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Abstract 

Bioinformatic pipelines are becoming increasingly complex with the ever-accumulating amount of Next-generation sequencing (NGS) data. Their 
orchestration is difficult with a simple Bash script, but bioinformatics workflow managers such as Nextflow provide a framework to overcome 
respectiv e problems. T his study used Ne xtflo w to de v elop a bioinf ormatic pipeline f or detecting e xpression quantitativ e trait loci (eQTL) using 
a DSL2 Ne xtflo w modular syntax, to enable sharing the huge demand for computing po w er as well as data access limitation across different 
partners often associated with eQTL studies. Based on the results from a test run with pilot data by measuring the required runtime and 
computational resources, the new pipeline should be suitable for eQTL studies in large scale analyses. 

Gr aphical abstr act 

I

A  

o  

s  

p  

t  

r  

t  

a  

d  

 

 

 

 

 

 

 

 

 

 

R
©
T
w

ntroduction 

 computing pipeline or workflow can be defined as a series
f tasks carried out in a sequential or parallel fashion with
ingle or multiple software tools channelling output from one
rocess as input into next processes. To this end it is set up
o generate targeted output after taking input data such as
aw sequence reads. In the context of analysing genomic data,
hese computing workflows are called bioinformatic pipelines
nd are especially designed to analyse high-throughput omics
ata like genomics, transcriptomics, proteomics, phenomics
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or metabolomics. As a result, they provide a comprehensive
understanding of the processed input data in the form of re-
ports, plots and statistical inferences. Initially, bioinformatic
pipelines were simple with fewer tasks and dealt with smaller
amounts of raw data than what we see today. Also, often
they were written using simple adhoc Bash or Perl scripts.
But new approaches are required now due to the ever in-
creasing amount of NGS data generated from assays exploring
(genome-wide) replication, transcription, translation, methy-
lation, etc. combined with new software tools and techniques
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that require multiple pre- and post-processing steps ( 1 ). More-
over, the processing time and the required computational re-
sources for data analysis have substantially increased, which
generates an additional layer of computational complexity. Al-
though it is possible to write correspondingly complex scripts
using Linux Bash, processing such large amount of data with
a series of Bash scripts is extremely inconvenient, as it requires
constant tracking of intermediate log files and monitoring of
the running processes. Also, it is difficult to (re)start such a
pipeline from the point, where it stopped, if there are any
interruptions. As a consequence it is often necessary to re-
run the entire pipeline from the beginning to avoid possible
conflicts with intermediate files. A further challenge complex
scripts frequently encounter is the need to include code snip-
pets from other programming languages like Python and R to
run some specific tasks within a pipeline. This requires call-
ing the code snippets within the Bash scripts. Furthermore,
each time a script is re-run with a different input on a dif-
ferent computational system, care should be taken regarding
the software used, the versions of software packages installed,
and the location where the data is stored. All these challenges
make it very difficult to reproduce the results of a compu-
tational analysis ( 2 ). Bioinformatic pipelines developed with
workflow manager technologies like Snakemake ( 3 ), Common
Workflow Language ( 4 ), Nextflow ( 5 ), etc. overcome most of
these issues with relatively simple coding, and the pipelines
resulting from them are portable, scalable and provide repro-
ducible results ( 6 ). Such workflow managers allow the user to
design complex pipelines with minimal coding and seamless
movement of data from one step to the next. Furthermore,
they keep track of all the running tasks and can be resumed
from the point they stopped in case of any unforeseen inter-
ruption. Most of the workflow managers also allow deploy-
ment of pipelines in cluster and cloud computational envi-
ronments, which enable different tasks to be run in parallel
and in a distributed format. Finally, workflow managers sup-
port container technologies like Docker ( https://www.docker.
com/) and Singularity ( https://docs.sylabs.io/guides/3.5/user- 
guide/introduction.html ) for installing all the software tools
required for a pipeline. Distributing software versions and de-
pendencies in containers guarantees the reproducibility and
portability of pipeline results regardless of the underlying
computational environment. 

In the current study, we developed a bioinformatic pipeline
for eQTL detection with the primary goal of identifying
eQTLs in a large international network project (EU Horizon
2020-funded BovReg, https:// bovreg.eu/ ) with contributions
from many laboratories and partners. eQTL studies identify
genome-wide genetic variants that could regulate gene expres-
sion ( 7 ,8 ). The availability of huge amounts of genetic vari-
ants and expression data provides the opportunity to con-
duct high-resolution eQTL studies with millions of genetic
variants and thousands of genes in hundreds to thousands of
samples across multiple tissues, which gives adequate statis-
tical power for statistically significant eQTL estimates. In in-
ternational projects like BovReg, multiple partners come to-
gether with high-quality input data from large datasets. How-
ever, conducting analyses with such a large amount of data
is a huge computational burden. Moreover, a complex bioin-
formatic pipeline like eQTL detection contains several pre-
processing steps of raw input data, which further adds high
volumes of intermediate data. Thus, in collaborative stud-
ies it would be more convenient for the contributing teams
to pre-process the data, which would distribute a substantial 
part of the computational burden among partners. Further- 
more, sometimes due to some technical issues or legal con- 
straints regarding full data availability, the initial raw data 
generated are not sharable between partners of a project. To 

overcome such issues and considering different usable sce- 
narios to run the pipeline, we provided two options, either 
to run the entire pipeline with a single command by using a 
single nextflow script for single users or by distributing the 
tasks of the pipeline into three independent nextflow modules 
which facilitates the distribution of the pipeline tasks among 
multiple users. This modular design facilitates the confidential 
distribution of the computational workload among partners 
to pre-process the raw input data. We considered Nextflow 

( 5 ) as a base to develop the pipeline as it offers the flexibil- 
ity to define individual tasks as separate files called ‘Mod- 
ules’ and enables a group of modules to be combined to form 

sub-workflows. To estimate the required amount of computa- 
tional resources and runtime for actual analyses with BovReg 
data, a pilot run was carried out with whole genome sequence 
(WGS) genotype data and liver RNA-seq output for 88 indi- 
viduals. A subset of the dataset from the pilot run is avail- 
able for testing along with the scripts in the BovReg GitHub 

page ( https:// github.com/ BovReg/ BovReg _ eQTL ) for poten- 
tial users of the pipeline. 

Materials and methods 

Pipeline and implementation 

The eQTL-Detect bioinformatic pipeline was designed for 
detecting eQTL using the new DSL2 (domain specific lan- 
guage 2) Nextflow modular syntax and executed using 
Nextflow ( 5 ). All the software with versions used for this 
pipeline are indicated in Table 1 . To make our pipeline 
portable to other computational environments, all the soft- 
ware required to run our pipeline are made available 
in Docker Hub ( https:// hub.docker.com/ u/ praveenchitneedi ).
We provided different nextflow config files in the folder 
‘conf’ ( https:// github.com/ BovReg/ BovReg _ eQTL/ tree/ main/ 
conf) to run the pipeline either on a local server or on 

a high performance computing clusters like Slurm ( https:// 
slurm.schedmd.com/ documentation.html ), PBS ( https:// www. 
openpbs.org/) or SGE ( http://star.mit.edu/cluster/docs/0.93. 
3/ guides/ sge.html ). Moreover, in addition to Docker, this 
pipeline also supports Singularity and Podman ( https:// 
podman.io/) container technologies to install all the software 
required to run the pipeline. To improve the ease of use, all the 
required parameters to run this pipeline with default values 
and also the paths for the input and output data are declared 

in a single file ‘nextflow.config’ ( https:// github.com/ BovReg/ 
BovReg _ eQTL/ blob/ main/ nextflow.config ). This pipeline can 

be replicated in any computational environment by exporting 
the required configuration files and scripts, provided Nextflow 

and any of the above mentioned container technologies are 
installed. During execution of each process in these scripts,
Nextflow pulls the corresponding software with specified ver- 
sion from Docker hub. As a result, it runs the pipeline with 

the exact tool versions so that users just have to take care 
of declaring the correct paths of input data and the location,
where the output should be stored. Nextflow stores all log 
files and output data in a directory named as ‘work’. Gener- 
ally based on the number of processed samples the size of this 

https://www.docker.com/
https://docs.sylabs.io/guides/3.5/user-guide/introduction.html
https://bovreg.eu/
https://github.com/BovReg/BovReg_eQTL
https://hub.docker.com/u/praveenchitneedi
https://github.com/BovReg/BovReg_eQTL/tree/main/conf
https://slurm.schedmd.com/documentation.html
https://www.openpbs.org/
http://star.mit.edu/cluster/docs/0.93.3/guides/sge.html
https://podman.io/
https://github.com/BovReg/BovReg_eQTL/blob/main/nextflow.config
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Table 1. This table shows versions of the different software used in the eQTL-Detect pipeline and also web links for some software which explains about 
specific software parameters used in this pipeline 

Softw are / par ameter Version / webpage 

Nextflow 22.10.6.5843 
Docker 20.10.8, build 3967b7d 
Singularity 3.11.4 
Podman 3.4.4 
fastqc 0.11.9 
STAR 2.7.0d 
trimmomatic 0.36 
Samtools 1.9–4 
StringTie 1.3.3 
RegTools 0.6.0 
LeafCutter 0.2.9 
VCFtools v0.1.12b 
csvtk 0.21.0 
csvtk–merge https:// bioinf.shenwei.me/ csvtk/ usage/ 
SNPRelate 1.34.1 
QTLtools 1.3 
QTLtools cis nominal https:// qtltools.github.io/ qtltools/ pages/ mode _ cis _ nominal.html 
QTLtools cis permutation https:// qtltools.github.io/ qtltools/ pages/ mode _ cis _ permutation.html 
QTLtools cis conditional pass https:// qtltools.github.io/ qtltools/ pages/ mode _ cis _ conditional.html 
QTLtools trans full pass https:// qtltools.github.io/ qtltools/ pages/ mode _ trans _ full.html 
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work’ directory increases substantially during the runtime of
he script. Thus, care should be taken by allocating enough
torage space before running the pipeline. Since this directory
s used to resume or re-run the pipeline with alternative pa-
ameters, once the analysis is done and the results are stored
n a separate folder, this directory can be deleted, if no de-
and for resuming or re-running the pipeline with alternative
arameters is intended. 
The input data for the pipeline consists of (i) files from

NA-seq experiments either as raw sequence in fastq file for-
at, which can be either single-end or paired-end reads, or

ligned and sorted files in bam format or normalized expres-
ion count matrices (gene level, transcript level and splicing
ites) across different samples in TSV (Tab-separated values)
ormat, (ii) WGS data as genotypes in Variant Call Format
VCF) ( https:// samtools.github.io/ hts-specs/ VCFv4.2.pdf, last
ccessed in July 2024) and (iii) reference genome informa-
ion of the species of interest for RNA-seq read alignment
genome assembly and corresponding transcriptome annota-
ion files) to establish the phenotype count matrices. Users
hould declare the paths of all the input samples (expression
ata and genotype data) as sample sheets in ‘.tsv’ format,
sers can access the example sample sheet files from the folder
Demodata’ ( https:// github.com/ BovReg/ BovReg _ eQTL/ tree/
ain/Demodata ). By default this pipeline takes fastq files with
aired-end reads as input RNAseq samples, users can de-
lare an alternative expression input files (single-end fastq
les or aligned and sorted Bam files or expression count
atrices) in the nextflow.config. The entire pipeline can be

xecuted using a single standalone script main.nf by using
he command nextflow run main.nf -c conf / env_local.config
profile doc k er or by using three separate modules (mod-
le_1_eQTLDetect.nf, module_2_eQTLDetect.nf and mod-
le_3_eQTLDetect.nf) using the command nextflow run mod-
le_(1 or 2 or 3)_eQTLDetect.nf -c conf / env_local.config -
rofile doc k er (Figure 1 ). The module 1 performs reference
enome indexing, quality check of input RNAseq reads, align-
ng the reads and sorting them in bam format. If aligned and
orted bam files are available, users can skip the execution
f module 1 and can directly use module 2 to generate nor-
malized count matrices, for the available genotyped samples.
This module extracts the genotyped sample for the available
corresponding RNAseq samples and also generates expression
counts at gene level, transcript level and for splicing sites. The
final module 3 detects eQTLs with the expression count ma-
trices and corresponding genotypes as input for the available
samples, if these files are available users can just use this mod-
ule. This module extracts the genotyped samples having cor-
responding RNAseq samples, performs principal component
analysis (PCA) both for genotype and expression data and fi-
nally detects cis- and trans -eQTLs. 

Each individual analysis in the nextflow pipeline is de-
fined as an independent entity called ‘Process’, and they com-
municate with other processes via input and output com-
ponents called ‘Channel’. The input data declared in the
nextflow.config file are also feed to different processes via
channels. To increase the usability, we adopted the concept of
nextflow dsl2 subworkflow design for some tasks like expres-
sion data processing and eQTL detection. ( https://github.com/
BovReg/ BovReg _ eQTL/ tree/ main/ subworkflows ). For pro-
cessing the expression data two separate sub-workflows are
designed, one for paired-end reads and other single-end reads.
A separate sub-workflow is designed for expression data
quantification and creating count matrices. Finally for the
detection of cis- eQTL and trans -eQTL takes place in two
separate sub-workflows. The required processes and sub-
workflows are invoked while executing the main.nf and the
three modular scripts based on the parameters declared in the
nextflow.config file. All the important results from each pro-
cess are stored in separate pre-defined folders in a user de-
fined output path. The details of all the processes and sub-
workflows of the pipeline was shown in Figure 2 and de-
scribed below. 

1 . Process: genome indexing . This process performs the
indexing of the reference genome provided by the
user. As a prerequisite to perform read alignments us-
ing STAR ( 9 ), the indexing of a reference genome
using the STAR command ‘–runMode genomeGener-
ate’ is required. The indexed reference genome acts as

https://bioinf.shenwei.me/csvtk/usage/
https://qtltools.github.io/qtltools/pages/mode_cis_nominal.html
https://qtltools.github.io/qtltools/pages/mode_cis_permutation.html
https://qtltools.github.io/qtltools/pages/mode_cis_conditional.html
https://qtltools.github.io/qtltools/pages/mode_trans_full.html
https://samtools.github.io/hts-specs/VCFv4.2.pdf
https://github.com/BovReg/BovReg_eQTL/tree/main/Demodata
https://github.com/BovReg/BovReg_eQTL/tree/main/subworkflows
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Figure 1. The flow of input expression data in different formats (fastq, bam or count matrices) after execution from different modules and from 

standalone script main.nf. Modules can take the expression data generated from previous modules or generated externally. The standalone script 
accepts any of these three formats as input and runs the entire analyses until eQTL detection. 

Figure 2. eQTL-Detect bioinformatics pipeline: each grey block represents an independent Nextflow process or sub-workflow. Some input / output boxes 
are coloured to represent the flow of data between processes and sub-workflows, example: ‘P.1. STAR index’ coloured in red to represent the reference 
genome STAR index output from 1. Process is used as input in 2. Sub-workflow. The shape of individual entities in grey blocks refers to input, output, 
analysis or software as shown at the top right of the figure. *QC, quality control; PCs, principal components. 

 

 

 

 

 

 

 

 

 

 

 

 

reference for subsequent read alignment of all RNA-seq
samples. 

2 . Sub-w or kflows: processing paired-end and single-end
reads. The two sub-workflow defined for paired-end and
single-end reads performs the pre-processing of RNA-
seq. Initially, a quality check of the input reads in each
RNA-seq sample is performed followed by trimming of
poor quality and adapter sequences. Then aligning the
trimmed reads against the reference genome, followed
by sorting and indexing that aligned samples. 
The input read quality testing is performed by FASTQC
( 10 ). Using the software trimmomatic ( 11 ), we imple-
mented the trimming of paired-end and single-end reads
as separate processes in each sub-workflow. Trimmed
reads of each sample are aligned against the refer- 
ence genome using STAR ( 9 ) in combination with the 
corresponding transcriptome annotation file in Gen- 
eral Transfer Format (GTF) format, to perform an 

annotation-guided alignment. We used two different sets 
of parameters for aligning RNA-seq reads using STAR 

corresponding to the different eQTL phenotypes: one 
set serves to identify gene and transcript regions and 

other for identifying splicing sites. The input data for 
alignment in each sub-workflow are handled differently 
for paired-end or single-end reads. In case of paired-end 

reads, the input data include paired reads and unpaired 

reads without mate after trimming, and these two sets 
are aligned separately to the reference genome. Later, the 
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resulting aligned reads are merged by the software Sam-
tools ( 12 ). For the genes and transcript regions the reads
are sorted by coordinates during alignment and for de-
tecting splice junctions during alignment, the reads are
kept unsorted and the parameters ‘–twopassMode Ba-
sic’ and ‘–outSAMstrandField intronMotif ’ are used to
determine, if the read origin is from intron or from splice
junction. The unsorted reads are indexed and sorted us-
ing Samtools. 

3 . Process: extracting genotype samples have correspond-
ing expression samples . This process collate the set of
genotype files comprising samples with expression data
available. It takes the genotype data per each chro-
mosome individually in VCF format for the samples
available for the eQTL analysis. The genotype data are
quality-filtered at individual level and SNP level using
plink ( 13 ) by filtering out the sample having more than
1% missing genotypes (–mind 0.01) and filtering out the
SNP genotypes with the plink filters –maf 0.005 –geno
0.5 and –hwe 1e-6 . The list of respective samples of the
input VCF file is intersected with the list of samples with
RNA-seq data to generate a text file having the corre-
sponding RNA-seq sample names. With this text file, the
genotypes from the input VCF file are filtered for all
samples having both RNA-seq and genotype data using
custom Linux commands and VCFtools ( 14 ). To enable
eQTL analysis across data sets from different origins, the
user has to take care that the assignment of the reference
and alternate alleles for each genotype in the VCF file
is the same as defined in the reference genome assembly
used for aligning the RNA-seq reads. 

4 . Sub-w or kflow: generation and merging expression count
matrices. This sub-workflow has a set of processes for
quantifying the expression counts per each sample at
gene level, transcript level and splicing events (based on
intron excisions ( 15 )) according to information found
in the annotated reference genome and merging all the
expression counts per each sample into count matrices
The StringTie ( 16 ) assembler quantifies and normalizes
the read counts at gene and transcript level, account-
ing for strandedness of the RNA-seq library with op-
tion ‘–rf’ for the first stranded libraries, ‘–fr’ for the sec-
ond stranded libraries and no parameter for unstranded
libraries. For quantifying the splicing sites, exon-exon
junctions are extracted from the indexed bam files us-
ing RegTools ( 17 ) ‘junctions extract’, and the appropri-
ate strandedness of the RNA-seq library is taken care of
with the regtools option ‘-s 1’ for the first stranded li-
braries, ‘-s 2’ for the second stranded libraries and ‘-s
0’ for unstranded library. After the sample wise quan-
tification of expressions, the phenotype input files are
generated at gene and transcript level by generating the
count matrices from the StringTie quantification output
files for individual samples. The normalized TPM val-
ues from the samples with genotype data are retained.
The counts across all gene / transcripts for the filtered
list of samples are then merged into a matrix format
with samples as columns and gene / transcripts expres-
sion counts as rows using csvtk –merge (Table 1 ) and
are stored in T ab-Separated V alues (TSV) format. From
this table, genes / transcripts are filtered out, if they do
not have TPM values greater than one in at least 10 per-
cent of samples. These tables are provided as input files
for the detection of gene eQTL (geQTL) and transcript
eQTL (teQTL).The last process in this sub-workflow
generates the count matrices for splicing events across
different samples for each chromosome using two cus-
tom Python scripts from the LeafCutter package ( 15 ).
The first python script (leafcutter_cluster_regtools.py)
performs the clustering of introns found in the exon-
exon splice junction files generated in script 1. The sec-
ond python script (prepare_phenotype_table.py) calcu-
lates intron excision ratios filtering out introns present
in < 40% of individuals or with no variation and finally,
it delivers files with the intron excision ratios for each
chromosome separately across all samples along with the
user defined principal components (PCs). These intron
excision ratios generated across samples form the splic-
ing phenotypes and the PC estimates are covariates for
the splice eQTL (sQTL) detection. 

5 . Process: genotype PCA. The genotype covariates address
the population stratification present due to systematic
ancestry differences in the data set and are included by
performing a PCA with genotype input using the R pack-
age SNPRelate ( 18 ). This process takes the genotype data
in VCF format and the number of PCs declared as pa-
rameter in nextflow.config file to perform PCA. The out-
put PCA file is supplied to sub-workflow using nextflow
channel as input for detecting cis- and trans -eQTLs. 

6 . Sub-w or kflow: cis- and trans-eQTL detection. Two sep-
arate sub-workflows are developed for performing cis
and trans eQTL mapping, but both perform similar pro-
cesses and both cis- and trans -eQTL mapping is by us-
ing QTLtools ( 19 ). QTLtools expects three input files
for mapping: (i) genotype data in VCF format, (ii) phe-
notype data in bed format and (iii) the genotype and
phenotype PCs as covariates. Both the sub-workflows
carry out eQTL mapping per chromosome by taking the
WGS genotype data and TPM normalized read counts
from a particular chromosome. In case of cis -eQTL map-
ping, we selected a default 1Mb flanking window for
genetic variants positioned on either side of the phe-
notype. In contrast, for trans -eQTL the TPM normal-
ized read counts from each gene / transcript expression
or splicing events are correlated with the genotype vari-
ants from each chromosome except a 5 Mb flanking win-
dow on either side of the target gene / transcript / splicing
event. The input data should contain only the samples
having both genotypes and the corresponding phenotype
data along with the covariate text file of these samples.
To address outlier samples and the batch effects in the
RNA-seq data, we used QTLtools PCA to generate PCs
to be used as covariates for gene and transcript level
phenotypes. Although the probabilistic estimation of ex-
pression residuals (PEER) factor method is the de facto
method to determine hidden variables in many eQTL
studies ( 20–23 ), PCA is easier to implement and inter-
pret. Moreover, in a recent study by Zhou et al. ( 24 ),
it was demonstrated that PCA produces results faster,
which were identical or better than PEER estimates. In
the case of sQTL, the leafcutter PC estimates from script
3 are considered as phenotype covariates and script 4 di-
rectly takes those estimates as input. 

The cis -eQTL mapping has three main steps for determin-
ing statistical significance of a potential association: nominal,
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permutation and conditional analyses, all these steps take the
genotype, phenotype and covariates as input. The QTLtools
cis nominal analysis takes the parameters ‘–nominal’ and ‘–
normal’ (Table 1 ). The default nominal threshold declared in
this pipeline is ‘–nominal 0.01 

′′ , which filters the phenotype-
variant pairs with a nominal P -value below 0.01, and the pa-
rameter ‘–normal‘ enforces the phenotypes to match a normal
distribution N(0,1). The permutation run gives the adjusted P -
value between the cis- associated phenotypes and top variants.
The QTLtools cis permutation run is declared with the param-
eter ‘–permute’ (Table 1 ). By default, this command performs
1000 permutations. The cis -eQTL conditional analysis iden-
tifies the number of independent QTL signals for a given phe-
notype and determines the best candidate variant per signal.
The QTLtools cis conditional pass runs in two steps (Table
1 ), at first a nominal P -value threshold is estimated for each
molecular phenotype from the permutation hits. Then in the
next step, multiple forward stepwise and backward pass lin-
ear regressions are performed to identify independent signals
per phenotype and to allocate the non-independent signals to
those. The QTLtools cis conditional analysis run is invoked
by using the parameter ‘–mapping’. 

Similar to cis -eQTL detection, the trans -eQTL also has
three steps to provide levels for determining statistical signif-
icance of a potential association: nominal, permutation and
false discovery rate (FDR) estimation for each nominal hit.
The nominal and permutation steps take the genotype, pheno-
type and covariates as input. We implemented the QTLtools
trans full pass approach (Table 1 ) in this pipeline. The QTL-
tools trans nominal run includes the parameters ‘–nominal‘,
‘–normal’ and ‘–threshold’ along with the input files (geno-
type, phenotype and covariates). The default threshold option
‘–threshold 1e-5’ prints the hits with P-value less than 1e-5.
The default option for this pipeline are ‘–permute 100’ to run
100 permutations and prints all the hits. As the trans-eQTL
analysis is substantially more time-consuming than cis -eQTL
analyses, the default permutations are restricted to 100, but
users can change this number to perform more or less permu-
tations. Finally, the FDR estimation was conducted using the
R script provided by QTLtools, which takes the nominal and
permutation hits from the previous two steps as input. 

The default options in all scripts are declared in
nextflow.config file for both, cis and trans -eQTL analyses,
which can be modified based on user requirements. 

Results and discussion 

Application 

We tested the functionality of this eQTL pipeline with a pi-
lot dataset from 88 bovine liver RNA-seq samples and corre-
sponding WGS genotype data. Testing with this small dataset
was done to estimate how much runtime is required for a set
of samples and the potential pitfalls to consider when run-
ning this workflow with much larger number of samples. We
used only paired-end RNA-seq reads for this pilot run, but
this pipeline also accepts single-read RNA-samples as input
data. 

For this test run using the pilot data, we built the
STAR index for the latest bovine genome ARS-UCD1.2
with the Y chromosome assembly ( https://www.ncbi.nlm.
nih.gov/ datasets/ genome/ GCF _ 000003205.7/ , last accessed in
July 2024) used for Run 7 of the 1000 bulls project ( 25 ).
We used a custom reference transcriptome annotation file 
( 26 ) in GTF format created for the BovReg project to per- 
form an annotation guided alignment of reads and also for 
quantification at gene and transcript level. This annotation 

provided a substantially higher number of genes (47 914),
transcripts (290 707) and exons (3 093 832) compared to 

the Ensembl annotation ( https:// ftp.ensembl.org/ pub/ release- 
109/ gtf/ bos _ taurus/ , last accessed in July 2024), which has 
27 607 genes, 43 984 transcripts and 433 820 exons. This 
new annotation facilitated identification of eQTL signals for 
some novel genes, but the higher number of transcripts in the 
BovReg annotation compared to the Bos taurus annotation in 

Ensembl resulted in an extended run time for alignment. The 
RNA-seq samples include paired-end (2 × 100 bp) library se- 
quences from liver samples (PRJEB34570, PRJEB33849) per- 
formed on an Illumina HiSeq 2500 system ( 27 ,28 ). The aver- 
age number of input reads across the 88 RNA samples was 56 

million read pairs varying from a minimum of 43 to 74 million 

read pairs. The input genotypes for this test run were imputed 

from medium density (50K SNPs) to high density (777K SNPs) 
and then to whole genome sequence (WGS) level using a step- 
wise imputation strategy ( 29 ) by taking the 1000 bulls genome 
project population Run 7 ( 25 ) as reference. The reference and 

alternate alleles of the imputed genotypes were confirmed to 

be in agreement with the reference assembly used for RNAseq 

alignment. The WGS genotype data set included 19 590 389 

bi-allelic variants across 29 autosomal chromosomes. 
We performed the cis- eQTL mapping with the top ten geno- 

type and phenotype PCs as covariates and used the default op- 
tions for the nominal and permutation analyses. For the trans - 
eQTL mapping, we considered the top 10 genotype and phe- 
notype PCs as covariates and set default options for the nom- 
inal and permutation analyses. Executing a workflow with 

large samples requires a rough estimation of runtime on a 
given computer infrastructure, as it takes from a few days to 

months to finish the analyses depending on the input sample 
size. Thus, with the current demo of our eQTL workflow, we 
also checked the average runtime for 88 RNA-samples by the 
different processes on our local server. 

This test analysis was run on an Intel(R) Xeon(R) @ 

2.10GHz server with 144 CPUs, 18 cores and 1.8 TB RAM 

memory. In this pilot run, we tested the runtime using the sin- 
gle command main.nf and also with three modular scripts, no 

significant change in relation to run times for running the en- 
tire pipeline using both these approaches was detected. The 
alignment was the most time consuming process, and aligning 
all 88 samples took 118 h. The quantification and merging 
the normalized expression counts took 9 min 15 s. It took 

1 min 10 s and 1 min 35 s, respectively for extracting the 
genotype and generating PCs for genotype data. Finally the 
phenotype PCA, QTL mapping across different levels (gene,
transcript and splicing events) completed in 6 h 12 min for 
cis -eQTL detection (both nominal and permutation analyses) 
and 7 h 21 min for trans -eQTL detection (both with nominal 
and permutation analyses). To avoid any input output biases 
with multiple samples and chromosomes with varied lengths,
in Figure 3 , we provided the runtime estimates of align- 
ment and quantification for a single RNA-seq sample with a 
sample size of 5.4 Gb also and runtime estimates for eQTL 

analyses and other steps in the workflow with genotype data 
for a single bovine chromosome ( Bos taurus autosome 2) and 

expression counts from 88 samples. These runtime estimates 
provided valuable information to plan future analyses with a 

https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000003205.7/
https://ftp.ensembl.org/pub/release-109/gtf/bos_taurus/
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Figure 3. Runtime estimates of different analyses of the eQTL-Detect w orkflo w on a server Intel(R) Xeon(R) @ 2.10 GHz server with 144 CPUs, 18 cores 
and 1.8 TB RAM memory: STAR indexing of bovine genome ARS-UCD1.2. Alignment and quantification for a single RNA-seq sample (2 × 100 bp) with 
sample size of 5.4 Gb containing 47.5 million input reads (average total read length 195). Genotype extraction of bovine chromosome 2 with 979 866 
bi-allelic SNPs from 88 samples. eQTL detection and other steps in the w orkflo w with input data for bovine chromosome 2 and expression counts from 

88 RNA-seq samples. *QE, quantification of expression counts. 
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igher sample size based on the available computational in-
rastructure. 

To our knowledge the eQTL-Detect is one of the ini-
ial attempts to develop a bioinformatics pipeline using
orkflow manager technology like Nextflow. Except for

he eQTL-Catalogue pipeline ( 30 ) developed by human
TEx consortia ( 20 ), no other Nextflow or other work-
ow manger based eQTL detection pipelines are available
n public domain like GitHub or other developer platforms
or free download. Some non-workflow manager based so-
utions include SPIRE ( 31 ), eQTLQC ( 32 ) and eQTL de-
ector ( https:// openaccess.uoc.edu/ bitstream/ 10609/ 121606/
/martindiTFM0620memoria.pdf, last accessed in July 2024).
nlike our pipeline which supports fastq, bam and count ma-

rices as input for expression data SPIRE only supports fastq
le as input for expression data and eQTL detector only sup-
orts bam format. Similar to our pipeline eQTLQC also sup-
orts multiple format expression as input. However, it is not
 modular based solution, which make it complex in terms of
nstallation and usability for distribution of individual tasks
f the pipeline for collaborative projects. Moreover, this tool
nly performs quality control of the input data and users have
o perform eQTL detection with MatrixEQTL ( 33 ), which is
ot included with in the eQTLQC pipeline. Furthermore, by
aking advantage of the eQTL-Detect modular design, it is
ossible to include some specialised tools like QTLIMP ( 34 ),
QTLMAPT ( 35 ) and eQTLMotiff ( 36 ) that perform spe-
ific post-eQTL studies with eQTL summary statistics. When
he experiments were performed with limited sample size,
TLIMP can impute the missing eQTL associations. Focusing
n trans -eQTL association eQTLMAPT performs post-eQTL
multiple testing corrections with different permutation pro-
cedures. eQTLMotiff identifies the regulatory patterns across
eQTLs by constructing a novel eQTL regulatory network by
performing motif mining. 

The eQTL-catalogue also developed using Nextflow and
has many features similar to our pipeline. But the detec-
tion trans-eQTL was not implemented in eQTL-Catalogue.
Unlike eQTL-Catalogue which implemented two separate
pipelines for RNAseq data processing and QTL mapping,
our pipeline can run all the analyses from input data pro-
cessing (which include both RNAseq and genotype data pro-
cessing) to eQTL detection with a single nextflow com-
mand (nextflow run main.nf -c conf / env_local.config -profile
docker). This makes our pipeline more versatile and user-
friendly compared to the available solutions for eQTL de-
tection. We conducted a comparative analysis of eQTL-
Detect and eQTL-Catalogue with the demo data provided in
the BovReg / BovReg_eQTL GitHub page ( https://github.com/
BovReg/BovReg _ eQTL ) and using the same computational re-
sources. As shown in the Table 2 and Supplemental Figure S1 ,
no significant differences were found between the runtime es-
timates when each individual tasks of the pipeline are com-
pared. Overall, the total run-time of eQTL-Detect is higher
than the eQTL-Catalogue. This can be majorly attributed to
the trans -eQTL analysis which is exclusive to eQTL-Detect
and the minor difference between each individual tasks can
be attributed to the type of tools used by these pipelines and
the default parameters declared for each tool. 

The nextflow based scripts can be resumed from the point
they stopped using the ‘-resume’ parameter (nextflow run
main.nf -resume), if there is any interruption due to a server

https://openaccess.uoc.edu/bitstream/10609/121606/6/martindiTFM0620memoria.pdf
https://github.com/BovReg/BovReg_eQTL
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae122#supplementary-data
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Table 2. The median run-time estimates (execution time in minutes) of 
different tasks in the two nextflow based pipelines eQTL-Detect and eQTL- 
Catalogue 

Pipeline tasks eQTL-Detect eQTL-Catalogue 

Reference Genome Indexing 29 .3 25 .9 
Read trimming 0 .1 1 
Read alignment 2 .9 0 .4 
Bam files sorting and merging 0 .1 0 .1 
Quantification of gene 
expression 

0 .7 0 .6 

Merge expression counts 0 .1 0 .1 
Extract sample genotypes 1 .6 1 .4 
cis -eQTL nominal 0 .2 0 .01 
cis -eQTL permutation 4 0 .1 
trans -eQTL nominal 7 NA 

trans -eQTL permutation 7 .1 NA 

Total 53 .1 29 .61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

breakdown or other minor issues or if the user wants to edit
some intermediate processes e.g. changing mapping parame-
ters or correcting strandedness information of RNA-seq data
sets. This feature is especially helpful when running module
1, for which runtime increases linearly from a few hours to
months based on the number of input RNA-seq samples, and
it saves lot of computational resources and time in the event of
interruption. For collaborative projects it is possible to use the
modular approach to run the entire pipeline independently by
different partners and perform meta-analysis for eQTL detec-
tion by combining intermediate results using the last module
(eQTL detection). This is advantageous, if the raw sequenc-
ing data could not be shared due to confidentiality issues or
if project partners want to distribute the computational bur-
den specifically associated with aligning the RNAseq sam-
ples. The major issue for sharable bioinformatics pipeline is
to make it compatible across different computational infras-
tructures. We provided a list of most common nextflow con-
fig files ( https:// github.com/ BovReg/ BovReg _ eQTL/ tree/ main/
conf) to run the pipeline on different computer cluster envi-
ronments along with the option to choose different container
technologies. 

This pipeline can be adopted to detect eQTLs in species
other than Bos taurus by just changing the reference genome
and annotation in the nextflow.config file. Based on the run-
time estimates from our pilot run with 88 samples, to analyse
a large number of samples it is advisable to run at least align-
ment (module_1_eQTLDetect.nf) on a grid or cloud based
parallel computational solution. This is efficient as it signifi-
cantly reduces the runtime, and the analyses of other modules
can be deployed on a local server. Similar to the web based
postGWAS ( 37 ) server, with the future eQTL-Detect updates,
there is scope to include to include other association studies
like aseQTL (allele specific expression QTL), genome-wide as-
sociation studies (GWAS) and transcriptome-wide association
studies (TWAS) as separate nextflow modules and also to in-
clude a wide variety of molecular phenotypes to make eQTL-
Detect more comprehensive and complete go to pipeline for
all kind of association studies. 

Data availability 

Sequencing data are available under PRJEB34570 and PR-
JEB33849. The eQTL-Detect pipeline scripts and demon-
stration data can be downloaded from BovReg GitHub
page ( https:// github.com/ BovReg/ BovReg _ eQTL ) and Zen- 
odo ( https:// zenodo.org/ doi/ 10.5281/ zenodo.8305279 ). 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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