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Abstract
Control-based methods have been proposed over the last two decades as robust means to perform nonlinear
vibration testing. These approaches leverage feedback control to stabilize all equilibria and require limited
information about the system under test to be effective. However, their control parameters are often tuned
through trial and error and systematic tuning methods are lacking in the literature. The purpose of this work
is to build accurate numerical models of these control-based methods to evaluate their performance and
stability. Such models can clearly indicate the stability boundaries of different equilibria, and can provide
valuable insight into potential destabilizing mechanisms. Governing differential equations are derived for
CBC and PLL closed-loop systems. They are then solved with the harmonic balance method, and a stability
analysis based on Hill’s method is also developed. The models are assessed with a Duffing oscillator, and
the discrepancies between different filtering and control-based methods are highlighted.

1 Introduction

With the advent of highly flexible structures made up of advanced materials and complex interfaces, the
occurrence of nonlinear vibrations is increasingly encountered during vibration testing campaigns. Even
though experimental modal analysis is a mature tool that is extensively used in academia and industry [1],
its basic assumptions make it fundamentally inapplicable to nonlinear systems. This has motivated the
development of a variety of nonlinear system identification techniques to cope with the unique features
exhibited by nonlinear dynamical systems [2].

Control-based methods have been proposed as robust testing approaches to overcome the difficulties associ-
ated with nonlinear systems testing. The pioneering work of Sieber and Krauskopf [3] introduced the control-
based continuation (CBC) method, which consists in using a feedback proportional-integral-derivative (PID)
controller in the test to stabilize the unstable responses of a structure. The nonlinear frequency response
(NFR) of this structure can then be traced out using algorithms for numerical continuation. Barton et al [4]
later proposed a simplification of the continuation approach. Alternatively, the introduction of a phase-
locked loop (PLL) was proposed by Peter and Leine [5], wherein a feedback controller is used to automat-
ically adjust the excitation frequency to a desired phase lag between the forcing and the response. This
controller also has a stabilizing effect, allowing for the measurement of complete NFRs [6]. Recently, the
response-controlled stepped-sine testing (RCT) method was also proposed, featuring the same appealing
advantages [7].

In most cases, the different parameters of the system are tuned on a trial-and-error basis. A complete ex-
ploration of the parameter space is possible [8] but is generally time consuming. There is only a handful of
theoretical works addressing the effect of the parameters on stability of a single-degree-of-freedom Duffing
oscillator [6, 9, 10]. Adaptive controllers were also recently proposed and theoretically studied [11, 12], but
they have stringent requirements for an experimental implementation (such as full-state feedback). There-
fore, practitioners must currently rely on their intuition and trial and error to find suitable parameters.

This work aims to address this issue by developing accurate numerical models for control-based experiments



and their periodic equilibria. Section 2 introduces the three main elements of a setup tested with a control-
based method, namely the structure under test, a signal analyzer, and a controller. Section 3 develops the
equations of motion of a structure under test, and Section 4 discusses the dynamics of filters required to
analyze the structural outputs. Section 5 presents the two most popular control-based methods, namely CBC
and PLL, and derives first-order ordinary differential equations (ODEs) for their controller. Section 6 then
assembles the derived ODEs with the structural dynamics equations and develops a harmonic balance (HB)
formalism to find the periodic solutions of these ODEs as well as their stability. Section 7 demonstrates the
proposed HB models with a Duffing oscillator. The results are verified against time simulations, and the
stability boundaries are delineated in the parameters space. The conclusions and perspectives of this work
are finally drawn in Section 8.

2 Control-based methods

Controller
ẋc = Acxc + fc(xc,xc,xc, t)

Structure
ẋs = Asxs + fs(xs,xf ,xc, t)

Signal analyzer
ẋf = Afxf + ff(xs,xf ,xc, t)

Response
Forcing

Target

Figure 1: Schematics of a general control-based experiment.

A typical setup using a control-based method consists of three main elements depicted in Figure 1: a structure
under test, a signal analyzer (which is typically a filter), and a controller. The structure is excited by the
controller, and its output is processed by the signal analyzer. The latter then drives the controller, together
with a reference signal y∗. The controller adjusts the input to the structure so as to stir the analyzed structural
output toward its desired reference, and (hopefully) also stabilizes this target.

The purpose of the present work is to develop models for the system shown in Figure 1 for two particular
control-based methods, namely CBC and PLL. In Sections 3-5, models for these individual elements are
developed, and they are assembled in Section 6 to represent the controlled system.

3 Nonlinear structural dynamics

The dynamics of a structure characterized by the vector of generalized degrees of freedom q can be described
by the traditional set of coupled nonlinear second-order ODEs

Mq̈(t) +Cq̇(t) +Kq(t) + pnl(q(t), q̇(t), t) = pext(t) + pc(t), (1)

where M, C and K are linear structural mass, damping and stiffness matrices, respectively, pnl is the vector
of nonlinear and parametric forces, pext is the vector of external forces and pc is the vector of control forces.
For the sake of simplicity, these equations can be recast into a set of first-order ODEs (provided the mass
matrix is invertible) using the state vector xT

s =
[
qT q̇T

]
and

ẋs(t) =

[
q̇(t)
q̈(t)

]
=

[
0 I

−M−1K −M−1C

] [
q(t)
q̇(t)

]
+

[
0

M−1 (pext(t) + pc(t)− pnl(q(t), q̇(t), t))

]
, (2)

where I is the identity matrix. Equation (2) can also be rewritten in the compact form

ẋs(t) = Asxs(t) + fnl,s(xs(t), t) + fext,s(t) + fs,c(t), (3)

separating explicitly the linear, nonlinear, external and control forces.



The output signal and its time derivative (typically corresponding to a displacement and an associated veloc-
ity) are assumed to be obtainable from the state vector with the matrices Cq and Cq̇, respectively, as

x(t) = Cqxs(t), ẋ(t) = Cq̇xs(t). (4)

4 Filter dynamics

Representative quantities of periodic structural responses for control-based methods can be obtained from a
Fourier decomposition of the signal x, which can itself be performed by an adequate filter. The goal of the
filter is thus to provide an estimate of a truncated Fourier decomposition

x(t) = Q(θ(t))w(t), (5)

where w is a column vector containing the estimates of the Fourier coefficients, Q(t) is a row vector of h
harmonic functions

Q(θ(t)) =

[
1√
2

sin(θ(t)) cos(θ(t)) sin(2θ(t)) cos(2θ(t)) · · · sin(hθ(t)) cos(hθ(t))

]
, (6)

and θ(t) represents the instantaneous fundamental phase of these harmonic functions.

4.1 Perfect filter

Ideally, for a periodic solution and a perfect Fourier decomposition, the coefficients w are constant and
satisfy

w =
ω

π

∫ 2π/ω

0
QT (ωt)x(t)dt. (7)

However, the filters used in practice are not perfect. Hence, a time dependence on the coefficients w is
retained to reflect the associated filter dynamics.

4.2 Synchronous demodulation

A popular approach to extract the harmonic components of a signal is synchronous demodulation. In this
approach, the signal is multiplied by harmonic functions and low-pass filtered. With a first-order, unit-gain
low-pass filter, this process reads

ẇ(t) = −ωlpw(t) + 2ωlpx(t)Q
T (θ(t)), (8)

where ωlp is the cut-off frequency of the filter.

4.3 Adaptive filter

Adaptive filters constitute an alternative to synchronous demodulation. They are widely used as effective
noise cancellation means [13] and were leveraged in [14] to perform online Fourier decomposition. Different
adaptation laws exist to set the Fourier coefficients w as a function of the input signal x. In this work,
the Widrow-Hoff least mean squares (LMS) algorithm is used. A continuous-time version of this scheme
is [13, 15]

ẇ(t) = µ (x(t)−Q(θ(t))w(t))QT (θ(t)), (9)

where µ is the filter gain.



4.4 General filter model

Both Equations (8) and (9) can be put in the general form

ẋf(t) = Afxf(t) + ff(xs(t),xf(t),xc(t), t), (10)

where xf is the state vector associated with the filter(s) and generally contains the Fourier coefficients of one
(or multiple) signal(s), and xc is the state vector of the controller (that will be explicited in Section 5). The
dependency of ff on xs and xc is due to x and θ(t), respectively.

5 Models for control-based methods

The two most popular variants of control-based methods, namely CBC and PLL, are presented hereafter.
Their dynamics is also described through ODEs.

5.1 Control-based continuation

PD Controller Structure
x∗(t)

θ(t) = ωt

fCBC(t) x(t)
+−

a∗ sin(ωt)
+−

Filter

Figure 2: Schematics of the CBC method.

A general implementation of the CBC method is schematized in Figure 2. A PD controller is used to stabilize
(if possible) all solutions within the test range by stirring the measured output of the system, x, toward a
desired reference x∗. The PD controller outputs a force which reads

fCBC(t) = B (kp (x∗(t)− x(t)) + kd (ẋ∗(t)− ẋ(t))) , (11)

where B is an influence vector describing the spatial distribution of the force. To this is adjoined the non-
invasiveness condition

kp(x∗(t)− x(t)) + kd(ẋ∗(t)− ẋ(t)) = f(t), (12)

which requires that the forcing defined by Equation (11) is equal to a desired force profile f . This subjects
the structure to open-loop excitation conditions, which is a sufficient condition to ensure that the equilibria
of the closed-loop system will be identical to those of the open-loop system. The stability of these equilibria
will nevertheless be altered by the action of the PD controller, providing the opportunity to experiment with
normally unstable equilibria. In most cases, f is a sinusoidal forcing, and an equivalent requirement to
Equation (12) is that x∗ − x be tonal.

In practice, the signal x∗ is adapted to guarantee the non-invasiveness condition. This can be performed in
three ways:

1. Using a Newton-Raphson method that adapts the Fourier coefficients of x∗ to satisfy Equation (12) [3].

2. Using a Picard iteration scheme that sets the non-fundamental Fourier coefficients of x∗ equal to those
of x [4].

3. Using an adaptive filter that automatically sets the signal x∗ [9, 14], as schematically depicted in the
dashed part of Figure 2.



As opposed to the two first possibilities, the third one can be modeled by a continuous-time process. For the
latter, the dynamic effect of the filter can be included. For the two first ways, the models developed herein
can only deal with the dynamics of the closed-loop systems once the iterative schemes have converged to a
non-invasive solution, but cannot assess the convergence of these schemes themselves.

Using a filter, non-invasiveness can be achieved if

x∗(t) = a∗ sin(ωt) + b∗ cos(ωt) +Q(θ(t))Pnfw(t), (13)

where a∗ and b∗ can either be adapted to satisfy Equation (12) or given arbitrary values, and Pnf is a matrix
selecting the non-fundamental harmonic coefficients (cf. Equations (5) and (6))

Pnf = I−
(
e2e

T
2 + e3e

T
3

)
, (14)

with ei the ith canonical basis vector of R2h+1. In this way, x∗ has the same non-fundamental harmonics as
x, making their difference a purely sinusoidal signal.

5.2 Phase-locked loop

PI Controller
∫
·dt f sin (·) Structure

Filter

φ∗ θ(t)ωPLL(t)
+−

fPLL(t) x(t)

φ(t)

Figure 3: Schematics of the PLL method.

The block diagram representing a structure controlled with a PLL is schematized in Figure 3. In this system,
the frequency of excitation ωPLL is automatically adjusted by a PI controller to enforce the phase of the
fundamental harmonic of the response ϕ to equate a desired reference phase ϕ∗. The frequency of excitation
is given by the output of a PI controller by

ωPLL(t) = ω(0) + ki

∫ t

0
(ϕ(τ)− ϕ∗) dτ + kp (ϕ(w(t))− ϕ∗) , (15)

where ϕ is the phase lag of the response that can be estimated by

ϕ(w(t)) = arctan

(
wc,1

ws,1

)
, (16)

ws,1 and wc,1 being the fundamental sine and cosine coefficients, respectively, of the Fourier decomposition
(Equation (5)). The forcing imposed by the PLL to the structure is then

fPLL(t) = Bf sin

(∫ t

0
ωPLL(τ)dτ

)
. (17)

Equations (15) and (17) are integro-differential equations that can be manipulated to obtain ODEs with
periodic quantities treatable by a HB formalism (if periodic solutions of the controlled systems are sought).
First, since the frequency is the output of a (linear) PI controller, it is decomposed into

ωPLL(t) = ω + ωi(t) + ωp(t), (18)

where ω is the average value of ωPLL(t) (for periodic solutions), and ωp(t) and ωi(t) are fluctuations due to
the proportional and integral terms (that will be formally defined by Equations (21) and (22)), respectively.



As a consequence, the instantaneous phase θ is given by

θ(t) =

∫ t

0
ωPLL(τ)dτ = ωt+

∫ t

0
(ωi(τ) + ωp(τ)) dτ = ωt+ θpi(t), (19)

where θpi represents a periodic phase fluctuation due to the PI controller. Inserting Equation (19) into Equa-
tion (17), the PLL forcing thus becomes

fPLL(t) = Bf sin(ωt+ θpi(t)), (20)

where θpi is governed by the ODE

θ̇pi(t) = ωi(t) + ωp(t) = ωi(t) + kp (ϕ(w(t))− ϕ∗) , (21)

and ωi by
ω̇i(t) = ki (ϕ(w(t))− ϕ∗) . (22)

Equations (20)-(22) are equivalent to Equations (15) and (17), but are ODEs that only feature time-periodic
quantities when time-periodic solutions are sought.

5.3 General model

For the PLL, gathering θ and ωi into a state vector xc, Equations (21) and (22) can be put in the general form

ẋc(t) = Acxc(t) + fc(xs(t),xf(t),xc(t), y∗(t), t), (23)

where y∗ can be the reference signal x∗ for CBC, and the reference phase lag ϕ∗ for PLL.

The CBC does not feature direct dynamics (in the sense that it is not governed by an ODE) due to the
assumptions made in this work, but influence those of the coupled system through the control force fs,c(t).
Hence, for the CBC, the state vector xc is simply empty.

6 Controlled system dynamics and stability

Having described the dynamics of the individual subsystems of a control-based experiment, it is now possible
to assemble them to describe the controlled system dynamics. This provides a set of nonlinear coupled
ODEs, that can be solved with the HB formalism. In addition, using Hill’s method, the stability of the found
solutions can be assessed.

6.1 Controlled system dynamics

The subsystems can be coupled by expressing the control force exerted on the structure as the general ex-
pression

fs,c(t) = Bfs,c(xs(t),xf(t),xc(t), t, y∗(t)), (24)

whose specializations to CBC and PLL are given in Equations (11) and (20), respectively. Eventually,
assembling Equations (3), (10), (23) and (24), the coupled system is governed by the first-order ODE


ẋs(t)
ẋf(t)
ẋc(t)


 =



As 0 0
0 Af 0
0 0 Ac





xs(t)
xf(t)
xc(t)


+



fnl,s(xs(t), t) +Bfs,c(xs(t),xf(t),xc(t), t, y∗(t))

ff(xs(t),xf(t),xc(t), t)
fc(xs(t),xf(t),xc(t), y∗(t), t)


+



fext,s(t)

0
0


 ,

(25)
which is put in the compact form

ẋ(t) = Ax(t) + f(x(t), y∗(t), t) + fext(t), (26)



where xT =
[
xT
s xT

f xT
c

]
is the state vector of size Nx of the coupled system.

6.2 Harmonic balance formalism

The periodic solutions of Equation (26) are now sought. To compute them, the HB method is used. Following
the approach outlined in [16], the state vector is described by means of a truncated Fourier expansion

x(t) = (Q(ωt)⊗ I) z, (27)

where z is a vector of size Nz = (2Nh + 1)Nx gathering the Fourier coefficients associated with every
entry of the state vector, with Nh the number of harmonics used by the method. The operator ⊗ represents a
Kronecker product. Inserting this ansatz into Equation (26) and using a Galerkin procedure, the frequency-
domain counterpart of Equation (26) is obtained as

(I⊗A−∇(ω)⊗ I) z+ b(z, ω, ξ∗) + bext = 0, (28)

where b and bext are the Fourier transforms of f and fext, respectively, ξ∗ is a parameter characterizing y∗(t)
(e.g., a∗ for CBC and ϕ∗ for PLL), and ∇ is a differential operator given by

∇(ω) =




0 0

0




1 0 · · · 0
0 2 · · · 0
...

...
. . .

...
0 0 · · · h


⊗

[
0 −ω
ω 0

]



. (29)

Equation (28) represents a set of nonlinear algebraic equations that can be solved with standard computer
methods. More details on the derivation can be found in [16].

6.3 Continuation

Equation (28) represents a system of Nz equations for Nz + 2 variables (z, ω and ξ∗). To be usable with a
continuation approach, either one of these variables has to be fixed, or an additional equation is required.

For CBC, the method of Barton et al. [4] is simulated in this work. ω is thus fixed, b∗ = 0 and ξ∗ = a∗ is
used as a bifurcation parameter. When the filter dynamics are neglected, the vector xf is empty, but the non-
fundamental harmonic coefficients of the reference signal x∗ are added as unknowns, and the requirement
that x− x∗ = a∗ sin(ωt) is added for closure.

For PLL, a phase condition is required since the system is autonomous. Without loss of generality, θpi(0) = 0
is chosen. This adds an equation to the system, making the difference between the number of variables and
the number of equation equal to one, i.e., a well-posed problem for continuation. When the filter dynamics
are neglected, the vector xf is empty, and the phase ϕ is computed directly from the harmonic coefficients z
(instead of w).

6.4 Stability analysis

If a periodic solution xeq(t) of Equation (26) has be found, it is important to know whether this solution will
be stable. In this work, the asymptotic stability of a solution is assessed through a linearization procedure. A
small perturbation term s is added to the equilibrium solution as

x(t) = xeq(t) + s(t) (30)



with |s(t)| ≪ |xeq(t)|. This perturbed solution is then inserted into Equation (26) and a Taylor expansion
around xeq is performed, yielding

(ẋeq(t) + ṡ(t)) = A(xeq(t) + s(t)) + f(xeq(t), t) +
∂f

∂x

∣∣∣∣
x=xeq(t)

s(t) + fext(t) +O(|s(t)|2). (31)

Neglecting the terms of higher larger than one in s, and using the fact that xeq is a solution of Equation (26),
Equation (31) becomes

ṡ(t) =

(
A+

∂f

∂x

∣∣∣∣
x=xeq(t)

)
s(t). (32)

The solutions of this linear time-varying ODE indicate whether the perturbations s will decay or grow in
time, and hence if the solution xeq is stable or not. To answer this question, Hill’s method is used [16].
The perturbations are written in a specific Floquet normal form, i.e., the perturbations are decomposed as an
exponential term modulated by a time-periodic function as

s(t) = eλt (Q(ωt)⊗ I)u, (33)

where λ is an exponential growth or decay rate, and u gathers the Fourier coefficients of the time-periodic
function. Similarly to [16], this ansatz can be inserted into Equation (32), and using a Galerkin procedure
leads to the eigenvalue problem

(
I⊗A−∇(ω)⊗ I+

∂b

∂z

)
u = λu, (34)

where the Jacobian matrix on the left-hand side is most of the time obtained as a byproduct of the continu-
ation method. Among the Nz eigenvalues λ (also called Hill coefficients), only Nx are meaningful Floquet
exponents. There exists various criteria to select the relevant Nx eigenvalues. In this work, the Nx ones
with smallest imaginary part modulus are selected, as in [16]. Finally, the stability of the solution xeq is
concluded from the selected Floquet exponents: as per Equation (33), the solution is stable if none of them
has a positive real part; it is unstable otherwise.

7 Illustration with a Duffing oscillator

A Duffing oscillator, whose response x under an external excitation f is governed by the following second-
order nonlinear ODE

mẍ(t) + cẋ(t) + kx(t) + k3x
3(t) = f(t), (35)

is considered for illustration. m, c, and k are the linear mass, damping and stiffness coefficients of the
oscillator, respectively, whereas k3 is the cubic stiffness coefficient. Using the dimensionless variables t̄ =
t
√
k/m and x̄ = x

√
k3/k, Equation (35) can be put in the dimensionless form

x̄′′(t̄) + 2ζx̄′(t̄) + x̄(t̄) + x̄3(t̄) = f̄(t̄), (36)

where ζ = 2c/
√
km is the damping ratio of the oscillator, f̄ = f

√
k3/k3 is a dimensionless forcing, and a

prime denotes a derivation with respect to the dimensionless time t̄. When modelling control-based methods,
the filter coefficients can be normalized in the same way as x (i.e., w̄ = w

√
k3/k). For PLL, the frequency

can be normalized consistently with the dimensionless time as ω̄ = ω
√

m/k, whereas the instantaneous
phase θpi is already dimensionless. In the sequel, the value ζ = 0.05 is selected, and the overbars are
dropped to alleviate the notations, being understood that one works with a dimensionless system.

For both CBC and PLL, the developed HB models shall be verified against time simulations of the controlled
Duffing oscillator modelled in Matlab/Simulink. The effect of the gains on stability will the be studied, and
compared to the theoretical developments in [6, 10]. Finally, the effect of the filter dynamics on the obtained
response and its stability will be investigated.



The following results have been obtained using the HB method with Nh = 9 harmonics and a classical al-
ternating time-frequency procedure to evaluate the nonlinear and time-varying forces with 64 sample points.

7.1 Control-based continuation

To start with, the model of a Duffing oscillator with CBC is analyzed.

7.1.1 Verification against time simulations
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Figure 4: S-curve of the Duffing oscillator at ω = 1.5 obtained with the CBC method with kp = 0 and kd =
0.5: forcing amplitude f vs. harmonic amplitude (a) and target amplitude a∗ vs. harmonic amplitude (b).

: HB solution, •: closed-loop stable time-simulated solution.

According to the method of Barton et al. [4], the response of a Duffing oscillator can be investigated with
so-called S-curves, representing the amplitude of the response at constant excitation frequency with the
abscissa representing the forcing amplitude. Figure 4a represents such a curve for ω = 1.5, kp = 0 and
kd = 0.5, when no filter is used (which would correspond to the converged solutions of the method in [4]).
Thanks to the controller action, the part of the curve that would normally be unstable (that corresponds
to the intermediate-amplitude branch in the multistable region) is stabilized, so that a full S-curve can be
measured experimentally. For the time simulations, initial conditions corresponding to each point of the
S-curve computed with the HB method were used, and the system was simulated for 500 periods. Time-
simulated and HB results agree perfectly, verifying the developed models.

The case with kd = 0.5 leads to a fully stabilized S-curve because there is no folding in the drive parameter
a∗, as explained in [10], and this is confirmed in Figure 4b. By contrast, a gain kd = 0.2 is not expected to
fully stabilize the S-curve (the theoretical stability limit in [10] being kd,crit = 0.3811 in the case considered
herein). Figure 5a confirms this with both HB and time-simulated1 results. One can also observe that Hill’s
method very accurately predicts where instabilities set in, as time solutions initiated on the unstable branch
eventually diverge from it. Finally, we note from Figure 5b that unstable solutions jump to branches nearby
stable branches of the S-curve (but they are not exactly the same because the control for solutions initiated
on unstable points is invasive).

1We note that the forcing amplitude in Figure 5a is taken equal to that of HB for readability, even though the control is invasive
for unstable solutions and thus the (multi-harmonic) forcing amplitude in time simulations changes once the system settles to another
branch.
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Figure 5: S-curve of the Duffing oscillator at ω = 1.5 obtained with the CBC method with kp = 0 and kd =
0.2: forcing amplitude f vs. harmonic amplitude (a) and target amplitude a∗ vs. harmonic amplitude (b). :
HB solution (thick: closed-loop stable, dashed: closed-loop unstable), •: closed-loop stable time-simulated
solution, •: closed-loop unstable time-simulated solution.

7.1.2 Controller gains and stability

Having verified the HB model against time simulations, the effect of the proportional and derivative gains on
stability can now be studied. It is also possible to find the stability boundary and compare it to the theoretical
results in [10] based on a one-term HB method.

Several continuation runs are performed to compute the S-curve at ω = 1.5 for various values of kp and
kd. The Floquet exponents are computed for each point of the curve, and the maximum real part of these
exponents is stored. A positive maximum real part means that a part of the S-curve is unstable, indicating
that the CBC fails to fully stabilize the S-curve with the selected gains.
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Figure 6: Maximum real part of the Floquet exponents along the S-curve for ω = 1.5 and f ∈ [0, 0.65] as a
function of kp and kd. : numerical stability boundary, : theoretical stability boundary [10].

Figure 6 represents a contour plot of the maximum real part of the Floquet exponents, and highlights the
stability limit (where the maximum real part equates zero). This boundary is in almost perfect agreement
with its theoretical counterpart [10], further confirming the accuracy of the latter. In this simple example,
stability can be achieved if large enough proportional and derivative gains are selected.



7.1.3 Effect of the filter dynamics

Abeloos et al. [14] proposed to use adaptive filters to simplify and speed up the determination of the reference
signal x∗. The effect that such a filter can have on stability is now studied, considering h = 5 harmonics for
the online Fourier decomposition.
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Figure 7: Maximum real part of the Floquet exponents along the S-curve for ω = 1.5 and f ∈ [0, 0.65] as
a function of kp and kd for µ = 0.1 (a), µ = 0.5 (b), µ = 1 (c) and µ = 2 (d). : numerical stability
boundary, : theoretical stability boundary [10].

Repeating the procedure followed to obtain Figure 6 for different values of the filter gain µ, the results
displayed in Figure 7 are obtained. A direct comparison of the numerical values for the maximum real
part of the Floquet exponents may not be straightforward, given that the system considered herein contains
additional dynamics. Nevertheless, the stability boundary still marks an important qualitative change that
can be compared to the case without filter. This is why the theoretical boundary limit of [10] is also plotted
in Figure 7 for reference, even though it does not strictly correspond to the case studied herein.

Figures 7a and 7b show that for a low value of the filter gain, the stability boundary is very similar to the
case without filter. A low value for µ corresponds to a rather slow filter. The observed results thus make
sense, since the limiting case µ = 0 theoretically corresponds to a case with a fixed reference x∗, i.e., the
case studied in Figure 6. A high value of µ is desirable to speed up the experiment. However, as revealed
by Figures 7c and 7d, this can have detrimental effects on stability. This is particularly well illustrated in
Figure 7d, where large gains may lead to an unstable system, unlike the case without filter (cf. Figure 6).



7.2 Phase-locked loop

Models of a Duffing oscillator with PLL control are now considered.

7.2.1 Verification against time simulations

Similarly to Section 7.1.1, the results of the HB model are compared against time simulations over 500
periods of a PLL model built in Matlab/Simulink. However, the curve considered for verification is the NFR,
and the effect of the filter cannot be neglected, because a time simulation without it is not possible. In this
case, synchronous demodulation is considered, with a low-pass filter with cut-off frequency ωlp = 0.1.
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Figure 8: NFR of the Duffing oscillator at f = 2 obtained with the PLL method with synchronous demod-
ulation (ωlp = 0.1): (kp, ki) = (5, 0.5) (a) and (kp, ki) = (5, 1) (b). : HB solution (thick: closed-loop
stable, dashed: closed-loop unstable), •: closed-loop stable time-simulated solution, •: closed-loop unstable
time-simulated solution.

Figure 8 presents two cases at f = 2: one where the NFR is fully stabilized (kp = 5, ki = 0.5) and
one where the PLL rather has a destabilizing effect compared to an open-loop case (kp = 5, ki = 1)2.
Once again, the HB models are able to correctly represent the steady-state response of the system for stable
equilibria. The limits of stable responses is also accurately predicted. In Figure 8b, time-simulated results
initiated on the lower unstable branch generally have a diverging frequency that tends to infinity (hence the
response amplitude tends to zero), whereas results initiated on the upper unstable branch generally feature
large fluctuations of the excitation frequency.

7.2.2 Controller gains and stability

Neglecting first the filter dynamics, Figure 9 studies the effect of the controller gains on stability. In a similar
fashion as the CBC, large gains appear to stabilize the system in this ideal case. Theoretical models were
also established for a Duffing oscillator with a PLL [6, 9] but are based on a perturbation method requiring
the damping, nonlinearity and external forcing to be small. Since these assumptions are not respected in the
case considered herein, their results showed that the NFR could not be stabilized whatever the gains, and
were thus inaccurate.

The stability region in Figure 9 encompasses an unstable time-simulated result (Figure 8b). Since only the
filter and synchronous demodulation dynamics have been neglected, the instability must come from them.
This is confirmed next.

2Similarly to the case of Figure 5a, the plotted frequency of the unstable time-simulated solutions is the one of the HB solution
for readability.
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Figure 9: Maximum real part of the Floquet exponents along the NFR for f = 2 and ω ∈ [1.2, 5] as a
function of kp and ki. : numerical stability boundary.
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Figure 10: Maximum real part of the Floquet exponents along the NFR for f = 2 and ω ∈ [1.2, 5] as a
function of kp and ki for ωlp = 0.05 (a), ωlp = 0.075 (b), ωlp = 0.1 (c) and ωlp = 0.2 (d). : numerical
stability boundary.

The effect of a low-pass filter on stability is finally assessed. Theoretical analyses in [6, 9] essentially show
that a fast filter (i.e., a large ωlp) is desirable from a stability perspective. Figure 10 shows that there is more



nuance to be brought to the discussion. On the one hand, it can be seen from Figures 10a and 10b that the
left boundary of the stable region (characterized by oblique lines) indeed tends to grow the stable region
as ωlp increases. These oblique lines correspond to the appearance of an unstable part of the NFR on the
intermediate-amplitude branch of the multistable region (corresponding to the open-loop unstable branch).
On the other hand, Figures 10c and 10d show that a right boundary (a vertical line) appears for the stable
region when ωlp becomes large. This instability occurs on the low-frequency part of the NFR, and is due
to the prominence of a second harmonic in the force. This second harmonic comes from the synchronous
demodulation and was overlooked in [6, 9], but is not strongly attenuated by the low-pass filter when ωlp is
large and can be the cause of instabilities.

The large difference between Figures 9 and 10 stresses the importance of correctly accounting for filter
dynamics in the stability analysis.

8 Conclusion

With the growing popularity of control-based methods, effective approaches for tuning their control param-
eters become necessary. This work developed models for such methods, and proposed to find their periodic
solutions with a HB formalism together with a stability analysis. The HB models were shown to accurately
represent the periodic orbits of a controlled Duffing oscillator when compared to time simulations. Further-
more, Hill’s method was shown to correlate well with time-simulated results. This allowed us to investigate
the effect of the control parameters on the global stability of a primary resonance. In addition, the influence
of filter dynamics was assessed.

Several paths could be followed in future works. More complex structures could be considered, and the
influence of non-resonant modes on stability could then be accounted for. In addition, a bifurcation tracking-
based method (cf. [16]) could be used to guide the parameters tuning based on the stability boundaries.
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