Doctoral thesis public defence

Hosting capacity of lowvoltage distribution networks

Amina Benzerga

December 6th, 2024

(Image from https://www.synox.io/cat-smart-energy/smart-grid-definition)

Power System

Power System

Power System

Distributed Energy Resources (DERs)

Small-scale energy assets that generate, store or consume energy.

La Libre

L Detaches, network saturation, complaints from prosumers: photovoltaics under tension in Wallonia

tendances 1

Photovoltaic: with the overload on the network, the efficiency of the panels is often equal to zero

New tile for photovoltaics: surges on the network paralyze some installations

Tends Charging electric cars, a challenge for the Belgian network?

CAN ELECTRIC CARS OVERCHARGE THE POWER GRID?

Auto

DERs issues – Photovoltaic (PV) panels example

DERs issues – Electrical Vehicle (EV) example

DERs issues

Two examples of issues from the network point of view:

- Voltage rises or drops (produce or consume more than expected, beyond voltage limits)
- Congestion (due to high demand, network limits to deliver electricity are reached)

The scope of this thesis

The hosting capacity is the amount of new resources that can be hosted by a network before facing any issues, i.e., compromising its operational limits or violating safety constraints.

Topology identification

Street map

Electrical network topology

- Substation
- Feeder 1
- Feeder 2
- Feeder 3
- Feeder 4

Electrical network topology

Smart meters

Substation

- Feeder 1
- Feeder 2
- Feeder 3
- Feeder 4
- Phase 1
- Phase 2
- Phase 3

Smart-meters

LTE NB1 wM-BUS adims

Available data

Topology reconstruction goal

Assumptions

- During the observation period, the **network topology does not change**
- Customer connections to the main feeder are **single-phase**
- Customers connection phase is known
- There is **at least one smart-meter** connected at **every phase** of **every feeder**
- Three-phase measurements of feeders at the substation are available

Methodology

Two steps:

- 1. Construct single-phase estimates of the network topology for each.
- 2. Merge the three single-phase estimated typologies to form a three-phase feeder model

Methodology – single phase reconstruction

Methodology – single phase reconstruction

Methodology – single phase reconstruction

Methodology

Two steps:

- 1. Construct single-phase estimates of the network topology for each.
- 2. Merge the three single-phase estimated typologies to form a three-phase feeder model

Methodology – Three-phase topology formation

Methodology – three-phase topology formation

Methodology – three-phase topology formation

Feeder 1

Methodology – three-phase topology formation

Methodology

- 1. Construct single-phase estimates of the network topology for each.
- 2. Merge the three single-phase estimated typologies to form a three-phase feeder model

Test case

- 1 substation (red dot)
- 4 feeders
- 216 nodes
- 128 customers
- 52 Smart meters (black rectangles)

Results

Results

Results validation

Amina Benzerga

Combined HC
Determining a Hosting Capacity

Single technology hosting capacity

For a given technology, how many of that technology can we install before facing any issues?

Methodology idea

Add new technologies (e.g. PV, EV) to a network and simulate over time and see what happens !

Key performance indicators

Measure of the performance of the network.

Configurations

Configurations (2)

For instance, for 40 new installations and 100 customers, there are $C_{100}^{40} = 10^{28}$ possible configurations.

Probability density function (PDF) for the indicators:

Methodology - summary

Test case

- Topology reconstructed
- 500 configurations per penetration
- 1 week time series
- Penetrations [0, 1, ..., 100]
- 13 PVs of 290 W_{peak}

PV Performance indicator – Energy spilled

PV Performance indicator – Energy spilled

PV Performance indicator – Energy spilled

Test case – PV results

Test case – PV results

Amina Benzerga

Hosting Capacity of Low-Voltage Distribution Networks

Hosting Capacity Definition

Hosting capacity (HC)

The HC is the amount of new resources (DER) that can be hosted by a network before facing any issues, i.e., compromising its operational limits or violating safety constraints.

For a given network, with customers

These customers can add different types of DERs with different options, for instance their size.

State:

Set of scenarios :

Set of considered scenarios :

N-dimensional hosting capacity

One Dimensional Hosting capacity

Amina Benzerga

Combined PV-EV-HP Hosting Capacity

Methodology

Considered scenarios Penetrations Issues

Case study – considered scenarios

• Technologies size:

Photovoltaic size: 20 x 290W_{peak} Electric vehicle charger sizes: 3kW and 7kW Heat pump sizes: 7.5kW and 15kW

• Probability of installing a technology: Use a probability to install a new technology for each customer and technology type.

Household size (m ²)	Probability (%)
[0,50)	20
[50, 75)	40
[75, 100)	50
[100, 125]	60
[125, Inf)	80

Case study

• Representative days:

Reduce the number of time steps considered

Day	# similar days	Day	# similar days
1	33	7	20
2	42	8	42
3	13	9	23
4	24	10	3
5	51	11	10
6	55	12	50

Case study – Functions

mm

Number of customers with new technologies (DERs)

Total number of customers

Case study – Belgian network

- 1 substation
- 2 feeders
- 23 customers
- 15 customers with Smart Meters
- Penetration levels: [25%, 50%, 75%, 100%]
- 100 scenarios per penetration level

Results - Voltage

Results - Voltage

Results - Voltage

- Acceptable for a penetration around 50% for all technologies
- Under-voltage is encountered rapidly for both EV and HP penetrations higher than 50%.
- Over-voltage is not faced before 75% of PV penetration.

Results – Loads

Even with high penetration rates for all three technologies, the lines of the case study network are not overloaded.

Conclusion – Journey summary

In this presentation:

- Reconstruction of the topology of distribution network using smart meter data
- Single technology hosting capacity methodology with application on a Belgian inspired network with photovoltaic panels.
- Definition of the hosting capacity
- Combined hosting capacity of PV-EV-HP

In addition, in the manuscript:

• Impact of optimal phase connection on HC

Future work

► Representative days Socio-economic behaviour Coupling the HC formalism with investment strategies and active network management.

Further information

In the thesis:

A. Benzerga, "Hosting Capacity of Low-Voltage Distribution Networks", <u>https://hdl.handle.net/2268/323245</u>

And the corresponding papers:

- Benzerga, A., Maruli, D., Sutera, A., Bahmanyar, A., Mathieu, S., & Ernst, D. (2021, June). Low-voltage network topology and impedance identification using smart meter measurements. In 2021 IEEE Madrid PowerTech (pp. 1-6). IEEE.
- Marulli, D., Mathieu, S., Benzerga, A., Sutera, A., & Ernst, D. (2021, October). Reconstruction of low-voltage networks with limited observability. In 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe) (pp. 1-5). IEEE.
- Benzerga, A., Mathieu, S., Bahmanyar, A., & Ernst, D. (2021, July). Probabilistic capacity assessment for three-phase low-voltage distribution networks. In 2021 IEEE 15th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG) (pp. 1-6). IEEE.

And more

- Benzerga, A., Bahmanyar, A., Derval, G., & Ernst, D. (2024). A unified definition of hosting capacity, applications and review. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/315915.
- Benzerga A., Vassallo M., Gerard S., Vandeburie J., and Ernst D. (2024). Combined PV-EV-HP Hosting Capacity Analysis of a Belgian Low- Voltage Distribution Network. In Proceeding of the 34th Australasian Universities Power Engineering Conference (AUPEC). 2024.
- Benzerga, A., Bahmanyar, A., & Ernst, D. (2022). Optimal Connection Phase Selection of Residential Distributed Energy Resources and its Impact on Aggregated Demand. arXiv preprint arXiv:2207.05059.
- Benzerga, A., Gérard, S., Lachi, S., Garnier, Q., Bahmanyar, A., & Ernst, D. (2022). Optimal connection phase selection for single-phase electrical vehicle chargers.
- Vassallo, M., Benzerga, A., Bahmanyar, A., & Ernst, D. (2023, June). Fair reinforcement learning algorithm for pv active control in lv distribution networks. In 2023 International Conference on Clean Electrical Power (ICCEP) (pp. 796-802). IEEE.

"Happiness can be found, even in the darkest of times, if one only remembers to turn on the light."

- Albus Dumbledore