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From a noisy observation ...y
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... can we recover a clean image ?
(or a distribution thereof)

x
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Observation modelPhysical model
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Observation modelPhysical model

Problem statement

Estimate the latent state  from the observation  through the Bayesian
posterior

where

 is a known observation model,

 is a prior distribution over the latent state,

 is the marginal density of the observations.

Note: In this talk, we do not consider the inference of model parameters  given 
.

x y

p(x∣y) = ,
p(y)

p(y∣x)p(x)

p(y∣x)

p(x)

p(y)

θ

y
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Simulation-based inference

Neural network surrogates  of the posterior  can be trained in
various ways, for example by using a conditional density estimator  and
directly maximizing

q(x∣y) p(x∣y)
q(x∣y)

E log q(x∣y) .p(y)p(x∣y) [ ]
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Issues:

Neural density estimators, such as conditional normalizing �ows, do not
scale well to high dimensions (e.g., when  is an image).

The neural surrogate  is wired to the observation model , and
must be retrained when it changes.

Paired data  are required for training.

x

q(x∣y) p(y∣x)

(x, y)
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Proposition: Score-based generative models can address all those issues.

―
Credits: Imagen 3 Team, Google, 2024 (arXiv:2408.07009). 10 / 30

https://storage.googleapis.com/deepmind-media/imagen/imagen_3_report.pdf


Score-based generative models 101

Samples  are progressively perturbed through a diffusion process
described by the forward SDE

where  is the perturbed sample at time , leading to a Gaussian diffusion
kernel

Forward diffusion process.

x ∼ p(x)

dx = f x dt + g dw ,t t t t t

xt t

p(x ∣x) = N (x ∣α x, Σ ).t t t t
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The reverse process satis�es a reverse-time SDE that can be derived analytically
from the forward SDE as

Therefore, to generate data samples , we can draw noise
samples  and gradually remove the noise therein by
simulating the reverse SDE from  to .

Reverse denoising process.

dx = f x − g ∇ log p(x ) dt + ηg dw .t [ t t 2
1 + η2

t
2

xt t ] t t

x ∼ p(x ) ≈ p(x)0 0

x ∼ p(x ) ≈ N (0, Σ )1 1 1

t = 1 0
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The score function  in the reverse SDE is unknown, but can be
approximated by a neural network  by minimizing the denoising score
matching objective

The optimal denoiser  is the mean  which, via Tweedie's formula,
allows to use  as a score estimate in the
reverse SDE.

∇ log p(x )xt t

d (x , t)θ t

E λ ∣∣d (x , t) − x∣∣ .p(x)p(t)p(x ∣x)t
[ t θ t 2

2]

dθ E[x∣x ]t
s (x , t) = Σ (d (x , t) − x )θ t t

−1
θ t t
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Observation model

Inverting single observations

Score-based generative models can be made conditional by extending the
denoiser  to  to model the conditional distribution .
The denoiser is then trained to minimize the conditional denoising score
matching objective

d (x , t)θ t d (x , t, y)θ t p(x∣y)

E λ ∣∣d (x , t, y) − x∣∣ .p(y)p(x∣y)p(t)p(x ∣x,y)t
[ t θ t 2

2]
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Alternatively, because of the Bayes' rule, the posterior score  to
inject in the reverse SDE can be decomposed as

This is particularly convenient as

if  can approximated, then it enables zero-shot posterior
sampling from a pre-trained diffusion prior , without having to pre-
wire the neural denoiser to the observation model .

it does not require paired data .

∇ log p(x ∣y)xt t

∇ log p(x ∣y) = ∇ log p(x ) + ∇ log p(y∣x ).xt t xt t xt t

∇ log p(y∣x )xt t

p(x )0
p(y∣x)

(x, y)
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Approximating 

Assume a differentiable measurement function  and a Gaussian observation
model .

We want to estimate the score  of the noise-perturbed
likelihood

DPS (Chung et al, 2022): .

SDA (Rozet and Louppe, 2023): 

MMPS (Rozet et al, 2024, for ): 
, where  is

estimated using Tweedie's covariance formula and the conjugate gradient
method.

Since all these approximations are Gaussian, the score of the noise-perturbed
likelihood can be estimated analytically from their parameterization.

∇ log p(y∣x )xt t

A
p(y∣x) = N (y∣A(x), Σ )y

∇x log p(y∣x )t t

p(y∣x ) = p(y∣x)p(x∣x )dx.t ∫ t

p(y∣x ) ≈ N (y∣A(E[x∣x ]), Σ )t t y

p(y∣x ) ≈ N (y∣A(E[x∣x ]), Σ + AΓA )t t y μt
2

σt
2

T

A(x) = Ax

p(y∣x ) ≈ N (y∣AE[x∣x ], Σ + AV[x∣x ]A )t t y t
T V[x∣x ]t
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Example: Inverting gravitational lensing observations.
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If  is a diffusion prior over regular galaxy images and  is a lensing
operator, observations  can be inverted to recover the original galaxy images 
by posterior sampling from .

p(x) p(y∣x)
y x

p(x∣y)

―
Credits: Adam et al., 2022 (arXiv:2211.03812). 18 / 30

https://arxiv.org/abs/2211.03812


Score-based data assimilation in dynamical systems

Transition
model

Transition
model

Observation
model

Observation
model

Observation
model

Assume the latent state  evolves according to a transition model 
and is observed through an observation model . (Typically, the
observation model will be , but we consider the general case here.)

x p(x ∣x )i+1 i

p(y∣x )1:L

p(y ∣x )i i
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The goal of data assimilation is to estimate plausible trajectories  given
one or more noisy observations  (or , that is to estimate the posterior

x1:L
y y )1:L

p(x ∣y) = p(x ) p(x ∣x ).1:L
p(y)

p(y∣x )1:L
0

i=1

∏
L−1

i+1 i
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Our approach:

Build a score-based generative model  of arbitrary-length
trajectories .

Use zero-shot posterior sampling to generate plausible trajectories from
noisy observations .

p(x )1:L
∗

y

―
*:The score of a (noise perturbed) trajectory can be approximated by a sum of scores. See paper for details. 21 / 30



Sampling trajectories from noisy, incomplete and coarse-grained observations.
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Sampling trajectories of -dimensional states
from a two-layer quasi-geostrophic model.

256 × 256 × 6
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Sampling physically-consistent trajectories from implausible constraints.
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Observation model

Learning priors from noisy observations

Assume only observations  and a known observation model .

The objective of Empirical Bayes is �nd a prior model  such that

is closest to .

y ∼ p(y) p(y∣x)

q (x)θ

q (y) = p(y∣x)q (x)dxθ ∫ θ

p(y)
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Our approach:

If we parameterize the latent state  with a diffusion prior , then
Expectation-Maximization can be used to maximize .

It can be shown that the EM update

where  is obtained by posterior sampling from , leads to a
sequence of parameters  such that  is monotonically
increasing and converges to a local optimum.

x q (x)θ

q (y)θ

θ = arg E E log q (x) ,k+1
θ
max p(y) q (x∣y)θk

[ θ ]

q (x∣y)θk q (x)θk

θk E log q (y)p(y) [ θk ]
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Samples from the prior  along the EM iterations
when training from corrupted CIFAR-10 images.

q (x)θk
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Samples from the posterior  along the EM iterations
when training from corrupted CIFAR-10 images.

q (x∣y)θk
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Posterior samples for accelerated MRI using a diffusion prior trained only from
observations with subsampled frequencies.
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Conclusions

Score-based generative models...

can be used for high-dimensional inverse problems;

enable zero-shot posterior sampling, without pre-wiring the network to
observations;

do not require paired data.

Next challenges:

Rigorous diagnostics for the quality of the approximation;

Scalability to even larger dimensions (Earth-scale weather models, videos);
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The end.
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