

The 44th AIVC conference

"Retrofitting the Building Stock: Challenges and Opportunities for IEQ"

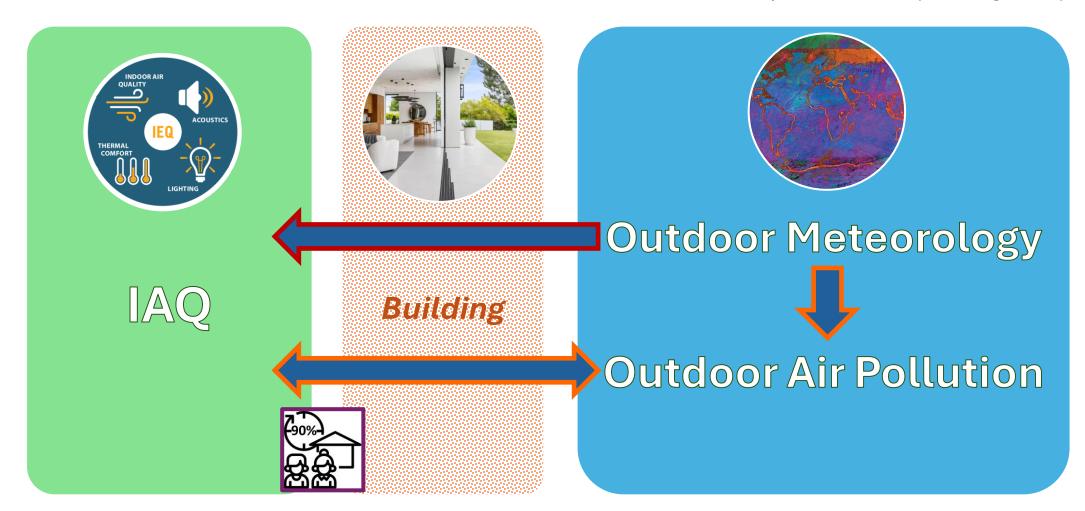
IEA-EBC Annex 86

working meeting 7 - Symposium session

Impacts of Climate Change on IAQ

"Insights from the OCCuPANt project"

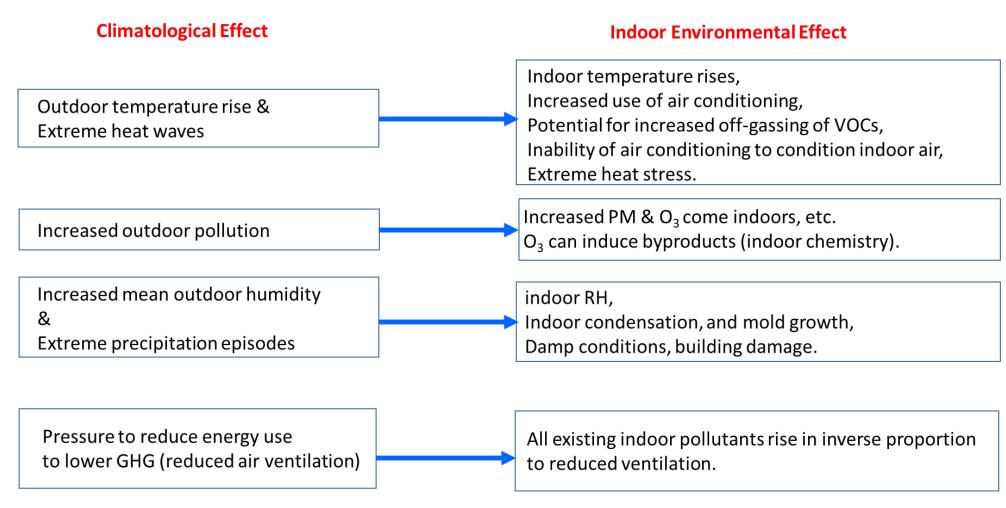
Mohsen Pourkiaei <u>mohsen.pourkiaei@mu.ie</u>
PhD in Environmental Science, ULiège
Post-doc Rsch Assoc, Department of Physics, MU-NUIM


Outline

- Problem definition & scientific objectives
- Background & limitations of current approaches
- Methods (<u>OCCuPANt</u>)
- Results
- Summary and Conclusions

Problem definition & scientific objectives

• IAQ, a subset of IEQ


Climate Change
 Temporal nature (10-30 years)

Problem definition & scientific objectives

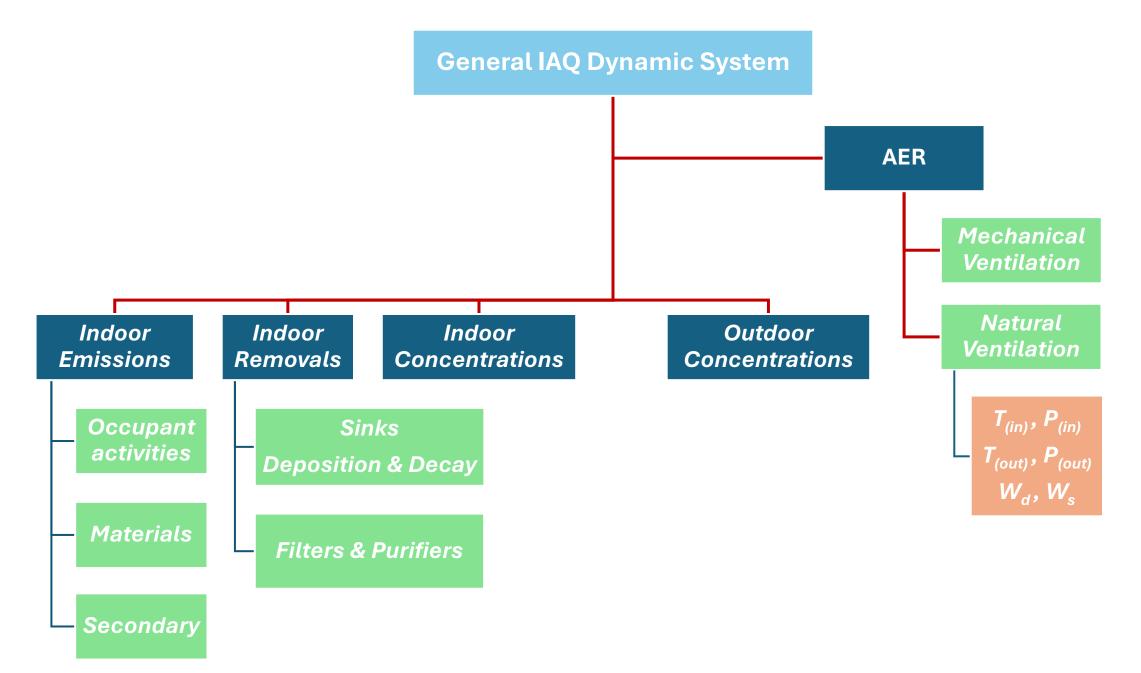
Expected impacts

Qualitative

Ref: IOM: Institute of Medicine. 2011. Climate Change, the Indoor Environment, and Health. https://doi.org/10.17226/13115.

1st comprehensive qualitative analysis:

by Prof. Nazzarof. 2013: Nazaroff, W. W. (2013). Exploring the consequences of climate change for indoor air quality,



Common methodological limitations can be summarized as :

In the context of **Climate Change**;

Not considering IAQ as a "Dynamic System" interacting with the "Outdoor Environment"

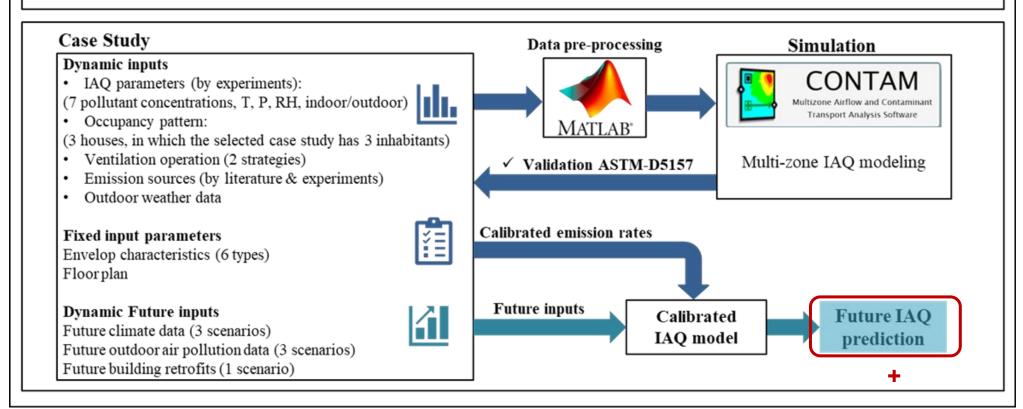
Background & limitations of current approaches

Background & limitations of current approaches

Quantitative assessments of IAQ (as a <u>system</u>) under future climate scenarios:

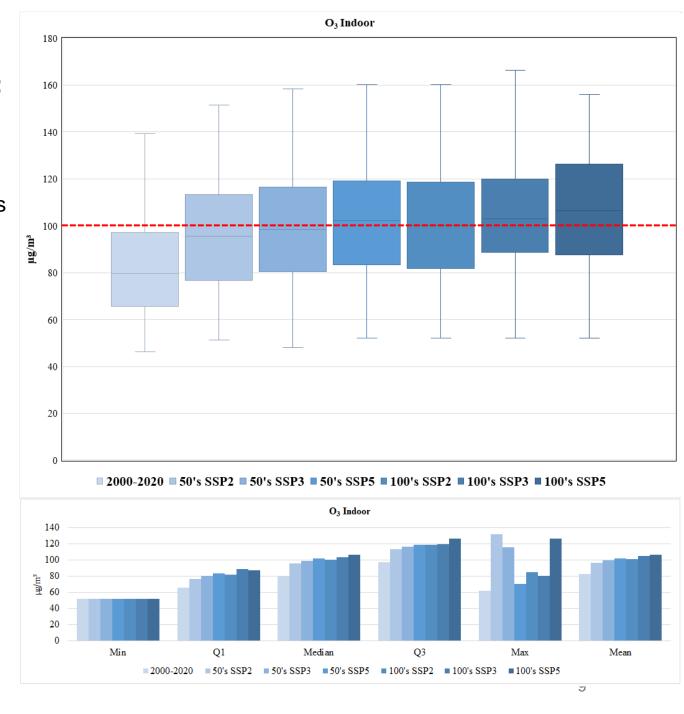
IAQ-CC Studies	IAQ Model	Ventilation	Climate Scenario	Air Pollution	Building	Occupant	Pollutants
Taylor et al. <u>2015</u>	EnergyPlus	N	UKCP 09	-	✓	✓	$PM_{2.5}(\uparrow)$
Ilacqua et al. <u>2017</u>	single-zone mass balance	-	IPCC* A 2	-	-	-	Rn , PM_1 , $\operatorname{PM}_{2.5}$, O_3 , $\operatorname{Carbonyl}$, NO_2 , HNO_3 ($\uparrow\downarrow$)
Chang et al. <u>2018</u>	mass balance	N+V	IPCC RCP 8	KPOP-CC	√	✓	Formaldéhyde (↑↓)
Salthammer et al. 2018	single-zone mass balance	-	IPCC RCP 8	-	-	-	$PM_{2.5}, PM_{10}(\downarrow)$
Fazli et al. <u>2021</u>	single-zone mass balance	N+V	IPCC RCP 8	CMAQ	√	-	$PM_1(\downarrow)$, $PM_{2,5}(\downarrow)$, $NO_2(\downarrow)$, $O_3(\uparrow)$, $VOC(\uparrow)$, Aldehyde(\uparrow)
Pourkiaei et al. 2024	multizone mass balance CONTAM	N+V	IPCC SSP 2,3,5	CNN-BiLSTM	+	+	$\mathrm{CO}(\mathrm{c}), \mathrm{PM}_{2.5}, \mathrm{PM}_{10}(\downarrow\uparrow), \mathrm{NO}_2(\uparrow), \mathrm{NO}(\downarrow), \mathrm{O}_3(\uparrow), \mathrm{VOC}(\text{-})$
Zhao et al. <u>2024</u>	single-zone mass balance	-	IPCC SSP 1,2,5	~	-	-	O_{3} , Limonene($\uparrow\downarrow$) (24 hr)

"until Q2-2024"


Methods (OCCuPANt)

Section I: IAQ measurement campaigns (identify building characteristics, IAQ performance)

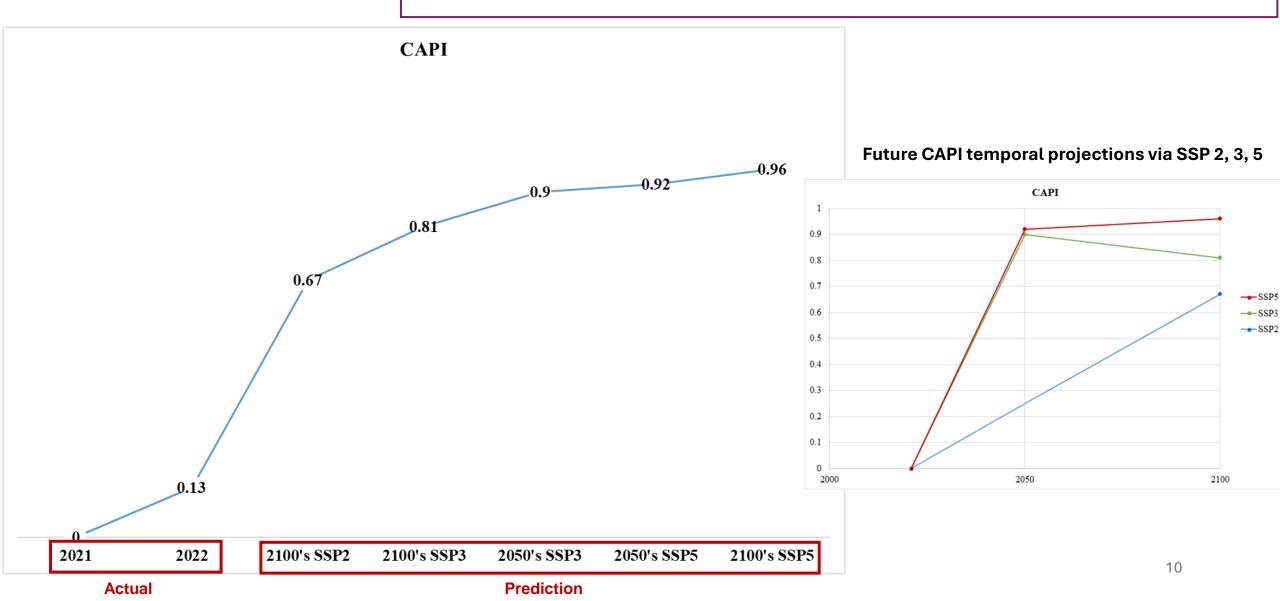
Section II: IAQ model design (4 methods, identify characterized model inputs, validation & calibration)


Section III: Future IAQ state evaluation (identify characterized model inputs based on future scenarios)

Results

CONTAM (IAQ modeling) results with future inputs:

- ✓ IAQ Basis Model: 2021
- ✓ Ventilation: Naturally Ventilated Case Study + Exhaust Fans
- ✓ Future Climate: MAR Model (5km x 5km)
- ✓ Future Outdoor Air Pollution: 1D-CNN-BiLSTM RNN
- ✓ Future Indoor Climate: I/O
- ✓ Future Natural AER: CONTAM
- ✓ Future Building Characteristics: Kept Fixed
- ✓ Future Indoor Activities and Emission/Sinks: Kept Fixed



Results

Climate Change-IAQ Index (CAPI)

"CC-Affected Poor IAQ" Ratio = $(\frac{\text{Days with "CC-Correlated" Poor IAQ}}{\text{Days with CC Events}})$

[0,1]

Summary and Conclusions

✓ Region Specific Problem

✓ Approach Optimality and Time Efficiency

- OCCuPANt Project
- LCS (Design & Develop by <u>SAM Laboratory</u>)
- CONTAM Application for IAQ Modeling
- Al Application for Future Outdoor Air Pollution Prediction

✓ Decision-making Support Tool (CAPI)

Acknowledgment "Actions de Recherche Concertées : ARC 2019/23-05)"

Prof. Anne-Claude Romain, Sensing of Atmospheres and Monitoring (SAM) Laboratory,

UR Spheres, Department of Environmental Science and Management, Faculty of Sciences, University of Liège, Arlon, BE.

Low-Cost Air Quality Sensors For IAQ Experiments SAM LAB-made OCTs:

Contaminant Sensor	Concentration Range	Commercial Sensors			
<u>CO</u>	2-1000 ppm (±2)	Alphasense Electrochemical B4			
<u>NO</u>	2-20 ppm (±2)	Alphasense Electrochemical B4			
NO ₂	2-20 ppm (±2)	Alphasense Electrochemical B43F			
<u>NO₂</u> <u>O₃</u>	1-20 ppm (±2)	Alphasense Electrochemical OX-B431			
PM _{2.5}	0-1000 μg/m ³ (±10)	Light scattering Sensirion SPS30			
<u>PM₁₀</u>	0-1000 μg/m ³ (±25)	Light scattering Sensirion SPS30			
<u>VOC</u>	0.5 ppb - 2 ppm	Photoionization detector AMETEK MOCON (Blue)			
I	-40 to 85 °C	Bosch BME280			
<u>RH</u>	0 - 100%	Bosch BME280			
<u>P</u>	300 – 1100 hPa	Bosch BME280			

PM & Gas sesnors:

CO-B4

1.7 V to 3.6 V

0.045-2.5 V 10.6 e.V

2

PM

NO-B4

NO2-B43F

OX-B431

_

Open Access References:

Thesis: https://hdl.handle.net/2268/322013

Paper: https://hdl.handle.net/2268/318033

Thank You For Your Attention Any Question and Suggestions?

Mohsen Pourkiaei <u>mohsen.pourkiaei@mu.ie</u>
PhD in Environmental Science, ULiège
Post-doc Rsch Assoc, Department of Physics, MU-NUIM