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ATLAS

EXPERIMENT
Candidate Event:
pp—H(—=bb) + W(—pv)
Run: 338712 Event: 335908183
2017-10-19 23:31:18 CEST
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Problem statement

Estimate the latent state « from the observation y through the Bayesian
posterior

p(z|y) = p(y|z)p(x)
p(y)

Y

where

 p(y|x)is a known observation model,
« p(x)is a prior distribution over the latent state,

. p(y) Is the marginal density of the observations.

Note: In this talk, we do not consider the inference of model parameters 6 given
V.



Simulation-based inference

Neural network surrogates g(x|y) of the posterior p(x|y) can be trained in

various ways, for example by using a conditional density estimator g(z|y) and
directly maximizing

Ep(y)p(zly) 1og q(z|y)] -



Issues:

e Neural density estimators, such as conditional normalizing flows, do not
scale well to high dimensions (e.g.,, when x is an image).

« The neural surrogate g(x|y) is wired to the observation model p(y|z), and
must be retrained when it changes.

« Paired data (z, y) are required for training.
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Proposition: Score-based generative models can address all those issues.

Credits: Imagen 3 Team, Google, 2024 (arXiv:i2408.07009).
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https://storage.googleapis.com/deepmind-media/imagen/imagen_3_report.pdf

Score-based generative models 101

Samples x ~ p(x) are progressively perturbed through a diffusion process
described by the forward SDE

dz; = fiz,dt + g;dwy,

where x; is the perturbed sample at time ¢, leading to a Gaussian diffusion
kernel

p(zi|z) = N($t|at$‘a i)

—— Stochastic process

Forward diffusion process.
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The reverse process satisfies a reverse-time SDE that can be derived analytically
from the forward SDE as

1+
dz; = ftwt - 77

— " ¢*V,, logp(z,)| dt + ng.dw;.
Therefore, to generate data samples z¢ ~ p(zg) ~ p(x), we can draw noise

samples 1 ~ p(z;) ~ N (0, X1) and gradually remove the noise therein by
simulating the reverse SDE fromt = 11to 0.

—— Reverse stochastic process

Reverse denoising process.
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The score function V, log p(z+) in the reverse SDE is unknown, but can be
approximated by a neural network dp (¢, t) by minimizing the denoising score
matching objective

Ep(w)p(t)p(xtlx) P‘tHdﬁ (z¢,t) — 5’/'“3] .

The optimal denoiser dy is the mean [E|z|x;| which, via Tweedie's formula,
allows to use sg(z¢,t) = X, ' (dg(z¢,t) — x¢) as a score estimate in the

reverse SDE.
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Observation model
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Inverting single observations

Score-based generative models can be made conditional by extending the
denoiser dy (x4, t) to dg(zy, t,y) to model the conditional distribution p(x|y).
The denoiser is then trained to minimize the conditional denoising score

matching objective

Ep(y)p(zly)p®p(aley) [Mlldo (@, t,y) — z][3] .



v

Alternatively, because of the Bayes' rule, the posterior score V., log p(x;|y) to
inject in the reverse SDE can be decomposed as

Vi, log p(z:|y) = Vg, log p(z:) + Va, log p(y|z:)-

This is particularly convenient as

o if V,, log p(y|z;) can approximated, then it enables zero-shot posterior
sampling from a pre-trained diffusion prior p(z ), without having to pre-
wire the neural denoiser to the observation model p(y|x).

« it does not require paired data (z, y).
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Approximating V., log p(y|z:) a' i @;3

Assume a differentiable measurement function A and a Gaussian observation

model p(y|z) = N (y|A(z), Zy).

We want to estimate the score Vz; log p(y|z:) of the noise-perturbed
likelihood

p(yla:) = / p(y|2)p(a|z:)d.

« DPS(Chung et al, 2022): p(y|z;) =~ N (y|A(E[z|z]), Z,).
e SDA (Rozet and Louppe, 2023):
p(ylze) = N (y|AE[z|z:]), =y + 5 ATAT)

e MMPS (Rozet et al, 2024, for A(x) = Ax):
p(y|z:) ~ N (y|AE[z|z:], B, + AV[z|z:| AT), where V[z|z] is
estimated using Tweedie's covariance formula and the conjugate gradient
method.

Since all these approximations are Gaussian, the score of the noise-perturbed
likelihood can be estimated analytically from their parameterization.
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Example: Inverting gravitational lensing observations.
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Ground Truth x~plz|y) x~plx|y)
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If p(x) is a diffusion prior over regular galaxy images and p(y|z) is a lensing
operator, observations y can be inverted to recover the original galaxy images «
by posterior sampling from p(x|y).

Credits: Adam et al, 2022 (arXiv:2211.03812).


https://arxiv.org/abs/2211.03812

Score-based data assimilation in dynamical systems

Transition . Transition

Observation Observation

Observation
model model

model

Yi—1 Yi Yir1

Assume the latent state = evolves according to a transition model p(x;+1|x;)
and is observed through an observation model p(y|z1.1, ). (Typically, the
observation model will be p(y;|x;), but we consider the general case here.)



The goal of data assimilation is to estimate plausible trajectories x1.1, given
one or more noisy observations y (or ylzL), that is to estimate the posterior

L-1

p(zirly) = %P(wo) HP(%’H\%)-

20/30



Forward SDE (data — noise)
da(t) = f(D)a ()t + g(t)dw(t) —— z1,1(t)

¢ NSO
Xé%}& —t :
Zi—1:i+1(0) vﬁﬁ(ﬂ:ip(xll(t)) xi—k:i+kz(t)\' -_."r--. : ;o
] i

21.0(0) +—— dz(t) = [f(t):z:(t) — g(t)* Ve logp(x(t))]dt + g(t)dw(t)
Reverse SDE (noise — data)

Our approach:

e Build a score-based generative model p(x1.1, ) of arbitrary-length
trajectories™.

e Use zero-shot posterior sampling to generate plausible trajectories from
noisy observations y.

*The score of a (noise perturbed) trajectory can be approximated by a sum of scores. See paper for details.



Sampling trajectories from noisy, incomplete and coarse-grained observations.



L1:1:6

L6

SDA

Sampling trajectories of 256 x 256 x 6-dimensional states
from a two-layer quasi-geostrophic model.



y=A(zr)+n

1 Physical model >

Sampling physically-consistent trajectories from implausible constraints.
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Learning priors from noisy observations
Assume only observations y ~ p(y) and a known observation model p(y|x).

The objective of Empirical Bayes is find a prior model gg () such that

2(y) = / p(yle)as () de

is closest to p(y).



Our approach:

o If we parameterize the latent state & with a diffusion prior gg(z), then
Expectation-Maximization can be used to maximize gy (y).

e |t can be shown that the EM update

Or+1 = arg max Ep(y) By, (2ly) 108 g0(2)] ,

where gp, (x|y) is obtained by posterior sampling from gp, (), leads to a
sequence of parameters 6 such that [, [log gs, (v)] is monotonically
increasing and converges to a local optimum.
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Samples from the prior gg, () along the EM iterations
when training from corrupted CIFAR-10 images.
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Samples from the posterior gg, (z|y) along the EM iterations
when training from corrupted CIFAR-10 images.
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Mask Zero-filled Sample 1 Sample 2 Ground-truth

Posterior samples for accelerated MRI using a diffusion prior trained only from
observations with subsampled frequencies.
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Conclusions
Score-based generative models...

e can be used for high-dimensional inverse problems;

e enable zero-shot posterior sampling, without pre-wiring the network to
observations;

e do not require paired data.
Next challenges:

e Rigorous diagnostics for the quality of the approximation;

 Scalability to even larger dimensions (Earth-scale weather models, videos);



The end.
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