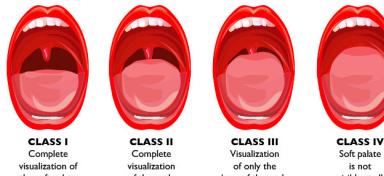


CAN THE MALLAMPATI MODIFIED SCORE HELP SCREENING MOUTH BREATHING AND SLEEP DISORDERED BREATHING IN CHILDREN?


Léonor Piron & Christelle Maillart

Speech and Language Pathology Department, RUCHE Research Unit, University of Liege, Belgium

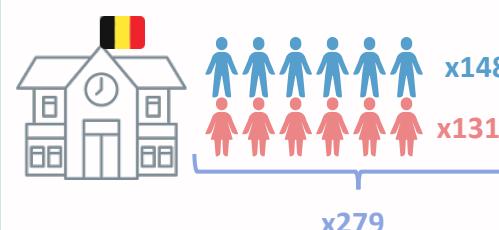
1

INTRODUCTION

The Mallampati Modified Score (MMS)

- = assesses the oropharyngeal/airway space
- 1 = the most space & 4 = the least space
- = can be part of the myofunctional assessment for breathing disorders
- = used by SLTs, ENTs or dentists / orthodontists

Mouth breathing (MB) & Sleep Disordered Breathing (SDB)


- = common in preschool children [1,2]
- = associated with malocclusions, swallowing and chewing adaptations, attention disorders, and poorer quality of life [1,2]
- MB may also be associated with speech sound disorders [3].

Early identification is essential
→ the MMS = interesting according to some studies [2,4]

Here, we aim to investigate the utility of the MMS for the screening of MB and SDB in preschool children.

2

METHODS

Measures

MB → Direct assessment

- Awake Breathing Pattern Assessment (ABPA)

SDB → Parent questionnaire

- Pediatric Sleep Questionnaire (PSQ)

Test under study

- Modified Mallampati Score (MMS)

- **Exclusion**
- craniofacial anomalies,
 - pulmonary and/or cardiac pathologies
 - genetic syndromes
- AGE = 36 → 72 months ; $\mu = 52.3$ (9.73)

Analyses

Interrater reliability on MMS

- ICC = 0.62 (moderate)

Group comparison on MMS

- Non-parametric student's t-test

Association analyses

- Fisher's Exact test + Relative risk

Discriminant accuracy analyses

- Sensitivity + Specificity

- Izu, S. C., Itamoto, C. H., Pradella-Hallinan, M., Pizarro, G. U., Tufik, S., Pignataro, S., & Fujita, R. R. (2010). Obstructive sleep apnea syndrome (OSAS) in mouth breathing children. *Brazilian Journal of Otorhinolaryngology*, 76(5), 552-556.
- Lesavoy, B., Lumsden, C., Grunstein, R., & Yoon, R. (2022). Mallampati and Bradvay Classification and Children's Risk for Sleep Related Breathing Disorder. *Journal of Clinical Pediatric Dentistry*, 46(4), 280-284.
- Borax, T., Lette, A. P. D., Bagarollo, M. F., Alencar, B. L. F. de, & Czusniak, G. R. (2018). Speech production assessment of mouth breathing children with hypertrophy of palatines and/or pharyngeal tonsils. *Revista CEACF*, 20(4), 468-477.
- Kumar, H. V. M., Schroeder, J. W., Gang, Z., & Sheldon, S. H. (2014). Mallampati score and pediatric obstructive sleep apnea. *Journal of Clinical Sleep Medicine*, 10(9), 985-990.
- Padea, M. C. T., Fiorati, B. S., Finck, N. S., & De Araújo, M. T. M. (2015). Craniofacial changes and symptoms of sleep-disordered breathing in healthy children. *Dental Press Journal of Orthodontics*, 20(3), 80-87.
- Huskis, C. (2010). Mallampati class is not useful in the clinical assessment of sleep clinic patients. *Journal of Clinical Sleep Medicine*, 6(6), 545-549.
- Abraham, J. M., Jacob, L. N., Varghese, S. M., & Mathai, A. S. (2024). A Cross-sectional Study to Assess the Need for Standardisation of the Modified Mallampati and Friedman's Scoring System. *Journal of Clinical and Diagnostic Research*, 30-33.

Developed by S. Mallampati in 1985, it was originally a three-classes scale based on visualization of the tonsillar pillars, uvula and soft palate. It was used to predict potential intubation difficulties. Over time, certain modifications were made, notably the addition of a fourth class taking into account the hard palate. Its use, initially reserved for anesthesia, has also diversified. The MMS assesses many of the pharyngeal muscles involved in the diagnosis of SDB and possibly MB.

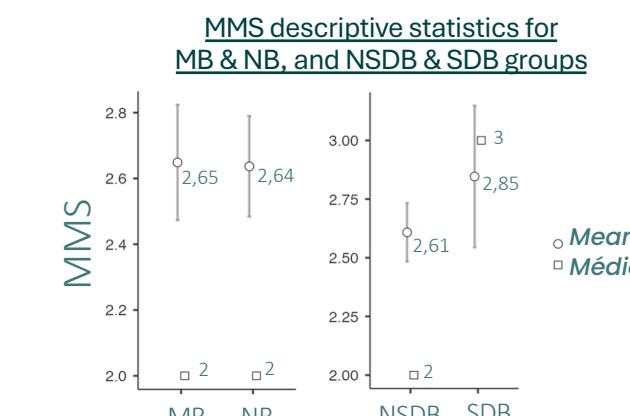
3

RESULTS

Group classifications

ABPA	N	Mean age (ET)
NB	168	51 (9.95)
MB	111	53.1 (9.51)
PSQ	N	Mean age (ET)
NSDB	240	52.6 (9.78)
SDB	39	50.1 (9.27)

Notes : NB = Nasal breather, NSDB = children without SDB



MMS	N	Mean age (ET)
1	28	54 (9.35)
2	118	51.5 (9.8)
3	59	52 (9.15)
4	74	48 (9.98)
MMS - binary	N	Mean age (ET)
1-2	133	51.2 (9.69)
3-4	146	53.2 (9.69)

Group comparison on MMS

Mann-Whitney U test

Dependant Variable	MMS		
	Independent Variables	ABPA	PSQ
H_0	RB > RN	SDB > NSDB	
Mann-Whitney U	9309	4062	
P	0.491	0.08	

Association analyses

Contingency tables

	MMS-binary	
	ABPA	3-4
NB	85	83
MB	61	50
PSQ	1-2	3-4
NSDB	129	111
SDB	17	22

Fisher's Exact test

	ABPA	
	N	p
ABPA	279	0.8
PSQ	279	0.3

Relative risk

value	ABPA	
	95% CI	
0.91	0.71	1.18
value	Lower	Upper
0.82	0.6	1.12

PSQ

value	PSQ	
	95% CI	
0.82	0.6	1.12
value	Lower	Upper

Sensitivity & Specificity

	Sensitivity	45 %
	Specificity	50,6 %

	Sensitivity	56,4 %
	Specificity	53,8 %

4

DISCUSSION POINTS

We have found no association between the MMS and (1) MB & (2) SDB.

* SDB children → higher MMS, but the difference ≠ significant

* The oropharyngeal space didn't change in MB or SDB

* Neither day MB, nor children with SDB appeared to have a significantly higher classification on the MMS.

In previous works on the MMS [2,4,5,6] :

Ø The utility of the MMS for screening for MB in preschool children has never been investigated [5]. [5].

✗ Studies have found associations between SDB, MB and a high MMS in school children [2,4,5]

= Studies question the clinical relevance of MMS for SDB screening [6,7]

Our findings echo concerns about MMS raised in previous work [7] :

- Significant variability in MMS administration and scoring
- Low reproducibility and low inter-rater reliability
- Child cooperation strongly influences MMS scoring
- → MMS administration needs to be standardized