies have shown that proximal regulatory
elements are mainly promoters, while distal elements include enhancers, insulators, and silencers,
among others (Maston et al., 2006). In the present work, we found that proximal peaks are much less
abundant than distal peaks. Although a possible explanation is the smaller genomic space used to define
proximal peaks, this alone cannot explain the difference. Other factors, such as the greater abundance
of enhancers compared to promoters, as highlighted by previous ENCODE studies, may also play a role
(Field and Adelman, 2020). Compared to distal peaks, proximal peaks are larger and more accessible.
Interestingly, proximal peaks are active in more tissues than distal peaks, suggesting that distal peaks

are more responsible for tissue-specific activity. This is consistent with previous studies indicating that
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distal regulatory elements exhibit high tissue specificity (Liu etal., 2017). In contrast to previous studies,
the inclusion of a wide range of tissue types covering different biological processes allowed us to
interpret the biological activity of regulatory elements. Using the method proposed by Meuleman et al
(2020), we compressed the matrix indicating the presence of each peak in all samples into 16 main
factors representing different biological activities. We then inferred peak functions based on their
dominant components (i.e. tissues). This information could, for example, help to identify causative
regulatory variants associated with specific complex traits associated with these tissues. Among these
dominant components, 12 were clearly associated with tissues that could be readily assigned to
recognizable body systems corresponding to different biological processes, accounting for a total of
64.5% of the peaks. For example, we identified 58,078 peaks assigned to the mammary gland-associated
component, suggesting a role in lactation, and 49,988 muscle-related peaks that are likely to be involved
in muscle growth and development. Figure 6.1 shows two examples of how such information is relevant
to the identification of tissue-specific regulatory variants. These correspond to two open chromatin
segments close to the lactalbumin alpha gene (LALBA) and myosin heavy chain 1 (MYH1) genes, which
have been assigned to the mammary-gland and muscle components, respectively. The availability of
different tissue types has the advantage of clearly demonstrating that these signals are specifically
detected in the corresponding tissues.

Our catalog and its annotation are a valuable resource for the scientific community. Our link,
available on the UCSC Genome Browser, facilitates the visualization of regulatory elements and their
function, providing insight into their implications in genetics, evolution, and related fields. In our
dataset, most regulatory elements exhibited highly dynamic activity across tissues, with only a small
fraction of peaks being ubiquitous, suggesting that specific peaks may play critical roles in tissue-
specific functions. This again highlights the importance of including a variety of tissue types to
adequately capture these functionally specific peaks. Tissue-specific regulation has also been observed
in other breeds, such as indicine cattle (Alexandre et al., 2021), while it has also been reported that these
tissue-specific regulations are conserved across vertebrates (Kern et al., 2021). Our results show that
over 213,000 peaks are specific to embryonic stages and their accessibility has been reported to change
dramatically during development, for example between 2-4 cell embryos and morula stage embryos
(Halstead et al., 2020b; Ming et al., 2021). This highlights the critical role of regulatory activity in
development and differentiation, particularly in early life stages. Importantly, changes in chromatin
accessibility also play a critical role in regulating gene expression in response to stress and
environmental changes (Boschiero et al., 2022; Fang et al., 2019; Johnston et al., 2021). Therefore,
future research efforts will need to include samples across all developmental stages and environmental
conditions to effectively elucidate stage- and context-specific gene regulation, requiring dynamic data
sampling strategies. In addition, recent studies comparing regulatory elements associated with the
bovine immune system across breeds have highlighted the benefits of including individuals with diverse

genetic backgrounds (Powell et al., 2023). Besides adding more samples as described above, future
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studies may benefit from complementary techniques. While ATAC-Seq stands out as the most efficient
method for uncovering regulatory elements, its combination with ChlP-seq of other epigenetic marks
could significantly improve our understanding of their specific regulatory roles by inferring chromatin
states (Ernst and Kellis, 2012). Furthermore, these combined approaches may help to identify regulatory
elements that ATAC-Seq alone may miss, such as the unbound site of CTCF (Oomen et al., 2019). For
example, Kern et al. (2021) combined ATAC-Seq data with other histone marks to identify the
transcription factor footprints within regulatory elements, showing significant enrichment of known
motifs. Furthermore, the integration of ATAC-Seq data from larger numbers of individuals with other
omics datasets, such as transcriptomics, would allow the study of the association of gene expression
with open chromatin information, thereby facilitating the detection of causal variants perturbing gene
expression and the deciphering of gene regulation (Boix et al., 2021; Kim et al., 2024; Kumasaka et al.,
2016). The inclusion of a large number of individuals with different phenotypes and for multiple tissues,
together with other omics data, will be crucial to link phenotypes in different environments to regulatory
elements that control the gene response to stress (Alasoo et al., 2018; Arthur et al., 2024; Boix et al.,
2021; Kumasaka et al., 2016; Meuleman et al., 2020). However, it seems impossible to perform this
labor- and cost-intensive task in a single laboratory. It is clear that a collaborative effort is required to
generate the large-scale data needed to systematically identify regulatory elements and investigate their
dynamic changes across tissues, developmental stages, individuals and environments. For these reasons,
several major consortia such as BovReg and FAANG have been established (Andersson et al., 2015;
Moreira et al., 2022). These have already generated large datasets covering more tissues from more
individuals and in more conditions, as well as additional epigenetic data, and their first results show
promise for the future. Finally, the recent advent of single-cell technology combined with ATAC-Seq
(scATAC-Seq) (Buenrostro et al., 2015; Hu et al., 2023; Mezger et al., 2018) or ChIP-seq (Grosselin et
al., 2019; Rotem et al., 2015) approaches provides new opportunities to study cell type-specific
regulatory elements that control distinct cellular functions and contribute to cellular diversity. These
new approaches have already allowed us to map causal variants to specific cell populations (Lake et al.,
2018) and to distinguish the regulatory networks of different cell types in the same microenvironment,
such as malignant and immune cells of basal cell carcinoma (Satpathy et al., 2019). In cattle, the
availability of SCATAC-Seq data is gradually expanding, allowing studies of regulatory elements for
specific cell populations, such as cell types involved in processes such as bovine skeletal muscle
development (Cai et al., 2023), immune responses (Gao et al., 2022b; Wang et al., 2023), and somatic
cell nuclear transfer (Huang et al., 2023). In the future, ongoing advances in single-cell technologies
hold the promise that integrating data on transcriptional and epigenetic states at the single-cell level will

greatly enhance our understanding of the regulatory dynamics underlying complex traits.
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Figure 6.1. UCSC Genome Browser view of tissue-type-specific ATAC-Seq peaks and their Negative Matrix
Factor based annotations (https://www.gigauag.uliege.be/cms/c_4791343/en/gigauag-diagnostics-software-
data) around (A) a mammary gland specific gene, LALBA (Lactalbumin Alpha) and (B) a muscle specific gene,
MYH1 (Myosin Heavy Chain 1) where chromatin is opened in a tissue specific way across the genes.
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6.2 Characteristics of Variants Located within ATAC-Seq Peaks

To lay the groundwork for using regulatory variants to enhance genomic selection, we
characterized variants mapping to ATAC-Seq peaks in 264 Dutch Holstein Friesians. A total of
1,390,391 variants were identified, of which 67% were common variants with a minor allele frequency
(MAF) > 0.05. These ATAC-Seq peaks are expected to be enriched for regulatory elements that are
functionally important. Therefore, they should have lower levels of polymorphism and greater
evolutionary conservation compared to other regions of the genome. We observed an over-dispersed
distribution of GERP scores in ATAC-Seq peaks, suggesting a higher proportion of constrained
elements, consistent with numerous studies indicating that regulatory regions are evolutionarily
conserved (Kern et al., 2021). For example, a recent comparative genomic study of central placental
mammals (Christmas et al., 2023) found that most constrained bases in the genome are located within
regulatory elements, while coding regions are the most enriched in constrained bases (Sullivan et al.,
2023). However, this was accompanied by a higher proportion of less constrained regions, supporting
an accelerated mutation rate. Compared to the flanking regions, we indeed observed a higher mutation
rate in these regions, which has not been previously reported in cattle or even in livestock. We
hypothesized that this was due to a higher mutation rate in ATAC-Seq regions and rigorously tested this
using a variety of approaches. A recent study of mutation rates in Arabidopsis revealed epigenomic
features that correlate with mutation rates, with open chromatin emerging as one of the most highly
correlated features associated with elevated mutation rates (Monroe et al., 2022). This observation has
also been made in human cells, such as somatic cells (Luquette et al., 2022) or human spermatogonia
(Kaiser et al., 2021). One possible explanation for this is that the reduced efficiency of Pol-3-mediated
displacement of error-prone Pol-a-synthesized primers is due to the presence of a barrier on the DNA,
such as a DNA-bound protein (Reijns et al., 2015). During DNA replication, double-stranded DNA is
separated into two single strands by the replicative helicase, forming a replication fork (Leman and
Noguchi, 2013). New strands are synthesized using these single strands as templates. The new DNA
synthesized in the 5 to 3’ direction is known as the leading strand, which uses the 3’ to 5’ template
strand. This synthesis proceeds in the same direction as the replication fork, allowing it to be continuous
and requiring only one primer at each replication fork. In contrast, the other strand, called the lagging
strand, is synthesized in the opposite direction of the growing replication fork (Snedeker et al., 2017).
As a result, multiple primers are used and many small fragments, known as Okazaki fragments, are
synthesized in parallel. These fragments are later linked together to form the lagging strand (Figure 6.2).
The primers for the leading strand and the Okazaki fragments are synthesized by different DNA
polymerases, with Pol-a responsible for the synthesis of primers for the Okazaki fragments (Snedeker
et al., 2017). However, Pol-a has low fidelity and a higher error rate due to its lack of 3* to 5’
proofreading exonuclease activity. During replication (Snedeker et al., 2017), the DNA primers

synthesized by Pol-a are removed and replaced by more accurate DNA fragments synthesized by Pol-6.
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Notably, the rapid binding of DNA-binding proteins to the Okazaki fragments can interfere with this
replacement process, resulting in the retention of primers synthesized by the low-fidelity Pol-o (Figure
6.3). The retention of the fragment synthesized by Pol-a is thought to lead to a higher mutation rate in
the binding sites of the regulatory factors (Reijns et al., 2015). In addition, DNA-binding proteins such
as transcription factors have been reported to interfere with nucleotide excision repair, which may be
another reason for the increased mutation rate in the regulatory regions (Sabarinathan et al., 2016). Our
data do not support the hypothesis that the number of variants in DNA binding sites identified by their
associated motifs is higher. We hope that in the future, more motifs of DNA binding sites will be
obtained from experimental approaches, providing more accurate results compared to the in silico
predicted motif binding sites we used. Overall, the observed higher mutation rate remains inconsistent
with the functional importance of regulatory regions. To further investigate this apparent contradiction,
we compared the site frequency spectrum (SFS) of different categories of variants and found that
variants in regulatory regions are under purifying selection, supporting their functional importance. A
higher selection strength was observed for indels compared to SNVs. Variants in regulatory elements
thus appear to be under more complex selection pressures and mutation rates than we initially thought.
This suggests that conservation scores are only useful to identify a fraction of regulatory elements that
are highly conserved across species and under strong selection. Experimental methods such as ATAC-
Seq will therefore remain essential to identify species-specific regulatory elements or those that are less
conserved as a result of weak selection. These elements may exhibit higher sequence diversity across

species due to a higher mutation rate.
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Figure 6.2. Process of DNA replication. Double-strand DNA first is unwound by helicase (orange triangle) from
the center to both sides, forming a bubble known as the replication fork. Then the leading strand and the Okazaki
fragment are synthesized using the primer shown in green. For the lagging strand, the primer is synthesized by
DNA polymerases, Pol-a. This image has been copied from https://passel2.unl.edu/view/lesson/6f214d098527/13
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Figure 6.3. Schematic representation of the Pol-a tract retention hypothesis. During replication, the lagging
strand, DNA at the beginning of the Okazaki fragment, is synthesized by the low-fidelity polymerase Pol-a (the
red line in the left panel). It is replaced by the new DNA fragment synthesized by Pol-6 when linking the Okazaki
fragment shown in the upper right panel, but remain in the lagging strand when this primer is occupied by DNA-
binding protein that increase the mutiont rate compared to the flank region. This figure has been obtained from
Reijns et al. (2015).

6.3 Enrichment of regulatory variants in ATAC-Seq peaks

To estimate the enrichment of regulatory variants in ATAC-Seq peaks, we first conducted eQTL
analyses in two tissues, blood and liver, to detect regulatory variants. In total, we identified 7817 and
6172 eQTLs and their credible sets in blood and liver, respectively. These credible sets are assumed to
include causative variants as well as variants in LD with causative variants. Using Trynka’s method
(Trynka et al., 2015), we demonstrated that these credible sets are indeed more frequent in ATAC-Seq
peaks. Importantly, we showed that this enrichment is not due to positional confounding, such as
proximity to transcription start sites. Of particular interest, the overlap with the tissue-specific NMF was
predominantly associated with distant regulatory elements. This finding is consistent with previous
studies indicating that the distal regulation of gene expression has pronounced tissue-specific features
(Liu et al., 2017). However, there is no difference between distant and proximal regulatory elements in
terms of overlap with the ubiquitous NMF. To further estimate the proportion of regulatory variants
mapped to regulatory regions and the proportion of variants within regulatory regions that are truly
regulatory, we developed a maximum likelihood approach integrating eQTL and ATAC-Seq data. We
estimated that only one third of the regulatory variants mapped in the existing ATAC-Seq catalog, which
already covers almost all tissue types. A plausible explanation is the mismatch in developmental stages
between our ATAC-Seq catalog and the eQTL data. Therefore, future studies including samples from
different developmental stages are essential to elucidate the dynamics of regulatory elements during
development. In addition, other factors may explain our observation. For example, ATAC-Seq may not
capture all regulatory elements, potentially missing small regions that are open but not effectively
amplified, silencers/insulators that are sometimes undetectable, or eQTL signals associated with splicing

mutations. The inefficiency of ATAC-Seq in silencer detection was illustrated by the lack of ATAC-
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Seq signal associated with the regulatory variant previously identified in IGF2. Although 24 out of 25
variants in ATAC-Seq are non-regulatory, this knowledge is still useful for identifying causative
regulatory variants. It is also possible that incorporating eQTL data from other tissues would increase
the proportion of variants in ATAC-Seq estimated to be regulatory, but publicly available eQTL
resources such as cGTEX rely on genotype imputation based on RNA-seq data, which may not meet the

requirements of our study.

6.4 Evaluation of heritability partitioning methods in livestock

Heritability partitioning plays a central role in investigating the genetic architecture underlying
complex traits, allowing a deeper understanding of the genetic factors associated with these traits, and
providing opportunities to improve genomic selection (Loh et al., 2015a; Yang et al., 2011b). Currently,
heritability partitioning methods have been mainly developed and validated using human data (Finucane
et al., 2015; Patxot et al., 2021; Yang et al., 2015), but they are widely used in livestock genetic studies
with limited validation. Livestock species, such as cattle, are subject to intensive selection and exhibit
significant differences in demographic history and genomic characteristics compared to humans. These
differences include small effective population size (Hayes et al., 2003; MacLeod et al., 2013), high
levels of inbreeding (Leroy, 2014) and relatedness, and long-range linkage disequilibrium (Gautier et
al., 2007). To date, the GREML approach has only been evaluated for heritability partitioning in cattle
in a single study using less than 3000 individuals and a limited number of scenarios (Cai et al., 2022).
Therefore, our study, which evaluates state-of-the-art approaches with a large cohort and using
(imputed) sequence data, provides valuable insights into the properties of heritability partitioning
methods and their accuracy in different scenarios, both with and without stratification, when applied to
livestock. Overall, our results indicate lower levels of precision in cattle compared to human studies, for
both GREML and BayesRR-RC methods. Higher standard errors were observed even in the simplest
scenarios, where a lower bias was observed for the LDMS model, although all the models we tested
provided good estimation. We speculate that a major factor in this discrepancy is the high level of LD
and individual relatedness, where differences between individuals are small. In human studies, one
individual from each pair with a relatedness greater than 0.025 is typically excluded to ensure higher
resolution (Speed et al., 2012). However, using such a threshold in cattle would result in the exclusion
of most individuals due to the reduced effective population size resulting from domestication and
artificial selection, resulting in higher relatedness between individuals. In scenarios where causative
variants were enriched in certain LD score and MAF categories, models accounting for stratification
provided unbiased results in agreement with previous studies (Yang et al., 2015), but the methods
remained imprecise. This high level of variation in estimates was also observed and even more
pronounced in Cai's simulation study in Holstein cattle (Cai et al., 2022), across scenarios with and

without MAF stratification, and was particularly evident in the simplest scenarios where we did not use
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functional annotation. In addition, we found that for GREML, assuming the same relationship between
effect size and LD score or allele frequency to construct the GRM and to simulate the phenotype led to
improved results, although the true relationship on real data remains unknown. Interestingly, LDMS
models appeared robust when the rules used to construct the GRM were different from those used in the
simulations. When enrichment levels of multiple functional categories were estimated simultaneously,
accurate heritability partitioning was achieved only in scenarios with no enrichment (equal level for all
categories) and with 100% enrichment (a single category contributing to genetic variation). In the most
complex scenarios, where multiple functional groups had different enrichment levels, high variation in
estimates was observed, especially for small annotation groups. Despite the poor estimation in these
complex scenarios, the results remained informative and reflected the true ranking. Strong confounding
between certain functional groups, such as variants upstream and downstream of genes and variants in
OCR, led to systematic biases in their estimators for both BayesRR-RC and GREML methods. In human
studies, this confounding effect has also been observed for annotation groups that are short in length and
in high LD with other groups (Gusev et al., 2014). Correlations between elements from the GRMs were
used in our study to quantify the degree of confounding between categories and showed that the category
of intergenic variants had less similarity to other annotation groups. This may explain why higher
accuracies were observed when %SNP heritability was estimated for this category using the two-
component model. Other parameters, such as the number of causative variants, SNP heritability, and the
distribution of effect sizes in different categories, may also affect the accuracy of parameter estimation.
However, it remains difficult to comprehensively simulate all parameter combinations. Nevertheless,
compared to previous studies in cattle, our research provides new insights by using finer annotation
levels, e.g. by including a large catalog of experimentally obtained functional data, by including more
individuals with sequence-level data, and by exploring more complex scenarios.

Several methods have been developed to estimate the levels of enrichment of different
functional groups. GREML and BayesRR-RC are the most commonly used methods that use individual
data to directly estimate the heritability explained by each category. GREML has been widely used in
livestock studies due to its lower computational requirements and its ability to handle genotype data at
the sequence level. Recently, methods based on summary statistics have emerged as powerful tools for
partitioning heritability in human studies, but are rarely used in livestock (Wray et al., 2019). Recently,
lower accuracy was reported in a study conducted in cattle (Xiang et al., 2023). Obtaining summary
statistics in livestock species is also computationally demanding, as GWAS must be performed using
linear mixed models due to the high levels of relatedness and stratification. BayesRR-RC is the first
software to allow partitioning of heritability in large cohorts with sequence-level data using a Bayesian
model in a reasonable time (Patxot et al., 2021). Running these two approaches in livestock with
different models (e.g., LDMS, MS, LDS, annotation groups) allows understanding whether there is
stratification among variant effects and which categories have a higher contribution to the genetic

variance of a complex trait. In our study, GREML had a lower standard deviation than BayesRR-RC in

167



Chapter 6 Discussion — Perspectives

simple scenarios, but BayesRR-RC provided a better estimate with higher resolution in complex
scenarios. In particular, the rules used to simulate the phenotypes (i.e., the relationship between effect
size and MAF) in the simpler scenarios matched the rule used to construct the GRM, which may have
favored GREML. In fact, the performance of GREML began to degrade when using a GRM constructed
based on different rules. Unlike LDMS, which corrects for stratification by grouping variants, LDAK
takes a quantitative approach by weighting variants based on their LD (Speed et al., 2012). However,
the weighting parameters are estimated based on human data and require further study to extrapolate to
other species due to different LD patterns in non-human genomes. In our study, when using the LDMS
approach with GREML, nearly half of our simulations failed to converge due to the excessive number
of parameters to be estimated. This problem has been reported elsewhere (Finucane et al., 2015; Speed
et al., 2017), and fitting a large number of categories can also lead to a huge demand on computational
resources. While EM-GREML has been reported to converge where AI-GREML fails (Misztal, 2008),
its computational inefficiency hinders widespread implementation. In contrast, BayesRR-RC allows the
estimation of more hyperparameters. However, when fitting models with fewer categories, GREML
shows greater computational efficiency than BayesRR-RC, as sampling in BayesRR-RC becomes more
time consuming. In our simulations, the two-component model corresponding to the GFBLUP, which
is widely used to include annotations in variance component estimation or genomic prediction models
(Edwards et al., 2016), consistently produced biased results in the most complex scenarios, regardless
of LDMS correction. Therefore, we advocate the use of more categories instead of just two to mitigate
overestimation due to absorption of effects from neighboring categories, especially for categories close
to functional categories enriched in causal variants, such as coding sequence. Following the approach
of Orliac et al. (2022), we ran 5000 iterations for BayesRR-RC in our analysis, which proved sufficient
for parameter convergence, as evidenced by convergence diagnostic plots showing detailed equilibrium.
In addition, in our simulations we observed only subtle differences in parameter estimation compared
to running longer chains of 50,000 iterations. Slow parameter convergence was observed in some
simulations of complex scenarios, and in some cases the parameters did not reach convergence even
after 5,000 iterations. This may be due to high levels of confounding between different categories that
are closely related, or to the complexity of the mixture distribution of effect sizes for certain categories
of livestock (which ultimately requires more distributions to fit the wide range of effect sizes). It is
therefore suggested that the sampling chain should be extended. However, as the number of iterations
increases, so do the computational and storage requirements, making it impractical to handle large
cohorts at the sequence level. In summary, when computational resources are plentiful and the amount
of data to be processed is limited, it is recommended to use a longer chain, as this may provide more
accurate estimates. However, in cases where computational resources are limited, the use of 5,000
iterations in bovine studies still provides reasonable estimates compared to those obtained from longer

chains.
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6.5 Heritability partitioning for complex traits in cattle

In humans, the genetic architecture of height and disease has been extensively studied using
heritability partitioning across chromosomes (Yang et al., 2011b), genomic locations (Loh et al., 2015a),
and functional annotations (Finucane et al., 2015; Gusev et al., 2014; Patxot et al., 2021; Zhang et al.,
2021). Studies have shown significant enrichment of heritability for quantitative traits, such as complex
diseases, in regulatory elements, coding sequences, and conserved regions compared to intergenic or
intronic regions (Finucane et al., 2015; Gusev et al., 2014; Patxot et al., 2021; Zhang et al., 2021). In
cattle, heritability partitioning studies based on functional annotation have been less common. In
addition, the functional classes used in these studies, based on gene ontology (GO) (Lingzhao et al.,
2017), eQTL analyses (Xiang et al., 2023) and the Ensembl database (Bhuiyan et al., 2018), are often
defined at a lower resolution than in humans. Furthermore, cattle lack a comprehensive annotation
catalog that is widely used across studies, making it difficult to reuse and compare results from different
studies. Nevertheless, these studies provide valuable insights into the genetic architecture of complex
traits in cattle and other livestock species and have been used to select markers for genomic prediction.
Xiang et al (2019a) developed the FAETH score to quantify the importance of each variant based on the
enrichment levels estimated for different (functional) categories, and showed that conserved sequences
and eQTLs have some of the largest SNP effects (Xiang et al., 2019a). Later, Xiang et al. (2023)
estimated that eQTLs account for a significant proportion of heritability, further highlighting the
importance of regulatory variants in the genetic variation of complex traits. However, the two-
component approaches used in their studies may be subject to bias (e.g., risk of overestimation), as
demonstrated in this thesis. They then used this information to select markers with larger genetic
contributions to create a custom array for genomic selection (Xiang, 2021; Xiang et al., 2021b). In the
present work, using multiple annotation groups simultaneously, we found that coding variants showed
the highest per-SNP heritability for muscle-related traits and size (consistently across multiple analyses).
Although both studies estimate that regulatory variants have the largest contribution to genetic variance,
we found higher enrichment levels per SNP for coding variants. The estimated importance of eQTLs
also differs between the two studies. In Xiang et al (2023), eQTL variants were estimated to explain up
to 70% of the heritability, whereas we estimated that cis-eQTLs accounted for about 10% of the
heritability explained by cis-eQTLs using GREML and BayesRR-RC. These discrepancies between our
results and those of Xiang et al. (2023) may be due to differences in populations, traits, and annotations
used. In humans, Luke et al. (2017) found that the %SNP heritability associated with cis-eQTLs across
30 traits was 21%, while Qi et al. (2022) reported a value of approximately 10% for both cis-eQTLs and
cis-sQTLs across 12 traits. Our results are also consistent with those of Gualdron Duarte et al. (2023),
who observed in an association study in the BBC population that coding variants accounted for a
substantial fraction of the genetic variance. We also showed that muscle-related regulatory elements had

higher enrichment levels than other regulatory elements, and the same trend was observed for eQTLs.
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This means that it is important to include this information in heritability partitioning studies. As
functional annotation continues to improve, thanks to resources generated by consortia such as BovReg
(Moreira et al., 2022) or FAANG (Andersson et al., 2015), or as more complete catalogs of eQTLs
become available from cGTEX, a standardized and well-annotated catalog similar to that available for
humans may be developed. Such a functional atlas could improve our understanding of the genetic
architecture of different traits beyond muscle-related traits. Matching functional annotations such as
eQTL data or ATAC-Seq from the BBC itself is promising, as the catalog we used mostly consists of
data not generated in the BBC. Indeed, if functional annotation is breed specific, heritability partitioning
studies will yield less informative results. Currently, most of these studies in cattle use imputed
genotypes rather than sequencing data, which may not accurately capture rare variants and thus affect
the accuracy of parameter estimation, especially for models with MAF stratification. The combination
of improved annotation with high quality genotypes could lead to more accurate and useful results.
However, we urge caution in interpreting these results for cattle and other livestock species due to the
large standard errors observed for both GREML and Bayesian approaches in our study.

6.6 The use of functional annotation in genomic selection

Genomic selection has been widely adopted in cattle breeding due to its higher accuracy and its
ability to significantly reduce the generation interval. It has recently been implemented in BBC, where
one of the main selection criteria is muscular development. A single mutation in the myostatin gene
(MSTN) causing the double muscling phenotype has been fixed, but estimated heritability and continued
response to selection indicate that genetic variation is still present in the population, providing
opportunities for further genetic improvement. In my thesis, | performed genomic selection based on
imputed whole genome sequence data for muscular development traits in BBC. In addition, we
incorporated functional annotation information using several models to further improve the performance
of genomic selection. Compared to the accuracy based on MMD arrays used in the official evaluation,
we observed systematically higher prediction accuracy — approximately 0.018 and 0.016 - for Bayesian
and GBLUP models, repectively, although this difference was not always statistically significant. As
discussed in the introduction, there is ongoing debate about the benefits of using sequence-level data for
genomic selection, especially when considering the costs. The lack of significant improvement using
sequence-level genotypes suggests that markers on MMD arrays are highly efficient at tagging
ungenotyped variants, likely due to the high LD patterns in cattle. Consequently, the use of full sequence
data alone does not show a clear advantage in our analysis, which is consistent with some other studies.
However, in a recent GWAS in BBC, the use of sequence-level data increased the power (i.e. the
significance levels). It is important to note that in our comparison, the model for full sequence data only
considered polygenic effects, where all variants were equally weighted. By leveraging the fact that

causative variants are unevenly distributed across different functional annotations, and that full
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sequencing allows us to accurately assign functional annotations to each variant, we can incorporate this
information as a prior in both GBLUP and Bayesian models. This approach can help better distinguish
genetic contributions from different categories, potentially improving the accuracy of genomic selection.
We observed systematically higher accuracy using a GBLUP model in which variants were partitioned
based on their functional annotations. Further benefits are expected by refining the annotation process.
In our second annotation approach, we divided eQTL and regulatory variants based on whether they
were detected in muscle, since our phenotypes of interest were muscular development traits. However,
the results were almost the same, although we observed a higher per SNP heritability for the regulatory
variants detected in muscle. Nevertheless, we cannot conclude that annotation tuning is ineffective. For
example, the use of relevant functional annotations has improved association signals in cattle (Jiang et
al., 2019). In addition, colocalization of GWAS signals and eQTLs from relevant tissues in cGTEx
demonstrated the benefits of using tissue-specific catalogs (Liu et al., 2022). In our study, the limited
benefits of tuning annotations may be due to the small number of these variants detected in muscle,
resulting in a limited overall impact despite larger effects per SNP. Furthermore, the effect size of
variants in high LD with them may be reduced, resulting in a similar overall contribution for the same
segment, thus maintaining the estimated breeding value for that segment. In cases where passenger SNPs
are closely linked to causal SNPs, the benefit of knowing the causal variant becomes less significant.
Another explanation is that the catalog we used is currently imperfect compared to that for humans. For
example, the eQTL variant catalog used here was derived from a pilot study of the cGTEX project, which
used a small group of individuals with variants called from RNA-seq data. Although the overlap of
eQTL and GWAS signals has been demonstrated in a tissue-relevant manner, the limited data may affect
the results. In the future, with the inclusion of leading SNPs from an improved catalog (e.g., more
accurate, breed-matched, and well-matched developmental stages and tissues), we may observe
improved accuracy. However, lower accuracy was observed when using functional annotation with
BayesRR-RC, although BayesRR-RC is generally superior to GBLUP in annotation-free models. This
is inconsistent with findings in humans, where using annotation with BayesRR-RC outperformed
annotation-free predictions in most cases (Orliac et al., 2022). A possible explanation is that there is a
high degree of confounding between different annotation groups, and more iterations than we specified
are needed to achieve convergence. Indeed, we observed some confounding between our functional
categories, such as confounding between eQTLs and other regulatory variants. However, even after
doubling the number of iterations, we observed similar prediction accuracies, and the computation time
increased to about 10 days for our data. In future, using improved annotation or extending the annotation
to include true causal variants by using a probabilistic approach to assigning variants to groups and
allowing variants to be assigned to more than one group instead of hard grouping could be beneficial.
BayesRCO has shown that allowing flexibility in variant grouping improves prediction (Mollandin et
al., 2022). A non-significant improvement when comparing BayesRC with and without specified

annotation was also reported by Xiang et al. (2021). However, using annotation with BayesRR-RC
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achieved higher prediction for stature, another complex trait we studied. This suggests that no single
method may be suitable for all traits. When the LDMS approach was used to group variants in the models,
we did not observe LDMS stratification in heritability estimation. However, in contrast to human studies,
reduced prediction accuracy was observed when LDMS models were used for genomic prediction in
cattle. Nevertheless, when we pruned the variants inspired by the LDAK model, we observed that
appropriate trimming is beneficial. Although not statistically significant, this improvement was
systematically observed. These results obtained with LD pruning and LDMS models seem somewhat
contradictory. | suspect that heritability is overestimated in some LDMS categories and underestimated
in others. This could lead to an overall improvement in heritability estimation, but not in genomic
prediction. Improving genomic selection in animal breeding through functional annotation remains
challenging, as methods commonly borrowed from human studies often perform worse in animals.
Additionally, as the number of annotation groups increases, particularly when considering LD and MAF
stratification simultaneously, we must be cautious about over-parameterization when using annotations.

To gain insight in improving the routine genomic selection, where whole genome sequence is
not the first priority, we selected subsets of variants based on functional annotation or LD pruning.
Variant selection offers two major advantages: significant reduction in data dimensionality, thereby
reducing computational burden, and allowing the use of other models. Our results show that LD pruning
reduces the number of SNPs to one-fifth without compromising accuracy; in fact, it often improves
performance. Interestingly, different methods yielded different levels of performance, with the BSLMM
consistently outperforming others. Overall, the best results were obtained from the subset of variants
identified by functional annotation. Our study highlights that marker trimming and selection are critical
not only for computational efficiency, but also for improving prediction accuracy.

The objective of my thesis was to investigate whether the accuracy of genomic prediction
models could be improved using whole-genome sequence data and functional annotation. This was done
in a setting where all individuals were genotyped, and is therefore only an exploratory step. If such
additional information is found to be valuable, further steps should be taken before application in the
field. Indeed, unlike human genetic studies where all individuals are genotyped, there are large numbers
of ungenotyped individuals in livestock genetic evaluations. The ssGBLUP approach is able to exploit
their information (phenotypes and pedigree) and combine it with the genomic information to achieve
higher accuracy than a GBLUP (using only genotyped individuals), and is therefore the reference
method in routine genomic evaluation models. Therefore, for practical field application, it will be
important to use methods that can exploit whole-genome sequence data and functional information with
a ssGBLUP approach. One possible strategy to do this is to give different weights to SNPs when building
the GRM, a strategy that can be applied in both GBLUP and ssGBLUP settings. This method, also
known as weighted ssGBLUP, uses information such as functional annotations or statistical results to
assign weights to markers when calculating the GRM (Teissier et al., 2018). However, studies on the

performance of weighted ssGBLUP have shown inconsistent results, with some reporting no significant
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improvement over ssGBLUP (A. Liu et al., 2020b; Mehrban et al., 2021; Santana et al., 2023; Teissier
et al., 2018). An alternative approach, featured ssGBLUP, has been proposed by extending GFBLUP to
ssGBLUP (A. Liu et al., 2020b). Liu et al. 2020 compared featured ssGBLUP and weighted ssGBLUP
with ssGBLUP in genomic prediction of milk and protein yield in dairy cattle, but found no significant
differences in prediction reliability (A. Liu et al., 2020b). Marker preselection, also investigated in my
PhD thesis, is an alternative to weighted ssGBLUP. It was investigated in ssGBLUP and slightly better
results were obtained by including coding variants (Fragomeni et al., 2017) or variants in or near genes
(Teng et al., 2022). As expected, all these approaches are derived from extensions of GBLUP, which
means that they are likely to inherit properties from their GBLUP-based origins. Therefore, testing
genomic data and functional annotations in GLUBP-based prediction models is informative about their
extensions to ssGBLUP. As such, the model and annotation explored in the present study also provide
further insight into their application in routine animal breeding.

Finally, an important consideration for routine field applications using whole-genome sequence
data or functional annotation is the genetic correlation between all relevant traits, not only production
traits but also traits related to fitness or environmental aspects. Recently, it has been shown that
accelerating selection for primary traits (e.g. performance traits) with genomic selection could
deteriorate correlated secondary traits for several reasons, including mismatched management, changing
heritabilities and genetic correlations (Misztal and Lourenco, 2024). These aspects could be further
amplified if functional information is incorporated into genomic selection, as it could accelerate further
genetic gains and because more information may be available for certain traits. Such considerations are
important in the Belgian Blue genomic evaluation as most of the recorded traits are performance traits
and genomic selection was originally implemented only for these traits. Conversely, multiple-traits
models that jointly consider more phenotypes may have the potential to better exploit functional

information by using more data to estimate parameters and variant effects.
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