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Abstract—This paper proposes an incremental Volt/VAR con-
trol for voltage regulation in distribution networks with high
penetration of distributed energy resources. The Volt/VAR con-
troller coefficients are obtained by solving a robust optimization
problem, where reactive power is minimized. The proposed
optimization problem is solved using a Successive Convex Ap-
proximation method. Communication requirements are minimal
and restricted to the offline stage since the local controllers share
the same gains. Numerical studies on a 42-node low voltage
network demonstrate the improved performance of our local
controllers against a traditional static Volt/VAR control strategy.

Index Terms—Distributed energy resources, distribution net-
works, incremental Volt/VAR control, local control.

I. INTRODUCTION

Traditionally, voltage regulation in Distribution Networks
(DNs) is performed with load tap changers, switchgear, or
other devices. However, the increasing variability introduced
by Distributed Energy Resources (DERs) can shorten their
lifespan, and they may become insufficient to resolve voltage
issues. Advancements in power electronics converters offer
new avenues for controlling DERs, thereby introducing novel
opportunities for voltage regulation.

Different control architectures exist for the real-time oper-
ation of DERs. In the following we make a distinction be-
tween centralized, distributed and decentralized architectures.
Centralized controllers require accurate network knowledge,
which is challenging, particularly in networks with increased
DER penetration. While recent feedback-based optimization
methods, e.g. [1], alleviate the necessity for perfect knowledge
of non-controllable power injections, they still require an
advanced communication infrastructure, which is not always
available in DNs [2]. Distributed controllers, e.g. [3], [4], can
bridge the gap between decentralized and centralized methods.
However, they still rely on communication infrastructures and
are susceptible to communication delays and errors [2]. In
contrast, decentralized strategies rely solely on local measure-
ments to implement control actions [5], offering robustness,
simplicity, and low cost. Local Volt/VAR controllers can be
designed to achieve diverse objectives by solving dedicated
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optimization problems [6]. It is known that traditional static
Volt/VAR controls may result in oscillatory behaviors [7],
while incremental strategies incorporate voltage measurements
and past reactive power setpoints [8] to overcome this problem.

Data-driven local Volt/VAR schemes can learn near-optimal
controllers, thus closing the performance gap with centralized
and distributed controllers [9]. Nonetheless, they may lack
stability guarantees of the closed-loop system [10]. Some
research works, e.g. [11], offer stability guarantees for specific
control strategies. However, these methods often consider opti-
mized local strategies for each DER, requiring an advanced of-
fline communication infrastructure to determine DER locations
and dispatch gains accordingly. Moreover, optimization-based
methods frequently overlook the feasibility of the optimal
reactive power flow (ORPF) problem, i.e., if there are enough
reactive power reserves to satisfy voltage constraints under a
controller architecture.

Statement of Contributions: We introduce a local incre-
mental Volt/VAR controller scheme with optimized gains to
minimize reactive power usage while ensuring that voltage
constraints are met. Gains are predetermined based on fore-
casted power generation and loads, eliminating the need for
historical data, and are then broadcasted to the local con-
trollers, keeping the offline communication infrastructure as
simple as possible. Leveraging the algorithm proposed in [12],
we develop a tractable formulation of our optimal gain design
using Successive Convex Approximation (SCA) methods. We
also discuss the feasibility of the ORPF problem.

The text is structured as follows. In Section II, we define
the DN model and our problem. Section III introduces the
design of our controller. Section IV presents our optimal
control design problem. Section V provides details regarding
the implementation of the feedback controllers. Numerical
simulations in Section VI compare the proposed approach to
benchmark methods. We make some final comments in Section
VII and conclude the paper with Section VIII.

II. PROBLEM FORMULATION

A. Power system model

We consider a balanced three-phase DN with N + 1 nodes
and G DERs. The node 0 is taken to be the substation node or
the point of common coupling, while N := {1, ..., N} is the
set of remaining nodes. We consider a phasor representation
of the single-phase equivalent DN and model the system using979-8-3503-9042-1/24/$31.00 ©2024 IEEE



power flow equations that can be written in a compact form
as:

s = diag(u)(ȳ∗V0 +Y∗u∗), (1)

where u := {uk}k∈N , i := {ik}k∈N collect the voltages,
the injected currents at every node, respectively, and s = pav−
pl + j(Aq − ql) ∈ CN is the net power injection at nodes
n ∈ N . We define pav,pl,ql ∈ RN the vectors collecting the
non-controllable active power injection, the active and reactive
power consumption at nodes n ∈ N , respectively. We define
q ∈ RG the vector collecting the controllable reactive power
of the G DERs. Powers take positive (negative) values if they
are injected into (absorbed from) the grid. We also define A ∈
RN×G as the matrix that maps a DER index to the node where
it is located. The voltage at node 0 is set to u0 = V0.

Let us define z := (pav,pl,ql) as the concatenation of the
non-controllable powers, the algebraic map H := RG+3N →
RN and v := {vk}k∈N the vector collecting the voltage
magnitudes at every node. For convenience, we denote v =
H(q, z) where H relates the net power injections to the
practical solution – high voltage, low line currents solution
– of the power flow equations (1). Although there is no
analytical formulation of H , its existence and uniqueness has
been discussed in [13].

B. Problem setup

We want to minimize the total reactive power usage while
ensuring that voltages remain inside a given feasible set. We
formulate an ORPF problem as follows:

(P0(t)) min
q∈RG

f(q)

s.t. q ∈ Q
H(q, z(t)) ∈ V,

(2)

where Q ∈ RG is the set of feasible values for the reactive
powers, V ∈ RN is the set of feasible values for voltage
magnitudes, and f := RG → R is a differentiable cost
function. Notice that P0(t) is a time-varying optimization
problem since the non-controllable power injections z(t), and
thus the optimal reactive power injections, vary with time,
usually within a second. Collecting data, solving the problem
(P0(t)) and broadcasting the setpoints to the inverters every
second is challenging because of the non-linear nature of
the power flow equations (1) represented by H , and the
communication burden associated with large DNs. Therefore,
this paper aims at solving the following problem.

Problem 1: Design feedback controllers to approximate the
solution of (P0(t)) with limited computational resources and in
a decentralized fashion to restrict the communication burden
to the offline stage.

Assumption 1: There is one, and only one, DER per node.
Assumption 2: The map H does not change with time.
Assumption 3: There exists a solution such that v(t) ∈ V

for q ∈ Q at any time t.

III. DESIGN OF FEEDBACK CONTROLLERS

A. Incremental Volt/VAR control

Let us discretize the temporal domain as t = kτ , where
k ∈ N≥0 and τ ∈ R>0 is a given time interval, small enough to
resolve variations in the time-dependent disturbances, i.e., less
than a second. We introduce the following feedback controller:

qk+1 = qk + η(1− νk)− (1− η)αqk, (3a)
α ∈ R≥0, η ∈ [0, 1], (3b)

where νk = Xqk + ρk with X ∈ RN×N is a linear
approximation of the power flow equations and ρk = H(0, zk)
denotes the voltage profile obtained by setting the controllable
reactive powers to 0. The linearized power flow equations
can be derived from the branch flow model [14] such that
it guarantees X being positive definite [15]. Substituting this
approximation in (3a), the controller update law can be written
as:

qk+1 = [(1− (1− η)α)I− ηX]qk + η(1− ρ)

= A(η, α)qk +B(η,ρ),
(4)

where 1 denotes a N × 1 column vector and I is the N ×N
identity matrix.

B. Existence and uniqueness of the equilibrium

Denoting ρ = ρk for a given k, the equilibrium for (4) is
defined as:

q∗ = [ηX + (1− η)αI]
−1

η(1− ρ)

ν∗ = X [ηX + (1− η)αI]
−1

η(1− ρ) + ρ.
(5)

Since X is positive definite and η, α satisfy (3b), the matrix
ηX + (1 − η)αI in equation (5) is always invertible and the
equilibrium is unique. It is clear that increasing the gain α
decreases the usage of reactive power, while increasing the
gain η steers the voltage magnitudes to the nominal voltages.

C. Stability analysis

The controller defined in (4) is asymptotically stable if and
only if ρ(A) < 1, where ρ(·) denotes the spectral radius. It
follows that we can write ρ(A) < 1 as:

0 < (1− η)α1+ ηλX < 21, (6)

where λX ∈ RN is the vector containing the eigenvalues of
the matrix X . Moreover the matrix X is positive definite by
construction, and since η, α satisfy (3b), we always have (1−
η)α1 + ηλX ≥ 0. The equality holds only if η = α = 0,
which guarantees a stable controller since qk+1 = qk.

IV. DESIGN OF THE CONTROLLER GAINS

The performance of the controller defined in (4) depends on
the choice of η and α. In the following section, we introduce
our optimal gain design.



A. Time-varying formulation

Given a matrix X , a time-varying vector ρk = H(0, zk),
and feasible sets Q and V , we formulate a discretized version
of the problem (P0(t)) considering the linearized power flow
equations and the controller (3):

(P1k) min
α,η

∥q∗
k(α, η)∥2 (7a)

s.t. q∗
k(α, η) ∈ Q (7b)

Xq∗
k(α, η) + ρk ∈ V (7c)

(1− η)α1+ ηλX < 21 (7d)
η ∈ [0, 1], α ∈ R≥0, (7e)

where q∗
k(α, η) = [ηX+(1−η)αI]−1η(1−ρk) is a non-linear

function of η and α.
Remark 1: The function q∗

k(α, η) represents the equilibrium
of the controller (3) for given gains and voltages ρk. In
practice, ρ changes continuously, so the controller always
pursues a new equilibrium. However, it is reasonable to assume
that, given a sufficiently small τ , the controller is always close
to its equilibrium.

Collecting measurements at every node, solving (P1k), and
then dispatching the controller gains in real-time is unfeasible
because of the communication and the computational burden.
Moreover, we would like to find optimal controller gains η and
α over a longer time period, to avoid broadcasting new values
at every time kτ , or to avoid storing a large number of gains
η, α in each controller. In the next subsection we address this
issue and present a robust formulation of our problem.

B. Robust formulation

We consider the worst-case scenario such that, for given
controller gains, the voltage and reactive power constraints are
always satisfied for any ρk with k ∈ Th1−h2, where Th1−h2 is
the set of time indices between hours h1 and h2. In particular,
we consider solving the problem:

max
ρk,k∈Th1−h2

(
min

q∈C(ρk)
∥q∥2

)
, (8)

with C(ρk) := {q : q ∈ Q, Xq+ρk ∈ V}. Let ρ∗
h1−h2 denote

an optimal solution to (8). The proposed heuristic (8) gives the
ρ∗
h1−h2 that leads to the largest objective value ∥q∥2. Indeed,

if q ∈ C(ρ∗
h1−h2), then q ∈ C(ρk) ∀k ∈ Th1−h2.

We next present a reduced form of (P1k). The dependency
on k is removed by replacing ρk with ρ∗

h1−h2. From now
on, the dependency on ρ∗

h1−h2 will be omitted for nota-
tional simplicity. We introduce the optimization variable x =

[αη ,−α]
⊤ ∈ R2, write q(x) =

[
X + 1⊤xI

]−1
(1 − ρ∗

h1−h2),
specify Q and V by box constraints, and reformulate the
problem (P1k) as:

(P2h1−h2) min
x∈R2

h0(x)

s.t. hi(x) ≤ 0 ∀i ∈ {1, ..., 8},
(9)

where
h0(x) = ∥q(x)∥2, h1(x) = q(x)− qmax,

h2(x) = −q(x) + qmin,

h3(x) = Xq(x) + ρ∗
h1−h2 − Vmax1,

h4(x) = −Xq(x)− ρ∗
h1−h2 + Vmin1,

h5(x) =
(
1⊤x− 2

)
1+ λX ,

h6(x) = −1⊤x, h7(x) = −x1, h8(x) = x2,

(10)

with x1, x2 scalar components of x and 1 = [1, 1]⊤ ∈ R2.
Function h5(x) gives a tighter bound on (7d) with the equality
reached for η = 1, such that the controller gains derived from
(P2h1−h2) ensure asymptotic stability of the controller defined
in (3) as long as η < 1.

C. Tractable formulation
It is not straightforward to implement the inverse matrix[

X + 1⊤xI
]−1

contained in q(x) in a computationally effi-
cient way. Therefore, we use the algorithm proposed in [12]
which follows the ideas of SCA methods. The method solves
a sequence of strongly convex inner approximations of the
initial problem. The problem (P2h1−h2) can be approximated
as a series of subproblems:

(P3h1−h2(xp)) min
x∈R2

h̃0(x;xp)

s.t. h̃i,n(x;xp) ≤ 0

∀i ∈ {1, ..., 4}, n ∈ N ,

hi(x) ≤ 0 ∀i ∈ {5, ..., 8},

(11)

where h̃0(x;xp), h̃i,n(x;xp) approximates h0(x), hi,n(x)
around x = xp. The problem (P3h1−h2(xp)) is solved for
successive values of xp until convergence. The surrogate
functions in (11) are defined as:

h̃0(x;xp) = ∥q(xp) + (x− xp)
⊤∇q(xp)∥2 (12a)

+
d

2
∥x− xp∥2,

h̃i,n(x;xp) = hi,n(xp) + (x− xp)
⊤∇hi,n(xp) (12b)

+ (x− xp)
⊤Mi,n(x− xp) ∀i ∈ {1, ..., 4}, n ∈ N ,

where Mi,n ∈ R2×2 is derived to ensure that h̃i,n(x;xp) is
a global majorizer of hi,n(xp). The functions h̃0 and h̃i,n

defined in (12a–12b) satisfy the assumptions of [12].

Algorithm 1 Optimal Gain Design
Initialization: γp ∈ (0, 1], x0 ∈ X . Set p = 0.
[1.] If ∥xp − xp−1∥ < e with e > 0, then STOP.
[2.] Compute the solution x∗(xp) of (P3h1−h2(xp)).
[3.] Set xp+1 = xp + γp(x

∗(xp)− xp)
[4.] p← p+ 1 and go to step 1.

Let us define the convex set K = {x : hi(x) ≤ 0 ∀i ∈
{5, ..., 8}}, and the feasible set of problem (P2h1−h2), X =
{x : hi(x) ≤ 0 ∀i ∈ {1, ..., 8}}, such that X ⊂ K. The
algorithm 1 is guaranteed to converge towards a stationary
solution of problem (P3h1−h2(xp)) under the assumptions
specified in [12].



V. IMPLEMENTATION OF FEEDBACK CONTROLLERS

We assume that each controller is capable to measure the
voltage magnitude at the node where it is located. For any
given DER g connected to node n ∈ N , the following
incremental Volt/VAR control is implemented:

qg,k+1 = qg,k + η(1− vn,k)− (1− η)αqg,k, (13a)

pg,k+1 = min
(
pg,k,

√
s2g − q2g,k+1

)
, (13b)

with sg the rated power of DER g. We implemented a feed-
back through the voltage measurement vn,k. Equation (13b)
indicates that we prioritize reactive power to further mitigate
overvoltage issues.

We assume that the forecasts of zk are available, and
therefore ρk = H(0, zk) can be retrieved by solving the
power flow equations. For each time interval h1 − h2, the
system operator can run algorithm 1 offline until convergence,
then broadcast the same gains to all DERs connected to the
network.

We can relax assumption 1 by considering a reduced version
of matrix X , only taking into account entries where a DER is
located. We can then only guarantee voltage satisfaction for a
subset of nodes Nred ⊂ N . However, our methodology can be
combined with other traditional regulation methods, embedded
in the map H and impacting ρ. A combination of slow acting
controllers, with our fast acting controllers can guarantee
voltage satisfaction at every node in N . For assumption 2,
planned topological changes (maintenance, reconfiguration)
can be integrated by properly selecting the matrix X and the
time intervals h1 − h2 for gains update. Our controller can
also deal with unplanned changes since the grid conditions
are taken into account as a feedback. For assumption 3, one
first needs to make sure that the set C(ρk) in equation (8) is
not empty for some values of k. In that case, one can either
consider a larger set V , or pick ρ∗

h1−h2 following equation (8)
for all k ∈ {k : k ∈ Th1−h2, C(ρk) ̸= ∅}. This guarantees
feasibility of the ORPF problem for a given ρ∗

h1−h2. However,
given our controller architecture, the feasible set of (P2h1−h2)
may still be empty. In such cases, one should pick a different
value of ρ∗

h1−h2 to ensure that the set X (see Section IV-C)
is not empty.

VI. NUMERICAL EXPERIMENTS

We consider a modified low-voltage (0.4 kV) 42-nodes
network from [16], in which photovoltaic power (PV) plants
have been placed at each node, with inverter-rated size picked
randomly among {20, 25, 31} kVA. Note that our strategy
can be applied to any type of inverter-interfaced generation
with controllable reactive power. The DERs dynamics are
neglected, because of the time-scale separation between the
power system phenomena and the different control loops [10].
Thus, a new reactive power setpoint is directly implemented
by the DER. We used the power system analysis tool PAN-
DAPOWER [17] for our numerical simulations. The data are

from the Open Power System Data1, and have been modified
to match the initial nominal values of loads and PV plants.
The reactive power demand is set such that the power factor
is 0.95 (lagging).

A. Simulation setup

In the following, we assume that the controllable DERs
are equipped with an overvoltage protection, i.e., the plant is
disconnected from the grid if the voltage goes above 1.06 pu,
or stays above 1.05 pu for 10 minutes. The DER reconnects
if the voltage stays at least for 1 minute below 1.05 pu.

The voltage service limits are set to 0.95 and 1.05 pu. The
load and PV production profiles change every second. The
time horizon h1 − h2 is set to 1 hour. The reactive power
setpoints update τ is set to 100 ms. We compare our proposed
controller based on algorithm 1 (OGD) with: (a) a static
Volt/VAR control (VoltVar); and, (b) no control (ON/OFF).
They are defined as:

a) Static Volt/VAR control: It is inspired by the stan-
dard IEEE Std 1547-2018, with maximum reactive power
consumed/absorbed set to 44% of the nominal power of the
DER and reached for voltages 1.05/0.95 pu, respectively. The
deadband ranges between 0.99 and 1.01 pu.

b) No control: We set reactive powers to 0.

B. Results

In Fig. 1, we show the cumulative distribution functions
(CDF) for maximum and minimum voltages for the entire
duration of the simulation. We define the vectors Vmax =
{max vi,k}i∈N ,k∈T and Vmin = {min vi,k}i∈N ,k∈T , where
T is the set of time indices for the entire simulation time.
Our method slightly exceeds the voltage limits because of
some transients, while the VoltVar and the ON/OFF strategies
withstand more important voltage violations, though limited
by the overvoltage protection.
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Fig. 1: CDF for maximum and minimum voltages Vmax and
Vmin for the entire duration of the simulation.

In Fig. 2, we show the total energy lost and the reactive
energy usage. VoltVar and our method are equivalent in terms
of active power losses, in particular VoltVar suffers from larger
curtailment while our method induces larger losses in the
lines. Our method uses more reactive power, but keeps the
voltages within fixed limits. If the cost of reactive power usage

1Data available at https://data.open-power-system-data.org/household data/
2020-04-15



exceeds the cost of violating voltage constraints, one could
either change the voltage limits, or pick a different ρ∗

h1−h2 to
reduce the total reactive energy usage.
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Fig. 2: Energy lost in the lines and because of curtailment,
and reactive energy usage.

VII. DISCUSSION

The validity of our heuristic (8) is illustrated using a simple
example. Consider a two-node network; the voltage magnitude
of node 1 is set to 1 pu, and node 1 is connected to node 2
through a line of inductance 1 pu. The linearized power flow
equation gives ν = q+ ρ, where the quantities are defined for
node 2. We consider three different values of ρ, for different
k ∈ {1, 2, 3}; ρ1 = 1.04, ρ2 = 1.06, ρ3 = 0.93 and infinite re-
active power reserve. Solving the ORPF problem minC(ρk) q

2

for k ∈ {1, 2, 3}, one gets: q1 = 0, q2 = −0.01, q3 = 0.02.
Following (8), we have ρ∗ = ρ3 = 0.93. The equilibrium
function of our controller is:

q∗ =
1

η + (1− η)α
η(1− ρ). (14)

Replacing ρ by ρ∗, fixing η = 0.8, and knowing that q∗ =
q3 = 0.02 minimizes the reactive power usage and satisfies
the voltage constraints, we have α = 10. The expression (14),
with the fixed controller gains, becomes q∗ = 0.2857(1− ρ).
Then, we can plug ρ2 in (14) with the fixed controller gains,
and we have q∗ = −0.017, and ν∗ = 1.043 ≤ 1.05. The
voltage constraint is also verified for ρ1, and shows that the
constraint is satisfied for all ρk with k ∈ {1, 2, 3} by picking
ρ∗ = ρ3 according to (8) to design the controller gains.

Now let us consider some reactive power constraints with
qmin = −0.015 and qmax = 0.03. Nothing changes; ρ∗ = ρ3
and the equilibrium function for ρ2 gives q∗ = −0.017. Notice
that q∗ ≤ qmin: the reactive power constraint is not satisfied.
However, in the real implementation of our controller, the DER
will inject q = −0.015, which ensures ν = 1.045 ≤ 1.05. In
the case where qmin > −0.01, then the initial ORPF for ρ2 is
not feasible, since q2 ≤ −0.01 is required to meet the voltage
constraint.

VIII. CONCLUSION

We proposed an incremental Volt/VAR control strategy for
voltage regulation in DNs. We showed that our controller is
stable, and we introduced an optimal gain design to minimize
the reactive power usage. Our methodology only needs limited
offline communications. Our local controllers perform better
compared to static Volt/VAR curves with fixed parameters on
a 42-nodes low-voltage network. Future works will investigate
the combination of our fast-acting controller with slower
traditional regulation devices.
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