

Latest Advancements in WOLF Model for Guiding the Resilient Reconstruction in the Vesdre Valley

10th International Meuse Symposium "Water quantity - Climate change adaptation and resilience"

Speaker - Damien Sansen

P. Chakraborty, P. Archambeau, B. Dewals, S. Erpicum, M. Pirotton

10/09/2024, Liège (Belgium)

Introduction WOLF modeling system

WOLF HECE

Belgium (country)

Vesdre (river) catchment

"Does WOLF effectively simulate the 2021 flood event along the Vesdre in terms of **flood extent**, using its hydrodynamic and hydrological components ?"

P. Chakraborty, PhD Student

Jaccard = <u>Union (A, B)</u>

P. Chakraborty, PhD Student

Presentation content

- **1.** Scenarios manager
- 2. Acceptability manager
- 3. Further investigations

1. Scenario manager Efficient way to guide scenarios

Belgium (country)

- Vesdre (river) catchment
- Theux (municipality)

City _____ center

Temporary storage areas (TSAs)

represent a category of soft-engineered NbS that can provide dispersed and small-scale storage throughout a catchment

And modification of the Hoegne riverbed

Increased river width Give more room to the river

Riverbed relocation

Improve water flow

3 Creation of 'ponds' for storage

Additional storage during flood event

Area of the ponds (approximation)

- 1 large : 25x35 [m²]
- 2 smaller ones : 20x15 [m²]

Storage volume of the ponds :

• 4 200 [m³]

Total net volume gains (with changes of the riverbed) :

Volume in

-Without the project : 16 000 [m³] -With the project : 28 800 [m³] → Increase of 80%

Efficient ? Need for unsteady simulations

Storage measures: need for an unsteady simulation

- 25 years return period
- Q_{peak} = 125m³/s
- Rising limb: 16 h Recession limb: 70 h

A look at the evolution of water depth with **AKWS+ color scale**

With the TSA

0.00

Time : 1.0 [hours]

T [years]	25	50	100	
Qmax [m ³ /s]	125.57	162.6	214.8	

T25

1. Scenario manager A user-friendly tool

A tool to edit **locally** different rasters, allowing to guide project studies and more.

Also applicable for **multiple modifications**, allowing the study of complete design plans.

1. Scenario manager A user-friendly tool

A tool developed in WOLF for local raster editing within a defined area, enabling to guide project studies and more.

Also applicable for multiple modification, allowing the study of complete design plans

£4							_
🚳 Wolf - main data manager						-	
File Help LAZ Tools Cross section	ons Colormap	Analyze	Options	Walous			
Open project							
Save project							
Save							
Save as							
Save to image							
Copy image							
Gltf2	>						
Create/Open multiblock model							
Check headers							
Open hydrological model							
Set comparison							
Multiviewer							
3D viewer							
Create	>	Cre	ate array				
Add	>	Cre	ate array fr	om Lidar 2002			
.		Cre	ate array fr	om bathymetry fil	e		
Recursive scan		Cre	ate vectors	i			
Quit	CTRL+Q	Cre	ate view				
		Cre	ate cloud				
ew scenarios manager 2D		Cre	ate Wolf2D) manager			
		Cre	ate scenari	os manager			
		Cre	ate BC mai	nager Wolf2D			
		Cre	ate particle	e system			
		Cre		/			
		Cre	ate accept	ability manager			

🚳 Wolf - main data manager	- 🗆 X	Scenario WOLF2D_GPU		×
File Help LAZ Tools Cross sections Colormap	Analyze Options Walous	2D GPU Models	Reload/Upd	ate structure
Open project		> ProjectA_Phase1	Create .tif inf	iltration zones
Save project		ProjectA_Phase2 ProjectB	Create vo	pid scripts
Save		> ProjectC	Assembly .vrt	to current level
Save as Save to image			Translate	.vrt to .tif
Copy image			Check co	onsistency
Gltf2 >			Search spatial covera	age from current level
Create/Open multiblock model			List sime	ulation(s)
Check headers			Create sin	nulation(s)
Open hydrological model			Run ba	tch file !
Set comparison			Transfer initi	al conditions
Multiviewer			Extract .tif files for a	all selected scenarios
3D viewer			Filter independent zones	0.01
Create >	Create array	Shape:0x0		
Add >	Create array from Lidar 2002 Create array from bathymetry file	Spatial extent :		
Recursive scan	Create vectors	- Origin : (0.0 ; 0.0) - End : (0.0 ; 0.0)		
Quit CTRL+Q	Create view	- Widht x Height : 0.0 x 0.0 - Translation : (0.0 ; 0.0)		
	Create cloud	Null value : 0.0		
New scenarios manager 2D	Create scenarios manager			
	Create BC manager Wolf2D			
	Create particle system			
	Create Wolf1D			
ece	Create acceptability manager			

2. Acceptability¹ manager A risk module incorporated in WOLF

¹*First results of the Resilience Working Group led within the framework of the Flood Transversal Group*

Level	Vulnerability	Criterion
5	Huge	Examples: Hospitals, fire stations, civil protection. Description: Extreme impact. Severe constraints with high risks; submersion is likely to cause major disruption or damage, requiring extensive mitigation measures.
4	High	Examples: Nursing homes, health services, police. Description: Significant impact. Submersion leads to considerable constraints, with substantial risks and potential for severe disruption or damage.
3	Moderate	Examples: Residential buildings, schools, economic activities. Description: Moderate impact. Some constraints are present; submersion may cause noticeable effects but can be managed with standard measures.
2	Low	Examples: Recreational areas, storage zones, ports. Description: Minimal impact. Limited constraints; submersion poses negligible risk, with manageable effects on functionality and operations.
1	Null	Examples: Natural reserves, parks. Description: No constraints. Submersion is generally beneficial.

- Roughness coefficient
- Boundary conditions
- Topography/ bathymetry

2. Acceptability manager | Note on data treatment (topography)

Green LIDAR (2023, 50[cm] resolution) data

Existence of interpolation problems

e.g until 7[m] errors at the municipality in Theux

Correction with tool existing in WOLF

250[m]
- 204.258
- 195.050
- 189.922
-185.835
-182.266
- 175.769 - 173.193 - 170.491
-167.508 -164.810
- 161.528 - 158.216
- 153.052
 141[m]

e.g Simplistic local acceptability score example

Vulnerability level X —

wd T	wd ₀	\mathbf{wd}_1	\mathbf{wd}_2	\mathbf{wd}_3	\mathbf{wd}_4
\mathbf{T}_{a}	0	0	-1	-2	-2
\mathbf{T}_b	0	0	-1	-2	-2
\mathbf{T}_{c}	0	1	0	-2	-2
\mathbf{T}_d	0	1	0	-1	-2
\mathbf{T}_{e}	0	2	1	0	-1

Combined acceptability matrix

$$A^* = \sum_{i=k}^n a_i A_i \tag{1}$$

with the normalized weighting coefficients a_i defined in Eqs.(2,3,4) and A_i the local acceptability matrices.

							7
a_2	a_5	a_{15}	a_{25}	a_{50}	a_{100}	a_{1000}	
0.65	0.2	0.08	0.04	0.015	0.0095	0.0055	

Normalized weighting coefficients

$$a_k = \frac{1}{T_k} + \frac{1}{2} \left(\frac{1}{T_k} - \frac{1}{T_{k+1}} \right)$$
(2)

$$a_{l} = \frac{1}{2} \left(\frac{1}{T_{l-1}} - \frac{1}{T_{l}} \right) + \frac{1}{2} \left(\frac{1}{T_{l}} - \frac{1}{T_{l+1}} \right)$$
(3)

$$a_m = \frac{1}{T_m} + \frac{1}{2} \left(\frac{1}{T_{m-1}} - \frac{1}{T_m} \right)$$
(4)

with the subscript *k* corresponding to the weighting coefficient for the first available return period denoted T_k , *m* to the last, and *l* for intermediate elements. The notation +1 (or -1) corresponds to the next (or previous) available return period.

2. Acceptability manager | User-friendly interface

2. Acceptability manager | User-friendly interface

3. Further investigations

3. Further investigations Acceptability manager

- Questioning the weighting coefficients;
- In-depth analysis of the Theux case study, and generalization;
- Creation of a technical tool for managing scenarios in terms of acceptability.

3. Further investigations | Simulate to communicate

Attention must be paid for communicating results.

For example, focusing on **pedestrian risks.**

Two examples :

AKWS+ scale

'Total depth D(wd, v) [m]' which is equivalent height corresponding to the **force** exerted by the water flow

"2D shallow water GPU parallelized scheme for high resolution realfield flood simulations", R Vacondio et al., River Flow 2014

Thank you for your attention

Other questions ? Damien Sansen damien.sansen@uliege.be