

A Compact Isolation Concept for Future Einstein Telescope

SIDER, Ameer

asider@uliege.be

Supervisor: Christophe Collette <u>christophe.collette@uliege.be</u>

GWADW2022 - Jaban

24 May 2022

Outline

https://www.etest-emr.eu/

- E-TEST: new isolation approach.
- E-TEST prototype.
- Closed loop for E-TEST prototype.
- Future work.

•

Active Control Approach LIGO: HAM-ISI (1m)

Active/Passive Control Approach [1] LIGO: HAM-ISI (1m)

Common GW Suspension System

E-TEST New Isolation System

E-TEST (new isolation system):

AP: Active Control Platform GF: Anti-Geometric Spring Filter **IPL: Inverted Pendulum Leg** IPP: Inverted Pendulum Platform ST: Standard Stage **CP:Cold Platform** IM:Intermediate Mass Mir: Mirror k: Stiffness m: Mass

m_IPL

ET Superattenuator

•

Output Response of ET Superattenuator & E-TEST Isolator

EUROPEAN UNIO

European Regional Development Fund

ST Einstein Telescope EMR Site & Technology

E-TEST Prototype

Features of E-TEST Project:

- Suspended heavy mass (about 50 kg, 300mm X 300m).
- At cryogenic temperature (20k).

07.06.2022

- Radiative cooling strategy (no contact).
- Developing cryogenic sensors and electronics.
- Operation of the laser and optics at 2 microns.
- Developing isolation system \rightarrow concern of this presentation.

Isolation System is a prototype (5.5m height) due to budget & vacuum limitations

E-TEST Einstein Telescope

https://www.etest-emr.eu/

6

Dynamics of The Prototype in 3D (**Obtained by Simscape Simulink Toolbox (MATLAB**))

Simscape:

- To build multi-body model.
- Allowing to study lumped mass systems under gravity.
- Convenient for implementing feedback control strategies.

3D View of the E-TEST Simscape Model (Left: Front View) and (Right: Isometric View)

Mode Shape Visualization (Obtained by Structural Dynamic Toolbox (SDT))

Three steps to obtain mode shapes:

- 1. Extraction of a state space model from Simscape.
- 2. Calculation of eigenvalues and eigenvectors in MATLAB.
- 3. Projection of these modes on a finite element representation of the system.

Input/Output of Active Platform of E-Test

First Flexible mode of Active Platform above 300 Hz

CAD Views

By Simon Roure

A: Modal Total Deformation 7 Type: Total Deformation Frequency: 320,99 Hz Unit: m 25/04/2022 09:27

A: Modal

Unit: m

0,04653 0,039889

0,026607 0,019965

Total Deformation 7 Type: Total Deformation Frequency: 320,99 Hz 25/04/2022 09:29 0,059812 Max 0.053171 0,033248 0,013324 0,0066833 4,2152e-5 Min

Sensors & Actuators of Inertial Platform (vacuum compatible)

- Inertial sensors → Watt's Linkage
- Displacement Sensor → BQSEM

Decoupling Analysis for Active Platform alone Ideal case → COM & COK at the Same Center

E-TEST - 3D

Safety Tubes & Support Shifts COM Outside AP

Decoupling Analysis for Entire E-TEST System

(COM outside Active Platform)

Classical Control For Entire E-TEST System

The controller is working in cartesian frame. Jacobian is used to convert forces in the cartesian frame to forces applied by the actuators.

Controllers are designed based loop shaping; lead-lag compensator

J6.

Transmissibility (AP/ ground & Mirror/ground)

Damping Control is not applied yet

ASD (AP & Mirror)

Future Work

https://www.you tube.com/watch ?v=hJgoy8Tp8wY

The End

Thank you!

 $\mathbf{\Lambda}$

 Δ

 $\Lambda \Lambda \Lambda \Lambda \Lambda$

References

- 1. Matichard, F., et al., Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part Experimental investigation and tests results. 2015. **40**: p. 287-297.
- 2. Michimura, Y., Shimoda, T., Miyamoto, T., Shoda, A., Okutomi, K., Fujii, Y., ... & Yuzurihara, H. (2017). Mirror actuation design for the interferometer control of the KAGRA gravitational wave telescope. *Classical and Quantum Gravity*, *34*(22), 225001.
- Accadia, T., et al., *The seismic Superattenuators of the Virgo gravitational waves interferometer*. 2011. **30**(1): p. 63-79.

The Financiers

Controller

