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Abstract
The immune response–gut microbiota interaction is implicated in various human 
diseases, including cancer. Identifying the link between the gut microbiota and 
systemic inflammatory markers and their association with cancer will be impor-
tant for our understanding of cancer etiology. The current study was performed 
on 8090 participants from the population-based Rotterdam study. We found a 
significant association (false discovery rate [FDR] ≤0.05) between lympho-
cytes and three gut microbial taxa, namely the family Streptococcaceae, genus 
Streptococcus, and order Lactobacillales. In addition, we identified 95 gut micro-
bial taxa that were associated with inflammatory markers (p < 0.05). Analyzing 
the cancer data, we observed a significant association between higher systemic 
immune-inflammation index (SII) levels at baseline (hazard ratio (HR): 1.65 
[95% confidence interval (CI); 1.10–2.46, p ≤ 0.05]) and a higher count of lym-
phocytes (HR: 1.38 [95% CI: 1.15–1.65, p ≤ 0.05]) and granulocytes (HR: 1.69 [95% 
CI: 1.40–2.03, p ≤ 0.05]) with increased risk of lung cancer after adjusting for age, 
sex, body mass index (BMI), and study cohort. This association was lost for SII 
and lymphocytes after additional adjustment for smoking (SII = HR:1.46 [95% CI: 
0.96–2.22, p = 0.07] and lymphocytes = HR: 1.19 [95% CI: 0.97–1.46, p = 0.08]). In 
the stratified analysis, higher count of lymphocyte and granulocytes at baseline 
were associated with an increased risk of lung cancer in smokers after adjusting 
for age, sex, BMI, and study cohort (HR: 1.33 [95% CI: 1.09–1.62, p ≤0.05] and HR: 
1.57 [95% CI: 1.28–1.92, p ≤0.05], respectively). Our study revealed a positive as-
sociation between gut microbiota, higher SII levels, and higher lymphocyte and 
granulocyte counts, with an increased risk of developing lung cancer.
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1   |   BACKGROUND

Gut microbiota influences the development and modula-
tion of the innate and adaptive immune systems of the 
host by stimulating circulatory immune cells and cyto-
kines. Under healthy conditions, gut microbes are sym-
biotic, contribute to the formation of stable homeostasis1 
and are involved in the regulation of gut integrity and 
permeability.2 Interactions between the gut microbiota, 
intestinal epithelial cells, and mucosal immune system 
are believed to prevent the overgrowth of host flora by for-
eign pathogens.3–5 Several factors, such as dietary behav-
ior, medication, autoimmune diseases, and infection, may 
influence the diversity of the gut microbiota,6–8 which 
may in turn influence their role in human physiology. 
Loss of balance between the gut microbiota, intestinal ep-
ithelial barrier, and immune system may lead to a patho-
logical state known as gut microbial dysbiosis.9 Although 
dysbiosis is not considered to have a direct influence on 
carcinogenic pathways,10–13 it can negatively affect the 
host immune system via various signaling pathways, in-
cluding tumor-infiltrating lymphocytes and their related 
cytokines, toll-like receptors (TLRs), and innate immune 
cells.14–17 Immune dysregulation and inflammation play a 
role in various diseases, including cancer.10 Inflammation 
may stimulate tumorigenesis and contribute to accumu-
lated DNA damage, but may also indicate the presence of 
a tumor that has not yet been apparent.13 In both cases, 
products of the inflammatory response may serve as po-
tential prognostic and diagnostic biomarkers for cancer 
risk.13,18–20 At this point, our understanding of the role of 
microbiota in the development of diseases via modulation 
of the immune system in humans remains limited owing 
to the difficulty of direct experimentation.

The measurement of granulocytes, platelets, and lym-
phocytes is an important marker of the innate immune 
response.20,21 Combining these measurements into ra-
tios, including the platelet-to-lymphocyte ratio (PLR), 
granulocyte-to-lymphocyte ratio (NLR), and systemic 
immune-inflammation index (SII), is believed to reflect 
the balance between innate and adaptive immunity.22,23 
Previous studies have reported the role of the gut micro-
biota in immune responses and their association with the 
development of various cancers.20,24 However, which of 
the human gut microbial taxa is associated with immune 
response remains to be determined.

The aim of our study was to evaluate the association 
between gut microbiota and the immune response mark-
ers NLR, PLR, SII, and WBCs count in the population-
based Rotterdam study cohort (ERGO). Furthermore, we 
investigated the association between the levels of immune 
response markers and WBC count with the subsequent 
risk of developing cancer in the Rotterdam study cohort.

2   |   METHODS

2.1  |  Study population

The current study was embedded within the Rotterdam 
study (RS), a prospective population-based cohort study 
in Rotterdam, Netherlands. The RS started in 1990 with 
7983 individuals aged ≥55 years. The participants resided 
in a well-defined district of Ommoord in the Rotterdam 
area. The initial cohort (RS-I) was extended with a second 
cohort (RS-II) in 2000, composed of 3011 individuals aged 
≥55 years, and a third cohort (RS-III) in 2006, consisting 
of 3932 individuals aged ≥45 years. The fourth cohort (RS-
IV) was established in February 2016.25,26 The RS included 
14,926 individuals aged ≥45 years. The participants un-
derwent interviews at home and were examined at study 
entry and at follow-up visits every 3–5 years.25 Health 
status and anthropometric and clinical variables were 
assessed in a standardized manner by trained research 
nurses and physicians in a specially built research facility 
in the center of the district.27 WBC count measurements 
and laboratory tests for the inflammatory markers NLR, 
PLR, and SII have been introduced since 2002, including 
8711 participants corresponding to the following assess-
ment rounds in the RS (baseline for this study): fourth 
round of RS-I (RS-I-4), second round of RS-II (RS-II-2 fol-
low-up), and first round of RS-III (RS-III-1 follow-up). To 
study gut microbiota, stool samples were collected from 
RS-III-2 participants.

Data from 8090 participants were included in the anal-
ysis. Participants with missing WBC counts or those who 
were diagnosed with cancer before the initial blood collec-
tion at baseline were excluded (Figures S1 and S2).

2.2  |  Assessment of gut microbiota

Details of the collection and sequencing of the RS sam-
ples have been described previously.28 The barcodes were 
separated from the reads and both ends of the sequences 
were attached together. These barcodes were used to mul-
tiplex the reads for each sample, which allowed one error 
per 12-nucleotide half of the 24-nucleotide long barcode 
using an in-house developed script. The reads were then 
cleaned of heterologous primer sequences and spacers 
using a tag cleaner version 0.16.29 The trimmed reads were 
imported into the DADA2 R package (version 1.18.0).30 
Samples without reads after the previous steps were re-
moved, and the remaining reads were used as inputs for 
the DADA2 filter step. In this step of filtering, reads with 
an expected error rate >2 in both forward/reverse reads, 
and reads with at least one or more ambiguous bases 
in them (“N”) were removed. Additionally, reads were 
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truncated if a low-quality baseline was observed (Q-score 
<2). The reads were clustered and denoised based on 
similarity, starting with the most abundant reads. Other 
reads that had a similarity of 10% and a frequency p-value 
below the default threshold were included and aligned to 
this cluster. The algorithm was repeated with the remain-
ing reads for the next abundant cluster. The nature of the 
algorithm requires multiples of the same read; therefore, 
singletons are automatically removed. Each denoised 
pair of forward and reverse reads was merged if there 
was 100% overlap between them. Reads that were trun-
cated in the DADA2 filter step were removed because of 
a lack of overlap. Next, chimeric sequences were identi-
fied and removed by removing the Bimera Denovo using 
the consensus method in DADA2. The clustered clean 
reads, called amplicon sequence variant (ASV), were then 
used as an input for the RDP naive Bayesian classifier, 
which was trained on the SILVA Project version 138.1.31,32 
Taxonomy for Kingdom through genus was assigned for 
the bootstrap confidence >50, meaning that a random 
portion of the read could be assigned to that taxa at least 
50% of the time. Species assignment was reported only if 
the ASV could be 100% matched to one species and could 
not be mapped to other species. The ASV table, taxonomy 
table, and metadata were then merged into a phyloseq.33 
Both abundance and prevalence filters were applied to the 
data to remove spurious ASVs and possible false positives. 
ASVs had to have at least 0.05% of the total reads to re-
main in the dataset and be present in at least 1% of the 
samples, otherwise they were removed. At this stage of 
the pipeline, samples were also excluded based on other 
criteria, including being possible sample swaps, ≥8 days, 
time in mail, known duplicates, or QC statistics (for those 
samples with less than 4.5 K reads or samples missing 
more than 50% of reads in the last steps of DADA2_QC; 
i.e., those with a large number of reads but were actually 
sparsely distributed in ASV) were removed from the data. 
Also, samples with 4.5K–6K reads that lost more than 20% 
of reads in the last steps of the DADA2-QC were excluded. 
Alpha and beta diversity statistics were calculated based 
on this phyloseq. Additionally, a phylogenetic tree was 
constructed based on the central sequences of each ASV 
using the phangorn package, and the results were added 
to the phylogenetic tree.34 Finally, ASV IDs were recoded 
from their central sequences to numerical IDs ordered by 
ASV abundance in the population.

2.3  |  Assessment of white blood 
cell-based inflammatory markers

Blood samples were collected during the visit to the re-
search center, and a maximum of three visits were made 

during the follow-up. Blood samples were collected from 
April 10, 2002 (RS-I-4) to January 1, 2006 (RS-II-2) and 
from March 7, 2006 until January 20, 2009 (RS-III-1). 
Full blood count measurements were performed directly 
after blood sampling using a COULTER® Ac·T diff2™ 
Hematology Analyzer (Beckman Coulter, San Diego, CA, 
USA). Laboratory measurements included absolute gran-
ulocyte, platelet, and lymphocyte counts of 109 per liter. 
The NLR and PLR were calculated as the granulocyte-
to-lymphocyte and platelet-to-lymphocyte count ratios, 
respectively. The SII was defined as the platelet count 
multiplied by the NLR.35

2.4  |  Assessment of cancer in the 
Rotterdam Study

Incident diagnosis of cancer was the outcome of interest. 
Cancer cases were obtained from the medical records of 
general practitioners (including discharge letters), Dutch 
hospital data, and the histological and cytopathological 
record registries in the region. Each case was coded in-
dependently by two physicians and classified according 
to the International Classification of Diseases, 10th revi-
sion (ICD-10). Information on cancer from the Rotterdam 
study was available until January 2, 2018. In case of dis-
crepancies, a consensus was reached through consultation 
with an internal medicine physician. The date of diagno-
sis was based on the date of pathology confirmation.

2.5  |  Statistical analysis

2.5.1  |  Association of gut microbiota with 
immune markers and white blood cells

Before the association analysis of gut microbiota with 
immune markers and WBCs, we performed a central log 
transformation to the gut microbial taxa ASV variables. 
We tested 1759 microbial taxa from seven taxonomic 
ranks: kingdom, phylum, class, order, family, genus, and 
species. The data underwent natural log transformation 
to reduce the skewness of the distribution of WBC counts 
(lymphocytes, granulocytes, and platelets; Figure S3) and 
their derived ratios (NLR, PLR, and SII; Figure S4). The 
relationship between microbial taxa, inflammatory mark-
ers, and WBCs count was investigated using a linear re-
gression model adjusted for confounding factors (age, sex, 
BMI, alcohol consumption, smoking, and antibiotic use) 
and technical covariates (time in mail, DNA sequencing 
batch, and DNA isolation batch). Multiple testing was 
performed based on a FDR ≤0.05 for each biomarker and 
WBC.36
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2.5.2  |  Association of immune 
markers and white blood cells with risk of 
cancer development

Before the analysis, the log WBCs count was standard-
ized (mean = 0, SD = 1) to make their estimates com-
parable. The association between the levels of immune 
markers at baseline and WBC count and the risk of 
solid cancers, including colorectal, pancreatic, breast, 
and lung cancers, and melanoma during follow-up was 
evaluated using the Cox proportional hazard model ad-
justed for age, sex, BMI, and study cohort. Additionally, 
we examined the association after adjusting for smoking 
in the same model. For each individual, cancer follow-up 
was specified by years from baseline until the date of di-
agnosis, death, or the end of the study (January 2, 2018). 
To evaluate the effect of smoking on the relationship be-
tween cancer and immune marker WBCs, we performed 
a stratified analysis based on smoking information, ad-
justing for age, sex, BMI, and study cohort. The results 
are presented as HR with 95% CI. Results with a p ≤0.05 
were considered statistically significant. All analyses 
were performed using R (version 4.2) and IBM SPSS 
Statistics, version 28.0.

3   |   RESULTS

3.1  |  Demographics

The mean age of the participants at baseline was 
65.25 years (standard deviation [SD] 10.41 years). The 
group comprised of 57.5% women (N = 4649). The mean 
values of the immune markers were: NLR 0.56 (SD, 0.39); 
PLR 4.78 (SD, 0.35), and SII 6.12 (SD, 0.46). The mean val-
ues of WBCs included: lymphocytes 0.78 (SD 0.30); granu-
locytes 1.34 (SD 0.32), and platelets 5.56 (SD 0.25). The 
characteristics of each cohort are presented in Table 1.

3.2  |  Gut microbiota with inflammatory 
immune markers

A list of all microbial taxa assessed for their association 
with inflammatory immune markers (NLR, PLR, and SII) 
after adjusting for cofactors is shown in Figures 1A and 2, 
and Table S1. A total of 95 microbial families and genera 
were associated with the inflammatory immune markers 
NLR, PLR, and SII (Figures 1A and 2, and Table S2). In 
total, 61 taxa had a positive association and 34 taxa had 

T A B L E  1   Baseline characteristics of participants included in the current study.

Characteristic Total All RS-I RS-II RS-III

Number, n (%) Individuals 8090 (100) 2696 (33.3) 2017 (24.9) 3377 (41.7)

Gender, n (%) Male 3441 (42.5) 1078 (40) 872 (43.2) 1491 (44.2)

Female 4649 (57.5) 1618 (60) 1145 (56.8) 1886 (55.8)

Age (years) Mean (SD) 65.25 (10.41) 74.88 (6.16) 67.29 (7.01) 56.33 (6.62)

Smoking status, n (%) Never smoking 2555 (32) 837 (31.8) 633 (32) 1085 (32.2)

Former smoker 4022 (50.4) 1486 (56.4) 1038 (52.5) 1498 (44.5)

Current smoker 1404 (17.6) 313 (11.9) 305 (15.4) 786 (23.3)

BMI (kg/m2) Mean (SD) 27.66 (4.34) 27.41 (4.11) 27.41 (4.11) 27.75 (4.63)

White blood cells, Mean (SD) Lymphocytes 0.78 (0.30) 0.66 (0.31) 0.80 (0.29) 0.85 (0.28)

Granulocytes 1.34 (0.32) 1.35 (0.30) 1.32 (0.32) 1.34 (0.34)

Platelets 5.56 (0.25) 5.51 (0.26) 5.53 (0.24) 5.62 (0.23)

Inflammatory immune markers, mean (SD) NLR 0.56 (0.39) 0.68 (0.39) 0.51 (0.38) 0.48 (0.37)

PLR 4.78 (0.35) 4.84 (0.38) 4.73 (0.34) 4.76 (0.32)

Index (SII) 6.12 (0.46) 6.19 (0.48) 6.05 (0.46) 6.11 (0.44)

History of cancer, n (%) No cancer 7129 (88.1) 2241 (83.1) 1721 (85.3) 3167 (93.8)

Colorectal 166 (2.1) 88 (3.3) 43 (2.1) 35 (1.0)

Breast 127 (1.6) 49 (1.8) 41 (2.0) 37 (1.1)

Lung 121 (1.5) 64 (2.4) 35 (1.7) 22 (0.7)

Pancrease 28 (0.3) 11 (0.4) 8 (0.4) 9 (0.3)

Melanoma 22 (0.3) 11 (0.4) 6 (0.3) 5 (0.1)

Other cancers 497 (6.1) 232 (8.6) 163 (8.1) 102 (3.0)

Abbreviations: SD, standard deviation; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-lymphocyte ratio; index SII, systemic immune-inflammation index.
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an inverse association with the immune markers NLR, 
PLR, and SII (Figures 1A and 2, and Table S2). Most of 
these microbial families and genera were from the phy-
lum Firmicutes, whereas the others were from the phyla 
Actinobacteriota and Bacteroidota (Table S2). Thirty-three 
microbial taxa were positively associated with a single im-
mune marker: 20 taxa with NLR, six with PLR, and seven 
with SII. Increased levels of all three immune markers 
were associated with increased abundance of the order 
Lactobacillales, genus Lactonifactor and species, whereas 
decreased levels of all three biomarkers were associated 
with decreased abundance of the genus Fusicatenibacter, 
species shahii, and species saccharivorans (Table  S3). 
Twenty-five microbial taxa were positively associated 
with these two immune markers (Table S4).

3.3  |  Gut microbiota with white 
blood cells

A complete list of microbial taxa evaluated for their asso-
ciation with WBCs (lymphocytes, granulocytes, and plate-
lets) after adjusting for cofactors is shown in (Figures 1B 
and 3, and Table  S5). After removing duplicates, we 

identified 120 microbial families and genera associated 
with lymphocytes, granulocytes, and platelets (Figures 1B 
and 3, and Table S6). Importantly, we observed three mi-
crobial taxa, including the family Streptococcaceae, the 
order Lactobacillales, and the genus Streptococcus which 
were inversely associated with lymphocytes (false dis-
covery rate [FDR] ≤ 0.05). All three microbial families 
and genera belong to the phylum Firmicutes (Figures 1B 
and 3, and Table S6). Overall, 70 taxa had a positive asso-
ciation and 50 taxa had an inverse association with lym-
phocytes, granulocytes, and platelets. 66 microbial taxa 
were positively associated with a single WBC count: 41 
taxa with granulocytes, 20 with lymphocytes, and 5 with 
platelets. Four microbial taxa were positively associated 
with two WBCs counts (Table S7). The overlap between 
WBCs count and immune markers for gut microbial taxa 
is shown in Figure 4.

3.4  |  Risk of cancer development

A total, 961 individuals (11.9%) developed cancer during 
follow-up, namely cancers of colorectal (n = 166, 17.3%), 
breast (n = 127, 13.2%), lung (n = 121, 12.6%), pancreatic 

F I G U R E  1   (A) Association analysis between gut microbiota and inflammatory immune markers NLR, PLR, and SII assessed by the 
linear regression model. (B) Association analysis between gut microbiota and white blood cells assessed by the linear regression model. 
Heatmaps indicate the association results after adjustment for confounding factors (age, sex, BMI, alcohol, smoking, and antibiotic use) and 
technical covariates (time in mail, DNA sequencing batch, and DNA isolation batch).
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(n = 28, 2.9%), other cancers (n = 497, 51.7%), and mela-
noma (n = 22, 2.3%). Higher baseline SII levels appeared 
to be specifically associated with an increased risk of 
lung cancer after adjusting for age, sex, body mass index 
(BMI), and study cohort (hazard ratios [HR]: 1.65 [95% 
confidence interval, CI 1.10–2.46], p ≤ 0.05; Table 2). This 
association disappeared after additional adjustment for 
smoking (HR: 1.46 [95% CI: 0.96–2.22], p = 0.07; Table 3). 
No association was observed between the NLR and PLR 
and the incidence of any of the cancers included in this 
analysis (Tables 2 and 3). In addition, high lymphocyte and 
granulocyte counts were a significantly associated with an 
increased risk of lung cancer after adjusting for age, sex, 
BMI, and study cohort with lymphocytes (HR: 1.38 [95% 
CI: 1.15–1.65, p ≤0.05]) and granulocytes (HR: 1.69 [95%CI: 

1.40–2.03, p ≤0.05]; Table 4). This association disappeared 
for lymphocytes after additional adjustment for smoking 
(HR: 1.19 [95% CI: 0.97–1.46], p= 0.08; Table S8).

3.5  |  Effects of smoking

The results of the association between immune markers 
(NLR, PLR, and SII) and WBCs count with smoking status 
and BMI are shown in Table 5 and Table S9, respectively. 
As BMI and smoking were found to be major drivers of the 
association between immune markers and WBCs with can-
cer development, we assessed the individual role of BMI and 
smoking in the blood levels of immune markers (NLR, PLR, 
and SII) and WBCs by linear regression adjusted for age and 

F I G U R E  2   Association analysis between gut microbiota and inflammatory immune marker NLR, PLR, SII. Volcano plots of the 
beta coefficient on the x-axis and −log10 (p-value) on the y-axis shows the association between NLR (A), PLR (C), SII (D), and microbial 
composition. Red and Blue dots represent microbial genera and families that are associated with the related immune marker (p < 0.05). The 
red dots show positive and blue dots indicate inverse association. The gray dots show no association (p > 0.05).
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sex. All three immune markers and WBCs were significantly 
associated with smoking after adjusting for age and sex, 
namely NLR (0.08, 95% CI: 0.056–0.106, p = 1.99 × 10−10), 
PLR (−0.13, 95% CI: [(−0.156) to (−0.111)], p < 2 × 10−16), 
SII (0.11, 95% CI: 0.083–0.144, p = 2.93 × 10−13), lympho-
cytes (0.54, 95% CI: 0.480–0.605, p < 2 × 10−16), granulocytes 
(0.75, 95% CI: 0.693–0.819, p < 2 × 10−16), and platelets (0.12, 
95% CI: 0.062–0.187, p = 8.17 × 10−5). The levels of PLR and 
all three WBCs correlated with those of BMI after adjust-
ing for age and sex, with PLR (−0.008, 95%CI [(−0.010) to 
(−0.006)], p < 2 × 10−16), lymphocytes (0.02, 95% CI: 0.018–
0.028, p <2 × 10−16), granulocytes (0.02, 95% CI: 0.022–0.032, 
p < 2 × 10−16), and platelets (−0.005, 95% CI: [(−0.010) to 
(−0.0004)], p = 0.03).

In the stratified analysis, 260 (9.8%) individuals 
among nonsmokers (n = 2664) developed cancer during 
follow-up, viz., colorectal cancers (n = 56, 21.5%), breast 
cancer (n = 50, 19.2%), lung cancer (n = 13, 5%), pancre-
atic cancer (n = 11, 4.2%), melanoma (n = 11, 4.2%), and 
other cancers (n = 119, 45.8%). The baseline characteris-
tics of the respective cohorts of non-smokers are shown 
in Table S10. Among smokers (n = 5426), 701 individuals 
(12.9%) developed cancer during follow-up viz., cancers 
of colon and rectum (n = 110, 15.7%), breast (n = 77, 11%), 
lung (n = 108, 15.4%), pancreas (n = 17, 2.4%), melanoma 
(n = 11, 1.6%), and other cancers (n = 378, 53.9%). The 
characteristics of each cohort of smokers are shown in 
Table S13. We observed a significant association between 

F I G U R E  3   Association analysis between gut microbiota and white blood cells (lymphocytes, granulocytes, and platelets). Volcano plots 
of the beta coefficient on the x-axis and − log10 (p-value) on the y-axis indicates the association between lymphocytes (A), granulocytes (B), 
platelets (C), and microbial composition. Red and Blue dots show microbial genera and families that are associated with the related WBC 
(p < 0.05). The red dots indicate positive and blue dots shows inverse association (p < 0.05). The gray dots show no association (p > 0.05).
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higher counts of granulocytes and platelets with increased 
risk of colorectal cancer (HR: 1.41 [95% CI: 1.05–1.89, 
p ≤ 0.05] and HR: 1.59 [95% CI: 1.17–2.17, p ≤ 0.05], respec-
tively) and a higher count of granulocytes with increased 

risk of lung cancer (HR: 1.82 [95% CI: 1.00–3.32, p ≤ 0.05]) 
in nonsmoker group after adjusting for age, sex, BMI, and 
study cohort (Table  S11). However, we found no effect 
of NLR, PLR, or SII on the risk of lung cancer, colorectal 

F I G U R E  4   UpSet plot indicating the overlap of gut microbial taxa between immune markers of NLR, PLR, SII, and white blood cells 
(lymphocytes, granulocytes, and platelets).
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T A B L E  2   Multivariate Cox regression analysis for the association between baseline PLR, NLR, and SII level with the development of 
cancer in Model 1.

Cancer type N

NLR PLR SII

Hazard ratio (95% CI)a p-value Hazard ratio (95% CI)a p-value Hazard ratio (95% CI)a p-value

Colorectal 163 1.12 (0.74–1.69) 0.58 1.12 (0.71–1.77) 0.60 1.28 (0.92–1.79) 0.13

Breast 124 0.98 (0.61–1.58) 0.95 1.24 (0.72–2.13) 0.42 1.05 (0.70–1.55) 0.80

Lung 110 1.59 (0.96–2.62) 0.06 0.64 (0.37–1.09) 0.10 1.65 (1.10–2.46) 0.01

Pancreas 25 1.28 (0.45–3.66) 0.63 0.80 (0.25–2.57) 0.71 1.03 (0.43–2.43) 0.93

Melanoma 21 1.93 (0.61–6.07) 0.25 2.07 (0.58–7.40) 0.25 2.12 (0.84–5.31) 0.10
aAdjusted for age (years), sex, BMI, and RS cohort.
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cancer, pancreatic cancer, breast cancer, and melanoma 
in the nonsmoker group after adjusting for age, sex, BMI, 
and study cohort (Table  S12). We observed a significant 
association between lymphocytes and granulocytes an in-
creased risk of lung cancer in smokers after adjusting for 
age, sex, BMI, and study cohort (HR: 1.33 [95% CI: 1.09–
1.62, p = 3.53 × 10−3], and HR: 1.57 [95% CI: 1.28–1.92, 
p = 9.61 × 10−6], respectively; Table  6). Moreover, higher 
baseline SII levels were associated with increased risk of 
lung cancer in smokers after adjusting for age, sex, BMI, 
and study cohort (HR: 1.61 [95% CI: 1.05–2.47, p ≤ 0.05]; 
Table S14).

4   |   DISCUSSION

Gut microbiota dysbiosis can negatively affect the host 
immune system causing immune dysregulation and in-
flammation. Various factors, including dietary behav-
ior, autoimmune disorders, medication, and infection 
can impact the gut microbiota diversity, influencing 
their role in human physiology.6,37 The immune dys-
regulation and inflammation may influence the develop-
ment and progression of tumorigenesis and cancer.10,38 
Importantly, the inflammatory response products could 
serve as potential biomarkers for cancer risk and diag-
nosis.39,40 Our current understanding of how microbiota 
modulates the immune system in humans and its role in 

disease development remains limited, primarily due to 
the challenges of direct experimentation. Therefore in-
vestigating the association between gut microbiota and 
immune response in developing diseases such as cancer 
is important. In the present study, we evaluated the as-
sociation of WBCs and inflammatory immune markers 
(NLR, PLR, and SII) with the gut microbiota and can-
cer development. Our study provides evidence of an as-
sociation between 120 microbial taxa and WBCs counts 
(p < 0.05). Specifically, we found a significant associa-
tion between three gut microorganisms from the phy-
lum Firmicutes and lymphocytes (FDR ≤0.05), namely, 
the family Streptococcaceae, the genus Streptococcus, 
and the order Lactobacillales. In addition, we identified 
an association between the 95 microbial taxa and NLR, 
PLR, and SII (p < 0.05). However, these associations did 
not pass the significance threshold FDR of 0.05. Among 
the identified associations, 61 gut microorganisms from 
the phyla Firmicutes, Bacteroidota, Actinobacteriota, and 
Proteobacteria were positively associated with the in-
flammatory immune markers.

The gut microbial taxa associated with high WBCs 
count and increased inflammatory response in our study 
were cancer-related microorganisms reported in earlier 
studies,41,42 indicating the role of the gut microbiome in 
cancer development via the inflammatory response.43 
Alterations in the abundance of these microbes influ-
ence the initiation and progression of gastrointestinal 

T A B L E  3   Multivariate Cox regression analysis for the association between baseline PLR, NLR, and SII level with the development of 
cancer in Model 2.

Cancer type N

NLR PLR SII

Hazard ratio (95% CI)a p-value Hazard ratio (95% CI)a p-value Hazard ratio (95% CI)a p-value

Colorectal 156 1.13 (0.74–1.73) 0.56 1.05 (0.66–1.67) 0.83 1.26 (0.90–1.78) 0.17

Breast 124 0.97 (0.60–1.57) 0.91 1.30 (0.75–2.24) 0.34 1.04 (0.70–1.54) 0.83

Lung 108 1.36 (0.81–2.29) 0.23 0.91 (0.52–1.60) 0.75 1.46 (0.96–2.22) 0.07

Pancreas 24 1.17 (0.40–3.43) 0.77 0.88 (0.26–2.93) 0.84 0.97 (0.40–2.34) 0.95
aAdjusted for age (years), sex, BMI, RS cohort, and smoking.

T A B L E  4   Multivariate Cox regression analysis for the association between white blood cell count with the development of cancer based 
on Model 1.

Cancer type N

Lymphocytes Granulocytes Platelets

Hazard ratio (95% CI)a p-value Hazard ratio (95% CI)a p-value Hazard ratio (95% CI)a p-value

Colorectal 163 1.07 (0.91–1.25) 0.40 1.12 (0.95–1.32) 0.15 1.15 (0.98–1.36) 0.08

Breast 124 0.95 (0.78–1.15) 0.64 0.95 (0.79–1.14) 0.63 1.05 (0.87–1.28) 0.56

Lung 110 1.38 (1.15–1.65) 3 × 10−4 1.69 (1.40–2.03) 3.2 × 10−8 1.21 (0.99–1.48) 0.057

Pancreas 25 0.98 (0.64–1.49) 0.93 1.10 (0.74–1.65) 0.62 0.88 (0.58–1.32) 0.54

Melanoma 21 0.94 (0.59–1.48) 0.79 1.29 (0.82–2.04) 0.25 1.37 (0.86–2.18) 0.18
aAdjusted for age (years), sex, BMI, RS-cohort.
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carcinogenesis44 but may also affect the immune system, 
which can lead to the development of extraintestinal 
malignancies.45,46 Several studies have reported a rela-
tionship between the high abundance of these microbial 
taxa (phylum Firmicutes, Bacteroidota, Actinobacteriota, 
and Proteobacteria) and cancer risk.47–50 Firmicutes are 
one of the largest phyla of gram-positive bacteria living 
in the human intestine51 and are associated with obe-
sity and several pathological conditions.52,53 Among 
the taxa in this phylum, the genus Lachnoclostridium,54 
order Lactobacillales,55 family Streptococcaceae,55 genus 
Streptococcus,56 and genus Eubacterium54 have been 
reported to be more abundant in patients with lung 
carcinoma than in healthy individuals. In addition, ele-
vated abundance of the genus Eubacterium54 and genus 
Streptococcus56 have also been indicated to be related to 
lung cancer. We found a positive association between 
WBC count and the genus Lachnoclostridium, fam-
ily Streptococcaceae, genus Streptococcus and genus 
Eubacterium, with WBCs count (p < 0.05). Interestingly, 
we observed an inverse association between the order 
Lactobacillales, family Streptococcaceae, and genus 
Streptococcus with WBCs count (p < 0.05), which passed 
the significance threshold of FDR ≤0.05 for lymphocytes. 
Additionally, we found a positive association between 
these taxa and blood biomarkers NLR and SII (p < 0.05). 
Moreover, we found a positive association between the 
order Actinomycetales and WBCs count and the immune 
marker NLR. The order Actinomycetales, belonging to 
the phylum Actinomycetota and class Actinomycetia are 
anaerobic, prokaryotic filamentous, Gram-positive bac-
teria found in soil as well as in humans and animals. 
These bacteria are important for maintaining homeo-
stasis in the human gut.57,58 The enriched abundance of 
Actinomycetales has been associated with lung and col-
orectal cancers.46,55 These data and our results provide an 
in-depth understanding of the role of the gut microbiome 
in the inflammatory immune response and its impact on 
the development of various cancers.

In addition to the role of gut dysbiosis in regulating 
the immune response, our data revealed an association 
between inflammatory immune markers and WBCs, 
and the risk of developing cancer. We found that indi-
viduals from the general population with higher base-
line SII levels and higher lymphocyte and granulocyte 
counts were more likely to develop cancer during the 
follow-up period. A significant association was observed 
between high levels of SII and high lymphocyte and 
granulocyte counts with the risk of lung cancer after 
adjusting for covariates, including age, sex, BMI, and 
study-specific cohort. However, the significance of this 
association was lost upon adjustment for smoking sta-
tus. The significant association between SII and WBCs 

and current smoking in our study shows that the associ-
ation between SII and WBCs and lung cancer is mainly 
driven by smoking. Several studies have reported an 
association between high levels of SII and high WBCs 
count and an increased risk of cancers, including lung 
cancer.19,59,60 In a UK biobank-based study, not only a 
positive relationship between the SII but also between 
the NLR and PLR and the risk of developing cancer 
was demonstrated.61 Tian et al. reported a relationship 
between SII and PLR in colorectal tumors.62 Fest et al. 
revealed that higher SII levels at baseline were associ-
ated with a higher risk of lung, colorectal, bladder, and 
prostate cancers.20 In another UK biobank-based study, 
elevated WBCs counts were found to be associated with 
an increased risk of lung cancer in women who had 
never smoked and men who smoked or had a history of 
smoking.63 Lee et al. indicated that high WBCs counts 
were associated with a higher incidence and mortality 
risk of colon cancer, with a positive linear trend in non-
smokers.64 Giannakeas et al. showed that high platelet 
counts are associated with colon, lung, and ovarian 
cancers.65 We also found a significant association be-
tween granulocytes and platelets and an increased risk 
of colorectal cancer in nonsmokers. Taken together, the 
results of the current study suggest that WBC count 
may be a useful cancer screening tool alone or in com-
bination with other screening methods. The significant 
association between a high WBC count and colorec-
tal cancer in non-smokers suggests that the increased 
risk of colorectal cancer is independent of the effect 
of smoking on WBCs. Furthermore, given that WBC 
count and SII are immune-inflammatory markers that 
reflect systemic inflammation, alterations in microbial 
taxa may be associated with immune dysregulation and 
inflammation, which could affect the development of 
various tumors.

We could not evaluate the levels of SII and WBC 
count at different stages of cancer because the data were 
not available. Despite this limitation, our study is one of 
the largest population-based studies showing an asso-
ciation between gut microbiota, inflammatory immune 
responses, and cancer development. The most obvious 
finding to emerge from this study was that high levels of 
SII and high lymphocyte and granulocyte counts were as-
sociated with the development of lung cancer over time.

In conclusion, our results revealed a positive associa-
tion between the pathogenic gut microbiota and inflam-
matory immune responses that could promote cancer 
development. We identified that alterations in baseline SII 
and WBC count could be independent risk indicators for 
early detection of the disease. Further studies are needed 
to validate this association and to evaluate its potential for 
clinical management.
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