
Applications of meta-heuristics

to traffic engineering in IP networks

Bernard Fortz ∗

Université Libre de Bruxelles, Faculté des Sciences, Département d’Informatique
and CORE, Université catholique de Louvain

Email: bernard.fortz@ulb.ac.be

Abstract

Intra-domain routing protocols are based on Shortest Path First (SPF) routing, where short-
est paths are calculated between each pair of nodes (routers) using pre-assigned link weights, also
referred to as link metric. These link weights can be modified by network administrators in ac-
cordance with the routing policies of the network operator. The operator’s objective is usually to
minimize traffic congestion or minimize total routing cost subject to the traffic demands and the
protocol constraints. However, determining a link weights combination that best suits the network
operator’s requirements is a difficult task.

This paper provides a survey of meta-heuristic approaches to traffic engineering, focusing on
local search approaches and extensions to the basic problem taking into account changing demands
and robustness issues with respect to network failures.

1 Introduction

Provisioning an Internet Service Provider (ISP) backbone network for intra-domain IP traffic is a big
challenge, particularly due to rapid growth of the network and user demands. At times, the network
topology and capacity may seem insufficient to meet the current demands. At the same time, there is
mounting pressure for ISPs to provide Quality of Service (QoS) in terms of Service Level Agreements
(SLAs) with customers, with loose guarantees on delay, loss, and throughput. All of these issues point
to the importance of traffic engineering, making more efficient use of existing network resources by
tailoring routes to the prevailing traffic.

1.1 The general routing problem

Optimizing the use of existing network resources can be seen as a general routing problem defined as
follows. We are given a directed network G = (N,A) with a capacity ca for each a ∈ A, and a demand
matrix D that, for each pair (s, t) ∈ N × N , tells the demand D(s, t) in traffic flow between s and
t. We sometimes refer to the non-zero entries of D as the demands. The set of arcs leaving a node
u is denoted by δ+(u) := {(u, v) : (u, v) ∈ A} while the set of arcs entering a node u is denoted by
δ−(u) := {(v, u) : (v, u) ∈ A}

∗The author has been supported by the Communauté française de Belgique - Actions de Recherche Concertées (ARC).

1



With each arc a ∈ A, we associate a cost function Φa(la) of the load la, depending on how close
the load is to the capacity ca. We assume in the following that Φa is an strictly increasing and convex
function. Our formal objective is to distribute the demanded flow so as to minimize the sum

Φ =
∑
a∈A

Φa(la)

of the resulting costs over all arcs. Usually, Φa increases rapidly as loads exceeds capacities, and our
objective typically implies that we keep the max-utilization maxa∈A la/ca below 1, or at least below
1.1, if at all possible.

In this general routing problem, there are no limitations to how we can distribute the flow between

the paths. With each pair (s, t) ∈ N ×N and each arc a ∈ A, we associate a variable f
(s,t)
a telling how

much of the traffic flow from s to t goes over a. Moreover, for each arc a ∈ A, variable la represents
the total load on arc a, i.e. the sum of the flows going over a. With these notation, the problem can
be formulated as the following multi-commodity flow problem.

minΦ =
∑
a∈A

Φa(la)

subject to∑
a∈δ+(u)

f (s,t)
a −

∑
a∈δ−(u)

f (s,t)
a =

 D(s,t) if u=s,

−D(s,t) if u=t,

0 otherwise,

u, s, t ∈ N, (1)

la =
∑

(s,t)∈N×N

f (s,t)
a a ∈ A, (2)

f (s,t)
a ≥ 0 a ∈ A; s, t ∈ N. (3)

Constraints (1) are flow conservation constraints that ensure the desired traffic flow is routed from
s to t, and constraints (2) define the load on each arc.

As Φ is a convex objective function and all constraints are linear, this problem can be solved
optimally in polynomial time. We denote by ΦOPT the optimal solution of this general routing problem.

In our experiments, Φa are piecewise linear functions, with Φa(0) = 0 and derivative

Φ′
a(l) =



1 for 0 ≤ l/ca < 1/3,
3 for 1/3 ≤ l/ca < 2/3,

10 for 2/3 ≤ l/ca < 9/10,
70 for 9/10 ≤ l/ca < 1,
500 for 1 ≤ l/ca < 11/10,
5000 for 11/10 ≤ l/ca < ∞.

(4)

The function Φa is illustrated in Figure 1, and can be viewed as modeling retransmission delays caused
by packet losses. Generally it is cheap to send flow over an arc with a small utilization la/ca. The
cost increases progressively as the utilization approaches 100%, and explodes when we go above 110%.
With this cost function, the general routing problem becomes a linear program.

The objective function was chosen on the basis of discussions on costs with people close to the AT&T
IP backbone. Motivations on our choice for the objective function and the different model assumptions
are discussed in detail in [17], and, for a closely related application, in [15]. A description of the general
infrastructure behind this kind of traffic engineering is given in [13].

2



Figure 1: Arc cost Φa(la) as a function of load la for arc capacity ca = 1.

1.2 The OSPF weight setting problem

The most commonly used intra-domain internet routing protocols today are shortest path protocols
such as Open Shortest Path First (OSPF) [22]. OSPF does not support a free distribution of flow
between source and destination as defined above in the general routing problem. In OSPF, the network
operator assigns a weight wa to each link a ∈ A, and shortest paths from each router to each destination
are computed using these weights as lengths of the links. In practice, link weights are integer encoded
on 16 bits, therefore they can take any value between 1 and 65,535. In each router, represented by a
node of the graph, the next link on all shortest paths to all possible destinations is stored in a table. A
flow arriving at the router is sent to its destination by splitting the flow between the links that are on
the shortest paths to the destination. The splitting is done using pseudo-random methods leading to an
approximately even splitting. For simplicity, we assume that the splitting is exactly even (for AT&T’s
WorldNet this simplification leads to reasonable estimates). This splitting rule is usually called Equal
Cost Multi-Path (ECMP).

More precisely, given a set of weights (wa)a∈A, the length of a path is then the sum of its arc weights,
and we have the extra condition that all flow leaving a node aimed at a given destination is evenly
spread over the first arcs on shortest paths to that destination. Therefore, for each source-destination

pair (s, t) ∈ N ×N and for each arc a ∈ δ+(u) for some node u ∈ N , we have that f
(s,t)
a = 0 if a is not

on a shortest path from s to t, and that f
(s,t)
a = f

(s,t)
a′ if both a ∈ δ+(u) and a′ ∈ δ+(u) are on shortest

paths from s to t. Note that the routing of the demands is completely determined by the shortest paths
which in turn are determined by the weights we assign to the arcs.

The quality of OSPF routing depends highly on the choice of weights. Nevertheless, as recommended
by Cisco (a major router vendor) [20], these are often just set inversely proportional to the capacities
of the links, without taking any knowledge of the demand into account.

The OSPF weight setting problem is to set the weights so as to minimize the cost of the resulting
routing.

This paper provides a survey of meta-heuristics techniques for the OSPF weight setting problem
and some of its extensions. Another recent survey by Altin et al. [2] also discusses in more details the
origins of the problem, the possible choices of objective functions, and exact methods for the problem.
In Section 2, we survey meta-heuristics that have been proposed to solve the basic version of the
problem. Section 3 presents extensions taking into account changing demands and robustness issues
with respect to network failures.

3



2 Survey of meta-heuristics

Shortest path routing problems are NP-hard. Direct formulations are extremely hard to solve, and
integer programming approaches can typically solve only small to medium size problems. Moreover,
in an operational setting, additional constraints can appear that are difficult to integrate in a mixed-
integer programming formulations. Therefore, for large networks instances, heuristics can be necessary
to find good feasible solutions in a limited computing time. In Section 2.1, we present a local search
approach to the problem. Section 2.2 examines further some issues that need to be considered in order
to obtain an effective heuristic, and Section 2.3 presents a method for finding good starting solutions.
In Section 2.4, other approaches are briefly discussed.

2.1 A local search heuristic

One of the first heuristic approaches to the OSPF weight setting problem is a local search approach
developed by Fortz and Thorup [14, 17]. Recently, a similar implementation has been made available
in the opensource TOTEM toolbox [21]. The local search algorithm is called IGP-WO in TOTEM.

In OSPF routing, for each arc a ∈ A, we have to choose a weight wa. These weights uniquely
determine the shortest paths, the routing of traffic flow, the loads on the arcs, and finally, the value of
the cost function Φ.

Suppose that we want to minimize a function f over a set X of feasible solutions. Local search
techniques are iterative procedures that for each iteration define a neighborhood N (x) ⊆ X for the
current solution x ∈ X, and then choose the next solution x′ from this neighborhood. Often we want
the neighbor x′ ∈ N (x) to improve on f in the sense that f(x′) < f(x).

In the remainder of this section, we first describe the neighborhood structure we apply to solve
the weight setting problem. Second, using hashing tables, we address the problem of avoiding cycling.
These hashing tables are also used to avoid repetitions in the neighborhood exploration. While the
neighborhood search aims at intensifying the search in a promising region, it is often of great practical
importance to search a new region when the neighborhood search fails to improve the best solution for
a while. These techniques are called search diversification. We refer the reader to [17] for a description
of the diversification techniques we use.

A solution of the weight setting problem is completely characterized by its vector w = (wa)a∈A of
weights, where wa ∈ W , the set of possible weights. We define a neighbor w′ ∈ N (w) of w by one of
the two following operations applied to w.

Single weight change. This simple modification consists in changing a single weight in w. We define
a neighbor w′ of w for each arc a ∈ A and for each possible weight t ∈ W\{wa} by setting
w′(a) = t and w′(b) = wb for all b ̸= a.

Evenly balancing flows. Assuming that the cost function Φa for an arc a ∈ A is increasing and
convex, meaning that we want to avoid highly congested arcs, we want to split the flow as evenly
as possible between different arcs.

More precisely, consider a demand node t such that
∑

s∈N D(s, t) > 0 and some part of the
demand going to t goes through a given node u. Intuitively, we would like OSPF routing to split
the flow to t going through u evenly along arcs leaving u. This is the case if every arc in δ+(u)
belongs to a shortest path from u to t. More precisely, if δ+(u) = {ai : 1 ≤ i ≤ p}, and if Pi is
one of the shortest paths from the tail of ai to t, for i = 1, . . . , p, then we want to set w′ such that

w′
ai

+ w′(Pi) = w′
aj

+ w′(Pj) 1 ≤ i, j ≤ p,

4



where w′(Pi) denotes the sum of the weights of the arcs belonging to Pi. A simple way of achieving
this goal is to set

w′(a) =

{
w∗ − w(Pi) if a = ai, for i = 1, . . . , p,
wa otherwise.

where w∗ = 1 +maxi=1,...,p{w(Pi)}.
A drawback of this approach is that an arc that does not belong to one of the shortest paths
from u to t may already be congested, and the modifications of weights we propose will send
more flow on this congested arc, an obviously undesirable feature. We therefore decided to choose
at random a threshold ratio θ between 0.25 and 1, and we only modify weights for arcs in the
maximal subset B of δ+(u) such that

wai
+ w(Pi) ≤ waj

+ w(Pj) ∀i : ai ∈ B, j : aj /∈ B,

lwa ≤ θ ca ∀a ∈ B,

where lwa denotes the load on a resulting from weight vector w. The last relation implies that the
utilization of an arc a ∈ B resulting from the weight vector w is less than or equal to θ, so that
we can avoid sending flow on already congested arcs. In this way, flow leaving u towards t can
only change for arcs in B, and choosing θ at random allows to diversify the search.

This choice of B does not ensure that weights remain below wmax. This can be done by adding
the condition maxi:ai∈B w(Pi)−mini:ai∈B w(Pi) ≤ wmax when choosing B.

The simplest local search heuristic is the descent method that, at each iteration, selects the best
element in the neighborhood and stops when this element does not improve the objective function.
This approach leads to a local minimum that is often far from the optimal solution of the problem, and
heuristics allowing non-improving moves have been considered. Unfortunately, non-improving moves
can lead to cycling, and one must provide mechanisms to avoid it.

Our choice was to use hashing: hash functions compress solutions into single integer values, sending
different solutions into the same integer with small probability. We use a boolean table T to record if a
value produced by the hash function h() has been encountered. At the beginning of the algorithm, all
entries in T are set to false. If w is the solution produced at a given iteration, we set T (h(w)) to true,
and, while searching the neighborhood, we reject any solution w′ such that T (h(w′)) is true. Checking
that a solution has been encountered is therefore performed in constant time. The hash function we
used is described in [17].

2.2 Effectiveness issues

To evaluate the cost of a solution represented as a set of weights, we have to compute the shortest
paths for all origin-destination pairs, then to send the flows along the shortest paths according to the
ECMP splitting rule. This could be a bottleneck in the search for good solutions as computing this
cost function from scratch is computationally expensive.

To overcome that difficulty, we can apply a fast algorithmic approach to compute the flows. We
use a two-step algorithm based on the shortest path computation. In the first step we compute all the
shortest paths with respect to the current weights for all node pairs, and then, in the second step, we
recursively assign flows to the paths computed in the first phase (see [17] or Algorithm 7.1 in [25]).

In most heuristic approaches, the number of changes in the shortest paths graph and in the flows
is very small between neighboring solutions. Hence, using fast updates of shortest paths and flows is
crucial to make heuristics effective. We now briefly review these approaches.

With respect to shortest paths, this idea is already well studied by Ramalingam and Reps [26], and
we can apply their algorithm directly. Their basic result is that, for the re-computation, we only spend

5



time proportional to the number of arcs incident to nodes s whose distance to t changes. In typical
experiments there were only very few changes, so the gain is substantial - in the order of factor 15 for
a 100 node graph. An improved algorithm was recently proposed by Buriol et al [11].

To update the flows, a similar approach, described in [17], can be used. Experiments reported in
that paper show that using dynamic updates of shortest paths and flows make the algorithm from 5
up to 25 times faster, with an average of 15 times faster.

2.3 Improvements using column generation

The general routing problem introduced in Section 1.1 provides a good lower bound for the IGP weight
setting problem in practice, as shown in [17]. This general routing problem can also be formulated with
path flow variables, and solved with column generation.

The main advantage of this approach is that dual variables used in the pricing problem are natural
candidates as link weights. Fortz and Ümit [18] managed to significantly improve the results obtained
by the heuristic by warm-starting the local search with the best solution obtained with dual variables
of the multi-commodity flow relaxation of the problem.

2.4 Other heuristic approaches

Ericsson et al [12] have proposed a genetic algorithm for the same problem. Solutions are naturally
represented as vectors of weights, and the crossover procedure used is random keys, that was first
proposed by Bean [5]. To cross and combine two parent solutions p1 (elite) and p2 (non-elite), first
generate a random vector r of real numbers between 0 and 1. Let K be a cutoff real number between
0.5 and 1, which will determine if a gene is inherited from p1 or p2. A child c is generated as follows:
for all genes i, if r[i] < K, set c[i] = p1[i] otherwise set c[i] = p2[i]. They also implemented a mutation
operator that randomly mutates a single weight.

This approach was improved by Buriol et al [10]. They added a local search procedure after the
crossover to improve the population. This hybrid approach, combined with dynamic updates of shortest
paths and flows, lead to results competitive in quality to the local search of Fortz and Thorup, with a
slightly faster convergence. Another application of genetic algorithms to Shortest Path Routing (SPR)
design can be found in [23].

A simulated annealing approach was proposed by Ben-Ameur [7] for the single path routing case.
Another line of heuristic approaches comes from using Lagrangean relaxations of the mixed integer
programming models (see e.g. [9] for single path routing and [19] for ECMP routing).

3 Extensions

The basic traffic engineering problem is very important, but usually does not meet the requirements of
network operators as changing demands or network failures are not taken into account. We now discuss
some extensions to the basic problem. In Section 3.1, we consider fast re-optimization with a few
weight changes. Then, in Section 3.2 we consider the simultaneous optimization over multiple demand
matrices. This comes as a building block for heuristics dealing with failure scenarios (Section 3.3) as
well as for polyhedral demand uncertainty (Section 3.4).

6



3.1 Re-optimization with few weight changes

The problem of optimizing OSPF weights was mostly studied with a given fixed set of demands and a
fixed network topology.

However, demand matrices and networks change. In case of changes that degrade performance too
much, most network operators do not like to make many weight changes, for two basic reasons:

(i) Weights are typically not changed centrally, so changing a lot of weights may require substantial
network management overhead, and creates the risk of a big protocol overhead.

(ii) Network operators are often not comfortable with many weight changes. There may be many
aspects to good routing beyond the simple objectives presented in this paper. Therefore major
weight changes are not welcomed when a first weight setting giving a satisfactory routing has
been established.

Therefore, we want to make as few weight changes as possible. The local search from [17] works
with a single solution that is iteratively improved by small changes in the current solution. It typically
performs a lot of iterations (5000 in our practical experiments), and therefore produces a solution
completely different from the starting one. This can be seen as a depth-first search in the solution
space, but since we want to make as few changes as possible, our approach should rather be a breadth
first search.

Another heuristic was proposed in [15] for improving an input weight setting w0 with as few weight
changes as possible. It works as follows: first we consider about 1000 single weight changes to w0,
corresponding to about five weight changes for each arc in our largest networks. The number of weight
changes considered is limited by applying random sampling to the neighborhood structure, as exploring
the full neighborhood is too time-consuming. Instead of selecting only the best weight change as in
classical local search heuristics, we keep the 100 best weight changes in a family F of “best weight
settings”. The process is iterated with F instead of w0: we consider 1000 single weight changes for each
weight setting in F and a new F is selected containing the 100 best of the old weight settings in F .
After i iterations, including the start from w0, the family consists of weight settings with up to i weight
changes from w0. The size of F corresponds to the breadth of our search. All the above numbers are
just parameters that experimentally were found to give a good compromise between quality of solution
and time.

This technique for few changes has, to our knowledge, not been used before. Its main interest is
that it provides a general framework for optimizing with few changes that can be easily adapted for
other applications. It has the advantage that if a local search heuristic is available, the main ingredients
such as the changes applied to one solution to get a neighbor of it, or the procedures to evaluate a new
solution, can be reused in this new framework, saving a lot of implementation work.

3.2 Multiple demand matrices

Our motivation for working with multiple demand matrices is the general experience from AT&T that
traffic follows quite regular periods with a peak in the day and in the evening. The network operators
do not want to change weights on a regular basis so we want just one weight setting which is good for
the whole period. We then collect a peak demand matrix for the day and one for the evening. A weight
setting performing good on both performs good on all convex combinations, and hence it has a good
chance of performing well for the whole period. This approach was also introduced in [15].

Given a network G = (N,A, c) with several demand matrices D1, ..., Dk, we want to find a single
weight setting w := (wa)a∈A which works well for all of them. In general, we will use ℓa(G,D,w) to

7



denote the load on link a with network G, demand matrix D, and weight setting w. Similarly for our
cost function, we have Φ(G,D,w) =

∑
a Φa(ℓa(G,D,w)) with Φa as defined in (4).

Now consider a demand matrix D dominated by a convex combination of D1, ..., Dk, that is D ≤
α1D1 + · · ·+ αkDk where α1 + · · ·+ αk = 1. Here everything is understood to be entry-wise, so for all
x, y, D[x, y] ≤ α1D1[x, y] + · · ·+ αkDk[x, y].

Since the routing for each source-destination pair is fixed by the weight setting w, for each arc
a ∈ A, ℓa(G,D,w) ≤ α1ℓa(G,D1, w) + · · · + αkℓa(G,Dk, w). In particular, it follows that the max-
utilization for D is no worse that the worst max-utilization for the Di. Furthermore, since each arc cost
function Φa is convex, Φa(ℓa(G,D,w)) ≤ α1Φa(ℓa(G,D1, w)) + · · · + αkΦa(ℓa(G,Dk, w)), and hence
Φ(G,D,w) ≤ α1Φ(G,D1, w) + · · · + αkΦ(G,Dk, w). Thus, our weight setting w does no worse for D
than for the worst of the Di, neither with respect to our cost function Φ, nor with respect to max-
utilization. Note that the same observation holds true with Multi-Protocol Label Switching (MPLS),
as long as the routing for each source-destination pair is fixed.

To optimize simultaneously for several demand matrices D1, ..., Dk, we simply modify the local
search heuristic to minimize

Φ(G,D1, ..., Dk, w) =
∑
i≤k

Φ(G,Di, w) (5)

As in our original motivation for defining Φ, this has the the effect of penalizing highly loaded links,
this time, for all the demand matrices instead of just one.

3.3 Robust optimization for single link failures

The heuristic of Section 2.1 has been designed to provide a weight setting for a single demand matrix and
a fixed network. We now consider the possibility of link failures. The approach below was proposed in
[16]. We define a state of the network as a subset S ⊆ A of arcs containing the arcs that are operational.
The states considered here are the normal state A and the single link failure states A\{a} for each link
a ∈ A. In SPF protocols, the network operator assigns a weight to each link, and shortest paths from
each router to each destination are computed using these weights as lengths of the links. These shortest
paths are updated each time the network state changes. Given a network state S, a weight setting w
and a vector of arc capacities c, we denote by Φ(S,w, c) the cost of the routing obtained with weight
setting w in state S of the network, using the piecewise linear cost function described in Section 1.1.

We suppose that once the operator has fixed the set of OSPF weights, he does not want to change
it whatever the state of the network is. The possibility of getting a better routing in case of failures by
allowing a few weight changes has been studied in [15].

The cost function we use has been designed in such a way that it tries to keep the flow on each link
below the capacity of that link. This is an objective we want to maintain for each link failure. In the
normal state, however, the operator usually wants the flows to remain much more below the capacity,
in order to be more robust in cases of increasing demand and to ensure capacity will be available to
perform the rerouting in case of failure. Let α be the maximal ratio of the capacity the network operator
wants to use in the normal state. In our experiments, we assumed α = 0.6. Therefore, in the normal
state, the operator wants w to minimize Φ(A,w, αc). We suppose here that the operator gives an equal
importance to the quality of the routing in the normal state and to its robustness (i.e. the quality of
the routing in all the single link failure states). Moreover, we assume all the link failures have the same
importance, but it is trivial to extend our results by giving a weight to each link failure.

Putting it all together, we want to find a weight setting w∗ that solves

min
w

Ψ(w) :=
1

2

(
Φ(A,w, αc) +

1

m

∑
a∈A

Φ(A \ {a}, w, c)

)
(6)

8



where c is the capacity vector and m := |A| the number of links in the network. A brute force approach
would be to use the heuristic presented in Section 2.1 to optimize Ψ(w). However, this would require
the evaluation of all the m + 1 scenarios for each weight setting encountered, therefore increasing the
computing time by a factor m.

Our approach to reduce the computing time is the following. We hope that only a few link failures
will be representative of “bad cases” and will contribute for a large part of the total cost in (6). At
each iteration, we maintain a list of critical links C and only evaluate the cost function restricted to the
corresponding states, i.e. we evaluate each weight setting w in the neighborhood of the current iterate
with the cost function

Ψ(w, C) := 1

2

(
Φ(A,w, αc) +

1

|C|
∑
a∈C

Φ(A \ {a}, w, c)

)
.

The heuristic starts with C = ∅. It is essentially the same as before, adapted to optimize Ψ(w, C),
with the addition that C is updated every T iterations. We update C as follows. Let u(a,w) be the
maximum utilization with weight setting w when arc a has failed, i.e.

u(a,w) = max
b∈A\{a}

l(b, w, a)

cb
,

where l(b, w, a) denotes the load on arc b with weight setting w when a has failed, and let u be the
average maximum utilization over all scenarios in the critical set, i.e. u := 1

|C|
∑

a∈C u(a,w). We first

choose the arc a not in the critical set that maximizes u(a,w). If u(a,w) > u, we add a to C. Moreover,
we want to keep C of small size. To this end, we fix a maximal size K and we remove the arc that
minimizes u(a,w) over C from the critical set each time its size exceeds K.

3.4 Polyhedral demand uncertainty

For a given network, the traditional routing problem deals with selecting paths to transfer a ‘given’ set
of demands from their origins to destinations. In this general definition, there is no restriction on the
structure of the paths to be used, and it is assumed that the amounts of traffic between all origin and
destination pairs are already known. However, several restrictions are imposed on the path structure
in telecommunication networks, and designing a reliable network using a single demand matrix strains
credibility as the network size and the service variety increase in the contemporary business world. It
is not likely to anticipate fluctuations in demand expectations without overestimations, which would
lead to the waste of network resources or a high service cost. A well-known online approach to handle
such shifts is to update routes adaptively as some changes are observed. However, the additional
benefits of these methods are not for free since excessive modifications might ruin the consistency and
dependability of network operations. At this point, off-line methods based on optimizing over a set of
traffic matrices have started to win adherents [1, 4, 6, 8, 24].

The general method is to use either a discrete set and hence a scenario-based optimization or a
polyhedral set defined by network characteristics. Then the motivation is to determine the routing
whose worst case performance for any feasible realization in this set is the best. Such a routing is called
oblivious since it is determined irrespective of a specific demand matrix. Applegate and Cohen [4]
discuss the general routing problem with almost no information on traffic demands. Later, Belotti and
Pinar [6] incorporate box model of uncertainty as well as statistical uncertainty into the same problem.
Ben-Ameur and Kerivin [8] study the minimum cost general oblivious routing problem under polyhedral
demand uncertainty and use an algorithm based on iterative path and constraint generation as a solution
tool. Mulyana and Killat [24] deal with the OSPF routing problem, where traffic uncertainty is described
by a set of outbound constraints. Finally, Altın et al. [1] study polyhedral demand uncertainty with
OSPF routing under weight management and provide a compact Mixed Integer Programming (MIP)
formulation and a branch-and-price algorithm.

9



In this section, we discuss oblivious OSPF routing with weight management and polyhedral de-
mands, and describe the solution strategy proposed in Altın et al. [3]. Optimizing weights would enable
traffic engineering with OSPF since link metric is the only tool we can employ to manipulate routes
so as to make OSPF more comparable to other flexible protocols like MPLS. Moreover, polyhedral
demands make the problem more practically defensible by ensuring a design that remains robust under
a range of applicable shifts in traffic demand.

Let us relax the assumption of a fixed traffic matrix d and consider a polyhedronD of feasible demand
realizations. Now, the concern is to determine paths such that any d ∈ D can be accommodated
efficiently. This means that our ‘optimal’ routing will have the best worst case performance for D
independently of a specific traffic matrix. The main impact of such a shift will be a change in the
definition of load on each link a ∈ A. It is now defined as a function of d, which can be any vector in
D. Consequently, for the polyhedral case, the load definition becomes

la ≥
∑

(s,t)∈Q

dstf
st
a d ∈ D, a ∈ A (7)

whereD is an arbitrary polyhedron. However, this change leads to a semi-infinite optimization problem.
We can eliminate this difficulty by using a duality transformation. Details can be found in [3].

We now discuss our algorithmic approach to tackle polyhedral demands. It has two main steps,
namely the traffic matrix enumeration and weight optimization. We use IGP-WO, the TOTEM weight
optimizer, for the latter step, whereas we use a mixed integer programming formulation solved with
CPLEX for the first part. As the representation theorem for polytopes suggests, any traffic matrix
d ∈ D can be represented as a convex combination of the extreme points of D. Hence, we could equally
write the link load constraint (7) for each extreme point of D, which are in finite but exponential
number.

For a given routing f , the motivation in the traffic matrix generation step is to enumerate the extreme
points of D which correspond to the ‘most challenging’ traffic demands in terms of the arc utilization
or the routing cost. Since D is a polyhedral set, the algorithm will terminate after a finite number
of iterations. Besides, the greedy choice of extreme points would lead to much fewer iterations before
termination. We provide the pseudo codes of two different strategies in Algorithm 1 and Algorithm 2,
respectively.

The first step INITIALIZE and the final step CHALLENGE are common for the two strategies.
To start, we need an initial d0 ∈ D.

Let D = {d ∈ R|Q| : Ad ≤ α, d ≥ 0} be the polytope of feasible traffic matrices with A ∈ RK|Q| and
α ∈ RK . Then (7) implies that

la ≥ max
d∈D

∑
(s,t)∈Q

dstf
st
a a ∈ A. (8)

To create d0, in INITIALIZE, we solve maximization problem (8) for an arbitrary arc a ∈ A by
setting fst

a = α for all commodities (s, t) ∈ Q, where α can be any positive constant. Then we create
D̃ to hold all the traffic matrices that we generate throughout the algorithm. On the other hand, the
aim of the step CHALLENGE is to determine a ‘challenge’ case to compare the routing cost and the
maximum link utilization of the two routings. For this purpose, we take dmax = argmaxd∈D

∑
(s,t)∈Q dst

as our challenge traffic matrix. Notice that we choose dmax independently of any performance measure
or any topological information. At this stage, we are only interested in the traffic matrix that requires
the utmost use of network resources. Although we could use some other criteria at this stage, we believe
the current choice is fair enough since we will use dmax for comparison. Between INITIALIZE and
CHALLENGE, there is the MAIN step, where the two strategies differentiate.

The first strategy is based on the greedy search of a new feasible traffic matrix based on total routing
cost. Algorithm 1 outlines this strategy, which we call CM in the rest of the paper. At iteration cnt of

10



CM, we have an OSPF routing g∗ with the minimum average routing cost ΦD̃ for the traffic matrices

in D̃. The question we want to answer is: Does there exist another demand d ∈ D \ D̃ that costs
more than ΦD̃, if we route it using g∗? To tackle this question, we first solve the following MIP model
(PMaxCost):

max
∑
a∈A

ϕa

s.t. ϕa − uzla ≤M(1− yza)− vzca a ∈ A, z ∈ Z∑
z∈Z

yza = 1 a ∈ A

la −
∑

(s,t)∈Q

dstg
st∗

a = 0 a ∈ A

∑
(s,t)∈Q

astk dst ≤ αk k = 1, ..,K (9)

ϕa, la ≥ 0 a ∈ A

yza ∈ {0, 1} a ∈ A, z ∈ Z

dst ≥ 0 (s, t) ∈ Q

where ya variables show the segment of the objective function that each ϕa lies in and (9) ensures that
we obtain a feasible traffic matrix dnew ∈ D. Notice that g∗ is not a variable anymore in PMaxCost.
Thus, the link load la is defined as a linear function of the demand variables d ∈ D with coefficients
gst

∗

a obtained in the most recent iteration of the local search procedure of IGP-WO. In consequence,
the solution of PMaxCost will be the worst case traffic matrix dnew leading to the highest routing cost∑

a∈A ϕ∗
a for g∗.

Since D is nonempty, PMaxCost will always yield a feasible traffic matrix dnew. However, there is
no guarantee that we will get a new dnew /∈ D̃ at each iteration since (9) ensures dnew ∈ D but not
dnew ∈ D \ D̃. To shun fake updates, we keep track of all matrices in D̃ using a hashing table. This
is similar to what we use to avoid cycling in the tabu search algorithm for optimizing link weights. In
brief, we use a hashing function to map each dnew to an integer hdnew and we mark its generation in
the hdnew entry of a boolean table. Each time we solve PMaxCost, we decide whether or not we should
update D̃ using the boolean table and continue with the next iteration only if we have a new traffic
matrix dnew /∈ D̃ for which the routing cost

∑
a∈A ϕ∗

a is higher than the current average cost ΦD̃.

On the other hand, the second strategy is greedy in the sense of traffic load on arcs. It uses link
utilization as the determining factor for new traffic matrix generation. Basically, given an OSPF routing
g∗ optimal for D̃, it looks for a traffic matrix dnew, which makes some arc a ∈ A overloaded or increases
the current congestion rate of the network, that is Umax = maxa∈A,d∈D

la
ca
. We use the hashing function

that we have described above to keep track of the traffic matrices in D̃ and avoid cycling. A framework
of this strategy is provided in Algorithm 2. We will refer this strategy as LM from now on.

The main difference between CM and LM is the domain of the challenge. CM generates a demand
matrix d∗ that puts the network in a worse situation as a whole for a given routing configuration on
the basis of the total routing cost. On the contrary, in LM, the new traffic matrix is at least ‘locally’
challenging, since we consider the worst case for each arc individually. In both strategies, we enumerate
at most one traffic matrix at each iteration. However, we can modify Algorithm 2 to generate multiple
traffic matrices, namely at most one for each arc. Finally, each time the algorithm performs a tabu
search, it starts with the optimal weight metric of the most recent iteration. This is useful to reduce
the time spent for re-optimizing the weight metric in the IGP-WO stage.

11



Algorithm 1 Strategy 1 with Cost Maximization - CM

Require: directed graph G = (V,A), traffic polytope D, link capacity vector c;
Ensure: minimum cost OSPF routing f∗ and metric ω∗ for (G,D, c);
INITIALIZE:

Find an initial feasible demand matrix d0 ∈ D;
drec ← d0; // drec : the most recently enumerated demand matrix;
D̃ ← d0; // D̃ : current set of demand matrices enumerated so far;
NewDem← TRUE;
cnt = 0;

MAIN:
while (cnt ≤ cnt−limit) and (NewDem = TRUE) do

IGP-WO: Find an optimized oblivious OSPF routing g∗ for D̃ and the associated metric ω∗
T ;

Get ΦD̃ : the average routing cost for D̃;
NewDem = FALSE;
Solve PMaxCost to get

∑
a∈A ϕ∗

a and dnew;

if
∑

a∈A ϕ∗
a > ΦD̃ and dnew /∈ D̃ then

D̃ ← dnew;
NewDem = TRUE;
cnt← cnt+ 1;

end if
end while
f∗ ← g∗;
ω∗ ← ω∗

T ;
CHALLENGE:

Find the challenge demand matrix dmax = argmaxd∈D

∑
(s,t)∈Q dst;

Get Φ∗
dmax // the cost of routing dmax with f∗;

Get U∗
dmax // the congestion rate for dmax with f∗;

12



Algorithm 2 Strategy 2 with Arc Load Maximization - LM

Require: directed graph G = (V,A), traffic polytope D, link capacity vector c;
Ensure: minimum cost OSPF routing f∗ and metric ω∗ for (G,D, c);
INITIALIZE // As in Algorithm 1
MAIN:
while (cnt ≤ cnt−limit) and (NewDem = TRUE) do

IGP-WO: Find an optimized oblivious OSPF routing g∗ for D̃ and the associated metric ω∗
T ;

Umax = maximum link utilization for drec;
NewDem = FALSE;
a = 0 // start with the first arc of G;
while (a < |A|) and (NewDem = FALSE) do
dnew = argmaxd∈D(g∗ad); // dnew : worst case demand matrix for a with routing g∗;

if (g∗ad
new > ca) or (

g∗
ad

new

ca
> Umax) then

if dnew /∈ D̃ then
drec = dnew;
D̃ ← drec;
NewDem = TRUE;
cnt← cnt+ 1;

end if
end if
if NewDem = FALSE then

a← a+ 1;
end if

end while
if NewDem = TRUE then
cnt← cnt+ 1;

end if
end while
f∗ ← g∗;
ω∗ ← ω∗

T ;
CHALLENGE //As in Algorithm 1

13



4 Conclusion

We have surveyed meta-heuristics for traffic engineering in the framework of intra-domain routing. The
available techniques cover the basic problem and some important extensions that seem sufficient for
the needs of most network operators.

Nevertheless, there is still room for improvement. In particular, understanding the interactions
between inter-domain and intra-domain routing and developing tools that allow for inter-domain or
joined inter/intra-domain optimisation remains a big challenge.

Acknowledgments

This work has been partially supported by the Walloon Region (DGTRE) in the framework of the
TOTEM project, and the Communauté française de Belgique - Actions de Recherche Concertées (ARC).

References

[1] A. Altın, P. Belotti, and M.Ç. Pinar. OSPF routing with optimal oblivious performance ratio
under polyhedral demand uncertainty. Technical report, Bilkent University, 2006.

[2] A. Altin, B. Fortz, M. Thorup, and H. Ümit. Intra-domain traffic engineering with shortest path
routing protocols. 4OR, 7(4):301–335, 2009.

[3] A. Altin, B. Fortz, and H. Ümit. Oblivious OSPF routing with weight optimization under poly-
hedral demand uncertainty. Technical Report 588, ULB Computer Science Department, 2008.
http://www.ulb.ac.be//di/publications/RT 2008.html.

[4] D. Applegate and E. Cohen. Making intra-domain routing robust to changing and uncertain traffic
demands: understanding fundamental tradeoffs. In SIGCOMM ’03: Proceedings of the 2003 con-
ference on Applications, technologies, architectures, and protocols for computer communications,
pages 313–324, New York, NY, USA, 2003. ACM.

[5] J.C. Bean. Genetic algorithms and random keys for sequencing and optimization. ORSA J. on
Computing, 6:154–160, 1994.

[6] P. Belotti and M.Ç. Pinar. Optimal oblivious routing under statistical uncertainty. Optimization
and Engineering, 9(3):257–271, 2008.

[7] W. Ben-Ameur, E. Gourdin, B. Liau, and N. Michel. Optimizing administrative weights for efficient
single-path routing. In Proceedings of Networks 2000, 2000.

[8] W. Ben-Ameur and H. Kerivin. Routing of uncertain demands. Optimization and Engineering,
3:283–313, 2005.

[9] A. Bley. A Lagrangian approach for integrated network design and routing in ip networks. In
Proceedings of the 1st International Network Optimization Conference (INOC 2003), Paris, pages
107–113, 2003.

[10] L.S. Buriol, M.G.C. Resende, C.C. Ribeiro, and M. Thorup. A hybrid genetic algorithm for the
weight setting problem in OSPF/IS-IS routing. Networks, 46(1):36–56, 2005.

[11] Luciana S. Buriol, Mauricio G. C. Resende, and Mikkel Thorup. Speeding up dynamic shortest-
path algorithms. INFORMS J. on Computing, 20(2):191–204, 2008.

14



[12] M. Ericsson, M.G.C. Resende, and P.M. Pardalos. A genetic algorithm for the weight setting
problem in OSPF routing. J. Combinatorial Optimization, 6:299–333, 2002.

[13] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with traditional IP routing protocols.
IEEE Communications Magazine, 40(10):118–124, 2002.

[14] B. Fortz and M. Thorup. Internet traffic engineering by optimizing ospf weights. In Proc. 19th

IEEE Conf. on Computer Communications (INFOCOM), pages 519–528, Tel-Aviv, 2000.

[15] B. Fortz and M. Thorup. Optimizing OSPF/IS-IS weights in a changing world. IEEE Journal on
Selected Areas in Communications, 20(4):756–767, 2002.

[16] B. Fortz and M. Thorup. Robust optimization of OSPF/IS-IS weights. In W. Ben-Ameur and
A. Petrowski, editors, Proc. INOC 2003, pages 225–230, Paris, October 2003.

[17] B. Fortz and M. Thorup. Increasing internet capacity using local search. Computational Opti-
mization and Applications, 29(1):13–48, 2004.

[18] B. Fortz and H. Ümit. Efficient techniques and tools for intra-domain traffic engineering. Technical
Report 583, ULB Computer Science Department, 2007. To appear in International transactions
in Operational Research.

[19] K. Holmberg and D. Yuan. A Lagrangian heuristic based branch-and-bound approach for the
capacitated network design problem. Operations Research, 48:461–481, 2000.

[20] Cisco Systems Inc. Internetworking Technologies Handbook, Third Edition. Cisco Press, 2000.

[21] G. Leduc, H. Abrahamsson, S. Balon, S. Bessler, M. D’Arienzo, O. Delcourt, J. Domingo-Pascual,
S. Cerav-Erbas, I. Gojmerac, X. Masip, A. Pescaph, B. Quoitin, S.F. Romano, E. Salvatori,
F. Skivée, H.T. Tran, S. Uhlig, and H. Ümit. An Open Source Traffic Engineering Toolbox.
Computer Communications, 29(5):593–610, March 2006.

[22] J. Moy. OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley, 1998.

[23] E. Mulyana and U. Killat. An alternative genetic algorithm to optimize OSPF weights. In 15th

ITC Specialist Seminar, pages 186–192, Würzburg, 2002.

[24] E. Mulyana and U Killat. Optimizing IP networks for uncertain demands using outbound traffic
constraints. In Proc. INOC 2005, pages 695–701, Lisbon, 2005.

[25] M. Pióro and D. Medhi. Routing, Flow, and Capacity Design in Communication and Computer
Networks. Morgan Kaufman, 2004.

[26] G. Ramalingam and T. Reps. An incremental algorithm for a generalization of the shortest-path
problem. Journal of Algorithms, 21(2):267–305, 1996.

15


