
Deep generative models

A latent variable model perspective

2024 IAIFI Summer School
August 5, 2024

Gilles Louppe
g.louppe@uliege.be

1 / 73

mailto:g.louppe@uliege.be

Slides, helpful resources, and tutorials can all be found at

https://github.com/glouppe/iai�-summer-school-2024.

2 / 73

https://github.com/glouppe/iaifi-summer-school-2024

Outline
1. Deep generative models

2. Variational auto-encoders

3. Diffusion models

4. Latent diffusion models

5. Normalizing �ows

3 / 73

Deep generative models

3 / 73

Generative models

A (deep) generative model is a probabilistic model that can be used as a
simulator of the data.

Formally, a generative model de�nes a probability distribution over the
data , parameterized by .

pθ

p (x)θ

x ∈ X θ

4 / 73

Variational auto-encoders
(Kingma and Welling, 2013)

Diffusion models
(Midjourney, 2023)

5 / 73

―
Credits: Karsten et al, 2022; Siddharth Mishra-Sharma, 2023. 6 / 73

https://cvpr2022-tutorial-diffusion-models.github.io/
https://smsharma.io/iaifi-summer-school-2023/

Simulators as generative models

A simulator prescribes a generative model that can be used to simulate data .x

―
Credits: Siddharth Mishra-Sharma, 2023. 7 / 73

https://smsharma.io/iaifi-summer-school-2023/

Conditional simulators

A conditional simulator prescribes a way to sample from the likelihood ,
where is a set of conditioning variables or parameters.

p(x∣ϑ)
ϑ

―
Credits: Siddharth Mishra-Sharma, 2023. 8 / 73

https://smsharma.io/iaifi-summer-school-2023/

9 / 73

p(z ∣ϑ)p

10 / 73

p(z ∣ϑ) = p(z ∣ϑ)p(z ∣z)dzs ∫ p s p p

10 / 73

p(z ∣ϑ) = p(z ∣ϑ)p(z ∣z)p(z ∣z)dz dzd ∬ p s p d s p s

10 / 73

p(x∣ϑ) = p(z ∣ϑ)p(z ∣z)p(z ∣z)p(x∣z)dz dz dx∭ p s p d s d p s

10 / 73

Produce samples Inference Encode complex priors

What can we do with generative models?

x ∼ p(x∣ϑ)
p(ϑ∣x) =

p(x)
p(x∣ϑ)p(ϑ) p(x)

―
Credits: Siddharth Mishra-Sharma, 2023. 11 / 73

https://smsharma.io/iaifi-summer-school-2023/

Variational auto-encoders

11 / 73

Latent variable model

Consider for now a prescribed latent variable model that relates a set of
observable variables to a set of unobserved variables .

The probabilistic model de�nes a joint probability distribution , which
decomposes as

x ∈ X z ∈ Z

p (x, z)θ

p (x, z) = p (x∣z)p(z).θ θ

12 / 73

13 / 73

How to �t a latent variable model ?pθ

14 / 73

How to �t a latent variable model ?pθ

θ∗ = arg p (x)
θ
max θ

14 / 73

How to �t a latent variable model ?pθ

θ∗ = arg p (x)
θ
max θ

= arg p (x∣z)p(z)dz
θ
max ∫ θ

= arg E p (x∣z) dz
θ
max p(z) [θ]

≈ arg p (x∣z)
θ
max

N

1

i=1

∑
N

θ i

14 / 73

How to �t a latent variable model ?

The curse of dimensionality will lead to poor estimates of the expectation.

pθ

θ∗ = arg p (x)
θ
max θ

= arg p (x∣z)p(z)dz
θ
max ∫ θ

= arg E p (x∣z) dz
θ
max p(z) [θ]

≈ arg p (x∣z)
θ
max

N

1

i=1

∑
N

θ i

14 / 73

Variational inference

Let us instead consider a variational approach to �t the model parameters .

Using a variational distribution over the latent variables , we have

θ

q (z)ϕ z

log p (x)θ = logE p (x∣z)p(z) [θ]

= logEq (z)ϕ
[

q (z)ϕ

p (x∣z)p(z)θ]

≥ E log (ELBO(x; θ, ϕ))q (z)ϕ
[

q (z)ϕ

p (x∣z)p(z)θ]

= E log p (x∣z) − KL(q (z)∣∣p(z))q (z)ϕ
[θ] ϕ

15 / 73

Using the Bayes rule, we can also write

Therefore, .

ELBO(x; θ, ϕ) = E logq (z)ϕ
[

q (z)ϕ

p (x∣z)p(z)θ]

= E logq (z)ϕ
[

q (z)ϕ

p (x∣z)p(z)θ

p (x)θ

p (x)θ]

= E log p (x)q (z)ϕ
[

q (z)ϕ

p (z∣x)θ
θ]

= log p (x) − KL(q (z)∣∣p (z∣x)).θ ϕ θ

log p (x) = ELBO(x; θ, ϕ) + KL(q (z)∣∣p (z∣x))θ ϕ θ

16 / 73

Provided the KL gap remains small, the model parameters can now be
optimized by maximizing the ELBO,

θ , ϕ = arg ELBO(x; θ, ϕ).∗ ∗

θ,ϕ
max

17 / 73

So far we assumed a prescribed probabilistic model motivated by domain
knowledge. We will now directly learn a stochastic generating process
with a neural network.

We will also amortize the inference process by learning a second neural
network approximating the posterior, conditionally on the observed
data .

p (x∣z)θ

q (z∣x)ϕ

x

18 / 73

Variational auto-encoders

19 / 73

As before, we can use variational inference to jointly optimize the generative
and the inference networks parameters and :θ ϕ

θ , ϕ∗ ∗ = arg E ELBO(x; θ, ϕ)
θ,ϕ
max p(x) []

= arg E E [log]
θ,ϕ
max p(x) [q (z∣x)ϕ q (z∣x)ϕ

p (x∣z)p(z)θ]

= arg E E log p (x∣z) − KL(q (z∣x)∣∣p(z)) .
θ,ϕ
max p(x) [q (z∣x)ϕ

[θ] ϕ]

20 / 73

Step-by-step example

Consider as data the MNIST digit dataset:d

21 / 73

22 / 73

(Kingma and Welling, 2013)

23 / 73

A semantically meaningful latent space

The prior-matching term enforces simplicity in the latent
space, encouraging learned semantic structure and disentanglement.

KL(q (z∣x)∣∣p(z))ϕ

―
Credits: Siddharth Mishra-Sharma, 2023. 24 / 73

https://smsharma.io/iaifi-summer-school-2023/

Illustrative applications

Hierarchical compression of images and other data,
e.g., in video conferencing systems (Gregor et al, 2016).

25 / 73

Voice style transfer [demo] (van den Oord et al, 2017).

26 / 73

https://avdnoord.github.io/homepage/vqvae/

Design of new molecules with desired chemical properties
(Gomez-Bombarelli et al, 2016).

27 / 73

Questions?

Ask me anything!

28 / 73

https://giphy.com/gifs/keepupwithjaz-dog-cute-3ohc17IuNgUpALSaIM?utm_source=iframe&utm_medium=embed&utm_campaign=Embeds&utm_term=https%3A%2F%2Fglouppe.github.io%2F
https://giphy.com/gifs/keepupwithjaz-dog-cute-3ohc17IuNgUpALSaIM?utm_source=iframe&utm_medium=embed&utm_campaign=Embeds&utm_term=https%3A%2F%2Fglouppe.github.io%2F

Diffusion models

28 / 73

―
Credits: Kreis et al, 2022. 29 / 73

https://cvpr2022-tutorial-diffusion-models.github.io/

Forward diffusion process

With , we haveϵ ∼ N (0, I)

xt

q(x ∣x)t t−1

q(x ∣x)1:T 0

= x + ϵαt t−1 1 − αt

= N (x ; x , (1 − α)I)t αt t−1 t

= q(x ∣x)
t=1

∏
T

t t−1

―
Credits: Kreis et al, 2022. 30 / 73

https://cvpr2022-tutorial-diffusion-models.github.io/

―
Credits: Simon J.D. Prince, 2023. 31 / 73

https://udlbook.github.io/udlbook/

Reverse denoising process

with .

p(x)0:T

p(x)T

p (x ∣x)θ t−1 t

xt−1

= p(x) p (x ∣x)T

t=1

∏
T

θ t−1 t

= N (x ; 0, I)T

= N (x ;μ (x , t), σ (x , t)I)t−1 θ t θ
2

t

= μ (x , t) + σ (x , t)zθ t θ t

z ∼ N (0, I)

―
Credits: Kreis et al, 2022. 32 / 73

https://cvpr2022-tutorial-diffusion-models.github.io/

Markovian Hierarchical VAEs

33 / 73

Similarly to VAEs, training is done by maximizing the ELBO, using a variational
distribution over all levels of latent variables:q (z ∣x)ϕ 1:T

log p (x)θ ≥ E logq (z ∣x)ϕ 1:T [
q (z ∣x)ϕ 1:T

p(x, z)1:T]

34 / 73

Diffusion models are Markovian HVAEs with the following constraints:

The latent dimension is the same as the data dimension.

The encoder is �xed to linear Gaussian transitions .

The hyper-parameters are set such that is a standard Gaussian.

q(x ∣x)t t−1

q(x ∣x)T 0

35 / 73

Training

For learning the parameters of the reverse process, we can form a variational
lower bound on the log-likelihood of the data as

θ

E log p (x) ≥ E log := Lq(x)0 [θ 0] q(x)q(x ∣x)0 1:T 0 [
q(x ∣x)1:T 0

p (x)θ 0:T]

36 / 73

This objective can be rewritten as

where

 can be interpreted as a reconstruction term.
It can be approximated and optimized using a Monte Carlo estimate.

 is a denoising
matching term. The transition provides a learning signal for
the reverse process, since it de�nes how to denoise the noisi�ed input
with access to the original input .

 represents how close the distribution of the
�nal noisi�ed input is to the standard Gaussian. It has no trainable
parameters.

L = E logq(x)q(x ∣x)0 1:T 0 [
q(x ∣x)1:T 0

p (x)θ 0:T]

= E L − L − Lq(x)0 [0
t>1

∑ t−1 T]

L = E [log p (x ∣x)]0 q(x ∣x)1 0 θ 0 1

L = E KL(q(x ∣x ,x)∣∣p (x ∣x))t−1 q(x ∣x)t 0 t−1 t 0 θ t−1 t

q(x ∣x ,x)t−1 t 0

xt

x0

L = KL(q(x ∣x)∣∣p (x))T T 0 θ T

37 / 73

(Some calculations later...)

37 / 73

Interpretation 1: Denoising. Training a diffusion model amounts to learning a
neural network that predicts the original ground truth from a noisy input

.

=

arg L
θ
min t−1

arg E ∣∣ (x , t) − x ∣∣
θ
min q(x ∣x)t 0 2σt

2
1

(1 −)ᾱt
2

(1 − α)ᾱt−1 t
2

x̂θ t 0 2
2

x0
xt

38 / 73

Interpration 2: Noise prediction. Training a diffusion model amounts to
learning a neural network that predicts the noise that was added to the
original ground truth to obtain the noisy .

=

≈

arg L
θ
min t−1

arg E ∣∣ϵ (, t) − ϵ∣∣
θ
min N (ϵ;0,I) 2σt

2
1
(1 −)αᾱt t

(1 − α)t 2
θ

xt

x + ϵᾱt 0 1 − ᾱt 2
2

arg E ∣∣ϵ (, t) − ϵ∣∣
θ
min N (ϵ;0,I) θ

xt

x + ϵᾱt 0 1 − ᾱt 2
2

ϵ

x0 xt

39 / 73

Interpretation 3: Denoising score matching. Training a diffusion model
amounts to learning a neural network that predicts the score .

=

arg L
θ
min t−1

arg E ∣∣s (x , t) − ∇ log q(x)∣∣
θ
min q(x ∣x)t 0 2σt

2

1
αt

(1 − α)t 2
θ t xt t 2

2

∇ log q(x)xt t

40 / 73

Unfortunately, is not tractable in general. However, since
is learned in expectation over the data distribution , minimizing instead

ensures that .

∇ log q(x)xt t s (x , t)θ t

q(x)0

E E ∣∣s (x , t) − ∇ log q(x ∣x)∣∣q(x)0 q(x ∣x)t 0 2σt
2
1

αt

(1 − α)t 2
θ t xt t 0 2

2

s (x , t) ≈ ∇ log q(x)θ t xt t

41 / 73

Network architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-
attention layers to represent , or .(x , t)x̂θ t ϵ (x , t)θ t s (x , t)θ t

―
Credits: Kreis et al, 2022. 42 / 73

https://cvpr2022-tutorial-diffusion-models.github.io/

Continuous-time diffusion models

With , we can rewrite the forward process asβ = 1 − αt t

xt = x + N (0, I)αt t−1 1 − αt

= x + N (0, I)1 − βt t−1 βt

= x + N (0, I)1 − β(t)Δt t−1 β(t)Δt

―
Credits: Kreis et al, 2022. 43 / 73

https://cvpr2022-tutorial-diffusion-models.github.io/

When , we can further rewrite the forward process as

This last update rule corresponds to the Euler-Maruyama discretization of the
stochastic differential equation (SDE)

describing the diffusion in the in�nitesimal limit.

Δ → 0t

.
xt = x + N (0, I)1 − β(t)Δt t−1 β(t)Δt

≈ x − x + N (0, I)t−1 2
β(t)Δt

t−1 β(t)Δt

dx = − β(t)x dt + dwt 2
1

t β(t) t

44 / 73

The reverse process satis�es a reverse-time SDE that can be derived analytically
from the forward-time SDE and the score of the marginal distribution , asq(x)t

dx = − β(t)x − β(t)∇ log q(x) dt + dw .t [
2
1

t xt t] β(t) t

―
Credits: Song, 2021. 45 / 73

https://yang-song.net/blog/2021/score/

Conditional sampling

To turn a diffusion model into a conditional model, we can add
conditioning information at each step of the reverse process, as

p (x)θ 0:T

y

p (x ∣y) = p(x) p (x ∣x , y).θ 0:T T

t=1

∏
T

θ t−1 t

46 / 73

With a score-based model however, we can use the Bayes rule and notice that

where we leverage the fact that the gradient of with respect to is
zero.

In other words, controllable generation can be achieved by adding a
conditioning signal during sampling, without having to retrain the model. E.g.,
train an extra classi�er and use it to control the sampling process by
adding its gradient to the score.

∇ log p(x ∣y) = ∇ log p(x) + ∇ log p(y∣x),xt t xt t xt t

log p(y) xt

p(y∣x)t

47 / 73

Illustrative applications

Diffusion models for calorimeter shower simulation (Mikuni and Nachman,
2022)

―
Credits: Mikuni and Nachman, 2022. 48 / 73

https://arxiv.org/abs/2206.11898

Posterior samples of source galaxies in strong gravitational lenses with score-
based priors (Adam et al, 2022).

―
Credits: Adam et al, 2022. 49 / 73

https://arxiv.org/abs/2211.03812

Data assimilation in large-scale dynamical systems (Rozet and Louppe, 2023).

―
Credits: Rozet and Louppe, 2023. 50 / 73

https://arxiv.org/abs/2306.10574

Questions?

Ask me anything!

51 / 73

Latent diffusion models

52 / 73

―
Credits: Kreis, Gao, and Vahdat, 2023. 53 / 73

https://neurips2023-ldm-tutorial.github.io/

―
Credits: Kreis, Gao, and Vahdat, 2023. 53 / 73

https://neurips2023-ldm-tutorial.github.io/

―
Credits: Kreis, Gao, and Vahdat, 2023. 53 / 73

https://neurips2023-ldm-tutorial.github.io/

Diffusion models encode images in their noisy latent space.

―
Credits: Kreis, Gao, and Vahdat, 2023. 54 / 73

https://neurips2023-ldm-tutorial.github.io/

However, to encode each little detail, a lot of capacity is needed.

―
Credits: Kreis, Gao, and Vahdat, 2023. 54 / 73

https://neurips2023-ldm-tutorial.github.io/

Latent diffusion models

Latent diffusion models (LDMs) are made of two components:

A strong auto-encoder (and) that maps data to a latent space and
back.

An e�cient diffusion model that generates data in the latent space.

E D

―
Credits: Kreis, Gao, and Vahdat, 2023. 55 / 73

https://neurips2023-ldm-tutorial.github.io/

The advantages of LDMs over diffusion models are:

A compressed latent space. Training a diffusion model in a lower-
dimensional latent space is computationally more e�cient.

A regularized latent space. The latent space is trained to be simple, making
the diffusion process easier to reverse and faster to sample from.

Flexibility. The auto-encoder can be tailored to data (images, text, graphs,
point clouds, meshes, etc.) and the desired application.

56 / 73

Latent space regularization

Option 1: KL regularization, as in VAEs.

 is a Gaussian distribution.

Prior matching penalty .

Option 2: Vector quantization regularization, as in VQ-VAEs.

Discretize the latent space into a codebook.

q (z∣x)E

KL(q (z∣x)∣∣N (0, I))E

―
Credits: Kreis, Gao, and Vahdat, 2023. 57 / 73

https://neurips2023-ldm-tutorial.github.io/

Illustrative applications

Text-to-image generation with Emu (Dai et al, 2023).
―
Credits: Dai et al, 2023. 58 / 73

https://arxiv.org/pdf/2309.15807

Geometric latent diffusion models for 3d molecule generation (Xu et al, 2023).

―
Credits: Xu et al, 2023. 59 / 73

https://arxiv.org/abs/2305.01140

Normalizing �ows

60 / 73

Change of variables

Assume is a uniformly distributed unit cube in and .
Since the total probability mass must be conserved,

where represents the inverse determinant of the

linear transformation .

p(z) R3 x = f (z) = 2z

p(x) = p(x = f (z)) = p(z) = p(z) ,
Vx

Vz

8
1

= det8
1

∣
∣
∣
∣
∣
∣

⎝

⎛2
0
0

0
2
0

0
0
2⎠

⎞

∣
∣
∣
∣
∣
∣−1

f

61 / 73

What if is non-linear?f

―
Image credits: Simon J.D. Prince, Understanding Deep Learning, 2023. 62 / 73

https://udlbook.github.io/udlbook/

Change of variables theorem

If is non-linear,

the Jacobian of represents the in�nitesimal linear
transformation in the neighborhood of ;

if the function is a bijective map, then the mass must be conserved locally.

Therefore, the local change of density yields

Similarly, for , we have

f

J (z)f x = f (z)
z

p(x = f (z)) = p(z) detJ (z) .∣ f ∣−1

g = f−1

p(x) = p(z = g(x)) detJ (x) .∣ g ∣

63 / 73

Example: af�ne coupling layers

Assume and . Then,

Forward mapping :

Inverse mapping :

where and are arbitrary neural networks.

z = (z , z)a b x = (x ,x)a b

x = f (z)

x = z , x = z ⊙ exp(s(z)) + t(z),a a b b a a

z = g(x)

z = x , z = (x − t(x)) ⊙ exp(−s(x)),a a b b a a

s t

64 / 73

For , the log-likelihood is

where the Jacobian is a lower triangular matrix

such that .

Therefore, the log-likelihood is

x = (x ,x)a b

log p(x) = log p(z) detJ (z)∣ f ∣−1

J (z) =f ∂z
∂x

,(
I

∂za

∂xb

0
diag(exp(s(z)))a

)

detJ (z) = exp(s(z)) = exp(s(z))∣ f ∣ ∏i a i ∑i a i

log p(x) = log p(z) − s(z)
i

∑ a i

65 / 73

Normalizing �ows

A normalizing �ow is a change of variable that transforms a base distribution
 into through a discrete sequence of invertible transformations.

f

p(z) p(x)

―
Image credits: Simon J.D. Prince, Understanding Deep Learning, 2023. 66 / 73

https://udlbook.github.io/udlbook/

Formally,

The change of variable theorem yields

z ∼ p(z)0

z = f (z), k = 1, ...,Kk k k−1

x = z = f ∘ ... ∘ f (z).K K 1 0

log p(x) = log p(z) − log detJ (z) .0

k=1

∑
K

∣ fk k−1 ∣

67 / 73

Normalizing �ows can �t complex multimodal discontinuous densities.

―
Image credits: Wehenkel and Louppe, 2019. 68 / 73

https://arxiv.org/abs/1908.05164

Note that a normalizing �ow can be seen as a (degenerate) latent variable
model where the conditional density is a Dirac distribution centered at

.
p(x∣z)

x = f (z)

69 / 73

Conditional normalizing �ows

Normalizing �ows can also estimate densities conditioned on a context
.

Transformations are made conditional by taking as an additional input.
For example, in a coupling layer, the networks can be upgraded to
and .

Optionally, the base distribution can also be made conditional on .

(Accordingly, aleatoric uncertainty of some output conditioned on an input
can be modelled by a conditional normalizing �ow where the context is
the input .)

p(x∣c) c

c

s(z, c)
t(z, c)

p(z) c

y x
p(y∣x) c

x

70 / 73

―
Image credits: Winkler et al, 2019. 71 / 73

https://arxiv.org/abs/1912.00042

Replace the discrete sequence of
transformations with a neural ODE
with reversible dynamics such that

Continuous-time normalizing �ows

The instantaneous change of variable yields

z ∼ p(z)0

= f (z(t), t, θ)
dt

dz(t)

x = z(1) = z + f (z(t), t)dt.0 ∫
0

1

log p(x) = log p(z(0)) − Tr dt.∫
0

1

(
∂z(t)

∂f (z(t), t, θ)
)

―
Image credits: Grathwohl et al, 2018. 72 / 73

https://arxiv.org/abs/1810.01367

Probability �ow ODE

Back to diffusion: For any diffusion process, there exists a corresponding
deterministic process

whose trajectories share the same marginal densities .

Therefore, when is replaced by its approximation , the
probability �ow ODE becomes a special case of a neural ODE. In particular, it is
an example of continuous-time normalizing �ows!

dx = f(t,x) − g (t)∇ log p(x) dtt [t 2
1 2

xt t]

p(x)t

∇ log p(x)xt t s (x , t)θ t

―
Credits: Song, 2021. 73 / 73

https://yang-song.net/blog/2021/score/

The end.

73 / 73

