
ADDITIVE WORD COMPLEXITY AND WALNUT

PIERRE POPOLI, JEFFREY SHALLIIT, AND MANON STIPULANTI

Abstract. In combinatorics on words, a classical topic of study is the number

of specific patterns appearing in infinite sequences. For instance, many works
have been dedicated to studying the so-called factor complexity of infinite

sequences, which gives the number of different factors (contiguous subblocks

of their symbols), as well as abelian complexity, which counts factors up to
a permutation of letters. In this paper, we consider the relatively unexplored

concept of additive complexity, which counts the number of factors up to addi-

tive equivalence. We say that two words are additively equivalent if they have
the same length and the total weight of their letters is equal. Our contribution

is to expand the general knowledge of additive complexity from a theoretical

point of view and consider various famous examples. We show a particular case
of an analog of the long-standing conjecture on the regularity of the abelian

complexity of an automatic sequence. In particular, we use the formalism of

logic, and the software Walnut, to decide related properties of automatic se-
quences. We compare the behaviors of additive and abelian complexities, and

we also consider the notion of abelian and additive powers. Along the way, we
present some open questions and conjectures for future work.

2010 Mathematics Subject Classification: 68R15
Keywords: Combinatorics on words, Abelian complexity, Additive complexity, Au-
tomatic sequences, Walnut software

1. Introduction

Combinatorics on words is the study of finite and infinite sequences, also known
as streams or strings in other theoretical contexts. Although it is rooted in the work
of Axel Thue, who was the first to study regularities in infinite words in the early
1900’s, words became a systematic topic of combinatorial study in the second half
of the 20th century [8]. Since then, many different approaches have been developed
to analyze words from various points of view. One of them is the celebrated factor
or subword complexity function: given an infinite word x and a length n ≥ 0, we
compute the size of Ln(x), which contains all length-n contiguous subblocks of x,
also called factors or subwords in the literature. One of the most famous theorems
in combinatorics on words related to the factor complexity function is due to Morse
and Hedlund in 1940 [27], where they obtained a characterization of ultimately
periodic words. As a consequence of this result, combinatorists defined binary
aperiodic infinite words having the smallest possible factor complexity function,
the so-called Sturmian words.

Many other complexity functions have been defined on words depending on
the properties combinatorists wanted to emphasize; see, for instance, the non-
exhaustive list in the introduction of [1]. As the literature on the topic is quite
large, we only cite the so-called abelian complexity function. Instead of counting
all distinct factors, we count them up to abelian equivalence: two words u and v
are abelian equivalent, written u ∼ab v, if they are permutations of each other. For
instance, in English, own, now, and won are all abelian equivalent. For an infinite

1

2 PIERRE POPOLI, JEFFREY SHALLIIT, AND MANON STIPULANTI

word x, we let ρabx denote its abelian complexity function. In this paper, we study
yet another equivalence relation on words; namely, additive equivalence. Roughly,
two words are additively equivalent if the total weight of their letters is equal. In
the following, for a word w ∈ Σ∗, we let |w| denote its length, i.e., the number of
letters it is composed of. Furthermore, for each letter a ∈ Σ, we let |w|a denote the
number of a’s in w.

Definition 1. Fix an integer ℓ ≥ 1 and the alphabet Σ = {0, 1, . . . , ℓ}. Two words

u, v ∈ Σ∗ are additively equivalent if |u| = |v| and
∑ℓ

i=0 i|u|i =
∑ℓ

i=0 i|v|i, which
we write as u ∼add v.

Example 2. Over the three-letter alphabet {0, 1, 2}, we have 020 ∼add 101.

Definition 3. Fix an integer ℓ ≥ 1 and the alphabet Σ = {0, 1, . . . , ℓ}. Let x be an
infinite word on Σ. The additive complexity of x is the function ρaddx : N → N, n 7→
#(Ln(x)/∼add), i.e., length-n factors of x are counted up to additive equivalence.

Surprisingly, not so many results are known for additive equivalence and the
corresponding complexity function, in contrast with the abundance of abelian re-
sults in combinatorics; see [32, 33, 39, 43, 44], for example. Notice that over a
two-letter alphabet, the concepts of abelian and additive complexity coincide. Ad-
ditive complexity was first introduced in [5], where the main result states that
bounded additive complexity implies that the underlying infinite word contains an
additive k-power for every k (an additive k-power is a word w that can be written
as x1x2 · · ·xk where the words x1, x2, . . . , xk are all additively equivalent).

Later, words with bounded additive complexity were studied: first in [5], and
with more attention in [6]. In particular, equivalent properties of bounded additive
complexity were found. We also mention work on the particular case of constant
additive and abelian complexities [6, 20, 33, 37]. As already observed, combina-
torists expanded the notion of pattern avoidance to additive powers. See the most
recent preprint [4] for a nice exposition of the history. For instance, Cassaigne et
al. [14] proved that the fixed point of the morphism 0 7→ 03, 1 7→ 43, 3 7→ 1, 4 7→ 01
avoids additive cubes (see Section 2 for concepts not defined in this introduction).
Rao [31] proved that it is possible to avoid additive cubes over a ternary alphabet
and mentioned that the question about additive squares (in one dimension and
over the integers) is still open. Furthermore, we mention the following related pa-
pers. Brown and Freedman [11] also talked about the open problem about additive
squares. A notion of “close” additive squares is defined in [12]. In [24], the authors
showed that in every infinite word over a finite set of non-negative integers there is
always a sequence of factors (not necessarily of the same length) having the same
sum. In [30], the more general setting of k-power modulo a morphism was studied.
Finally, in terms of computing the additive complexity of specific infinite words,
to our knowledge, only that of a fixed point of a Thue–Morse-like morphism is
known [17].

In this paper, we expand our general knowledge of additive complexity functions
of infinite words. After giving some preliminaries in Section 2, we obtain several
general results in Section 3, and in Theorem 10 we prove a particular case of the
conjecture below. Note that it is itself a particular case of the long-standing similar
conjecture in an abelian context: the abelian complexity of a k-automatic sequence
is a k-regular sequence [29].

Conjecture 4. The additive complexity of a k-automatic sequence is a k-regular
sequence.

ADDITIVE WORD COMPLEXITY AND WALNUT 3

In particular, the proof of our Theorem 10 relies on the logical approach to
combinatorics on words: indeed, many properties of words can be phrased in first-
order logic. Based on this, Mousavi [28] designed the free software Walnut that
allows one to automatically decide the truth of assertions about many properties
for a large family of words. See [40] for the formalism of the software and a survey
of the combinatorial properties that can be decided. In Section 3, we show how
Walnut may be used in an ad-hoc way to give partial answers to Conjecture 4.
In Section 4, we compare the behaviors of the additive and abelian complexity
functions of various words. We highlight the fact that they may behave quite
differently, sometimes making use of Walnut. Motivated by the various behaviors
we observe, we study in Section 5 some words for which the additive and abelian
complexity functions are in fact equal. We end the paper by considering the related
notions of abelian and additive powers.

2. Preliminaries

For a general reference on words, we guide the reader to [26]. An alphabet is a
finite set of elements called letters. A word over an alphabet Σ is a finite or infinite
sequence of letters from Σ. The length of a finite word w, denoted |w|, is the number
of letters it is made of. The empty word is the only 0-length word, denoted by ε.
For all n ≥ 0, we let Σn denote the set of all length-n words over Σ. We let Σ∗

denote the set of finite words over A, including the empty word, and equipped with
the concatenation. In this paper, we distinguish finite and infinite words by writing
the latter in bold. For each letter a ∈ Σ and a word w ∈ Σ∗, we let |w|a denote
the number of a’s in w. Let us assume that the alphabet Σ = {a1 < · · · < ak} is
ordered. For a word w ∈ Σ∗, we let Ψ(w) denote the abelianization or Parikh vector
(|w|a1

, . . . , |w|ak
), which counts the number of different letters appearing in w. For

example, over the alphabet {e < l < s < v}, we have Ψ(sleeveless) = (4, 2, 3, 1).
A factor of a word is one of its (contiguous) subblocks. For a given word x, for

all n ≥ 0, we let Ln(x) denote the set of length-n factors of x. A prefix (resp.,
suffix) is a starting (resp., ending) factor. A prefix or a suffix is proper if it is not
equal to the initial word. Infinite words are indexed starting at 0. For such a word
x, we let x(n) denote its nth letter with n ≥ 0 and, for 0 ≤ m ≤ n, we let x[m..n]
denote the factor x(m) · · ·x(n).

Let Σ and Γ be finite alphabets. A morphism f : Σ∗ → Γ∗ is a map satisfying
f(uv) = f(u)f(v) for all u, v ∈ Σ∗. In particular, f(ε) = ε, and f is entirely
determined by the images of the letters in Σ. For an integer k ≥ 1, a morphism
is k-uniform if it maps each letter to a length-k word. A 1-uniform morphism is
called a coding. A sequence x is morphic if there exist a morphism f : Σ∗ → Σ∗,
a coding g : Σ∗ → Γ∗, and a letter a ∈ Σ such that x = g(fω(a)), where fω(a) =
limn→∞ fn(a). The latter word fω(a) is a fixed point of f .

Introduced by Cobham [18] in the early 1970s, automatic words have several
equivalent definitions depending on the point of view one wants to adopt. For the
case of integer base numeration systems, a comprehensive presentation of automatic
sequences is [3], while [34, 38] treat the case of more exotic numeration systems.
We start with the definition of positional numeration systems. Let U = (U(n))n≥0

be an increasing sequence of integers with U(0) = 1. A positive integer n can

be decomposed, not necessarily uniquely, as n =
∑t

i=0 c(i)U(i) with non-negative
integer coefficients c(i). If these coefficients are computed greedily, then for all

j < t we have
∑j

i=0 c(i)U(i) < U(j + 1) and repU (n) = c(t) · · · c(0) is said to be
the (greedy) U -representation of n. By convention, that of 0 is the empty word ε,
and the greedy representation of n > 0 starts with a non-zero digit. A sequence
U satisfying all the above conditions defines a positional numeration system. Let

4 PIERRE POPOLI, JEFFREY SHALLIIT, AND MANON STIPULANTI

U = (U(n))n≥0 be such a numeration system. A sequence x is U -automatic if there
exists a deterministic finite automaton with output (DFAO) A such that, for all
n ≥ 0, the nth term x(n) of x is given by the output A(repU (n)) of A. In the
particular case where U is built on powers of an integer k ≥ 2, then x is said to
be k-automatic. It is known that a sequence is k-automatic if and only if it is the
image, under a coding, of a fixed point of a k-uniform morphism [3].

A generalization of automatic sequences to infinite alphabets is the notion of
regular sequences [3, 34, 38]. Given a positional numeration system U = (U(n))n≥0,
a sequence x is U -regular if there exist a column vector λ, a row vector γ and
matrix-valued morphism µ, i.e., the image of each letter is a matrix, such that
x(n) = λµ(repU (n))γ. Such a system of matrices forms a linear representation of
x. In the particular case where U is built on powers of an integer k ≥ 2, then x
is said to be k-regular. Another definition of k-regular sequences is the following
one [3]. Consider a sequence x and an integer k ≥ 2. The k-kernel of x is the set
of subsequences of the form (x(ken+ r))n≥0 where e ≥ 0 and r ∈ {0, 1, . . . , ke− 1}.
Equivalently, a sequence is k-regular if the Z-module generated by its k-kernel is
finitely generated. A sequence is then k-automatic if and only if its k-kernel is
finite [3].

Introduced in 2001 by Carpi and Maggi [13], synchronized sequences form a
family between automatic and regular sequences. Given a positional numeration
system U = (U(n))n≥0, a sequence x is U -synchronized if there exists a determin-
istic finite automaton (DFA) that recognizes the language of U -representations of
n and x(n) in parallel.

3. General results

In this section, we gather general results on the additive complexity of infinite
words. Since abelian equivalence implies additive equivalence, we have the following
lemma.

Lemma 5. For all infinite words x, we have ρaddx (n) ≤ ρabx (n) for all n ≥ 0.

As in the case of abelian complexity, we have the following lower and upper
bounds for additive complexity. See [19, Rk. 4.07] and [33, Thm 2.4].

Lemma 6. Let k ≥ 1 be an integer and let x be an infinite word on {a1 < · · · < ak}.
We have 1 ≤ ρaddx (n) ≤

(
n+k−1
k−1

)
for all n ≥ 0.

Note that the lower bound of the previous result is reached for (purely) periodic
sequences. The story about the upper bound is a little more puzzling. In fact, for a
window length N ≥ 1, we can find an alphabet and a sequence over this alphabet for
which its additive complexity reaches the stated upper bound on its first N values.
Indeed, fix an integer k ≥ 3 and an alphabet Σ = {a1 < · · · < ak} of integers.
Consider the Champernowne-like sequence defined on Σ by concatenating all words
of Σ∗ in lexicographic order. Then, for all N ≥ 1, we can find a valuation of Σ (i.e.,

a distribution of integral values for the letters of Σ) such that ρaddx (n) =
(
n+k−1
k−1

)
for all n ≤ N . However, it does not seem possible to find a sequence for which
its additive complexity always reaches the upper bound. This already highlights
the unusual fact that the underlying alphabet of the words plays a crucial role in
additive complexity.

The classical theorem of Morse and Hedlund [27] characterizes ultimately peri-
odic infinite words by means of their factor complexity. With the notion of additive
complexity, we no longer have a characterization, only the implication below. The
converse of Proposition 7 does not hold, as illustrated by several examples in Sec-
tion 4.

ADDITIVE WORD COMPLEXITY AND WALNUT 5

Proposition 7. The additive complexity of an ultimately periodic word is bounded.

Similarly, balanced words may be characterized through their abelian complexity.
A word x is said to be C-balanced if ||u|a − |v|a| ≤ C for all a ∈ Σ and all factors
u, v of x of equal length. Richomme, Saari and Zamboni [33, Lemma 3] proved
that an infinite word x is C-balanced for some C ≥ 1 if and only if ρabx is bounded.
In our case, we only have one implication, as stated in Proposition 8, and we also
provide an upper bound.

Proposition 8. Let Σ = {a1 < · · · < ak} and let x be a C-balanced word on Σ.
Then the additive complexity of x is bounded by a constant. More precisely, we

have ρaddx (n) ≤ C
∑⌈k/2⌉

i=1 (ai − ak+1−i) + 1 for all n ≥ 0.

Proof. For all length-n factors y, z of x and a ∈ Σ, we have ||y|a − |z|a| ≤ C. So
the largest possible gap between the sum of letters of y and the sum of letters of z
is when, for all i ∈ {1, . . . , ⌈k/2⌉}, |y|ai

= |z|ai
+ C and |y|ak+1−i

= |z|ak+1−i
− C,

or vice versa (in short, we swap C letters from ak to a1, C others from ak−1 to a2,
and so on and so forth). □

Note that Proposition 8 is a particular case of [6, Theorem 4]. However, there
are infinite words with bounded additive complexity and unbounded abelian com-
plexity, making them not balanced. For an example, see Section 4.2.

Computing additive and abelian complexity might be “easy” in some cases. Re-
cently, Shallit [39] provided a general method to compute the abelian complexity
of an automatic sequence under some hypotheses.

Theorem 9 ([39, Thm. 1]). Let x be a sequence that is automatic in some regular
numeration system. Assume that

(1) the abelian complexity ρabx of x is bounded above by a constant, and
(2) the Parikh vectors of length-n prefixes of x form a synchronized sequence.

Then ρabx is an automatic sequence and the DFAO computing it is effectively com-
putable.

We obtain an adapted version in the framework of additive complexity.

Theorem 10. Let x be a sequence that is automatic in some additive numeration
system. Assume that

(1) the additive complexity ρaddx of x is bounded above by a constant, and
(2) the Parikh vectors of length-n prefixes of x form a synchronized sequence.

Then ρaddx is an automatic sequence and the DFAO computing it is effectively com-
putable.

Proof. Let Σ = {a1 < · · · < ak} ⊂ N be an ordered finite alphabet. The weighted
Parikh vector of a finite word w ∈ Σ∗ is ψ∗(w) = (a1|w|a1

, . . . , ak|w|ak
). Then two

words x, y are additively equivalent if and only if
∑

a∈Σ[ψ
∗(x)]a =

∑
a∈Σ[ψ

∗(y)]a,
where [ψ∗(x)]a designates the ath component of the vector ψ∗(x). We adapt the
proof of [39, Thm. 1] in the framework of the additive complexity. The steps to
find the automaton computing the additive complexity ρaddx are the following:

(1) Since the Parikh vectors of length-n prefixes of x form a synchronized se-
quence by assumption, so are the weighted Parikh vectors for arbitrary
length-n factors x[i..i+ n− 1]. This is expressible in first-order logic.

(2) For i ≥ 0 and n ≥ 1, let us denote ∆x(i, n) the following integer

∆x(i, n) =
∑
a∈Σ

[ψ∗(x[i..i+ n− 1])]a −
∑
a∈Σ

[ψ∗(x[0..n− 1])]a.

6 PIERRE POPOLI, JEFFREY SHALLIIT, AND MANON STIPULANTI

The additive complexity ρaddx is bounded if and only if there is a constant
C such that the cardinality of the set A∗

n := {∆x(i, n) : i ≥ 0}, is bounded
above by C for all n ≥ 1.

(3) In this case, the range of possible values of A∗
n is finite (it may take at most

2C + 1 values) and can be computed algorithmically.
(4) Once this range is known, there are finitely many possibilities for ∆x(i, n)

for all i ≥ 0. Then, we compute the set S of all of these possibilities.
(5) Once we have S, we can test each of the finitely many values to see if it

occurs for some n, and we obtain an automaton recognizing those n for
which it does.

(6) All the different automata can then be combined into a single DFAO com-
puting ρaddx (n), using the direct product construction.

This finishes the proof. □

Remark 11. The advantage of the proof above is that it is constructive. However,
in practice, it will be more convenient to use the so-called semigroup trick algo-
rithm, as discussed in [40, § 4.11]. This algorithm should be used when a regular
sequence is believed to be automatic, i.e., when it takes only finitely many values.
The semigroup trick algorithm halts if and only if the sequence is automatic and
produces a DFAO if this is the case. Therefore, Theorem 10 ensures that, under
some mild hypotheses, the algorithm halts.

Theorem 10 may be applied to a particular family of infinite words: those that are
generated by so-called Parikh-collinear morphisms. In recent years, combinatorists
have been studying them; see, e.g., [16, 2, 35, 36].

Definition 12. A morphism φ : Σ∗ → ∆∗ is Parikh-collinear if the Parikh vectors
Ψ(φ(a)), a ∈ Σ, are collinear (or pairwise Z-linearly dependent). In other words,
the associated adjacency matrix of φ, i.e., the matrix whose columns are the vectors
Ψ(φ(a)), for all a ∈ Σ, has rank 1.

Theorem 13 ([35, 36]). Let φ : Σ∗ → Σ∗ be a Parikh-collinear morphism pro-
longable on the letter a, and write x := φω(a). Then the abelian complexity function
ρabx of x is k-automatic for k =

∑
b∈Σ |φ(b)|b. Moreover, the automaton generating

ρabx can be effectively computed given φ and a.

Putting together Lemma 5 and Theorem 13, we obtain the following.

Corollary 14. Let x be a fixed point of a Parikh-collinear morphism. Then the
abelian and additive complexity functions of x are bounded.

Theorem 15. Let φ : Σ∗ → Σ∗ be a Parikh-collinear morphism prolongable on
the letter a, and write x := φω(a). The additive complexity function ρaddx of x is
k-automatic for k =

∑
b∈Σ |φ(b)|b. Moreover, the automaton generating ρaddx can

be effectively computed given φ and a.

Proof. By Corollary 14, ρaddx is bounded by a constant, so Item 1 of Theorem 10
is satisfied. Then Item 2 of of Theorem 10 holds by [36, Lemma 26]. Hence, Theo-
rem 10 allows to finish the proof. □

We now give a detailed example of Theorem 15. Let f : {0, 1, 2}∗ → {0, 1, 2} be
defined by 0 7→ 012, 1 7→ 112002, 2 7→ ε. Since the three vectors Ψ(f(0)) = (1, 1, 1),
Ψ(f(1)) = (2, 2, 2) and Ψ(f(2)) = (0, 0, 0) are collinear, it follows that f is Parikh-
collinear. Consider x = 012112002112002 · · · , the fixed point of f starting with 0.
In [36], the authors proved that the abelian complexity of x is equal to the eventually
periodic word 135(377)ω. We have a similar result for additive complexity.

ADDITIVE WORD COMPLEXITY AND WALNUT 7

Proposition 16. Let f : {0, 1, 2}∗ → {0, 1, 2}, 0 7→ 012, 1 7→ 112002, 2 7→ ε. The
additive complexity of the fixed point x = 0121120022112002 · · · of f is equal to
134(355)ω.

Proof. Computing
∑2

a=0|f(a)|a = 3, we know from classical results that x is 3-
automatic. We thus know that x is generated by a 3-uniform morphism. Following
the procedure of [35], we have x = τ(hω(0)) with h : 0, 6 7→ 012, 1, 4 7→ 134,
2, 3, 5 7→ 506, and the coding τ : 0, 5 7→ 0, 1, 3 7→ 1, and 2, 4, 6 7→ 2.

In Walnut, we can compute the synchronized functions fac0, fac1 and fac2

that computes the number of letter 0, 1 and 2 in every factor of x, see [36] for more
details. First, we introduce the 3-automatic word x to Walnut as follows:

morphism h "0->012 1->134 2->506 3->506 4->134 5->506 6->012";

morphism tau "0->0 1->1 2->2 3->1 4->2 5->0 6->2";

promote H h;

image X tau H;

From [35], we know that the sequence mapping n ≥ 0 to the number of each letter
in the prefix of length n+1 of x is synchronized. In Walnut, we require the following
commands:

def cut "?msd_3 n=0 | (n>=3 & X[n-1]=@2 & ~(X[n-3]=@1))";

def prev "?msd_3 x<=n & $cut(x) & (Ay (y>x & y<=n)=>~$cut(y))";

def prefn0 "?msd_3 (n<=2 & y=1) | (3<=n & Em,z ($prev(n,m)

& 3*y=m+3*z & ((X[m]=@0 & z=1) | (X[m]=@1 & ((n<m+3 & z=0)

| (n=m+3 & z=1) | (n>=m+4 & z=2))))))";

def prefn1 "?msd_3 Em,z $prev(n,m) & 3*y=m+3*z

& ((X[m]=@0 & ((m=n & z=0) | (n>=m+1 & z=1)))

| (X[m]=@1 & ((m=n & z=1) | (n>=m+1 & z=2))))";

def prefn2 "?msd_3 Em,z $prev(n,m) & 3*y=m+3*z

& ((X[m]=@0 & ((n<m+2 & z=0) | (m+2=n & z=1)))

| (X[m]=@1 & ((n<m+2 & z=0) | (n>=m+2 & n<m+5 & z=1)

| (n=m+5 & z=2))))";

The next step is to determine the number of each letter in every factor of x. We
compute the corresponding synchronized functions n 7→ |x[i..i + n − 1]|a for a ∈
{0, 1, 2} in the following way:

def fac0 "?msd_3 Aq,r ($prefn0(i+n,q) & $prefn0(i,r)) => (q=r+s)":

def fac1 "?msd_3 Aq,r ($prefn1(i+n,q) & $prefn1(i,r)) => (q=r+s)":

def fac2 "?msd_3 Aq,r ($prefn2(i+n,q) & $prefn2(i,r)) => (q=r+s)":

Next, wecompute additive complexity of the fixed point x of f . So we test
whether the factors u = x[i..i + n − 1] and v = x[j..j + n − 1] of x are additively
equivalent. For that, it is enough to check the equality between the quantities
|u|1 + 2|u|2 and |v|1 + 2|v|2.

def addFacEq "?msd_3 Ep,q,r,s $fac1(i,n,p) & $fac2(i,n,q)

& $fac1(j,n,r) & $fac2(j,n,s) & p+2*q=r+2*s":

Finally, we write that x[i..i + n − 1] is a novel occurrence of a length-n factor of
x representing its additive equivalence class and obtain a linear representation for
the number of such positions i as follows:

eval addCompRepLin n "?msd_3 Aj j<i => ~$addFacEq(i,j,n)":

8 PIERRE POPOLI, JEFFREY SHALLIIT, AND MANON STIPULANTI

Walnut then returns a linear representation of size 55.
The first step is to take the linear representation computed by Walnut, and

minimize it. The result is a linear representation of rank 7, using the algorithm
in [9, § 2.3]. Once we have this linear representation, we can carry out the so-
called semigroup trick algorithm, as discussed in [40, § 4.11]. As it terminates, we
prove that the additive complexity of the word x is bounded, and takes on only the
values {1, 3, 4, 5} for n ≥ 0. Furthermore, it produces a 4-state DFAO computing
the additive complexity, called addCompExample, that we display in Figure 1.

q0/1 q1/3

q2/4 q3/5

0

1

2

0

1, 20

1, 2
1, 2

0

Figure 1. A four-state DFAO computing the additive complex-
ity of the fixed point of f : {0, 1, 2}∗ → {0, 1, 2}, 0 7→ 012, 1 7→
112002, 2 7→ ε.

By inspecting this DFAO, we easily prove that the additive complexity of x
is 134(355)ω. This could also be checked easily with Walnut with the following
commands:

reg form3 msd_3 "0*(0|1|2)*0":

eval check3 "?msd_3 An ($form3(n) & n>=3) => addCompExample[n]=@3":

reg form5 msd_3 "0*(0|1|2)*(1|2)":

eval check5 "?msd_3 An ($form5(n) & n>=3) => addCompExample[n]=@5":

and both return True. Notice that these two forms cover all integers n ≥ 3 and the
first few values can be checked by hand. □

4. Different behaviors and curiosities

In this section, we exhibit different behaviors between the additive and abelian
complexity functions by making use of the software Walnut. By Lemma 5, the
behavior of additive complexity of a sequence is constrained by its abelian com-
plexity. Here we show that the functions may behave differently; in particular,
see Section 4.2.

4.1. Bounded additive and abelian complexities.

4.1.1. The Tribonacci word. The Tribonacci word tr is the fixed point of the mor-
phism 0 7→ 01, 1 7→ 02, 2 7→ 0. This well-known word belongs to the family
of episturmian words, a generalization of the famous Sturmian words. This word
is Tribonacci -automatic, where the underlying numeration system is built on the
sequence of Tribonacci numbers defined by T (0) = 1, T (1) = 2, T (2) = 4, and
T (n) = T (n− 1) + T (n− 2) + T (n− 3) for all n ≥ 3. Notice that this word is not
the fixed point of a Parikh-collinear morphism; otherwise it would be k-automatic

ADDITIVE WORD COMPLEXITY AND WALNUT 9

for some integer k ≥ 2. A generalization of Cobham’s theorem for substitutions [21]
would then imply that tr is ultimately periodic. The possible values of the abelian
complexity of the word tr were studied in [32, Thm. 1.4]. Also see Fig. 2.

Theorem 17 ([32, Thm. 1.4]). Let tr be the Tribonacci word, i.e., the fixed point
of the morphism 0 7→ 01, 1 7→ 02, 2 7→ 0. The abelian complexity function ρabtr takes
on only the values in the set {3, 4, 5, 6, 7} for n ≥ 1.

This result was reproved by Shallit [39] using Walnut by providing an automaton
computing ρabtr . Furthermore, this automaton allows us to prove that each value
is taken infinitely often. We prove the following result concerning the additive
complexity of the Tribonacci word. See again Fig. 2.

Theorem 18. Let tr be the Tribonacci word, i.e., the fixed point of the morphism
0 7→ 01, 1 7→ 02, 2 7→ 0. The additive complexity function ρaddtr takes on only the
values in the set {3, 4, 5} for n ≥ 1. Furthermore, each of the three values is taken
infinitely often and it is computed by a 76-state Tribonacci DFAO.

Proof. We reuse some ideas (especially, Walnut code) from [39, 41]. The Tribonacci
word is stored as TRL in Walnut. The synchronized function rst takes the Tri-
bonacci representations of m and n in parallel and accepts if (n)T is the right shift
of (m)T . In Walnut, the following three predicates allow us to obtain DFAO’s that
compute the maps n 7→ |tr[0..n − 1]|a for a ∈ {0, 1, 2}, i.e., the number of letters
0, 1, 2 in the length-n prefix of the Tribonacci word tr. Note that the predicates
are obtained using a special property of tr; for a full explanation, see [39, Sec. 3].

def tribsync0 "?msd_trib Ea Eb (s=a+b) & ((TRL[n]=@0)=>b=0)

& ((TRL[n]=@1)=>b=1) & $rst(n,a)":

def tribsync1 "?msd_trib Ea Eb Ec (s=b+c) & ((TRL[a]=@0)=>c=0)

& ((TRL[a]=@1)=>c=1) & $rst(n,a) & $rst(a,b)":

def tribsync2 "?msd_trib Ea Eb Ec Ed (s=c+d) & ((TRL[b]=@0)=>d=0)

& ((TRL[b]=@1)=>d=1) & $rst(n,a) & $rst(a,b) & $rst(b,c)":

From now on, we follow the same steps as Proposition 16. First, we compute the
Tribonacci synchronized functions n 7→ |tr[i..i+ n− 1]|a for a ∈ {0, 1, 2}, that are

def tribFac0 "?msd_trib Aq Ar ($tribsync0(i+n,q)

& $tribsync0(i,r)) => (q=r+s)":

def tribFac1 "?msd_trib Aq Ar ($tribsync1(i+n,q)

& $tribsync1(i,r)) => (q=r+s)":

def tribFac2 "?msd_trib Aq Ar ($tribsync2(i+n,q)

& $tribsync2(i,r)) => (q=r+s)":

Next, we compute the additive equivalence between two factors, that is the following
Tribonacci synchronized function

def tribAddFacEq "?msd_trib Ep,q,r,s $tribFac1(i,n,p) & $tribFac2(i,n,q)

& $tribFac1(j,n,r) & $tribFac2(j,n,s) & p+2*q=r+2*s":

Finally, we obtain a linear representation, as defined at the end of Section 2, of the
additive complexity as follows

eval tribAddCompRepLin n "?msd_trib Aj j<i => ~$tribAddFacEq(i,j,n)":

And Walnut then returns a linear representation of size 184. Then we apply the
same procedure than in Proposition 16.

After minimization, the result is a linear representation of rank 62 and we carry
out the semigroup trick. This algorithm terminates, which proves that the addi-
tive complexity of the Tribonacci word is bounded, and takes on only the values

10 PIERRE POPOLI, JEFFREY SHALLIIT, AND MANON STIPULANTI

{1, 3, 4, 5} for n ≥ 0. Furthermore, it produces a 76-state DFAO computing the
additive complexity. In Walnut, let us import this DFAO under the name TAC. To
show that each value appears infinitely often, we test the following three predicates

eval tribAddComp_3 "?msd_trib An Em (m>n) & TAC[m]=@3":

eval tribAddComp_4 "?msd_trib An Em (m>n) & TAC[m]=@4":

eval tribAddComp_5 "?msd_trib An Em (m>n) & TAC[m]=@5":

and Walnut then returns TRUE each time. □

Figure 2. The first few values of the abelian and additive com-
plexities for the Tribonacci word.

Remark 19. From the automaton, which is too large to display here, it is easy to
find infinite families for each value of the additive complexity function. Indeed, it
suffices to detect a loop in the automaton leading to a final state for each value.
For instance, we have the following infinite families:

(a) If (n)T = 100(100)k, for k ≥ 0, then ρaddtr (n) = 3.
(b) If (n)T = 1101(01)k, for k ≥ 0, then ρaddtr (n) = 4.
(c) If (n)T = 1101001100(1100)k, for k ≥ 0, then ρaddtr (n) = 5.

One can check with Walnut that these infinite families are convenient with the
following commands

reg form3 msd_trib "0*100(100)*":

reg form4 msd_trib "0*1101(01)*":

reg form5 msd_trib "0*1101001100(1100)*":

eval check3 "?msd_trib An ($form3(n) & n>=1) => TAC[n]=@3":

eval check4 "?msd_trib An ($form4(n) & n>=1) => TAC[n]=@4":

eval check5 "?msd_trib An ($form5(n) & n>=1) => TAC[n]=@5":

which returns TRUE for each command. One can also notice that from the au-
tomaton, we can build infinitely many infinite families of solutions of each of those
values. However, the question about the respective proportion of solutions remains
open.

Remark 20. With Walnut, we can also build a DFAO computing the minimum
(resp., maximum) possible sum of a length-n block occurring in tr. Furthermore,
for each n, every possible sum between these two extremes actually occurs for some
length-n factor in tr.

4.1.2. The generalized Thue–Morse word on three letters. We introduce a family
of words over three letters that are closed to a generalization of the Thue–Morse
word.

Definition 21. Let ℓ,m be integers such that 1 ≤ ℓ < m. The (ℓ,m)-Thue–Morse
word tℓ,m is the fixed point of the morphism 0 7→ 0ℓm, ℓ 7→ ℓm0, m 7→ m0ℓ.

ADDITIVE WORD COMPLEXITY AND WALNUT 11

In the case where ℓ = 1 and m = 2, we find the so-called ternary Thue–Morse
word t3, which is the fixed point of the morphism 0 7→ 012, 1 7→ 120, 2 7→ 201.
This word is a natural generalization of the ubiquitous Thue–Morse sequence, since
it corresponds to the sum-of-digit function in base 3, taken mod 3.

Theorem 22 ([25, Thm. 4.1]). Consider the ternary Thue–Morse word t3, i.e., the
fixed point of the morphism 0 7→ 012, 1 7→ 120, 2 7→ 201. The abelian complexity
function ρabt3 is the periodic infinite word 13(676)ω.

Theorem 23. Consider the ternary Thue–Morse word t3, i.e., the fixed point of
the morphism 0 7→ 012, 1 7→ 120, 2 7→ 201. The additive complexity function ρaddt3
is the periodic infinite word 135ω.

Proof. The following Walnut provides a linear representation of size 138 for the
additive complexity of t3:

morphism h "0->012 1->120 2->201":

promote TMG h:

def tmgPref0 "?msd_3 Er,t n=3*t+r & r<3 & (r=0 => s=t)

& ((r=1 & TMG[n-1]=@0) => s=t+1)

& ((r=1 & (TMG[n-1]=@1 | TMG[n-1]=@2)) => s=t)

& ((r=2 & (TMG[n-1]=@0 | TMG[n-1]=@1)) => s=t+1)

& ((r=2 & TMG[n-1]=@2) => s=t)":

def tmgPref1 "?msd_3 Er,t n=3*t+r & r<3 & (r=0 => s=t)

& ((r=1 & TMG[n-1]=@1) => s=t+1)

& ((r=1 & (TMG[n-1]=@0 | TMG[n-1]=@2)) => s=t)

& ((r=2 & (TMG[n-1]=@1 | TMG[n-1]=@2)) => s=t+1)

& ((r=2 & TMG[n-1]=@0) => s=t)":

def tmgPref2 "?msd_3 Eq,r $tmgPref0(n,q) & $tmgPref1(n,r) & q+r+s=n":

def tmgFac0 "?msd_3 Et,u $tmgPref0(i+n,t) & $tmgPref0(i,u) & s+u=t":

def tmgFac1 "?msd_3 Et,u $tmgPref1(i+n,t) & $tmgPref1(i,u) & s+u=t":

def tmgFac2 "?msd_3 Et,u $tmgPref2(i+n,t) & $tmgPref2(i,u) & s+u=t":

def tmgAddFacEq "?msd_3 Ep,q,r,s $tmgFac1(i,n,p) & $tmgFac2(i,n,q)

& $tmgFac1(j,n,r) & $tmgFac2(j,n,s) & p+2*q=r+2*s":

eval tmgAddCompRepLin n "?msd_3 Aj j<i => ~$tmgAddFacEq(i,j,n)":

The end of the proof is the same as for Theorem 18. The size of the minimal linear
representation is 13 and the semigroup trick algorithm terminates and produces the
3-state DFAO of Figure 3. The result follows immediately. □

q0/1 q1/3 q2/5

0

1

2

0, 1, 2

0, 1, 2

Figure 3. A DFAO computing the additive complexity of the
(1, 2)-Thue–Morse word.

12 PIERRE POPOLI, JEFFREY SHALLIIT, AND MANON STIPULANTI

Changing the letters ℓ and m does not modify the abelian complexity, so for all
1 ≤ ℓ < m, we have ρabtℓ,m = ρabt3 . However, additive complexity might change over
a different alphabet. In the particular case where ℓ = 1 and m = 2, the following
gives an alternative proof of Theorem 23 with only combinatorial tools. Note that
the statement on ρabtℓ,m was also proven in [25], but we provide here a simpler and
more concise proof.

Theorem 24. Let ℓ,m be integers such that 1 ≤ ℓ < m. Consider the (ℓ,m)-Thue–
Morse word, i.e., the fixed point of the morphism 0 7→ 0ℓm, ℓ 7→ ℓm0, m 7→ m0ℓ.
Then its abelian complexity satisfies ρabtℓ,m = 136(766)ω and its additive complexity

satisfies ρaddtℓ,m
= ρabtℓ,m if m ̸= 2ℓ, and ρaddtℓ,m

= 135ω if m = 2ℓ.

Proof. We clearly have ρaddtℓ,m
(0) = 1, ρaddtℓ,m

(1) = 3, and ρaddtℓ,m
(2) is equal to 5 or

6 depending on whether m = 2ℓ or not. We examine length-n factors of tℓ,m for
n ≥ 2. Each such factor can be written as y = pf(x)s where f is the morphism
0 7→ 0ℓm, ℓ 7→ ℓm0, m 7→ m0ℓ of Definition 21 and p (resp., s) is a proper
suffix (resp., prefix) of an image f(a) for a ∈ {0, ℓ,m}. In particular, note that
p, s ∈ {ε, 0, ℓ,m, 0ℓ, ℓm,m0}. In the following, we examine the weight of y, which
is the quantity 0 · |y|0 + ℓ · |y|ℓ + m · |y|m. More precisely, we count how many
different weights y can have, which in turn gives the number of different additive
equivalence classes.

First assume that |y| = 3n for some n ≥ 1. Then we have two cases depending on
whether p, s are empty or not. If p = s = ε, then |x| = n and this case corresponds
to the first line of Table 1. Otherwise, |x| = n − 1 and |ps| = 3. In that case,
since the roles of p and s are symmetric when computing the weight of the factor,
all the possible cases are depicted in Table 1. From the third, fourth and fifth

p s |y|0 |y|ℓ |y|m 0 · |y|0 + ℓ · |y|ℓ +m · |y|m
ε ε n n n ℓn+mn
0 0ℓ n+ 1 n n− 1 ℓn+m(n− 1)
0 ℓm n n n ℓn+mn
0 m0 n+ 1 n− 1 n ℓ(n+ 1) +m(n− 1)
ℓ 0ℓ n n+ 1 n− 1 ℓn+m(n+ 1)
ℓ ℓm n− 1 n+ 1 n ℓ(n− 1) +mn
ℓ m0 n n n ℓn+mn
m 0ℓ n n n ℓn+mn
m ℓm n− 1 n n+ 1 ℓn+m(n+ 1)
m m0 n n− 1 n+ 1 ℓ(n− 1) +m(n+ 1)

Table 1. The possible weights of factors of the (ℓ,m)-Thue–Morse
word tℓ,m of the form y = pf(x)s where |y| = 3n for some n ≥ 1.

columns of the table, we observe that there are seven different abelian classes (only
the class where |y|0 = |y|ℓ = |y|m = n appears more than once) and this proves
that ρabtℓ,m(3n) = 7. The corresponding weights of these seven abelian classes can

be written as (n − 1) · (ℓ +m) + δ with δ ∈ {ℓ,m, 2ℓ, ℓ +m, 2m, 2ℓ +m, ℓ + 2m}.
Since

ℓ < min{m, 2ℓ} ≤max{m, 2ℓ} < ℓ+m

< min{2m, 2ℓ+m} ≤ max{2m, 2ℓ+m} < ℓ+ 2m,

this now proves that ρaddtℓ,m
(3n) is equal to 7 if m ̸= 2ℓ, and to 5 otherwise.

Assume that |y| = 3n + 1 for some n ≥ 1. With similar reasoning and up to
the symmetry between p and s, we list all cases in Table 2. Therefore, we see that

ADDITIVE WORD COMPLEXITY AND WALNUT 13

p s |y|0 |y|ℓ |y|m 0 · |y|0 + ℓ · |y|ℓ +m · |y|m
0 ε n+ 1 n n ℓn+mn
ℓ ε n n+ 1 n ℓ(n+ 1) +mn
m ε n n n+ 1 ℓn+m(n+ 1)
0ℓ 0ℓ n+ 1 n+ 1 n− 1 ℓ(n+ 1) +m(n− 1)
0ℓ ℓm n n+ 1 n ℓ(n+ 1) +mn
0ℓ m0 n+ 1 n n ℓn+mn
ℓm ℓm n− 1 n+ 1 n+ 1 ℓ(n− 1) +m(n+ 1)
ℓm m0 n n n+ 1 ℓn+m(n+ 1)
m0 m0 n+ 1 n− 1 n+ 1 ℓ(n− 1) +m(n+ 1)

Table 2. The possible weights of factors of the (ℓ,m)-Thue–Morse
word tℓ,m of the form y = pf(x)s where |y| = 3n + 1 for some
n ≥ 1.

there are six different abelian classes, which proves that ρabtℓ,m(3n + 1) = 6. The

corresponding weights of these six abelian classes can be written as (n−1)·(ℓ+m)+δ
with δ ∈ {2ℓ, ℓ+m, 2m, 2ℓ+m, ℓ+ 2m, 2ℓ+ 2m}. Since

2ℓ < ℓ+m < min{2ℓ+m, 2m} ≤ max{2ℓ+m, 2m} < ℓ+ 2m < 2ℓ+ 2m,

we have that ρaddtℓ,m
(3n+ 1) is equal to 6 if m ̸= 2ℓ, and to 5 otherwise.

Finally, assume that |y| = 3n+ 2 for some n ≥ 1. Up to the symmetry between
p and s, we list all cases in Table 3. Once again, we see that there are six different

p s |y|0 |y|ℓ |y|m 0 · |y|0 + ℓ · |y|ℓ +m · |y|m
0 0 n+ 2 n n ℓn+mn
0 ℓ n+ 1 n+ 1 n ℓ(n+ 1) +mn
0 m n+ 1 n n+ 1 ℓn+m(n+ 1)
ℓ ℓ n n+ 2 n ℓ(n+ 2) +mn
ℓ m n n+ 1 n+ 1 ℓ(n+ 1) +m(n+ 1)
m m n n n+ 2 ℓn+m(n+ 2)
0ℓ ε n+ 1 n+ 1 n ℓ(n+ 1) +mn
ℓm ε n n+ 1 n+ 1 ℓ(n+ 1) +m(n+ 1)
m0 ε n+ 1 n+ 1 n ℓ(n+ 1) +mn

Table 3. The possible weights of factors of the (ℓ,m)-Thue–Morse
word tℓ,m of the form y = pf(x)s where |y| = 3n + 2 for some
n ≥ 0.

abelian classes, so ρabtℓ,m(3n+2) = 6. The corresponding weights of these six abelian

classes can be written as n · (ℓ+m) + δ with δ ∈ {0, ℓ,m, 2ℓ, ℓ+m, 2m}. Since
0 < ℓ < min{2ℓ,m} ≤ max{2ℓ,m} < ℓ+m < 2m,

we have that ρaddtℓ,m
(3n+ 2) is equal to 6 if m ̸= 2ℓ, and to 5 otherwise. □

4.2. Bounded additive and unbounded abelian complexities: a variant
of the Thue–Morse word. Thue introduced a variation of his sequence that is
sometimes called the ternary squarefree Thue–Morse word, and abbreviated as vtm
(the letter “v” stands for “variant”). It is the sequence [42, A036577] in the OEIS;
for more on the word vtm, see [7].

Definition 25 (Variant of Thue–Morse). We let vtm be the fixed point of f : 0 7→
012, 1 7→ 02, 2 7→ 1, starting with 0.

14 PIERRE POPOLI, JEFFREY SHALLIIT, AND MANON STIPULANTI

The abelian complexity of the variant of the Thue–Morse word is unbounded.

Theorem 26 ([10, Cor. 1]). Let vtm be the fixed point of f : 0 7→ 012, 1 7→ 02, 2 7→
1, starting with 0. Its abelian complexity is O(log n) with constant approaching 3/4
(assuming base-2 logarithm), and it is Ω(1) with constant 3.

However, we prove that the additive complexity of the word vtm is bounded.

Theorem 27. Let vtm be the fixed point of f : 0 7→ 012, 1 7→ 02, 2 7→ 1, starting
with 0. Its additive complexity is the periodic infinite word 13ω.

Proof. Let n ≥ 1 and x ∈ Ln(vtm). Let us prove that
∑2

a=0 a · |x|a ∈ {n −
1, n, n + 1}. Write x = pf(y)s where p (resp., s) is a proper suffix (resp., prefix)
of an image f(a), a ∈ {0, 1, 2}. Then we have p ∈ {ε, 12, 2} and s ∈ {ε, 0, 01}. By
definition of the morphism f , observe that |f(y)|2 = |f(y)|0. Therefore, depending
on the words p and s, |x|2 = |x|0 + c with c ∈ {−1, 0, 1}, which suffices since
|x|0 + |x|1 + |x|2 = n. □

Therefore, the word vtm has unbounded abelian complexity and bounded ad-
ditive complexity; also see Fig. 4. In particular, [33, Lemma 3] implies that vtm
cannot be balanced, so there exist non-balanced infinite words with bounded addi-
tive complexity. Another example exhibiting the same behavior for its abelian and
additive complexity is given in [5].

Figure 4. The first few values of the abelian and additive com-
plexities for the variant of the Thue–Morse word.

4.3. Unbounded additive and abelian complexities. In this short section,
we exhibit a word such that both its additive and abelian complexities are both
unbounded.

Theorem 28 ([17, Thm. 1 and Cor. 1]). Let x be the fixed point of the Thue–
Morse-like morphism 0 7→ 01, 1 7→ 12, 2 7→ 20. Then ρaddx (n) = 2⌊log2 n⌋ + 3 for
all n ≥ 1. In particular, the sequence (ρaddx (n))n≥0 is 2-regular.

Recall that, for an integer k ≥ 1, a word w is an abelian k-power if we can
write w = x1x2 · · ·xk where each xi, i ∈ {1, . . . , k}, is a permutation of x1. For
instance, reap · pear and de · ed · ed are respectively an abelian square and cube in
English. Similarly, w is an additive k-power if we can write w = x1x2 · · ·xk with
|xi| = |x1| for all i ∈ {1, . . . , k} and x1 ∼add x2 ∼add · · · ∼add xk. The length of
each xi, i ∈ {1, . . . , k}, is called the order of w. As mentioned in the introduction,
the following result is one of the main results known on additive complexity.

Theorem 29 ([5, Thm. 2.2]). Let x be an infinite word over a finite subset of Z.
If ρaddx is bounded, then x contains an additive k-power for every positive integer
k.

ADDITIVE WORD COMPLEXITY AND WALNUT 15

Proposition 30. Let w be the fixed point of the morphism 0 7→ 03, 1 7→ 43, 3 7→ 1,
4 7→ 01. Then ρaddw is unbounded.

Proof. In [14] it is shown that w is additive-cube-free. The result then follows
from Theorem 29. □

However, for the latter word w, it seems interesting to study ρabw − ρaddw , since
these two complexities are very close. Indeed, surprisingly the first time these two
complexities are different appears at n = 23, as the two factors 11011031430110343430314
and 30310110110314303434303 are additively but not abelian equivalent. Also, no-
tice that every additive square of the word w is an abelian square [14, Theorem 5.1].
Together with the fact that this word is additive-cube-free, it shows that abelian and
additive properties of this word are relatively close. Indeed, Fig. 5 illustrates that
the values of the difference between the additive and abelian complexity functions
is close to 0. This motivates the study of the next section.

Figure 5. The first few values of the abelian and additive com-
plexities as well as their difference for the fixed point of the mor-
phism 0 7→ 03, 1 7→ 43, 3 7→ 1, 4 7→ 01.

5. Equality between abelian and additive complexities

It is clear that abelian complexity does not depend on the values of the alphabet,
in contrast with additive complexity. A map v : A → N is called a valuation over
an alphabet A. One might consider the following question.

Question 31. Given an alphabet A, is there a valuation such that the additive
complexity of a given sequence is equal to its abelian complexity?

For instance for the word vtm, defined originally over the alphabet {0, 1, 2}, we
have already proved in Theorem 27 that ρaddvtm(n) = 3 for all n ≥ 1. However, over
the alphabet {0, 1, 3}, i.e., changing 2 into 3, (resp., {0, 1, 4}), one can easily check
that the first time that the additive and abelian complexities are not equal is for
n = 11 (resp., n = 43). But, over the alphabet {0, 1, 5}, we have observed that
both complexities are equal up to n = 50000. The main idea is that if the value
of a letter is sufficiently large compared to the other values, then two additively
equivalent factors are also abelian equivalent. Using this idea, we prove the following
theorem.

Theorem 32. Consider the fixed point vtmλ of the morphism fλ : 0 7→ 01λ, 1 7→
0λ, λ 7→ 1, where λ is a non-negative integer and λ ≥ 2. For all λ ≥ 5, we have
ρaddvtmλ

(n) = ρabvtmλ
(n).

Proof. By Lemma 5, it is sufficient to prove that two factors are additively equiva-
lent if and only if they are abelian equivalent.

16 PIERRE POPOLI, JEFFREY SHALLIIT, AND MANON STIPULANTI

Let x, y ∈ Ln(vtmλ) such that x ∼add y. Write x = pfλ(x
′)s where p (resp.,

s) is a proper suffix (resp., prefix) of an image fλ(a) with a ∈ {0, 1, λ}. Observe
that p ∈ {ε, λ, 1λ} and s ∈ {ε, 0, 01}. Also, by definition of the morphism fλ,
we have |fλ(x′)|λ = |fλ(x′)|0. Therefore, depending on the words p and s, we
have |x|λ = |x|0 + cx for some cx ∈ {−1, 0, 1}. In a similar way, we have |y|λ =
|y|0 + cy for some cy ∈ {−1, 0, 1}. By the assumption that x ∼add y, we have
0|x|0 + 1|x|1 + λ|x|λ = 0|y|0 + 1|y|1 + λ|y|λ. From the previous observations, we
may write this equality as

|x|0 + |x|1 + |x|λ + (λ− 2)|x|λ + cx = |y|0 + |y|1 + |y|λ + (λ− 2)|y|λ + cy.

Since |x|0+ |x|1+ |x|λ = n = |y|0+ |y|1+ |y|λ, we have (λ−2)(|x|λ−|y|λ) = cy−cx.
However, cy−cx ∈ {−2, . . . , 2} implies that |x|λ = |y|λ and cy = cx, since λ−2 ≥ 3.
Thus, |x|0 = |y|0. Since |x| = n = |y|, we also have |x|1 = |y|1, and then that x and
y are abelian equivalent. This ends the proof. □

For C-balanced words over an alphabet of fixed size k, we prove that it is always
possible to find a valuation for the alphabet such that the additive complexity is
the same as the abelian complexity.

Theorem 33. Let k,C ≥ 1 be two integers. There exists an alphabet Σ ⊂ N of
size k such that, for each C-balanced word w over Σ, we have ρaddw = ρabw .

Proof. Such as in the proof of Theorem 32, we prove that over the alphabet Σ,
two additively equivalent same-length factors of w are also abelian equivalent. Let
Σ = {a1, . . . , ak} be a subset of N such that

a1 = 0, a2 = 1 and (a1 + · · ·+ aj−1)C < aj for all 2 ≤ j ≤ k.(5.1)

Now take x, y ∈ Ln(w) with x ∼add y. This condition can be rewritten as

a1(|x|a1
− |y|a1

) + · · ·+ ak−1(|x|ak−1
− |y|ak−1

) = ak(|y|ak
− |x|ak

).(5.2)

Observe that the balancedness of w together with Inequalities (5.1) imply that the
left-hand side of Equality (5.2) belongs to the set {−ak + 1, . . . , ak − 1}. Since the
right-hand side of Equality (5.2) is a multiple of ak, we must have

(5.3)

{
|x|ak

= |y|ak
,

a1(|x|a1 − |y|a1) + · · ·+ ak−1(|x|ak−1
− |y|ak−1

) = 0.

Using similar reasoning, replacing Equality (5.2) with Equalities (5.3), we deduce
that |x|ak−1

= |y|ak−1
. Continuing in this fashion, we prove that |x|a = |y|a for

every a ∈ Σ, which is enough. □

Remark 34. Since the Tribonacci word tr is 2-balanced, Theorem 33 implies that
over the alphabet {0, 1, 3}, its additive complexity is equal to its abelian complexity.

6. Abelian and additive powers

In [22, 23], abelian powers of Sturmian words were examined. In particular, the
following result was obtained for the Fibonacci word f = 010010100100101001010 · · · ,
which is the fixed point of the morphism 0 7→ 01, 1 7→ 0. Also, see the sequence [42,
A336487] in the OEIS.

Proposition 35 ([22, 23]). Let k ≥ 1 be an integer and consider the Fibonacci
word f , i.e., the fixed point of the morphism 0 7→ 01, 1 7→ 0. Then f has an abelian

k-power of order n if and only if ⌊kφn⌋ ≡ 0,−1 (mod k), where φ = 1+
√
5

2 is the
golden ratio.

ADDITIVE WORD COMPLEXITY AND WALNUT 17

For instance, when k = 3, we can compute an 11-state DFA accepting, in Fi-
bonacci representations, exactly those n for which there is an abelian cube of order
n in f .

As Arnoux-Rauzy and episturmian sequences generalize Sturmian sequences, it is
quite natural to try to understand the orders of abelian and additive powers in these
sequences. An archetypical example is the Tribonacci word tr (recall Section 4.1.1).
We obtain the following results on squares and cubes using Walnut and the fact
that the frequency of each letter 0, 1, 2 in tr is Tribonacci-synchronized (see [40,
§ 10.12] and/or Section 4.1.1).

Theorem 36 ([40, Thm. 10.13.5]). Let tr be the Tribonacci word, i.e., the fixed
point of the morphism 0 7→ 01, 1 7→ 02. There are abelian squares of all orders in
tr. Furthermore, if we consider two abelian squares xx′ and yy′ to be equivalent if
x ∼ab y, then every order has either one or two abelian squares. Both possibilities
occur infinitely often.

Theorem 37. Let tr be the Tribonacci word, i.e., the fixed point of the morphism
0 7→ 01, 1 7→ 02. There is a (minimal) Tribonacci automaton of 1169 (resp., 4927)
states recognizing the Tribonacci representation of those n for which there is an
abelian (resp., additive) cube of order n in tr.

Proof. For the part about abelian cubes, see [40, p. 295]. See also the respec-
tive sequences [42, A345717,A347752] in the OEIS. For the additive cubes, we can
determine the orders of additive cubes in tr with the following function:

def tribAddCube "?msd_trib Ei $tribAddFacEq(i,i+n,n)

& $tribAddFacEq(i,i+2*n,n)":

where tribAddFacEq is the function defined in the proof of Theorem 18. This leads
to a Tribonacci automaton of 4927 states. □

We also note that Theorems 18 and 29 imply the existence of additive k-powers
in tr for all k ≥ 1. When k = 2, additive squares exist for all orders by Theorem 36.
For k = 3, orders of additive cubes are given in Theorem 37 by a large automaton,
and no simple description seems to be possible. When k = 4, the same procedure on
Walnut requires a much larger memory, and it appears that a simple desk computer
cannot achieve it. We naturally wonder about larger powers and leave the following
as a relatively difficult open question.

Problem 38. Characterize the orders of additive k-powers in the Tribonacci word
tr.

It is shown in [15] that the behavior of the abelian complexity of Arnoux-Rauzy
words might be erratic. In particular, there exist such words with unbounded
abelian complexity. We leave open the research direction of studying the additive
complexity of such words and episturmian sequences. For instance, is there a result
similar to Proposition 35 in the framework of additive powers?

Appendix A. Semigroup trick

In this section, we give more details about the semigroup trick algorithm dis-
cussed in Remark 11, as well as a simple example. For more details, we refer to [40,
§ 4.11].

Suppose we are given a linear representation of a regular sequence x in a po-
sitional numeration U , i.e., there exist a column vector λ, a row vector γ and a
matrix-valued morphism µ such that x(n) = λµ(repU (n))γ. If we suspect that x
takes on only finitely many values, i.e., x is automatic, one can apply the Semigroup

18 PIERRE POPOLI, JEFFREY SHALLIIT, AND MANON STIPULANTI

Trick algorithm presented in [40, § 4.11]. This algorithm explores the tree of pos-
sibilities for the vectors λµ(x) for x ∈ Σ∗ using breadth-first search until no new
vector is generated. If the search halts, then the semigroup {λµ(x) : x ∈ Σ∗} is
finite. Furthermore, the algorithm constructs a DFAO computing x by letting the
states be the set of distinct vectors that are reachable, the initial state be λ, and
the output function associated with each vector w be wγ.

Example 39. Consider the following linear representation

λ =
(
1 0 0 0

)
, µ(0) =


1 0 0 0
1 0 0 0
1 0 0 0
0 0 0 1

 , µ(1) =


0 0 1 0
0 0 1 0
0 0 −1 1
0 0 0 1

 , γ =


0
0
0
1

 .

The first values of the sequence are 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, The
steps of the semigroup trick algorithm are the following:

(1) We start with the vector λ and we compute λµ(0) and λµ(1). We have
λµ(0) = λ and λµ(1) =

(
0 0 1 0

)
= w1, which is a new state. Therefore we

add the transitions λ
0−→ λ and λ

1−→ w1 in the automaton. We add w1 to
the queue.

(2) We compute w1µ(0) and w1µ(1). We have w1µ(0) = λ and w1µ(1) =(
0 0 − 1 0

)
= w2. Therefore we add the transitions w1

0−→ λ and w1
1−→ w2

in the automaton. We add w2 to the queue.
(3) We compute w2µ(0) and w2µ(1). We have w2µ(0) =

(
−1 0 0 0

)
= w3 and

w2µ(1) = w1. Therefore we add the transitions w2
0−→ w3 and w2

1−→ w1 in
the automaton. We add w3 to the queue.

(4) We compute w3µ(0) and w3µ(1). We have w3µ(0) = w3 and w3µ(1) = w2.

Therefore we add the transitions w3
0−→ w3 and w3

1−→ w2 in the automaton.
Since there is no new state, the algorithm halts.

(5) For each state w, we compute the value wγ. We have λγ = 0, w1γ = 0,
w2γ = 1 and w3γ = 1, which are the outputs in the DFAO.

Finally, the obtained DFAO for the sequence x is given in Fig. 6.

λ/0 w1/0 w2/1 w3/1

0

1

0

1

1

0

0

1

Figure 6. An example of DFAO obtained with the semigroup
trick algorithm.

Now we recognize the automaton of the famous Rudin–Shapiro sequence. Notice
that from a minimal linear representation, the semigroup trick algorithm halts if
and only if the sequence is bounded. Since Walnut does not provide a minimal
linear representation, it may be not sufficient to use the semigroup trick algorithm
without minimization. However, for the examples given in this paper, the semigroup
trick algorithm halts even before minimization but the obtained automata are not
minimal.

ADDITIVE WORD COMPLEXITY AND WALNUT 19

Acknolwedgments

Pierre Popoli is supported by ULiège’s Special Funds for Research, IPD-STEMA
Program. Jeffrey Shallit is supported by NSERC grants 2018-04118 and 2024-03725.
Manon Stipulanti is an FNRS Research Associate supported by the Research grant
1.C.104.24F

We thank Matthieu Rosenfeld and Markus Whiteland for helpful discussions,
and Eric Rowland for implementing useful Mathematica code.

References

[1] Jean-Paul Allouche, John Campbell, Jeffrey Shallit, and Manon Stipulanti. The reflection

complexity of sequences over finite alphabets. Preprint available at https://arxiv.org/abs/
2406.09302.

[2] Jean-Paul Allouche, Michel Dekking, and Martine Queffélec. Hidden automatic sequences.

Comb. Theory, 1:15, 2021. Id/No 20. doi:10.5070/C61055386.
[3] Jean-Paul Allouche and Jeffrey Shallit. Automatic sequences: Theory, applications, general-

izations. Cambridge University Press, Cambridge, 2003. doi:10.1017/CBO9780511546563.

[4] Jonathan Andrade and Lucas Mol. Avoiding abelian and additive powers in rich words, 2024.
Preprint available at https://www.arxiv.org/pdf/2408.15390.

[5] Hayri Ardal, Tom Brown, Veselin Jungić, and Julian Sahasrabudhe. On abelian

and additive complexity in infinite words. Integers, 12(5):795–804, 2012. doi:10.1515/

integers-2012-0005.

[6] Graham Banero. On additive complexity of infinite words. J. Integer Seq., 16(1):Article 13.1.5,

20, 2013.
[7] Jean Berstel. Sur les mots sans carré définis par un morphisme. In Automata, languages and

programming (Sixth Colloq., Graz, 1979), volume 71 of Lecture Notes in Comput. Sci., pages
16–25. Springer, Berlin-New York, 1979.

[8] Jean Berstel and Dominique Perrin. The origins of combinatorics on words. Eur. J. Comb.,

28(3):996–1022, 2007. doi:10.1016/j.ejc.2005.07.019.
[9] Jean Berstel and Christophe Reutenauer. Noncommutative Rational Series With Applica-

tions, volume 137 of Encyclopedia of Mathematics and Its Applications. Cambridge Univ.

Press, 2011.
[10] Francine Blanchet-Sadri, James D. Currie, Narad Rampersad, and Nathan Fox. Abelian

complexity of fixed point of morphism 0 7→ 012, 1 7→ 02, 2 7→ 1. Integers, 14:A11, 2014. URL:

http://math.colgate.edu/%7Eintegers/o11/o11.Abstract.html.
[11] Thomas C. Brown and Allen R. Freedman. Arithmetic progressions in lacunary sets. Rocky

Mountain J. Math., 17:587–596, 1987.

[12] Tom Brown. Approximations of additive squares in infinite words. Integers, 12(5):805–809,
a22, 2012. doi:10.1515/integers-2012-0006.

[13] Arturo Carpi and Cristiano Maggi. On synchronized sequences and their separators. Theor.
Inform. Appl., 35(6):513–524, 2001. doi:10.1051/ita:2001129.

[14] Julien Cassaigne, James D. Currie, Luke Schaeffer, and Jeffrey Shallit. Avoiding three

consecutive blocks of the same size and same sum. J. ACM, 61(2):Art. 10, 17, 2014.
doi:10.1145/2590775.

[15] Julien Cassaigne, Sébastien Ferenczi, and Luca Q. Zamboni. Imbalances in Arnoux-Rauzy

sequences. Ann. Inst. Fourier, 50(4):1265–1276, 2000. doi:10.5802/aif.1792.
[16] Julien Cassaigne, Gwénaël Richomme, Kalle Saari, and Luca Q. Zamboni. Avoiding abelian

powers in binary words with bounded abelian complexity. Int. J. Found. Comput. Sci.,
22(4):905–920, 2011. doi:10.1142/S0129054111008489.

[17] Jin Chen, Zhixiong Wen, and Wen Wu. On the additive complexity of a Thue-Morse-like

sequence. Discrete Appl. Math., 260:98–108, 2019. doi:10.1016/j.dam.2019.01.008.

[18] Alan Cobham. Uniform tag sequences. Math. Systems Theory, 6:164–192, 1972. doi:10.1007/
BF01706087.

[19] Ethan M. Coven and G. A. Hedlund. Sequences with minimal block growth. Math. Systems
Theory, 7:138–153, 1973. doi:10.1007/BF01762232.

[20] James Currie and Narad Rampersad. Recurrent words with constant abelian complexity. Adv.

Appl. Math., 47(1):116–124, 2011. doi:10.1016/j.aam.2010.05.001.
[21] Fabien Durand. Cobham’s theorem for substitutions. Journal of the European Mathemati-

cal Society, 13(6):1799–1814, September 2011. URL: https://ems.press/doi/10.4171/jems/

294, doi:10.4171/jems/294.

https://arxiv.org/abs/2406.09302
https://arxiv.org/abs/2406.09302
https://doi.org/10.5070/C61055386
https://doi.org/10.1017/CBO9780511546563
https://www.arxiv.org/pdf/2408.15390
https://doi.org/10.1515/integers-2012-0005
https://doi.org/10.1515/integers-2012-0005
https://doi.org/10.1016/j.ejc.2005.07.019
http://math.colgate.edu/%7Eintegers/o11/o11.Abstract.html
https://doi.org/10.1515/integers-2012-0006
https://doi.org/10.1051/ita:2001129
https://doi.org/10.1145/2590775
https://doi.org/10.5802/aif.1792
https://doi.org/10.1142/S0129054111008489
https://doi.org/10.1016/j.dam.2019.01.008
https://doi.org/10.1007/BF01706087
https://doi.org/10.1007/BF01706087
https://doi.org/10.1007/BF01762232
https://doi.org/10.1016/j.aam.2010.05.001
https://ems.press/doi/10.4171/jems/294
https://ems.press/doi/10.4171/jems/294
https://doi.org/10.4171/jems/294

20 PIERRE POPOLI, JEFFREY SHALLIIT, AND MANON STIPULANTI

[22] Gabriele Fici, Alessio Langiu, Thierry Lecroq, Arnaud Lefebvre, Filippo Mignosi, Jarkko Pel-

tomäki, and Élise Prieur-Gaston. Abelian powers and repetitions in Sturmian words. Theoret.

Comput. Sci., 635:16–34, 2016. doi:10.1016/j.tcs.2016.04.039.

[23] Gabriele Fici, Alessio Langiu, Thierry Lecroq, Arnaud Lefebvre, Filippo Mignosi, and Élise

Prieur-Gaston. Abelian repetitions in Sturmian words. In Developments in Language Theory,
volume 7907 of Lecture Notes in Comput. Sci., pages 227–238. Springer, Heidelberg, 2013.

doi:10.1007/978-3-642-38771-5_21.

[24] Lorenz Halbeisen and Norbert Hungerbühler. An application of Van der Waerden’s theorem
in additive number theory. INTEGERS, 0:#A7, 2000. Available online at https://math.

colgate.edu/~integers/a7/a7.pdf.

[25] Idrissa Kaboré and Boucaré Kientéga. Abelian complexity of Thue-Morse word over a ternary
alphabet. In Combinatorics on words, volume 10432 of Lecture Notes in Comput. Sci., pages

132–143. Springer, Cham, 2017. URL: https://doi.org/10.1007/978-3-319-66396-8_13,
doi:10.1007/978-3-319-66396-8_13.

[26] M. Lothaire. Combinatorics on words. Cambridge Mathematical Library. Cambridge Univer-

sity Press, Cambridge, 1997. doi:10.1017/CBO9780511566097.
[27] Marston Morse and Gustav A. Hedlund. Symbolic dynamics. II: Sturmian trajectories. Am.

J. Math., 62:1–42, 1940. doi:10.2307/2371431.

[28] Hamoon Mousavi. Automatic theorem proving in Walnut, 2016. Preprint available at https:
//arxiv.org/abs/1603.06017.

[29] Aline Parreau, Michel Rigo, Eric Rowland, and Élise Vandomme. A new approach to the 2-

regularity of the ℓ-abelian complexity of 2-automatic sequences. Electron. J. Comb., 22(1):re-
search paper p1.27, 44, 2015. URL: www.combinatorics.org/ojs/index.php/eljc/article/

view/v22i1p27.

[30] Giuseppe Pirillo and Stefano Varricchio. On uniformly repetitive semigroups. Semigroup Fo-
rum, 49:125–129, 1994.

[31] Michaël Rao. On some generalizations of abelian power avoidability. Theoret. Comput. Sci.,

601:39–46, 2015. doi:10.1016/j.tcs.2015.07.026.
[32] Gwénaël Richomme, Kalle Saari, and Luca Q. Zamboni. Balance and abelian complexity of

the Tribonacci word. Adv. in Appl. Math., 45(2):212–231, 2010. doi:10.1016/j.aam.2010.

01.006.
[33] Gwénaël Richomme, Kalle Saari, and Luca Q. Zamboni. Abelian complexity of minimal

subshifts. J. Lond. Math. Soc. (2), 83(1):79–95, 2011. doi:10.1112/jlms/jdq063.

[34] Michel Rigo and Arnaud Maes. More on generalized automatic sequences. Journal of Au-
tomata, Languages, and Combinatorics, 7(3):351–376, 2002. doi:10.25596/jalc-2002-351.

[35] Michel Rigo, Manon Stipulanti, and Markus A. Whiteland. Automaticity and Parikh-collinear
morphisms. In Combinatorics on words, volume 13899 of Lecture Notes in Comput. Sci.,

pages 247–260. Springer, Cham, 2023. doi:10.1007/978-3-031-33180-0_19.

[36] Michel Rigo, Manon Stipulanti, and Markus A. Whiteland. Automatic abelian complexities
of Parikh-collinear fixed points, 2024. To be published in Theory Comput. Syst. Preprint

available at https://arxiv.org/abs/2405.18032.

[37] Julian Sahasrabudhe. Sturmian words and constant additive complexity. Integers, 15:Paper
No. A30, 8, 2015.

[38] Jeffrey Shallit. A generalization of automatic sequences. Theoret. Comput. Sci., 61(1):1–16,

1988. doi:10.1016/0304-3975(88)90103-X.
[39] Jeffrey Shallit. Abelian complexity and synchronization. Integers, 21:Paper No. A36, 14, 2021.

[40] Jeffrey Shallit. The logical approach to automatic sequences—exploring combinatorics on

words with Walnut, volume 482 of London Mathematical Society Lecture Note Series. Cam-
bridge University Press, Cambridge, 2023.

[41] Jeffrey Shallit. Note on a Fibonacci parity sequence. Cryptogr. Commun., 15(2):309–315,
2023. doi:10.1007/s12095-022-00592-5.

[42] Neil J. A. Sloane and et al. The On-Line Encyclopedia of Integer Sequences. URL: https:

//oeis.org.
[43] Ondřej Turek. Abelian complexity and abelian co-decomposition. Theoret. Comput. Sci.,

469:77–91, 2013. doi:10.1016/j.tcs.2012.10.034.
[44] Ondřej Turek. Abelian complexity function of the Tribonacci word. J. Integer Seq., 18(3):Ar-

ticle 15.3.4, 29, 2015.

https://doi.org/10.1016/j.tcs.2016.04.039
https://doi.org/10.1007/978-3-642-38771-5_21
https://math.colgate.edu/~integers/a7/a7.pdf
https://math.colgate.edu/~integers/a7/a7.pdf
https://doi.org/10.1007/978-3-319-66396-8_13
https://doi.org/10.1007/978-3-319-66396-8_13
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.2307/2371431
https://arxiv.org/abs/1603.06017
https://arxiv.org/abs/1603.06017
www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p27
www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p27
https://doi.org/10.1016/j.tcs.2015.07.026
https://doi.org/10.1016/j.aam.2010.01.006
https://doi.org/10.1016/j.aam.2010.01.006
https://doi.org/10.1112/jlms/jdq063
https://doi.org/10.25596/jalc-2002-351
https://doi.org/10.1007/978-3-031-33180-0_19
https://arxiv.org/abs/2405.18032
https://doi.org/10.1016/0304-3975(88)90103-X
https://doi.org/10.1007/s12095-022-00592-5
https://oeis.org
https://oeis.org
https://doi.org/10.1016/j.tcs.2012.10.034

ADDITIVE WORD COMPLEXITY AND WALNUT 21

Department of Mathematics, University of Liège, Belgium

Email address: pierre.popoli@uliege.be

School of Computer Science, University of Waterloo, Canada

Email address: shallit@waterloo.ca

Department of Mathematics, University of Liège, Belgium

Email address: m.stipulanti@uliege.be

	1. Introduction
	2. Preliminaries
	3. General results
	4. Different behaviors and curiosities
	4.1. Bounded additive and abelian complexities
	4.2. Bounded additive and unbounded abelian complexities: a variant of the Thue–Morse word
	4.3. Unbounded additive and abelian complexities

	5. Equality between abelian and additive complexities
	6. Abelian and additive powers
	Appendix A. Semigroup trick
	Acknolwedgments
	References

