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REVIEW

Data integration across urban digital twin lifecycle: a comprehensive review of 
current initiatives
Imane Jeddoub a, Gilles-Antoine Nys a, Rafika Hajji b and Roland Billen a

aGeoScITY, UR SPHERES, University of Liège, Liège, Belgium; bCollege of Geomatic Sciences and Surveying Engineering, Hassan II Institute of 
Agronomy and Veterinary Medicine, Rabat, Morocco

ABSTRACT
Challenges related to data integration and interoperability were raised recently under the auspice of the 
Urban Digital Twin (UDT). This new paradigm shows its potential to address current city challenges. 
However, to maximize its outcomes at the city scale, we should tackle the fundamental issues related to 
data integration. Indeed, various Digital Twin (DT) frameworks are developed in practice. Their imple-
mentations led to the identification of three main levels of data integration. The first level involves the 
extension of the data model to handle new information. The second level supports data by default, and 
the data needs to be transformed to meet the model requirements. The third level performs the 
integration at the front-end level with the help of system architectures. The aim of this work is to 
analyze, illustrate, and guide the effectiveness of different data integration approaches. This exploratory 
review unpacks the levels of integration according to the corresponding UDT lifecycle phases (i.e., 
creation, use, and update phases). It highlights the challenges and potentialities of data integration 
levels and offers the DT designer conceptual guidelines related to data integration. Furthermore, current 
and theoretical data integration scenarios are extracted and investigated, considering several types and 
sources of data. This research provides a comprehensive analytical framework for data integration within 
UDTs, where some of the current operational UDT are examined based on the various integration levels 
of life cycle data. While the state-of-the-art identifies data integration as a major challenge for the full 
implementation of UDT, it is not explored in depth, and the integration is only addressed from a case 
study-specific perspective, according to the data availability and the UDT requirement. Hence, this 
framework provides a generic and urban application-independent overview of the different levels of 
data integration based on the UDT lifecycle inspired by the Spatial Data Infrastructure lifecycle. This 
article provides first conceptual insights of data integration levels to build, use, and update UDT. 
However, from a practical perspective, the list of UDT initiatives used to illustrate the work is not 
exhaustive, and future initiatives should be documented. Furthermore, the current emphasis is on the 
creation and use phases of the lifecycle, which lacks a concrete illustration of the update phase. Indeed, it 
limits the practicability of the data integration levels in the maintenance phase.
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1. Introduction

Urban Digital Twins (UDTs) are fast establishing 
a foothold as a contemporary trend and a research hot-
spot worldwide in the urban and geospatial fields. They 
have triggered a huge interest in the current technolo-
gical discourse. Nevertheless, this new technology 
comes with its own challenges, restricting its full imple-
mentation at the city level. For instance, data integration 
has significantly triggered considerable interest as one 
of the severe challenges while moving towards the 
implementation of UDTs. Although integrating the exist-
ing data might address the incompleteness of the data-
sets, minimize the costs of new acquisitions, and create 
new and insightful data flows towards more advanced 
use cases and urban applications. However, the reuse 

and integration of available and accessible data raise 
data interoperability and integration issues (Lei et al.  
2023; Noardo 2022). Furthermore, recent studies lever-
age novel data integration paradigms and challenges of 
Generative AI models and Urban Digital Twins under the 
Cognitive Digital Twin concept (Xu et al. 2024). This 
Artificial intelligence (AI)-driven Digital Twin is an emer-
ging form of the traditional DT that is augmented with 
cognitive functions and extended with semantic tech-
nologies. That means that Cognitive Digital Twins is 
a sophisticated and enhanced stage of the DT imple-
mentation. They reveal a promising evolution of the 
current DT concept by enhancing DT capabilities 
towards more intelligent, autonomous, self-learning, 
and reasoning twins. This enables the digital counterpart 
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to learn from the provided data to address the data 
complexity based on the deep learning approaches, 
simulate and predict complex scenarios, and improve 
autonomous and real-time decision-making. The parti-
cularity of this cognitive digital twin is the capacity to 
continuously evolve according to the physical world 
across the entire lifecycle (Zheng, Lu, and Kiritsis 2022).

To highlight the close relationship between data inte-
gration and UDT implementation, it is first important to 
clarify how Digital Twins (DTs) are conceived within the 
scope of this work. DTs are defined as digital models of 
the real world, allowing data exchange between these 
two counterparts. Since the concept has been used 
interchangeably in a transdisciplinary way according to 
different backgrounds (Kleftakis et al. 2022), we adopt 
the following definition from an urban and geospatial 
perspective: the urban or geospatial DTs use 3D city 
models (3DCM) enriched with semantic information 
(i.e. enhancing the potential of geospatial data), often 
coupled with near real-time data (emphasizing the 
dynamic aspect of DTs), enabling data flow between 
the real and virtual worlds, offering various sets of ana-
lysis through simulations, predictions, and visualization 
tools (web-based applications, analytical tools or game 
engines platforms), and creating a one-stop platform (i.e. 
a multiscale and multitemporal database) of various 
datasets and models enabling them to investigate and 
address city current and future social, economic, and 
environmental challenges, to name a few (Alva, Biljecki, 
and Stouffs 2022; Jeddoub et al. 2023; Ketzler et al. 2020; 
Stoter, Arroyo Ohori, and Noardo 2021).

Following the mapping of the challenges with the DT 
lifecycle, data integration is commonly considered in the 
processing and generating phases (Lei et al. 2023). 
However, the use of DTs – more precisely, the use of 
3DCM (as integral components of UDTs) and as input 
data for simulations and urban analysis – generates, in 
turn, new and specific datasets according to the use case 
that need to be integrated into UDTs. In addition, the 
maintenance phase (i.e. the update) requires updated 
data as it becomes available to be ingested and pro-
cessed. This implies that integration is part of not only 
the processing and generation phases of the DT lifecycle 
but also extends to the stages of use, maintenance, and 
updating.

Current implementations reveal a lack of a specific 
and generic approach to data integration. This is justified 
by the fact that, on the one hand, data integration is 
carried out through various approaches, as will be dis-
cussed in the following paper. On the other hand, for 
each specific case, the data to be processed varies, and 
so does the integration approach. Moreover, this inte-
gration issue has always been encountered in related 

and similar concepts (3DCM, spatial data infrastructure, 
city information models, etc.) for more than a decade, 
yet there are still considerable efforts being conducted 
to achieve seamless integration and enhance data inter-
operability. Thus, data integration needs to be tackled in 
a comprehensive way, especially while using 3DCMs as 
the integration basis for UDTs. Using standardized mod-
els (i.e. CityGML as the common data model for semantic 
3DCMs and recently UDTs) shows its potential to solve 
some integration issues. For instance, the enrichment 
and integration of external data into the 3DCMs are 
feasible through application domain extensions (ADEs) 
according to the use case. However, as many cities move 
towards the implementation of UDTs, integration of 
different data sets (i.e. Internet of Things (IoT) data, 
simulation outputs, external databases, BIM (Building 
Information Model), etc.) with different formats, sources, 
and data quality is still considered one of the first issues 
in practice.

To support data integration, we need to understand 
how data might be integrated into UDTs in practice 
according to the corresponding DT lifecycle stages. 
This lifecycle, which was borrowed from the spatial 
data infrastructure stages, mainly consists of three 
main phases: creation, use, and maintenance. The pur-
pose of establishing such a link between data integra-
tion and the different lifecycle phases is to provide 
fundamental insights on the underlying questions: 
How do we incorporate data to create a DT, which may 
be a model or a system of systems? How do we embed 
data resulting from the use phase into the DT? And 
finally, how can we guide the data integration process 
when it comes to updating the DT?

The main contribution of this review paper is to ana-
lyse, illustrate, and guide the effectiveness of different 
data integration approaches. The article explores the 
various data integration levels during the creation, use, 
and updating phases of UDTs, considering real-world 
implementations at the urban scale (namely city and 
district scale). To the best of our knowledge, this review 
paper is the first to offer a comprehensive analysis of 
data integration levels throughout the UDT lifecycle, 
comparing their advantages and limitations and illus-
trating them with current operational implementations. 
However, this review is subject to certain limitations, 
notably with regard to the selection of UDT projects to 
be investigated. For instance, we are unable to docu-
ment all the initiatives since several initiatives are using 
the term digital twin, whereas in reality this is simply 
a digital model that fails to reflect the full UDT function-
ality and features. Thus, a series of criteria were applied 
to filter the different initiatives included in this study, in 
line with the levels of integration across the lifecycle. 

2 I. JEDDOUB ET AL.



First, the initiative’s scale is the city, precinct, or district 
scale. Second, initiatives need to clearly emphasize the 
geospatial component and have geospatial data, nota-
bly the 3D city model, which is a key component in the 
creation of a UDT. In addition, the UDT project is opera-
tional and integrates a variety of data based on the use 
case requirements (i.e. air quality data, energy data, 
social data, to name a few). Finally, the UDT maturity 
model is also taking into consideration (e.g. based on the 
CITYSTEPS maturity model with an emphasis on stages 
from 3D static stage to real-time synchronization and 
autonomous implementation stage (Haraguchi, 
Funahashi, and Biljecki 2024)).

While UDT has many inherent technical challenges, 
our focus is on data integration within UDT. Our choice 
to address this major UDT technical challenge is that 
integration and interoperability are still considered the 
first issues in practice, especially that the complexity of 
data has increased under the umbrella of UDT as various 
multisource data and models are integrated. In this 
regard, the paper is structured as follows: Section 2 
defines data integration and reviews related issues in 
3D GIS (Geographic information system) and UDTs. 
Section 3 explains the levels of data integration. 
Section 4 investigates the challenges and potentialities 
of data integration levels. Section 5 represents and ana-
lyzes the levels of integration into the lifecycle of DTs. 
The same section exemplifies the different levels accord-
ing to some ongoing implementations in practice. 
Section 6 highlights the main findings and gives a data 
integration overview. Section 7 concludes this work and 
gives a glimpse of future perspectives. These sections 
will enable the UDT developers and users to clearly 
understand the fundamental mechanisms and 
approaches of integration that rely on clear semantics 
and specific requirements and to prove the relevance of 
data integration levels based on different scenarios 
showcasing their applicability through some academic 
implementations.

2. Data integration and related issues

Many urban applications focus on data integration as an 
intrinsic phase in 3D city modelling (Stoter et al. 2020). 
Although the challenges related to multisource data 
integration have been recently tackled in different stu-
dies with a strong focus from the geospatial community, 
the challenges of data integration evolve increasingly 
under the auspice of the UDTs. Historically, spatial data 
infrastructure (SDI) has been developed at different 
levels and scales to assist effective data integration, 
usage, and sharing among different policies addressing 
technical and non-technical integration issues (Hu 2017; 

Janowicz et al. 2010; Kotsev et al. 2020). However, the 
actual SDIs (i.e. INSPIRE and the Open Geospatial 
Consortium ‘OGC’ catalogues) did not yet meet the 
maturity required for managing UDTs data integration 
challenges. Recent studies have suggested incorporat-
ing SDI within UDTs (Knezevic et al. 2022) proposed the 
implementation of an extended catalogue system in 
Germany, leveraging metadata and the open-source 
catalogue CKAN1 software package. Another related 
work established an UDT and explored the development 
of an SDI-based energy domain using OGC standards to 
manage urban energy building data (Santhanavanich 
et al. 2022).

Furthermore (Noardo 2022), proposed a detailed and 
practical workflow for suitable multisource data integra-
tion, starting from defining the requirements based on 
the use case to the update and writing of metadata. The 
overall workflow can serve UDT implementations as it 
defines guidelines to properly understand and handle 
the fundamental integration issues based on the data 
coming from practice. For instance, the possibility to use 
data originally acquired for a specific use case in another 
application and vice versa is one of the benefits that 
UDTs have brought forward by focusing on integrating 
multiple domains.

Before we outline the main challenges of data inte-
gration, let us clarify the concept of data integration and 
specify what it covers. Indeed, data integration is 
acknowledged as the process of gathering and homo-
genizing multiple datasets from different sources depict-
ing the same physical world feature and consolidating 
them into a unified and consistent format (Abdalla  
2016). However, this definition is much more related to 
data fusion, merging, and harmonization through the 
encoding format and common database schemas (Li 
et al. 2020; Weil et al. 2023). These phases are regarded 
as components of data integration. Some relevant meth-
ods are available in the literature to merge and harmo-
nize the data from various sources. Nevertheless, 
effective integration is partially achieved due to the 
lack of metadata, the differences in spatial and temporal 
scale, the geometry mismatch, and the lack of clear 
semantics, as many stakeholders are involved while 
moving towards the implementation of UDTs. Indeed, 
rich metadata should guide data integration, along with 
the definition of the use case and application require-
ments. Moreover, data integration is interlinked with the 
modelling paradigms, the storage, and the intended use. 
In this regard, data integration is conceived as the pro-
cess of combining, transforming, and connecting multi-
source datasets into a single shared data model, 
database model, or one-stop platform, ensuring an accu-
rate and insightful representation of the real world. It 
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also takes into consideration, in the urban and geospa-
tial scope, the enrichment process to create a complete 
and detailed 3DCM, enhancing further urban 
applications.

The integration within the UDT scope is particularly 
complex due to the lack of a common technical frame-
work for data integration. On top of that, the integration 
focus is different when considering the lifecycle of DTs. 
Some authors focus on the data integration in the crea-
tion phase, which basically starts with the creation of 
3DCMs where geospatial urban features need to be 
incorporated (DImitrov and Petrova-Antonova 2021; 
Fricke et al. 2023; Khawte et al. 2022). While other 
authors focus on the integration of specific data sets 
that could be dynamic, i.e. near real-time data from 
sensors and IoT data, or simulation data that, in turn, 
are integrated into the 3DCMs for further urban analysis 
(Chaturvedi 2021; Santhanavanich and Coors 2021).

Another data integration focus that gains interest 
while creating and updating UDTs is the integration of 
BIM and geoinformation, known as GeoBIM (Noardo 
et al. 2020).

When integrating various datasets, a considerable 
number of challenges need to be addressed, namely, 
syntactical, structural, and semantic levels of interoper-
ability (IEC 2021)). The Open Geospatial Consortium 
(OGC) has formulated international standards and data 
models to tackle interoperability and, therefore, data 
integration issues (i.e. CityGML/CityJSON, SensorThings 
API (STA), OGC API features, to name a few). Thus, open 
standardized data models and exchange formats are 
required to enhance data interoperability and integra-
tion. Both (i.e. integration and interoperability) are tech-
nical barriers towards 3D city modelling and, more 
recently, UDTs (Billen et al. 2014; Döllner et al., n.d.; 
Kolbe et al., 2020; Kolbe and Donaubauer 2021). These 

challenges are interrelated. This means that data inter-
operability is a requirement as well as a part of data 
integration. Although data integration aims to foster 
usability and tackle the incompleteness of the datasets, 
data quality, availability, and conversion are serious chal-
lenges that hinder effective data integration. On the 
other hand, fundamental issues (such as semantic het-
erogeneities and information loss, limited or lack of 
metadata, geometry issues, standards inconsistencies, 
etc.) still require consideration while moving towards 
the implementation of UDTs. Further, understanding 
the semantic differences between each standard and 
each domain is vital to breaking down the data silos 
and reducing the complexity of existing standards 
(Kiourtis, Mavrogiorgou, and Kyriazis 2024).

In short, creating complex and connected systems 
such as UDTs requires integrating various datasets from 
different domains. Indeed, effective integration of var-
ious datasets is a key technical driver. However, the main 
question that should be answered is: what are the data 
integration levels, and what is the appropriate level of 
data integration based on the UDT lifecycle?

3. Conceptualization of data integration levels 
for UDTs

The heterogeneity of the technological framework and 
architecture to implement UDTs is as diverse as the data 
available in practice. However, while creating UDTs, 
cities reuse the existing data and generate new data 
sets through data integration and enrichment.

The investigation of DTs implementations from prac-
tice deployed different levels of data integration based 
on the use case requirements (UDTs-based use case). 
Furthermore, there is no universal definition of what 
UDTs represent and few related works define the 

Figure 1. Levels of data integration: possible ways for integrating data into UDT.
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minimum technical requirements to develop a true 
‘UDT’. Thus, understanding the data integration 
approaches is fundamental since these levels in their 
turn pose their own challenges.

Based on the literature and the classification of 
a significant number of UDT implementations, three 
levels of data integration were defined: the conceptual 
data model (CDM), the database level (DB), and the 
front-end level (see Figure 1).

3.1. Conceptual data model level (CDM)

The conceptual data model (CDM) is defined as the 
schema that structures the data and the relations 
between entities and attributes.

In contrast, from a technical perspective, existing data 
models and standards are deployed; either they are 
extended to cover new themes and new features, or 
multiple data models or subsets of data models are 
merged based on a new unified data model based on 
the DT requirements. Thus, performing data integration 
at the conceptual data model is the upper level of 
integration.

At the time of writing, there is no official conceptual 
data model designed to cover all UDT requirements. This 
offers the user the possibility to alter and extend the 
existing conceptual core model to integrate objects that 
are not already represented by any other class. Indeed, 
integrating at this level implies adapting the core model 
using extensions provided by the current CityGML stan-
dard and its encodings (JSON and 3DCityDB). In fact, 
CityGML2 is the most used data model for semantic 
3DCMs. Its conceptual data model has been considered 
a data hub and integrative platform for urban and geos-
patial data for decades, allowing data integration and 
the creation of a comprehensive Urban Information 
Model (UIM). They are therefore considered the best 
candidates for introducing the 1st level of data integra-
tion in the context of UDTs serving as an abstraction of 
the physical world and an integration basis. This data 
model is generally extended to cover and incorporate 
different data for generic purposes (i.e. adapting the 
conceptual data model to a national or regional context) 
or to support specific use cases and applications through 
ADEs. This level offers a direct feed into the database.

3.2. Database level

The database level could be defined as the process of 
converting the data to be integrated to match the con-
ceptual data model and the database schema. In fact, 
the CDM is not edited; otherwise, we will be talking 
about the 1st level of integration. The database level 

allows for feeding or updating specific classes or attri-
butes without altering the semantic consistency of the 
data model. At this level, the data is adjusted for data-
base feeding. ETL (Extract, Transform, Load) processes 
are deployed to transform the data to meet the data 
model structure and schema (Sreemathy et al. 2021). For 
this purpose, the model is unchangeable, but rather the 
data needs to be adjusted in line with the data model.

3.3. Front-end level (client side)

This level represents the UDT’s front-end. Integration at 
this level could be performed via various interfaces and 
tools (i.e. GIS tools, web applications, geoportals, dash-
boards, linked data and game engine applications, to 
name a few) (refer to Figure 1).

Web-based applications show their capabilities in 
visualizing and handling complex 3D data on modern 
browsers. While moving towards UDTs, 3D data integra-
tion on the Web has been flourishing. This data integra-
tion level represents the most common approach to 
multisource data integration in the current UDT imple-
mentation, as previously investigated in Jeddoub et al. 
(2023). It allows the data to be integrated into common 
interfaces and handle different data exchange formats, 
achieving syntactic interoperability. Furthermore, many 
cities implement a distributed architecture for data inte-
gration and management and disseminate the 3D con-
tent ‘as data-based services’ where many stakeholders 
can interact while maintaining their own data. Hence, 
the data can be served and visualized on the web by 
various parties without following a data integration pro-
cess at the data model level. In addition, the use of web- 
based platforms provides API support for developers to 
optimize data access more effectively with the availabil-
ity of current web-friendly standards releases.

The ambition towards fostering open data through 
the web and making it accessible to multiple stake-
holders enhances the need to investigate the develop-
ment of web UDT platforms. However, combining 
various data and models into a one-stop platform may 
lead to some inconsistencies. For example, data coming 
from practice has diverse heterogeneities ranging from 
the semantic representation to the syntax, the structure, 
and the geometry. Furthermore, the data may encom-
pass various spatial and temporal scales. However, from 
a technical perspective, current platforms based on 
WebGL JavaScript libraries, such as CesiumJS,3 increas-
ingly support multi-format data integration. Indeed, 
Cesium, the common open-source platform, is used to 
integrate and visualize the required data. The platform 
supports several formats, and the data basically goes 
through a data conversion process. Nevertheless, 
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integration might be affected at the semantic level. 
Indeed, both semantic and syntactic interoperability 
are extremely valuable while developing collaborative 
platforms such as UDTs. In parallel, the semantic web 
approaches (i.e. linked data) highlight their strengths in 
performing data integration in the built environment.

The data integration at the front-end level based on 
the web still represents some challenges in practice that 
are addressed within the geospatial community, namely 
through data standardization and interoperability. While 
web-based platforms have shown their capabilities in 
handling various 2D and 3D geospatial content, game 
engines, in turn, have attracted considerable attention 
as effective tools for UDTs. Although browser-based 
platforms such as CesiumJS and ArcGIS Maps SDK for 
JS4 facilitate user accessibility as well as enhancing com-
prehensive support of geospatial data, their visualization 
and interactive capabilities are still limited, especially 
when operating on large urban scales such as cities. 
This is where game engines have found room for 
development.

Game engines like Unreal Engine (UE) and Unity bring 
new opportunities to access and visualize real-world 
data represented through urban and geospatial data 
with high visual rendering in an immersive way. 
Furthermore, the game engine plugins available in prac-
tice, such as the UE plugins for Cesium Web Globe and 
Esri’s Web Globe, consolidate the link between 3D geos-
patial technologies and game engine platforms. 
Nowadays, game engines are considered a trend for 
data integration, particularly under the UDTs umbrella. 
From data standardization and interoperability perspec-
tives, an early exploratory study was conducted to test 
the usability, compatibility, and viability of existing geos-
patial OGC standards, namely, 3D Tiles, I3S, and 3D 
GeoVolumes API, with game engines (i.e. UE and Unity) 
based on Cesium and ESRI’s plugins (Würstle et al. 2022). 

The authors illustrate through three use cases the usabil-
ity and applicability of the OGC standards in the frame-
work of game engines. Furthermore, challenges faced in 
the implementation of the use-case-based OGC stan-
dards were documented. These limitations need to be 
studied in a comprehensive way since they affect the 
final model.

In conclusion, various architectures are proposed in 
practice and are mainly based on a web browser plat-
form, namely Cesium and ESRI solutions such as ArcGIS 
online and JavaScript for ArcGIS. Cesium is widely used 
in academic UDT initiatives compared to ESRI tools. This 
is certainly due to their open-source initiative. The brow-
ser-based geospatial platforms show their capabilities in 
accessing, integrating, and visualizing 3D content. 
Although they have great support for geospatial OGC 
standards, they are still limited in terms of effective 
rendering and interactivity. Hence, there is a need to 
further explore the potentialities of game engines.

4. Data integration levels: pros and cons

The data integration levels have their pros and cons 
when developing an UDT. This section discusses the 
strengths and limitations of each data integration level 
and proposes guidelines for users in terms of their 
effectiveness.

Table 1 highlights some of the advantages and dis-
advantages of the data integration levels. The following 
list of pros and cons is not exhaustive, and further 
improvements and drawbacks may emerge in the future.

According to Table 1, level 1, which performs integra-
tion at the data model, provides a range of advantages, 
including semantic interoperability and compatibility, 
taking advantage of the model’s extensibility and scal-
ability, and the possibility of schema validation after 

Table 1. The pros and cons of data integration levels.
Level 1 Level 2 Level 3

Pros +Semantic interoperability 
+ Model extensibility 
+ Coherent and harmonized data model 
+ Schema validation 
+ Data import “as is” (no conversion 
needed) 
+ Direct load to database

+ Straightforward data model 
compatibility 
+ Native support of city objects (i.e. 
CityGML urban objects) 
+ Use of generics attributes (i.e. 
CityGML generics) 
+ New versions of data model 
enhance direct data integration.

+ Syntactic interoperability 
+ Separated and independent database management 
systems (asynchronous update cycle) 
+ On the fly simulations (based web services and 
processes) 
+ No data conversion 
+ Various data format support

Cons - Model complexity 
- Compliance with the Application Domain 
formalities (i.e. CityGML ADEs) 
- Large data model (huge number of classes, 
attributes, properties) 
- Compatibility with new data model 
versions. 
- Software support for extensions is still 
limited.

Preprocessing needed 
- Data loss (semantic loss) 
- Mapping between entities and 
attributes could be tricky.

- Heavier bandwidth. 
- Limited interactive client-side
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extending the data model. Furthermore, data can be 
imported directly without the need for a data conversion 
process. In addition, data is directly fed into the data-
base, or more specifically, when the DT’s technological 
framework relies on databases for data management 
and storage.

While there are significant advantages offered by this 
level of integration, there are also a series of challenges 
that should still be addressed. Extending a data model 
certainly allows new classes, entities, and attributes to be 
managed, but this may increase the complexity of the 
data model (for example, adapting a CityGML model 
presents a range of challenges given its complexity). 
Besides, extending a data model is not done in 
a random way, but rather a certain logic and formalism 
must be followed and maintained. Extending a model in 
general creates heavy files, and unless these files are 
handled through a database, it would be rather cumber-
some to use them for advanced analysis. Versions of the 
model may change over time, and new classes may be 
added, updated or deleted. Changes come to support 
direct integration (level 2) with data related to specific 
applications or generic contexts (example of the 
‘Dynamizers’ concept of CityGML). Extended models 
need to be supported by a wide variety of tools. 
Unfortunately, this is still limited. Hence, integrating at 
the data model level is not simple, and solid knowledge 
is required to achieve the intended goal.

Considering the 2nd level of integration, the related 
advantage is the straightforward data model compat-
ibility. The data model supports, by default, the data to 
be integrated. For instance, the current implementations 
of UDT that are based on the CityGML data model have 
native support for almost all urban objects. Integration 
could also be performed using generic objects and attri-
butes provided by the data model. Moreover, the new 
version of the data model enhances direct integration of 

the data into the model without further model modifica-
tion or extensions. However, this integration at the data-
base level might require data preparation and data 
conversion. Indeed, the data may not be used as deliv-
ered, but some conversion workflows are mandatory to 
meet the model requirement. This leads to semantic 
data loss, and more specifically, during the mapping 
process between entities and attributes, which could 
be tricky.

We can state that levels 1 and 2 are both traditional 
levels of integration that have existed for decades under 
the auspices of many similar concepts. However, level 
3 has been gaining high interest with the emergence of 
the UDT. Level 3 supports data integration through soft-
ware and platforms. The integration at this level 
enhances syntactic interoperability. These architectures 
are based on separate and independent database man-
agement systems, which facilitate the DT update. In 
addition, recent implementations show the possibility 
of running on-the-fly simulations based on web services 
and processes. The integration does not necessarily 
require a data conversion process since the current plat-
form allows the handling and integration of various data 
types and formats. Level 3 also has some limitations, 
namely limited interactions, slow server response 
times, and poor rendering performance. The DT imple-
mentations that integrate the data at level 3 are gener-
ally tested in small areas (i.e. precincts and district levels). 
However, incorporating data using the same workflows 
at the city level requires optimizing the management 
system and visualization tools of such massive data. 
Recently, many studies have been carried out to effec-
tively render and represent 3DCMs on the web. Hence, 
OGC standards and formats, such as 3D tiles and Indexed 
3D Scene Layer (I3S), were developed to facilitate the 
streaming of these 3D models on the web. However, this 

Figure 2. The urban digital twin lifecycle stages.
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format conversion from, for example, the CityGML 3DCM 
as a common input data to UDT to other web-friendly 
formats led to semantic data loss (Padsala et al. 2023). 
Furthermore, the conversion from CityGML to the web 
streaming format raises update issues, i.e. the integra-
tion of datasets coming, for example, from simulation 
software needs to be processed whenever new results 
are made available, and the updated CityGML model 
must be again converted to the required web data 
exchange format for visualization.

5. Unpacking and illustrating data integration 
levels according to the DT lifecycle

In the framework of this review paper, we intend to 
explain the data integration levels based on the DT life-
cycle stages and analyse them accordingly (refer to 
Figure 2). The lifecycle is defined by three primary stages: 
creation, which involves the generation of a UDT; usage, 
which focuses on the deployment of the fundamental 
component of the UDT namely the 3DCM in simulation 
applications and urban analytics workflows; and lastly, the 
update phase, which serves to continually maintain the 
UDT. We therefore conduct a more detailed analysis of 
these data integration levels according to the lifecycle 
stages, data types, and current and possible scenarios. 
We have included the scenario dimension to highlight 
the various integration-level options currently available 
and those that might be feasible in the future. This sce-
nario exemplifies an UDT implementation which uses 
multiple data sets, and which can incorporate those data 
sets based on different levels of integration. By default, we 
have covered all the possible combination of these 
approaches, leading to the identification of different sce-
narios. These scenarios will be further illustrated when-
ever possible by current initiatives and implementations. 

5.1. Creation of UDT

The creation phase is defined as the first step towards 
the implementation of UDTs. This phase consists of the 
conceptualization of all relevant components, consider-
ing the core dataset to be integrated (usually geo-data), 
the modelling approaches, the required level of detail, 
and the representation and structuring of both data and 
models.

Given that, in practice, the 3D city model is a part of 
UDT and not UDT per se, we will focus on this creation 
phase on the enrichment of 3DCMs as an integration 
foundation for UDT. In practice, creating UDTs is often 
seen as building a semantic city model or connecting 
different data models and systems into one unified 
model. The creation phase in this study implies the 
enrichment of existing city models or systems to meet 
the DT’s requirements since most of the implementa-
tions are not built from scratch. This is achieved concre-
tely through data integration.

To create an UDT, data integration can be performed 
at different levels, as defined earlier in Section 3. Our 
focus is not on data-to-data integration (also known as 
data fusion), but we are particularly interested in data-to 
-model and model-to-model integration. In addition, the 
seamless integration of various urban city objects to 
create a complete and comprehensive 3DCM needs to 
be considered as well.

To clearly understand the three levels of integration, we 
extract the common scenarios for creating an UDT based 
on the literature. Figure 3 gives the various current scenar-
ios of data integration levels in the creation phase.

Scenario A: This involves integration at level 1. This 
requires changing the model if it does not handle the 
integrated data by default. In this regard, CityGML is 
widely adopted as a data model for semantic 3DCMs, 

Figure 3. Current scenarios of data integration levels in the creation phase.
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and recently, UDTs. Thanks to its common urban object 
native support, its extensibility and its interoperability, it 
is considered a basis for data integration to create 
a comprehensive and accurate UDT. This creation could 
be achieved by augmenting its data model with new 
and additional concepts using generic ADEs. For 
instance, generic ADEs are implemented to adapt the 
data model to support a national standard or to cope 
with specific needs.

Most CityGML models are based on version 2.0, which 
probably uses ADE to handle and integrate new datasets 
and thus tackle new problems. With the new version 3.0, 
this integration has changed, for example, the ‘Dynamizer 
concept’ has a direct compatibility with the core model, 
thus enabling data integration at level 2 according to our 
definition. In this regard, new versions of data models may 
introduce new classes and attributes to the schema or 
remove some parts of them to fit the UDT requirements. 
This ultimately affects the level of integration.

Scenario B: Integration at the database level involves 
the use of an ETL process to feed data into the model. 
The database level is commonly used in UDT implemen-
tations based on the native data model or through the 
support of generic objects and attributes.

Scenario C: Data integration at level 3 is relevant in the 
creation phase. The integration takes place at the front- 
end level. The model remains untouched, and the data-
bases are completely independent. The data is inte-
grated using a web architecture or game engines.

Table 2 further illustrates the different levels of data 
integration. It provides current illustrative DT implemen-
tations that are in the creation phase and use different 
data integration levels.

Many examples might be used to illustrate these 
levels during the integration phase. To illustrate our 
statements, we discuss below several related research 
under the prism of our classification.

Based on Table 2, Level 1 is used in the preliminary phase 
of creating the DT of the City of Vienna (Lehner et al. 2024). 
To support the long-term vision of creating a DT of the city, 
an extension of the CityGML 2.0 data model profile is being 
performed to meet the current and future requirements of 
the municipality. The data model is augmented with addi-
tional features using ADE to create a complete 3D model of 
the city. For level 2, a study case was performed within an 
Australian DT pilot project (Diakite et al. 2022). The authors 
integrate the provided spatial data sets using a database 
approach. They process, incorporate, and store existing 3D 
data in the 3DCityDB using PostgreSQL and PostGIS data-
base, the main core of their DT architecture. The data went 
through a mapping process to meet the CityGML classes 
and attributes since the data were provided in different 
structures. Hence, the direct import using the official 
3DCityDB Importer tool of the data sets to the database 
was tricky. In this regard, a series of Python algorithms were 
developed to reach the integration goals. To illustrate the 
level 3, recent related work designs a socio-technical con-
ceptual framework that illustrates the need to incorporate 
human sensing data (i.e. participatory data) into UDTs (Lei, 
Su, and Biljecki 2024). In their case study, the authors imple-
mented their UDT prototype based on multiple open data 
sources (static and dynamic data), namely, crowdsourced 
data (e.g. Open Street Map data), participatory data (social 
sensing data), and environmental data. Data integration 
was performed using Cesium. The platform is based on 
a browser-server architecture, fostering data interoperabil-
ity and system compatibility with current and upcoming 
input data and systems. The data went through a data 
conversion process based on an FME Flow. The platform 
supports several formats, such as 3D tiles and JSON-based 

Table 2. Examples of data integration levels (lv) in the creation phase using different data inputs.

Data input

Creation phase

Lv1 (Scenario A) Lv2 (Scenario B) Lv3 (Scenario C)

Static  
geospatial 
data

- CityGML 2.0 ADE of the Vienna City (Lehner et al. 2024) - Mapping the data and their 
attributes into the 3DCityDB 
tables (Diakite et al. 2022)

- Cesium Ion (Lei, Su, and Biljecki 2024) 
- Cesium JS, VR and JS libraries (La Guardia 
and Koeva 2023; La Guardia et al. 2022) 
- COVISE (Collaborative Visualization and 
Simulation Environment) (Dembski et al.  
2020)

Other static 
data

- IFC-CityGML data model (Li et al. 2019, 2020) - CityGML 3.0 (space concept) 
(Kutzner, Chaturvedi, and 
Kolbe 2020)

- Integration of both BIM data and geodata in 
the same front-end (i.e. Esri ArcGIS 
CityEngine,5 ArcGIS GeoBIM,6 

virtualcitySYSTEMS7)
Dynamic 

data
- Dynamizer ADE (CityGML 2.0) (Chaturvedi 2021; 

Chaturvedi et al. 2017) - Extending 3DCityDB by 
Dynamizer ADE (CityGML 2.0) (Chaturvedi, Yao, and 
Kolbe 2019) 
- Dynamizer (CityJSON 1.1) (Boumhidi, Nys, and Hajji  
2024)

- Generic attributes (Chaturvedi  
2021) 
- Dynamizer module 
(CityGML 3.0) (Kutzner, 
Chaturvedi, and Kolbe 2020)

- CityThings (connection between the 
SensorThings API (STA) and the 3DCM using 
gml-id) (Santhanavanich and Coors 2021) 
-COVISE (Collaborative Visualization and 
Simulation Environment) (Dembski et al.  
2020)
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formats, as well as Cesium Markup Language (CZML), that 
represent human sensing data interlinked with the geospa-
tial component. Another related work proposes a 3D data 
fusion workflow based on Virtual Reality and JavaScript 
library-based 3D WebGIS solutions (La Guardia and Koeva  
2023; La Guardia et al. 2022). In their work, the authors 
handle and integrate different and complex geospatial 
input data, namely point cloud data, 3D models, and BIM 
models.

The same logic applies to BIM-GIS integration, which 
is considered one of the fundamental data integration 
challenges while moving towards implementing such 
a transdisciplinary concept as UDT. This integration 
could be performed at level 1. For instance, a study 
focuses on the precinct scale and develops a semantic 
precinct information model (PIM) using multisource and 
various data (Li et al. 2019, 2020). Based on the concep-
tual and unified data model, the authors implemented 
a relational spatial database to manage the building 
model. The integration at level 2 is feasible by mapping 
IFC classes to CityGML classes and attributes, as well as 
with the last CityGML 3.0 (Kutzner, Chaturvedi, and 
Kolbe 2020). Data integration is achieved at level 3 via 
GIS and urban tools (i.e. ESRI CityEngine, ArcGIS GeoBIM, 
virtualcitySYSTEMS).

Integrating dynamic data (such as sensor data) high-
lights the key features of UDT. Indeed, this data integra-
tion within UDT can be achieved by extending the data 
model concept, as seen in ‘Dynamizer ADE’ for version 
2.0 (Chaturvedi et al. 2017). Alternatively, integration can 
occur at level 2, exemplified by the use of the thematic 
module ‘Dynamizer’ in CityGML 3.0 (Kutzner, Chaturvedi, 

and Kolbe 2020) or sometimes using generic attributes 
(Chaturvedi 2021). At level 3, integration happens 
through system architectures, notably by ensuring 
a connection between the server handling the sensor 
data and the 3DCMs (Santhanavanich and Coors 2021).

Herrenberg’s city-scale DT prototype is a project that 
illustrates the heterogeneous data integration (i.e. static 
and dynamic data) in the creation phase, where various 
existing volunteered geographic information and a 3D 
city model are used. Furthermore, thematic data such as 
mobility data from mobile applications and GPS (i.e. 
movement traces of bicycles and pedestrians) are used. 
The integration is performed at the front-end level. The 
project uses COVISE (Collaborative Visualization and 
Simulation Environment), an extendable distributed 
software that supports multisource data and sensor net-
work data as well, resulting from a computational model 
for air pollution simulation.

In this regard, data integration in the creation phase 
could be performed according to different levels of data 
integration. As discussed earlier, there are current sce-
narios that are implemented in practice. However, 
expected theoretical scenarios in the context of creating 
UDT need further investigation (see Figure 4). Indeed, it 
is possible to combine different levels of integration. 
This leads to the following integration scenarios.

Scenario D: Integration in this case might explore the 
1st and 2nd levels of data integration. For instance, road 
data is provided and needs to be incorporated into the 
UDT. Level 2 might be used to convert the data to meet 
the requirements of the data model, which could also be 

Figure 4. Theoretical scenarios of data integration levels in the creation phase.
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extended and modified (level 1) to receive the trans-
formed data.

Scenario E: Levels 2 and 3 are used in this context. For 
instance, the data model will natively handle the data to 
be integrated, but additional data is not supported. 
Thus, integrate them using web architectures or game 
engine workflows.

Scenario F: It involves the use of levels 1 and 3. Data 
could be integrated based on the 1st level, and further 
data in the same UDT implementation uses the front- 
end level to integrate the data.

Scenario G: This scenario is the most faithful to the 
definition of a generic DT, in which a DT has a concrete 
data model, a database that manage the corresponding 
objects, and, finally, one or several client applications. 
With this in mind, the DT is neither a file- nor database- 
based system but rather can be assimilated into a three- 
tier architecture (model/DB-server-client).

Implementations D, E, F, and G are proposed in this 
work as a combination of different levels to integrate 
data into UDT. Yet, such implementations are hard to 
find and should be investigated in the future.

From practice, the creation phase is mainly focused 
on the data enrichment of the available 3D models to 
generate an accurate and complete digital representa-
tion. The enrichment is performed based on the different 
levels of integration. Based on our investigations in the 
creation phase, we can clearly conclude that level 2 
based on the CityGML 2.0 data model is the common 
data integration level. Level 1 is explored to meet the 
national DT requirements using ADE in this preliminary 
phase. However, this needs further investigation in the 
future. Level 3 is explored as well by connecting different 
input data at the front-end level.

5.2. Use of UDT

The use of the UDT corresponds to its operation in 
a specific use case to address a particular application. In 
practice, this stage can sometimes be confused with the 
creation phase, particularly when the creation of a DT is 
based on a use case, also called a UDT-based use case. 
Nevertheless, the use of UDT is defined as the process of 
performing simulations and urban analysis. This phase is 
closely related to the use case requirements, where input 
data is required to generate new data sets or models, 
which in turn will be re-injected into UDT to support 

decision-making. The produced data sets in this phase 
might be incorporated into the DT following various data 
integration levels. While these integration levels have been 
experienced with 3DCMs for multiple use cases and appli-
cations, this section will tackle this integration aspect 
within the context of UDT available implementations.

Within the geospatial community, 3DCMs form the foun-
dation for these data integration levels in the UDT scope. In 
this regard, and considering current and ongoing UDT 
implementations, we intend to outline and discuss the 
levels of integration identified in the literature.

Scenario A: This scenario is also known as the tradi-
tional way of integrating data. It involves the exten-
sion of the CMD to manage and store the data 
generated from the simulation tools into the 
3DCMs. Indeed, ADEs, namely Energy ADE and 
others, are used to perform this integration task 
(Agugiaro et al. 2018). Moreover, with the growing 
interest in breaking down data silos, defining 
a standardized open data model is thus of great 
interest. For instance, studies investigate the possi-
bility of designing a Food-Water Energy ADE (FWE 
ADE) (Padsala et al. 2021). The approach is based on 
extending the CityGML data model to support the integra-
tion of food, water, and energy data and simulation work-
flows. The approach is tested at different spatial levels with 
different input data. The results are stored in the added 
module as defined in the FWE CDM. While moving towards 
sustainable cities, attempts to manage and store multido-
main data are still limited to a few implementations.

Scenario B: Level 2 is explored in this scenario. The 
model handles by default the simulation outputs, mea-
sured data, or any other data produced by simulations 
and urban analysis or provided by third parties.

Scenario C: This level requires a system architecture 
that allows bottom-up data integration of urban infor-
mation and 3DCMs (associating separate database 
management systems) as well as their visualization.

Scenario D: This approach involves data integration 
based on levels 1 and 2. The combination of levels 1 
and 2 consists of adapting the data model to integrate 
the data and, at the same time, using level 2 to enrich 
the model where applicable. For example, extending 
the CityGML model to incorporate simulation results 
and using generic tables to integrate further data.
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Figure 5. Current scenarios of data integration levels in the use phase based on an energy use case.

Table 3. Examples of data integration levels in the use phase based on an energy use case.

Data input

Use phase

Lv1 (Scenario A) Lv2 (Scenario B) Lv3 (Scenario C)

Energy simulations - Energy ADE (Würstle 
et al. 2020)

- Extended 3DCityDB with Energy ADE tables 
(Rossknecht and Airaksinen 2020)

Measured data -  
“Dynamizer” ADE 
(Chaturvedi 2021)

- Extended 3D city DB with generic tables 
(Würstle et al. 2020)

- CityThings concept 
(Santhanavanich and Coors  
2021)

Lv2 and Lv 3 (Scenario E)

Static properties and time series datasets 
simulation

-Static propreties/Attributes (generic attributes) 
-CityThings concept (Santhanavanich et al. 2022)

Lv 1, Lv 2 and Lv 3 (Scenario G)

2D geometry and attribute data/Temporal 
sensor data/Urban building energy data

- Energy ADE schema (Building Energy and Climate Atlas)- Enrichment of CityGML data model with 
attributes of building function and year of construction- OGC API – Features- STA service 
- OGC API Processes services (Santhanavanich et al. 2023)

Figure 6. Theoretical scenarios of data integration levels in the use phase.
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Scenario E: Levels 2 and 3 are used to integrate data 
into the UDT. This scenario takes advantage of level 2 
since the data model might by default support data 
integration for a given use case; at the same time, it 
uses level 3 to enrich the UDT with various urban data.

Scenario F: This scenario involves the use of both levels 
1 and 3. This implies that a data model is adapted for 
a specific use case and an additional system architecture 
is designed to support the integration.

Scenario G: This scenario implies the use of the three 
levels of data integration. Each level is deployed to 
integrate a specific data type on the same UDT platform.

To illustrate the current scenarios, we adopt the 
energy use case. The use case was selected on the 
basis that many research studies have already identified 
and tested the different levels of integration. Thus, we 
extracted the current scenarios (refer to Figure 5) and 
analysed the references linked to this UDT based on data 
types (refer to Table 3) and identified theoretical scenar-
ios (see Figure 6).

Table 3 identifies the different levels of data integra-
tion. It provides illustrative DT implementations that are 
in the use phase. The implementations use different data 
integration levels.

Based on Table 3, current scenarios are identified as 
follows:

Scenario A: Based on CityGML 2.0, an energy-related 
urban data model is defined to calculate and enrich 
the data model with building energy information 
required for energy simulations (Würstle et al. 2020). 
Hence, Energy ADE has helped in addressing data inter-
operability issues. In addition, ‘Dynamizer’ ADE is also 
used to manage measured data in the energy use case 
(Chaturvedi 2021).

Scenario B: Extending the 3DCityDB to support Energy 
ADE allows us to perform data integration at level 2 
(Rossknecht and Airaksinen 2020). For instance, energy 
information is stored in 3DCityDB, where Energy ADE 
tables are already embedded. The aim of this database 
approach is to directly feed and update the database 
tables from the simulation results without the need to 
alter the CMD. The results are written back to the data-
base, escaping the challenges related to the file-based 
approach. Alternatively, integration at Level 2 might be 
carried out through generic tables (Würstle et al. 2020).

Scenario C: For instance, the ‘CityThings’ concept 
enables managing and integrating dynamic sensor 
data and 3DCMs provided by different parties in 
a separate management system (Santhanavanich and 
Coors 2021). The concept connects sensor data from 
SensorThings server and the 3DCM. The approach 
addresses the challenges related to the direct storage 
of high-frequency measured data into the CityGML data 
model (either for file- or DB-based approaches). In fact, 
level 3 is designed when the data model does not allow 
integration or represents some limitations; hence, the 
adoption of system architectures and the APIs standards 
at the front-end level facilitates integration and main-
tenance within the DTs framework.

Scenario E: An illustrative use case of this level of inte-
gration is provided in the work done by Santhanavanich 
et al. (2022). The authors propose a method to tackle the 
traditional data integration workflow of the energy 
simulation results into the 3DCM before converting the 
new CityGML model to a ready-to-web stream format. 
The aim is to optimize the data management of 3DCMs 
using SDI through web applications. In their SDI 
approach, the authors use a range of OGC web services 
standards, namely the SensorThings API, the OGC API 3D 
GeoVolumes, the OCG API Features, and the CityGML 
standard. The simulation outputs are handled differ-
ently; the static building properties are integrated 
directly into the CityGML data model (which refers to 
level 2). However, the spatiotemporal data is stored and 
managed in an external database. This was performed at 
level 3 based on the STA exchange format specification 
by ensuring a connection link to the OGC web services.

Scenario G: This scenario implies the use of the three 
levels of data integration. Each level is deployed to 
integrate a specific data type on the same UDT platform. 
This scenario was recently implemented in a study by 
Santhanavanich et al. (2023). The authors illustrate 
a web-based API workflow to integrate and handle geos-
patial data, 3DCMs, building energy data, and simulation 
results based on a web service and OGC API standards. 
The aim of the approach is to create a single and harmo-
nized data model combining geospatial and energy data 
that are in practice provided and maintained by different 
providers. The approach involves various data integra-
tion levels. Energy ADE is explored, which illustrates the 
1st level of integration. Furthermore, the enrichment of 
the CityGML model is performed at level 2 through 
mapping approaches. Finally, the simulation results 
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are integrated based on a modular web architecture 
based on OGC API standards, namely OGC processes 
and the STA. The overall web-based API architecture 
is tested during OGC Testbed 188 for two study use 
cases (i.e. Montreal and Helsinki). The aim of the 
testbed is to extend the geospatial spatial data infra-
structure to support building energy data interoper-
ability as well as setting the fundamentals of energy 
spatial data infrastructure. The SDI addresses intero-
perability issues and integration challenges through 
standardized web services and interfaces. Data visua-
lization is also performed successfully using innova-
tive tools to facilitate data access and analysis 
(WebGL and AR applications).

The testbed-18 pilot project aims to generalize the 
workflow to the entire city using a high-level developed 
prototype. Furthermore, the participants highlighted the 
potential of moving towards a generalized data model. 
This data model seeks to structure and consolidate both 
geospatial and energy datasets based on a standardized 
modular web services-based architecture.

Scenarios D and F are identified as theoretical scenar-
ios. They have been less explored in the framework of 
integrating data into UDTs (see Figure 6).

Scenario D: Given that we are interested in the UDT- 
based energy use case, we were unable to find an illus-
trative study case that allows us to further explain the 
integration process.

Scenario F: In this case, a suitable integration-based 
energy use case was hard to find.

Based on the previous analysis, the use phase is clo-
sely driven by the use-case requirements. This phase 
encourages collaboration and convergence between 

various domains. However, the heterogeneity and com-
plexity of the data in this phase raise data integration 
challenges. In this regard, data integration levels have 
shifted increasingly from file-based approaches to stan-
dard web-based API approaches. The new trend towards 
data integration at level 3 has been involved in recent 
UDT implementations. It is considered the most suitable 
level to integrate any type of data. However, the data, 
namely geospatial data, needs to be FAIR (findable, 
accessible, interoperable, and reusable), and domain- 
specific data should be provided in a standard- 
compliant format. In addition, the data needs to be 
well documented to facilitate the integration and main-
tenance processes with formatted metadata and suffi-
cient technical documentation. This mapping of 
integration levels, as detailed above, can be extended 
to cover any use case. This analysis of the levels based on 
the use case enables us to identify the patterns of data or 
model integration according to the urban application. It 
is also worth noting that the use phase can serve as 
a guide for the creation phase. For example, in the 
creation phase, a semantic 3DCM was built based on 
level 1. In the use phase, it appeared that model enrich-
ment was required to run the simulations. This will prob-
ably prompt level 1 or 2 of data integration to generate 
the necessary data for the use phase.

5.3. Update of UDT

The update phase is an extremely valuable step in the 
lifecycle of UDTs. This phase is unfortunately overlooked 
in current implementations. Nevertheless, it is always 
highlighted as one of the key challenges to be consid-
ered when maintaining DTs. The UDT should be con-
ceived as a sustainable process and not as the final 
product. For this reason, the definition of integration 

Figure 7. Scenarios of data integration levels in the update phase.
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approaches is an essential requirement in the updating 
phase. That is how these different levels have their mer-
its and demerits. Proper strategies and mechanisms to 
support the update of UDTs are still limited. This issue 
has already been experienced with 3DCMs. Although 
various DT parties (i.e. geodata providers, researchers, 
and municipalities) are aware of the necessity of data 
maintenance and governance. Current implementation 
still lacks concrete investigations. Given that performing 
updates is tightly related to data integration, we will 
discuss in this section the data integration levels in this 
phase of the lifecycle.

Updating an UDT according to the three basic levels 
as previously defined can be envisaged (see Figure 7); 
however, a scenario-based analysis, as conducted in the 
creation and use phases, is not currently going to be 
carried out, given that the update mechanisms are lim-
ited to a few DT prototypes.

One of the main characteristics of UDTs is that the 
virtual system is updated regularly through the bi- 
directional link between the real and digital worlds. 
Hence, data integration methods should be set to 
guide the user while integrating new data or informa-
tion. The new data could be obtained from different 
sources and cover different themes. However, the appro-
priate level of data integration is guided by the previous 
phases (i.e. creation and use).

Data maintenance logic should consider the data, 
which is the fuel of the DT, and the DT components, 
which structure these data. In this respect, it is vital to 
distinguish between the updating of data, which may 
be handled by the data provider, and the updating of 
DT’s components given a new set of data, which does 
not solely rely on the data but rather encompasses the 
techniques and methods applied in the development 
of these digital twins.

To illustrate, let us consider the updating of a 3D city 
model, which is one of the main components of Digital 
Twins. Possible updates in the creation phase are, for 
example, a new LiDAR acquisition, a new building created, 
a road removed, or new vegetation, to name a few. These 
data are generally updated by their providers (notably the 
cadastral department). Although this is done systemati-
cally, however, how do we update the UDT? There are 
several possibilities for a new LiDAR acquisition: (1) A new 
LiDAR acquisition implies a new model and, therefore, 
a new integration of the model in the UDT (re- 
modelling). (2) compare the new point cloud acquisition 
with the old one using change detection methods, then 
regenerate the 3D model. (3) compare existing models 
with the point cloud, then update the model. (4) compare 
based on model-to-model approaches and explore ver-
sioning of 3D city models. In all cases, these possibilities 
will require the reintegration of the 3D city model into the 
UDT. Furthermore, the update mechanism is related to 
the data integration levels used in the creation phase. 
Indeed, if the creation phase is based on the conceptual 
data model level, the update would be performed at level 
2, given that the core model used in the creation phase 
handles these urban objects (see Figure 8a).

The same logic is applied to the usage phase. For 
instance, to update specific data that was integrated 
into the use phase (i.e. when new simulation workflows 
are run based on new datasets or parameters), the new 
outputs should be injected into the UDT, and the attri-
butes need to be updated accordingly (refer to 
Figure 8b). Generally, level 3 is the most convenient 
data integration approach for dynamic databases, such 
as the one explored in the UDT in the use phase. This 
level seems appropriate for dynamic data such as the 
one measured from sensor data as well as the simulated 
outputs. The particularity of these data is that they are 

Figure 8. Data integration levels for DT updates: (a) at the creation phase, (b) at the use phase.
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generally managed in separate systems in the current 
implementation. Thus, updating them is performed in 
a straightforward manner. Furthermore, level 3 appears 
to be a promising approach to data update since the 
data are maintained by their owners and shared as an 
asynchronous and up-to-date service based on a web- 
based architecture. This increases access, querying, shar-
ing, and updating of the data. Furthermore, the update 
could be performed on the front-end side by means of 
user interfaces.

Although we have already outlined the basic update 
scenarios, in this phase, the main question to answer is 
which part of UDTs needs to be updated, so the data 
integration levels are decided accordingly. The data 
deployed in the update phase needs to conform to the 
UDT requirements. Furthermore, standardization is man-
datory to detect changes in the data and facilitate their 
maintenance. It is also important to highlight that 
updates are usually more focused on the use phase 
than on the creation stage. This is because the whole 
purpose of a UDT is to create it only once, to use it in 
multiple use cases, and to perform updates when appro-
priate, especially as this is a costly process in term of 
human and technical resources and will depend on the 
availability of data.

6. Data integration levels: discussion and 
findings

Data integration is considered both a fundamental 
requirement of UDT and a key challenge that hinders 
its full implementation in practice. Different models, 
architectures and platforms are developed and named 
UDTs. However, they represent discrepancies in terms of 
how the data is integrated. To properly understand the 
data integration levels, we represent these levels accord-
ing to the DT lifecycle inspired by the geospatial data 
lifecycle. Nevertheless, geospatial data are not the only 
kind of data to be incorporated into DTs; various 
domain-specific data can also be integrated (i.e. energy 
data, noise and air quality data, computational fluid 
dynamics data).

This integration aspect is involved in all DT stages, 
from creating DTs to the use phase (simulations and 
what-if scenarios), and finally to maintaining the twin.

Current UDTs are mainly based on semantic city mod-
els. These models are considered the foundation for data 
integration. However, if we change this model and 
extend it, we are performing integration at level 1. On 
the other hand, when the default model supports the 
data to be integrated, we are at level 2. However, if we 
add architecture components to embed the data, we are 

at level 3. The action of integrating enables model 
enrichment to create comprehensive DTs of the real 
world. The creation of DTs needs to be discussed 
upstream to ensure that models can be maintained. In 
fact, current implementations use existing models and 
adapt them in certain ways to fulfil DT requirements. In 
the DT creation phase, we refer to the creation of city 
models while emphasizing that these models are devel-
oped to form the basis of the UDT. Indeed, we are 
lacking a generic DT that can be relevant when creating 
regional or national DTs. At the city level, however, we 
tend to focus on implementations based on use cases, 
which leads to the generation of multiple DTs and, by 
default, affects the integration levels. We have noticed 
that in the creation phase, we usually use semantic 
models of current cities, such as Helsinki, Vienna, and 
Japan, to name a few. These models generally integrate 
data based on levels 1 or 2 in the creation phase. Even in 
the use phase, ADEs, or generics (objects or attributes), 
are deployed. Other implementations make extensive 
use of level 3 to integrate data, but more precisely dur-
ing the use phase.

In the present work, we wanted to highlight the data 
integration levels and offer some conceptual guidelines 
according to the DT’s lifecycle to enhance data integration 
and interoperability. Data integration enables DT devel-
opers to shift from a semantic city model to a UDT. 
Integration takes place at different levels, and various 
configurations of levels can be envisaged, notably in 
UDT, where several types of data are required. For each 
phase of the DT lifecycle, we integrate data, and for each 
phase, one or more levels of integration can be applied.

Moving from a city model to a UDT, DT designers 
need to plan the integration of different types of data. 
The best level of integration does not exist. In fact, each 
UDT project has its own appropriate integration level, 
and this is also guided by the DT lifecycle phases. For 
instance, in the creation phase, it is important to con-
sider that these models will be used in simulations and 
urban applications, which in turn generate new data that 
needs to be reincorporated. In this regard and following 
the analysis provided in Section Section 5.1, level 3 in the 
creation phase is still limited to few implementations 
given that UDT developers tend to use level 1 of inte-
gration based on the conceptual data model. This is 
a valid assumption since the core of Urban Digital 
Twins are 3D city model that represents the foundation 
layer of integration from geospatial perspective. 
However, in the use phase, level 3 is commonly used. 
To support integration at this level, database- 
independent architectures are developed.

For the update phase, we are unable to draw any 
conclusions on the appropriate level of integration, 
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given that in the current implementations, we were 
unable to identify any proposed mechanisms for updat-
ing UDTs. This is also true since almost all current imple-
mentations are still in the creation and use phases. 
However, to overcome this, we would like to set up 
experiments for future work to understand how the DT 
parties conceive this UDT update.

While this study helps to provide fundamental insights 
on the UDT challenges related to data integration, how-
ever, it has some limitations that will be tackled in future 
work. One of the limitations is the selection criteria we 
have used to filter projects. To illustrate our data integra-
tion levels, we examined DT projects in detail, which was 
not a straightforward process since DT developers do not 
always describe the way in which they integrate their data 
and whether they are really considering a generic and 
standardized integration approach to homogenize their 
data. Another aspect is that the current initiatives are 
mainly focused on the creation and use stages of digital 
twins, yet there is a minimal distinction between the 
creation and use phases. Furthermore, our framework is 
conceptual and uses real-world implementation to prove 
its findings, which raises the issue related to the feasibility 
of implementing all the integration scenarios previously 
defined in future work.

In this study, we have focused on the most common 
datasets, such as geodata and simulation outputs. 
However, taking into consideration the advancements in 
Generative AI, such models will in their turn bring new 
integration challenges. At the current maturity stage of 
UDT, these models help to address the issues related to 
the data quality, availability, and completeness by gener-
ating comprehensive and realistic data through data 
enhancement and enrichment. They are generally used 
in urban studies to produce synthetic data, automate the 
processing in terms of semantic segmentation, and gen-
erate 3D city models.

7. Conclusions

Cities worldwide start investing in developing UDTs as 
a new digital approach to collecting, integrating, mana-
ging, visualizing, and sharing data and models. UDTs 
bring both potentialities and issues. Data integration is 
identified as a significant challenge associated with the 
full implementation of the UDT concept. While data 
integration has been considered a fundamental issue in 
3D GIS for a decade, it is still involved in the develop-
ment of new concepts such as UDTs, which integrate 
multiple and heterogeneous data. Indeed, addressing 

the data integration issue will enrich the existing 3D 
city models and deliver a mature version of the DTs. In 
this review paper, we provided the first conceptual data 
integration insights to create, use, and update an UDT. 
Three data integration levels (conceptual data model, 
database, and front-end levels) are defined and illu-
strated according to the DT lifecycle. For each phase of 
the lifecycle, the data might be integrated using one or 
several levels on the same UDT platform. The concep-
tualization of the data integration levels is a domain- and 
application-independent classification. That means that 
the classification proposed in this work might be applied 
to any UDT implementation. Furthermore, we believe 
that new data integration levels will appear in the future 
to handle UDT data and models. Regardless of the 
advantages and limitations reported for each data inte-
gration level, data quality, completeness, and interoper-
ability strongly guide integration effectiveness. Our 
defined data integration levels will help researchers 
and practitioners (namely cities and municipalities) that 
have already an ongoing UDT implementation or those 
who are willing to embark on this journey towards the 
creation of urban digital twins to understand and trans-
fer the common practices related to data integration and 
to discuss upstream the integration frameworks, the 
level(s) required according to the available data and 
the user needs. The users can be government, research-
ers, private sector, and finally citizens.

In future research, we will focus on technically 
testing the different scenarios, investigating them 
based on the DT lifecycle, and formulating guide-
lines to recommend effective data integration levels 
based on different standards and frameworks. Future 
steps aim to investigate in more detail each scenario 
defined in this work and test it in a specific case 
study using various datasets. We believe that imple-
menting technically the different data integration 
configurations will help us to determine their rele-
vance, evaluate the robustness and applicability of 
the generic data integration levels in different use 
cases, and assess the most effective level of integra-
tion. To reach our intended goal, we should estab-
lish a technological framework and provide solutions 
in terms of data models, databases, and visualization 
tools, which will accordingly assist the development 
of the UDT. An exploratory survey will be designed 
in the future to get insights from UDT practitioners 
about their thoughts regarding these data integra-
tion levels and if their initiatives follow any of these 
integration levels. The survey focus will also be on 
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evaluating the differences of data integration in the 
maintenance phase. This will bridge the current gap 
in the literature in terms of how integration is car-
ried out in the maintenance stage.

Notes

1. https://github.com/tum-gis/SDDI-CKAN-Docker?tab= 
readme-ov-file.

2. https://www.ogc.org/standard/CityGML/.
3. https://cesium.com/platform/cesiumjs/.
4. https://developers.arcgis.com/javascript/latest/.
5. https://www.esri.com/en-us/arcgis/products/arcgis- 

cityengine/overview.
6. https://www.esri.com/en-us/arcgis/products/arcgis- 

geobim/overview.
7. https://vc.systems/en/.
8. https://docs.ogc.org/per/22-041.html#_0998bc4e- 

baa2-49b0-901c-ae2572a41b8f.
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