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Abstract: Sewage sludge (SS), a byproduct of wastewater treatment plants, poses significant envi-
ronmental and health risks if not properly handled. Conventional approaches for SS stabilization
often involve costly and energy-consuming processes. This study investigated the effect of promot-
ing native microalgae growth in SS on its stabilization, pathogen bacteria removal, and valuable
biomass production. The effect on settleability, filterability, and extracellular polymeric substances
(EPSs) was examined as well. Experiments were conducted in photobioreactors (PBRs) without O2

supply and CO2 release under controlled parameters. The results show a significant improvement
in SS stabilization, with a reduction of volatile solids (VSs) by 47.55%. Additionally, fecal coliforms
and E. coli were efficiently removed by 2.25 log and 6.72 log, respectively. Moreover, Salmonella
spp. was not detected after 15 days of treatment. The settleability was improved by 71.42%. How-
ever, a worsening of the sludge filterability properties was observed, likely due to a decrease in
floc size following the reduction of protein content in the tightly bound EPS fraction. Microalgae
biomass production was 16.56 mg/L/day, with a mean biomass of 0.35 g/L at the end of the batch
treatment, representing 10.35% of the total final biomass. These findings suggest that promoting
native microalgal growth in SS could be sustainable and cost-effective for SS stabilization, microal-
gal biomass production, and the enhancement of sludge-settling characteristics, notwithstanding
potential filtration-related considerations.

Keywords: sewage sludge; stabilization; pathogen removal; microalgae–bacteria biomass; sludge
properties; extracellular polymeric substances

1. Introduction

Sewage sludge (SS) production in Europe has become a pressing issue, with ap-
proximately 10 million tons of dry solids generated annually [1]. The management and
treatment of this byproduct pose significant challenges, both due to the substantial costs
involved, which may account for up to 60% of wastewater treatment plant (WWTP) over-
all operational costs [2], and its environmental impact [3]. Therefore, the development
of cost-effective and environmentally friendly approaches is imperative to alleviate the
financial burden on WWTPs and promote a circular economy toward converting sludge
into a valuable resource.

The solid content of sludge before dewatering typically ranges from 0.2 to 12% by
weight and is primarily composed of organic matter, mineral matter, and nutrients, making
it a valuable source for soil amendment [4,5]. However, it may contain harmful compo-
nents that include heavy metals and organic pollutants [4,6]. Furthermore, pathogenic
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microorganisms have been detected in SS, such as fecal coliforms, Salmonella, Escherichia coli,
Shigella, Clostridium, Mycobacterium, Campylobacter, Listeria, and others [7–10]. Depending
on diverse factors, including environmental conditions, some of these microorganisms
may not survive when sludge is applied to the soil, while others can thrive and potentially
contaminate crops, posing a potential risk to public health [11,12]. The 2011 Escherichia coli
O104 outbreak in Germany caused by the consumption of infected beansprouts serves as a
stark example [13].

In Europe, the use of SS in agriculture is regulated by Directive 86/278/EEC, which
mandates an appropriate stabilization treatment to reduce its fermentability and associated
health risks. This directive does not specify microbiological parameter limits, despite the
potential health risks linked with its usage per various studies [14–17]. In response, the
European Commission published a draft working document in 2000, which outlines a set
of restriction limits. These include (i) a reduction of E. coli by at least 6 log to less than
5 × 102 CFU/g ww (wet weight); (ii) an absence of Salmonella spp. in 50 g ww; and finally,
(iii) a reduction of volatile solids by 38% or a specific oxygen uptake rate below 1.5 mg/h/g
TSs to ensure effective stabilization without causing odor nuisance.

Sludge stabilization is a crucial step in SS treatment as it aims to reduce organic matter,
pathogens, and odors [18]. Various methods are used for this purpose, as thoroughly
discussed in [19], each with its advantages and drawbacks. Anaerobic digestion is a
highly effective technique that generates biogas and destroys pathogens. However, it
requires a long residence time and may not ensure high degradation of volatile solids [20].
In contrast, aerobic digestion may effectively decrease volatile solids by up to 38%, as
supported in [21], and generate compost suitable for agricultural use. Nevertheless, it is
crucial to acknowledge that aerobic digestion may provide difficulties, especially pathogen
persistence, if not conducted at high temperatures [22]. Furthermore, the process incurs
costs due to the mechanical oxygen input and may result in gaseous emissions, especially
ammonia, leading to unpleasant odors [20]. Lime stabilization generates pathogen- and
odor-free products beneficial for agriculture [23]. However, its effectiveness depends on
the pH of the mixture, the mixing duration, the type of sludge, and its water content.
Additionally, odor problems may recur once the pH reaches 10.5 [20]. Finally, incineration
offers the benefits of reducing sludge volume, recovering renewable energy, and destroying
pathogens. However, it also entails considerations such as high heat costs, the potential
emission of undesired emissions (dioxins, furans, NOx, and N2O), and the generation of
a high ash content [3,24]. Hence, it is crucial to develop an alternative method for sludge
treatment that prioritizes efficiency, cost-effectiveness, and environmental sustainability.

Microalgae have recently gained considerable attention due to their unique capabilities.
They can assimilate nutrients from sludge, such as nitrogen (N) and phosphorus (P), and
convert them into algal–bacterial biomass, with significant potential as a biofertilizer [25,26].
In a co-system of microalgae and bacteria, there exists a mutualistic interaction that benefits
both organisms involved. Microalgae produce O2 through photosynthesis, which can
be utilized by heterotrophic bacteria for the decomposition of organic matter, potentially
replacing mechanical aeration systems and reducing energy costs [27,28]. In return, bacteria
supply essential metabolites and CO2 for algae growth, thereby mitigating greenhouse gas
emissions [29]. Microalgae have also been found to play a crucial role in pathogen removal.
This is achieved through various mechanisms, such as the content of humic substances,
the secretion of antimicrobial metabolites and toxins, and the capacity of attachment to
bacteria and sedimentation [30]. Additionally, it was noted that the operational conditions
associated with microalgae production, which include high pH and dissolved oxygen
levels, light exposure, and hydraulic retention time, create an inhospitable environment
for some pathogenic bacteria, especially E. coli and total coliforms [30–32]. Recently, it was
reported in [30] that microalgae decrease coliforms by 93%. Moreover, in a study conducted
by the authors of [33], antibiotic-multi-resistant Salmonella enterica serovar Typhimurium was
completely eradicated within 48 h from swine wastewater in the presence of microalgae.
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This study aims to investigate the potential benefits of promoting the development
of native microalgae in SS for its stabilization in a closed system under no O2 addition
and CO2 release. The main objectives are to examine the reduction of volatile solids and
pathogen bacteria (E. coli, fecal coliforms, and Salmonella), as well as assess microalgae
biomass generation. Furthermore, the impact of the proposed process on the extracellular
polymeric substance (EPS) profile, settleability, and filterability properties of sludge are
also investigated.

2. Materials and Methods
2.1. Samples

Sludge samples were collected from the secondary tank of the wastewater treatment
plant Grosses Battes located in Liege, Belgium. Additionally, a treated wastewater sample
was collected at the exit of the same station before its discharge into the Meuse and used as
a diluent. The characteristics of the samples are presented in Table 1.

Table 1. Characterization of sewage sludge and treated wastewater.

Parameter Raw Sludge Treated Wastewater

pH 7.05 ± 0.03 7.7 ± 0.70

Conductivity (µs/cm) 281.33 ± 3.78 -

TS (g/L) 6.16 ± 0.55 -

VS (g/L) 3.93 ± 0.58 -

TSS (g/L) 5.54 ± 0.14 0.004 ± 0.002

VSS (g/L) 3.59 ± 0.05 -

DCO (mgO2/L) - 17.1 ± 4.10

Fecal coliforms (CFU/gTS) 8.67 × 107 ± 4.01 × 106 -

E. coli (CFU/gTS) 7.49 × 106 ± 3.83 × 105 -

Salmonella spp. (in 25 gTS) Present ND

2.2. Experimental Setup

The experimental setup consisted of a series of batch photobioreactors (PBRs), which
were glass Erlenmeyer flasks of 2 L with a working volume of 1 L. To ensure consistent
initial biomass concentrations in all reactors, Raw Sludge (RS) was first concentrated
through gravity sedimentation for 12 h at 4 ◦C. The sediment was then centrifugated at
6000× g for 10 min. The resulting concentrated sludge was then resuspended in treated
wastewater to obtain a Total Suspended Solid (TSS) concentration of 4.5 ± 0.2 g/L in
each PBR. The experiments were conducted in a temperature-controlled room at 22 ◦C.
In addition, the PBRs were continuously stirred at 90 rpm using an orbital table. The
experimental conditions involved a varied lighting schedule, with continuous light during
the first 5 days, followed by 12 h light cycles and 12 dark cycles during the following
15 days. Continuous light was chosen to ensure a high level of oxygen produced by
microalgae, thereby preventing the septicity of the sewage sludge. This decision was
based on preliminary experiments that showed significantly higher oxygen levels under
continuous light compared to light/dark cycles. The photosynthetic active photon flux
density (PPFD) at the surface of reactors was 50.25 ± 14.77 µmol PAR photon·m−2·s−1

(KIPP & ZONEN, PQS 1 PAR Quantum Sensor, Delft, The Netherlands), provided by
5 daylight fluorescent tubes (36 W/840, Philips, Poland). In order to promote gas exchange
(O2/CO2) between microalgae and bacteria and prevent any exchange with the ambiance,
the reactors were tightly sealed. Last but not least, analysis was conducted in triplicate
on fresh samples taken from reactors that were opened on the same day. The remaining
content of the opened reactors was sacrificed.
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2.3. Determination of Biomass Concentration

The total biomass was determined by the gravimetric method after drying. In detail,
10 mL of well-mixed samples was filtered through pre-weighed 0.45 µm membrane filters
and dried at 105 ◦C until weight stabilization. As a co-culture system, the biomass concen-
tration included microalgae and sludge (CTB = Cm + Cs), where CTB is the total biomass
concentration (g/L), Cm is the microalgae concentration (g/L), and Cs is the sludge con-
centration (g/L). To determine the microalgae biomass concentration (Cm), chlorophyll-a
(chl_a) was extracted using an acetone solution and measured spectrophotometrically at
specific wavelengths (663, 645, 630, and 750 nm), as described in [34]. A 90% acetone
solution was used as the blank.

Chl-a concentration (µg/L) was calculated according to Equation (1) (Eq A.1).

Chl_a =
[11.64(OD663 − OD750)− 2.16(OD645 − OD750) + 0.10(OD630 − OD750)]V1

V.∂
(1)

where V and V1 refer to the sample volume (L) and the volume of acetone-based extract
(mL), respectively. OD (Optical Density) is the absorbance of light at a given wavelength,
and ∂ is the optical path of the cuvette (1 cm).

The Chl-a concentration was subsequently converted into dry weight by means of a
calibration curve with the equation: y = 10.622x − 0.4453 (R2 = 0.9822). This equation links
the dry weight of microalgae in a sample to its Chl-a concentration. The standard curve is
presented in Figure S1 in Supplementary Data.

2.4. Microbiological Analysis

Microbiological analysis was conducted on two matrices, liquid samples (LSs) and
dewatered samples (DSs), obtained by centrifugation at 6000× g for 10 min. The quan-
tification of fecal coliform and E. coli was carried out according to Belgium norms [35]
using the membrane filtration method. Briefly, samples were serially diluted in autoclaved
peptone water from 10−1 to 10−9 and filtrated through a 0.45 µm pore size filter. The filters
were then plated on agar plates containing fecal coliform agar medium (VWR, Leuven,
Belgium) for fecal coliforms and Chromocult coliform agar (Merck, Overijse, Belgium) for
E. coli. The plates were incubated at 36 ± 2 ◦C for 18 to 24 h. Following incubation, the
colonies were identified per the manufacturer’s instructions and counted. The results are
expressed as colony-forming units (CFUs) per gram of Total Solids (CFU/gTS) following
Equation (2) (Eq. A.2).

CFU/gTS =
no.o f colonies x total dillution f actor

Volume o f the sample plated (mL) ∗ %TS o f the sample
(2)

The elimination of E. coli and coliform bacteria was estimated in terms of Log Reduc-
tion Values (LRVs).

The detection of Salmonella spp. was carried out according to the Belgium standard
method ISO 6579-1:2017 [36], which comprises four stages: (1) enrichment in buffer peptone
water, (2) selective pre-enrichment in Modified Semi-Solid Rappaport-Vassiliadis (MSRV)
agar for 21 to 27 h at 40.5 ± 2 ◦C, (3) isolation in XLT-4 agar for 18 to 24 h at 35 ± 2 ◦C, and
(4) confirmation. Typically, Salmonella colonies are black with a metallic sheen.

2.5. EPS Extraction and Analysis

As described in [37], 50 mL of the sludge sample was centrifuged at 4000× g for
5 min to separate the supernatant, designated as a Soluble EPS (S-EPS). The residual pellets
were resuspended in 50 mL of 0.05% NaCl preheated to 70 ◦C, vortexed for 1 min, and
then centrifugated at 4000× g for 10 min. The supernatant was collected as a Loosely
Bound EPS (LB-EPS). Subsequently, the pellets were resuspended in 50 mL of 0.05% NaCl,
heated to 60 ◦C for 30 min, and centrifuged at 4000× g for 15 min, yielding a tightly bound
EPS (TB-EPS). The use of a 0.05% NaCl solution during extraction is essential, as it has an



Recycling 2024, 9, 97 5 of 15

electrical conductivity similar to that of the supernatant, thereby preventing any influence
on the EPS. Prior to analysis, the three EPS fractions were filtered through a 0.45 µm filter
membrane and stored at 4 ◦C for a maximum of 48 h. Protein content was quantified
using a modified Lowry assay kit (VWR, Leuven, Belgium) with bovine serum albumin as
standard. Polysaccharides were determined by the phenol–sulfuric acid method [38], using
glucose as standard.

2.6. Other Analytical Methods

pH and dissolved oxygen (DO) were measured using a pH meter and a dissolved
oxygen probe (Hach factory) 5 to 6 h after the start of the light cycle. Total Solids (TSs),
volatile solids (VSs), Total Suspended Solids (TSSs), and the SVI (Sludge Volume Index)
were determined according to the Standard Methods [39]. Microscopic analysis was
performed using an optical microscope (Leica model, DM LS2 DFC 280, Belgium). The
floc size was determined by means of a particle size analyzer (Equipement DelsaTMNano
manufactered by Beckman Coulter, USA), which uses dynamic light scattering to measure
particle distribution. The samples were diluted 10 times before analysis. A filtration test
was carried out using a normalized filtration–expression cell (AFNOR 1979, Belgium). The
filter was a polypropylene material with a permeability of 8 L/dm2/min and a thickness of
0.7 mm. The filtration was stopped after a predetermined time of 2.5 h for all tests with
constant pressure maintained at 5 bars.

2.7. Statistical Analysis

Bacterial analysis was conducted on two types of samples: liquid and dewatered. The
results were compared using a t-test conducted with Excel’s Analysis ToolPak 2017.

3. Results and Discussion
3.1. Biomass Growth

This study delves into the process of promoting the growth of indigenous microalgae
in sludge to ensure its stabilization and obtain valuable biomass. Figure 1 illustrates the
variation in the total biomass and distribution of microalgae and sludge biomass. The
initial biomass was determined to be 4.683 g/L. It consisted of 4.667 g/L of sludge and only
0.016 g/L of indigenous microalgae, representing 99.66% and 0.34% of the total biomass,
respectively. Throughout the operation, the total biomass decreased slightly to 3.38 g/L.
However, the fraction of microalgae biomass increased to 0.35 g/L, representing 10.35% of
the total biomass at the end of the experiment. This suggests that the microalgae population
could outcompete the sludge bacteria for nutrients and thrive in the system [25].

In addition, in photoheterotrophic conditions, microalgae could assimilate organic
carbon, such as sugars and organic acids, quickly compared to heterotrophic bacteria
that limit their growth [40]. It was shown in [41] that growing microalgae in a liquid
digestate reduced the abundance and diversity of the bacterial community, primarily due
to variations in the operational conditions, which was reported in [42]. Moreover, as we
proposed a stabilization process that effectively removes pathogen bacteria (E. coli, fecal
coliforms, and Salmonella spp.), according to Tables 2 and 3, the reduction of bacterial
biomass may be attributed, at least partially, to the removal of these bacteria.

On the other hand, the authors of Ref. [43] demonstrated that a low COD/N ratio in
wastewater favors the growth of microalgae over sludge bacteria, which is advantageous
for microalgae enrichment. In this study, treated wastewater with a low COD/N ratio of
2.25 was used as a diluent. No additional feeding was introduced to the sludge since it
was assumed that it already had sufficient nutrients to support the growth of indigenous
microalgae in the presence of light.

Even though no feeding is added, which is cost-effective, this method efficiently
converts sludge into a valuable biomass known as a microalgae–bacteria consortium. This
consortium has been highlighted in several studies for its dual functionality as a slow-
release fertilizer and soil conditioner [42,43].
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treatment.

3.2. Dissolved Oxygen and pH Variation

The photosynthetic activity of microalgae was assessed by measuring Dissolved
Oxygen (DO), as it serves as an indicator [44]. As shown in Figure 2, initially, the DO
concentration was relatively low, with an average of 1.3 mg/L. Over time, the DO concen-
tration gradually increased, reaching a maximum of 8.05 mg/L recorded on the final day of
treatment. This significant increase indicates that microalgae were actively photosynthesiz-
ing and producing oxygen, which was sufficient for the aerobic degradation of 47.55% of
VSs (organic matter), as demonstrated in Figure 3. In comparison, in a study carried out by
the authors of [45], the organic matter degradation efficiency was around 40% after 20 days
of digestion with continuous aeration (1.2 m3 h−1 kg−1 dry basis). Furthermore, the CO2
generated through oxidation is consumed by microalgae for their growth, mitigating green-
house emissions. Likewise, a variation in pH was observed during treatment (Figure 2).
The pH increased from 7.02 to 9.16. This is mainly due to the photosynthesis activity of
microalgae, where they assimilate CO2 and HCO3

− and produce hydroxide ions (OH-),
resulting in an increase in pH [44].

Recycling 2024, 9, x FOR PEER REVIEW 7 of 16 
 

of microalgae, where they assimilate CO2 and HCO3− and produce hydroxide ions (OH-), 
resulting in an increase in pH [44]. 

 
Figure 2. pH and DO change during the treatment process. 

3.3. Volatile Solid and Total Solid Reduction 
To evaluate the effectiveness of a stabilization process, it is essential to monitor pa-

rameters such as the volatile solid (VS) content, which should decrease by at least 38–40% 
after treatment to define sludge as stabilized [46]. The VS content gradually decreased 
from about ww 0.3% to 0.157%, representing a removal rate of 47.55%, as presented in 
Figure 3. This indicates that the organic matter was effectively degraded. 

Researchers have found that the efficiency of aerobic digestion in VS reduction is of-
ten low. To enhance this process, various approaches have been explored. For instance, 
the authors of Ref. [47] achieved a 36% ± 4% reduction in VSs within 15 days by adding 
free ammonia (NH3) to sludge as a pretreatment compared to a 23 ± 3% reduction in the 
control. Similarly, the authors of Ref. [48] induced sustained nitrite accumulation in an 
aerobic digester operated at a low pH (<5.5), resulting in a 35–38.4% reduction in VSs after 
300 days of treatment. Our study presents even more promising results despite no exter-
nal oxygen addition and specific treatment application. 

Figure 2. pH and DO change during the treatment process.



Recycling 2024, 9, 97 7 of 15

3.3. Volatile Solid and Total Solid Reduction

To evaluate the effectiveness of a stabilization process, it is essential to monitor pa-
rameters such as the volatile solid (VS) content, which should decrease by at least 38–40%
after treatment to define sludge as stabilized [46]. The VS content gradually decreased from
about ww 0.3% to 0.157%, representing a removal rate of 47.55%, as presented in Figure 3.
This indicates that the organic matter was effectively degraded.

Researchers have found that the efficiency of aerobic digestion in VS reduction is
often low. To enhance this process, various approaches have been explored. For instance,
the authors of Ref. [47] achieved a 36% ± 4% reduction in VSs within 15 days by adding
free ammonia (NH3) to sludge as a pretreatment compared to a 23 ± 3% reduction in the
control. Similarly, the authors of Ref. [48] induced sustained nitrite accumulation in an
aerobic digester operated at a low pH (<5.5), resulting in a 35–38.4% reduction in VSs after
300 days of treatment. Our study presents even more promising results despite no external
oxygen addition and specific treatment application.
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Regarding Total Solids (TSs), a slight increase was initially recorded, which can be
attributed to microorganisms accessing the remaining organic substances from the wastew-
ater treatment system for their growth [49]. This was followed by a decrease, primarily
caused by organic matter degradation and latterly by endogenous respiration, as bacteria
oxidize their own tissue under depleted conditions for cell reaction maintenance [50]. This
decrease was observed to be 29.41%, as it reduced from 0.51% to 0.36% over the treatment.
It is worth mentioning that reducing TSs or VSs is also crucial during sludge treatments
since they reduce the amount of sludge that needs to be disposed of [51].

3.4. Effect of Treatment on Floc Size, Settling, and Filtration Properties

The sludge’s settleability was notably improved by approximately 71,42% with this
treatment, as evidenced by the decrease in the SVI from 178.04 to 50.91 mg/L (Figure 4b).
This is principally due to the floc breakup. When digestion occurs, the floc size reduces
due to changes in bacterial growth and their adaptation to starvation conditions, leading
to a decrease in the SVI [49]. Additionally, the decrease in solids by 29.41%, as illustrated
in Figure 3, contributed to the enhanced settling properties of sludge as its concentration
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was reduced. This finding is similar to earlier research conducted by the authors of [50]
that showed the aerobic digestion of sludge increases its settleability by 60%. The observed
increase in floc size on the 10th day may be attributed to high microbial activity, particularly
from microalgae, which actively contribute to floc formation, leading to a high SVI observed
on the same day.
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To investigate the effect of the digestion process on sludge filterability, a series of
filtration tests was conducted at different times. The results reveal a clear pattern in the
filtration ability (Figure 5), with the order of effectiveness as follows: 5th-day digestion
sludge exhibited the highest filterability, followed by 0th-day, 10th-day, 15th-day, and lastly,
20th-day. The high filterability observed on the fifth day can be attributed to the increased
secretion of extracellular polymeric substances (EPSs) (Figure 7). During this day, there is a
notable increase in protein content within the tightly bound (TB) and loosely bound (LB)
EPS fractions. These proteins, being hydrophobic, facilitate improved water release during
filtration by reducing water retention within the flocs.
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Numerous studies have demonstrated that the dewatering performance of sludge
deteriorates during aerobic digestion treatment due to the significant destruction of sludge
flocs [51–53].

Moreover, the microscopic observation presented in Figure 6 illustrates that, initially,
sludge’s flocs are characterized by their significant size and density and are primarily com-
posed of bacteria. However, following treatment, the flocs become smaller and less dense
while also embedding microalgae. Based on the morphological examination described
in [54], the predominant species include Chlorella, Scenedesmus, and Ulothrix.
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3.5. The Effect of Treatment on EPS Distribution

Extracellular polymeric substances (EPSs) are complex high-molecular-weight poly-
mers primarily secreted by microorganisms, often resulting from cell lysis. Proteins and
polysaccharides are the major components of EPSs, with proteins typically being prevalent
due to the substantial presence of exoenzymes [55]. The sum of proteins and polysaccha-
rides constitutes the total EPS concentration. Based on their proximity to the cell, EPSs can
be categorized into three fractions: Soluble EPSs (S-EPSs), loosely bound EPSs (LB-EPSs),
and tightly bound EPSs (TB-EPSs). The TB-EPS fraction is considered “the active fraction”
as it plays a crucial role in maintaining the floc sludge structure [56,57].

In this study, we examined the variation of EPS concentration and their distribution
during the sludge stabilization process. The concentration of total EPSs decreased from
34.49 to 27.14 mg/gTS over the process (Figure 7c). Only a spike to 40.10 mg/gTS was
observed on the fifth day of treatment, primarily due to enhanced microbial growth that
resulted in increased EPS secretion, particularly in the TB fraction. The reduction in EPS
levels can be attributed to their microbial consumption under starvation conditions [58].

Focusing on each fraction, we noted a substantial increase in S-EPSs by about 215%.
LB-EPSs showed minimal variation. TB-EPSs decreased by 58.75%, with corresponding
reductions of 59.77% and 55% in proteins and polysaccharides, respectively. Given the
critical role of TB-EPSs in maintaining the three-dimensional structure of sludge flocs,
mainly thanks to proteins rather than polysaccharides, the reduction in protein content
within this fraction due to its consumption by cells or its shift to other fractions significantly
destabilizes the sludge flocs. This destabilization leads to floc disintegration and impairs
the dewatering properties, as demonstrated in [59] and illustrated in Figure 4bandFigure 5.
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3.6. Pathogen Removal

In this study, the quantities of fecal coliforms and E. coli in liquid samples (LSs) and
dewatered samples (DSs) are compared in Table 2 at different times of treatment. Statistical
analysis reveals no significant difference in bacteria abundance between the two analyzed
samples (p > 0.05). However, the liquid samples exhibited the highest bacterial abundance,
indicating that there may be a loss of bacteria during the dewatering step.

Table 2. Reduction of E. coli and fecal coliforms in liquid samples (LSs) and dewatered samples (DSs)
at different times of treatment.

RS 0 5 10 15 20 LRV % Reduction

E. coli (LS)
CFU/gTS

7.49 × 106

±3.83 × 105
5.23 × 106

±9.24 × 105
9.81 × 105

±1.67 × 104
3.52 × 103

±3.32 × 102
6.46

±1.29 × 101 <10 UFC 6.72 99.999

E. coli (DS)
CFU/gTS

4.22 × 106 ±
5.12 × 105

3.61 × 106

±4.47 × 105
4.57 × 105

±2.73 × 104
2.04 × 103

±6.77 × 102 ND <10 UFC 6.56 99.999

Fecal. Coliforms
(LS)

CFU/gTS

8.67 × 107

±4.01 × 106
2.48 × 107

±3.57 × 106
3.04 × 106

±1.70 × 105
1.63 × 105

±1.70 × 104
1.56 × 105

±2.94 × 104
1.39 × 105

±7.07 × 104 2.25 99.44

Fecal Coliforms
(DS)

CFU/gTS

5.33 × 107

±1.57 × 106
1.37 × 107

±1.57 × 106
2.17 × 106

±7.86 × 104
1.89 × 105

±6.29 × 104 ND 2.22 × 104

±1.11 × 104 2.79 99.84

LRV: Log Removal Value, <10 UFC: Method detection limit, and ND: Data not available.

E. coli and fecal coliforms display a substantial log reduction value of 6.72 (99.999%)
and 2.25 log (99.44%) after 20 days of treatment in LSs, respectively. Various studies
have shown that microalgae can effectively reduce coliform bacteria. For instance, the
authors of Ref. [60] reported a 3-log removal of total coliforms from untreated wastewater
using a mixed culture of microalgae–cyanobacteria. Similarly, the authors of Ref. [61]
showed a 4-log removal of total coliforms and E. coli from effluent used as a culture
medium for microalgae. Researchers concur that the decrease in coliforms is most likely
due to microalgae photosynthetic activity, leading to variations in pH and OD inactivating
coliforms [62]. The impact of microalgae biomass concentration on the destruction of fecal
coliforms was investigated in [63]. Under light conditions, the authors showed that the
reduction in fecal coliforms increases with the increase in chlorophyll-a concentration.
Moreover, they suggested that light promotes the production of toxic forms of oxygen
species under high pH and DO levels, damaging the cytoplasm membrane of bacteria
through photo-oxidation. The decay of fecal coliforms in darkness was attributed to the
toxin compound produced by microalgae, as reviewed in [64,65].

As for Salmonella spp., it was not detected after 15 days of treatment (Table 3). Similar
findings have been reported. For instance, the authors of Ref. [66] demonstrated that
Salmonella was removed by 1.5 to 2 log after 48 h from wastewater treated with microalgae-
activated sludge. Another study [33] reported that microalgal photosynthetic activity
inhibits antibiotic-resistant Salmonella typhimurium within 48 h.

Table 3. Detection status of Salmonella spp. in liquid samples (LSs) and dewatered samples (DSs)
analyzed at different times of treatment.

Treatment Day LS DS

0 + +

5 + +

10 + +

15 − ND

20 − −
(+): Detected, (−): Not detected, ND: Data not available.
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The proposed algal system is effective in removing pathogenic bacteria from sludge.
The final product meets the European standards for sewage sludge agricultural use, and as
it contains microalgae, it could be a good fertilizer. The recovered water from this process
is pathogen-free, so it can be recycled back into wastewater treatment plants.

4. Conclusions

In conclusion, the findings of this study highlight the promising potential of promoting
indigenous microalgae growth for sewage sludge stabilization. The unique natural gas
exchange process between microalgae and bacteria not only reduces the need for costly
oxygen input and decreases CO2 emissions but also effectively removes harmful pathogens,
such as E. coli, fecal coliforms, and Salmonella. While the results show significant reductions
in volatile solids and improvements in the settleability properties of sludge, further research
is needed to address other factors, such as the removal of heavy metals and pollutants,
as well as nutriment leaching, during the treatment process. The observed increase in
the microalgae biomass and diverse species present suggests the possibility of utilizing
this biomass as a biofertilizer, which will be further explored through agronomic assays.
Overall, this study provides valuable insights into a sustainable and environmentally
friendly approach to sewage sludge treatment that has the potential to benefit both the
agricultural and wastewater treatment industries. The novel integration of indigenous
microalgae growth not only enhances sewage sludge stabilization and pathogen removal
but also reduces reliance on external oxygen sources, thus minimizing operational costs
and greenhouse gas emissions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/recycling9050097/s1, Figure S1: The standard curve of chlorophyll-
a content and dry weight of microalgae.
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