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Parameters ¢ —_— Simulator —_—

Latent 2z

Observables x

Prediction:

Well-motivated mechanistic, causal model

Simulator can generate samples = ~ p(z|6)

<€

Inference:

Interactions between low-level components lead to
challenging inverse problems

Likelihood p(z|0) = /dz p(x, z|0) is intractable



Takeaway 0: Simulation-based inference is taking off!

Simulation-Based Inference in PHY-STAT
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Warkshop in Munich this summer This workshop alone !

Credits: Aihsik Ghosh. 3/23



Takeaway 1: SBI is also valuable when likelihoods are tractable!

For example, with deterministic simulators and additive noise,
p(x|0) = N (z; £(0), X(0))-

GW forward model
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Parameters of GW model:

Binary parameters 8 € RS ————— Parameters of interest

Detector noise Spectrum Sn = Rk —_— Detector pl'“}_'n_\rf’\." = P(Hl d! 'Srl)

from external data
Maximilian Dax

Credits: Maximilian Dax.
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Inference

To account for measurement noise and make the simulation
model similar to instrumental data, we consider a Gaussian noise
model with a standard deviation o. The spectra f(6) generated by
petitRADTRANS are randomly perturbed with additive noise € ~
N(0, ), where € € B3 is a vector of random noise instances in
each wavelength bin. Here we assume the same noise variance in
each wavelength bin for the sake of simplicity, but more complex
noise models (including noise covariance) could be used in our
simulator. The final simulator output is given by x = f(#) + €.

Credits: Vasist et al, 2023.


https://arxiv.org/abs/2301.06575

Credits: Tilman Plehn.

Takeaway 2: Unfolding = Aggregated amortized posteriors.

p(wpart ) — p(mreco )p(wpart ‘xreco )dmreco

Unfolding by generation

Targeting conditional probability (gutter, TR, Winterhaider, .)
- just like forward ML-generation

- learn inverse conditional probability from (Xpart, Xreco)
psim(xpart) punlull:l(xpart:'

paired daiElI A‘» Prodel (*part | reco )

correspondence
psim(XI‘BEn) " pdala{xrecn)

Improvements crucial [xavier viladamigo's poster]

- make networks more precise — TraCFM
- remove training prior  [Backes, Butter, Dunford, Malaescu]

— Success through generative progress
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Takeaway 3: Requirements for accuracy and reliability are strict.

Motivation

why GWs need ML Increasing event rate Large-scale analyses Follow-up searches
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Why ML needs GWs

|Strict requirements for accuracy,

' 1C lexity of GW date
ireliability and interpretability (ompexty o e

= GW data analysis pLHhcs existing ML past its limits

Maximilian Dax

Challenges for NSBI:

* Robustness: Design and validation

* Uncertainties: Quantifying and propagating systematics
* Neyman Construction: Throwing toys in high-dimensions

Credits: Maximilian Dax, Aishik Ghosh.



Takeaway 4: Use diagnostics™ to assess the quality of the approximation.

Diagnostics with classifiers

This paper also introduced two diagnostics

¢ classifier tests with data reweighed

Approximating Likelihood Ratios with
Calibrated Discriminative Classifiers

Kyle Cranmer', Juan Pavez?, and Gilles Louppe!
"New York University e ) e
“Federico Santa Maria University

(d) Poorly calibrated, well trained

3.5 Diagnostics .
“The second disgnostic procedure leverages the connection of this technique to direct
density Tatio estimation and its application ta covariate shift and importance sampling

The idea is simple: we test the relationship p(x|a) = p(x|f:)r(s(x: 6. 0,)) with the ap-

i

praximate ratio #(3{x;f,)) and samples drawn from the generative model. Mlore spocit-

(€) Well trained, well calibrated (f) Well trained, well calibrated.

o 5 Results from the diagnostics described in Sec. 3.5. The rows correspond to the
iy of the training and calibration of the classifier. The left plots probe the sensitivity

situations can e disentangled to some degree by training another classifier to distinguish
to 6y, while the right plots show the ROC curve for a calibrator trained to discriminate

between an unweighted distribution of samples from p{x|é .
samples from p(x|fy) and samples from plx|f) weighted o indicated in the legend

bproximating Likelihood Ratios with

Calibration Curves

Calibration plots
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Similar tests possibly for many NSBI
methods, see Hermans et al :

*None of those diagnotics provide sufficient guarantees.
Credits: Kyle Cranmer, Aishik Ghosh.
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Evaluating Fast Calo Simulators

I

Takeaway 4b: ... and look at (too) many plots!

Credits: Aishik Ghosh.
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What if diagnostics fail?
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Takeaway 5: More data, more parameters, more compute.

ie., S ~ p(Sa), n® ~ p(SL). Werconstruct training We also increase the total number of coupling transforms
sets based on 5 x 10° sets of intrinsic parameters, but 0 30 from 15 i [36]. The flow therefore consists of 300
by sampling extrinsic parameters and noise realizations hidden layers. In total, the embedding network and the
during training, the effective size of the training set is flow combined have 1.31 - 10° learnable parameters for
infinite in these dimensions.

for validation to check for overfitting. Since the training
and validation loss are in close agreement in Fig. 5 we

conclude that overfitting is minimal. Training 450 epochs

NVIDIA A100 GPU.?

Credits: Dax etal, 2021. 11/23


https://arxiv.org/pdf/2106.12594

Takeaway 6: Regularize the inference network.

Quantifying uncertainty on estimated likelihood..

* Train an ensemble of networks, each on a bootstrapped
version of the training dataset
* Or Bayesian networks 7 [pelaunoy et al, aiXiv2408.15136]

m—im

* The spread in their prediction provides the uncertainty due to
limited training statistics, and random network initialisation

* Ensemble average used as final prediction, so what's the
uncertainty on that 7
* Too expensive to train thousands of ensembles
* Create bootstrapped ensembles ?
« Each network trained on bootstrapped training
dataset ?

Ensembles and Bayesian model averaging (BNNs) smooth out the
approximation.

Credits: Aishik Ghosh 12/23
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Approximations can also be regularized to be conservative (BNRE, BNPE).

Credits: Delaunoy et al, 2022; Delaunoy et al, 2023. 13/23


https://arxiv.org/abs/2208.13624
https://arxiv.org/abs/2304.10978

Not enough!

14/23



Takeaway 7: Hardcode domain knowledge in the inference network.

Ingredients

Transformer architecture

Input and output data
can have one or
multiple token
dimensions

Equi
linear

Linear layers
between GA
representations with

Credits to Johann Brehmer

l0Te—=-—---a
= e --#-- MLP
y
Attention blocks | Transformer
can be stacked to large depth, 0.9
gradients are propagated

efficiently Q

f 0.8
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layer J
linear attn. linear linear i

norm g 079
b
_____ | Tepp— Z

0.6

tt+0j
Geometric attention Geometric product
generalizes scaled dot- allow for construction 0.5 164 165 1'06
equivariance constraint product attention of new geometric types
, Number of training samples
NPE with symmetries: Group-equivariant NPE
Equivariance (covariance) under time shift 4 i
. =27
VgEG T,

p@|d) = p(gl|T,d)

NPE learns such symmetries from simulation data
= requires network and training capacity
= can we instead enforce such symmetries?

Group-equivariant NPE (GNPE)

Credits: Jonas Spinner, Maximilian Dax.

p(0|d)

2Q | A
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inference with imperfect inference networks.

Takeaway 8: Importance sampling is a cheat code for asymptotically exact

Importance-sampled NPE (NPE-IS)

Dax+ (PRL 2023)

If likelihood is tractable, can reweight NPE results

Target (Prior x Likelihood)
A“"’”

Effective number of samples as performance metric

nege = (Zw;)” /Z: (w?) € = negg/n € (0,1]

Proposal (NPE)  @; ~ q(0]d)
= p(@)p(d|8,)

> ! q(0.|d)

Estimate of Bayesian evidence

1
pd) ==Y w Giogpiay = /(L = ©)I(71- €)

Maximilian Dax

Credits: Maximilian Dax.

= asymptotically exact

verification without for
ground truth posterior

unbiased & precise
estimate of evidence
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If p(x;]0;) is intractable, the correction factor w; can be estimated by a
classifier.

» Classifier-based diagnostics provide diagnostics, but also a way to correct
the approximation.

e If repeated, then one obtains a sequential NRE algorithm.

17/23



Takeaway 9: Nuisance parameters are a nuisance.

Curse of dimensionality for nuisance parameters
The traditional binned-template analysis approach uses a fixed interpolation / “template
morphing” strategy
* Dependence on the parameters of interest are usually very well motivated
* makes assumptions about factorization of systematics that might not be true
e ... either way, fixed parametric form makes it VERY sample efficient
In contrast, parametrized NN is physics-agnostic and the interpolation is non-parametric
e Flexible, but requires many samples for a high-dimensional nuisance parameter space
e Curse of dimensionality

s there a way to apply similar assumptions as template-based morphing strategy in
neural SBI context?

Credits: Kyle Cranmer. 18/23



R. Schoéfbeck &

Jay Sandesara both
showed work in that
direction at PhyStat SBI

A. Schifbedk & PhyStat SBI

BACK TO REALITY!
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Recent developments shown at PhyStat SBI
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Takeaway 10: Neural density estimators do not know what they do not
know.

Credits: Lily H. Zhang.

Pixel CNN
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Eric Nalisnick, Akihro Matsukawa, Yee Whye Teh, Dilan Gorur,
Balaji Lakshiminarayan. “Do Deep Generative Models Know
What They Don't Know?" ICLR 2019.
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MOdeliﬂg dUCkS I What is "good enough”?

* We know our simulators are imperfect: just need them to be good enough for our specific needs

If it looks like a duck swims like a duck, and quacks hke a duck, then it probably is a duck.

f it looks like data, it's a ficiently i.:';.?;.-'(-' simulator?]

Alexander Held

Simulators are imperfect, but good enough?

Credits: Alexander Held.



Wait a minute... If the simulator is misspecified,
then data data may be OQD for the inference network.
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My takeaways

©® N o oA W N

. Simulation-based inference is also valuable when likelihoods are tractable!

Unfolding = Aggregated amortized posteriors.
Requirements for accuracy and reliability are strict.

Use diagnostics to assess the quality of the approximation.
More data, more parameters, more compute.

Regularize the inference network.

Hardcode domain knowledge in the inference network.

.Importance sampling is a cheat code for asymptotically exact inference

with imperfect inference networks.

. Nuisance parameters are a nuisance.

. Neural density estimators do not know what they do not know.



