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Abstract

Optimisation of unsteady fluid-structure interaction problems is of increasing im-
portance in aeronautical design and other fields of engineering. In order to apply
gradient-based optimisation methods, the gradients of objective functions with re-
spect to design parameters have to be evaluated. Depending on the required level
of modelling fidelity, such calculations can become very computationally expensive
or even impractical. Therefore, lower-fidelity aerodynamic modelling methods are
usually used, especially in earlier phases of the design process.

This thesis introduces a new adjoint harmonic balance approach for the optimisa-
tion of nonlinear, time-periodic fluid-structure interaction problems. The harmonic
balance technique reduces the computational cost of the simulations, allowing the
use of higher-fidelity methods. The adjoint equations for this approach are then
derived to efficiently obtain the gradients of few objective functions with respect to
many design parameters.

The harmonic balance method, including a novel frequency iteration technique,
is applied to a test case of a pitch-plunge aerofoil undergoing limit cycle oscillations
in transonic flight conditions. For this test case, the harmonic balance is 11 times
faster compared to a time-marching approach.

The accuracy of the adjoint harmonic balance equations is verified by comparing
the gradients of 2 objective functions with respect to 31 design variables in the limit-
cycle oscillation test case. The calculation of gradients using the adjoint approach
is approximately 30 times faster than finite differences.

Finally, the adjoint harmonic balance technique is used to optimise four aeroelas-
tic test cases. Two cases are unconstrained, one uses a steady constraint and another
an unsteady constraint. At the end of all four optimisation processes the objective
function significantly improves, which shows that the proposed method can be used
to reduce the computational cost of high-fidelity aeroelastic optimisation, paving
the way for its practical use in early design phases.
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Chapter 1

Introduction and motivation

The present thesis deals with the optimisation of unsteady fluid-structure interaction
problems. The current chapter starts by explaining what they are, why they are
important and how they are studied. It also introduces optimisation, justifies the
need for its application to fluid-structure interaction problems and discusses some
of the difficulties of this application. Then, the objective of the work is presented
with some key questions that should be answered. Finally, the main contributions of
the present work to the state of the art and the outline of the document are briefly
discussed.

1.1 Fluid-structure interaction in engineering

Fluid-structure interaction (FSI) refers to a class of problems in which a solid struc-
ture, such as an aircraft wing, is immersed in a flow, such as moving air. The
presence of the structure leads to changes in the flow characteristics. The fluid then
induces loads in the structure. These loads deform the solid, the movement of which
in turn modifies the flow. Among FSI problems, there are both steady and unsteady
cases.

In the 1940s, Collar proposed a way to classify phenomena of interest to air-
craft designers depending on the nature of the forces involved [1]. This came to
be known as Collar’s aeroelastic triangle, shown in Fig. 1.1. It includes four clas-
sifications: flight mechanics, structural dynamics, static aeroelasticity and dynamic
aeroelasticity.

Classical flight mechanics considers aerodynamic loads and inertial forces only,
making the assumption that the aircraft is rigid or that the frequencies of its flexible
motion are much higher than those of its rigid motion. Understanding the behaviour
and stability of aircraft is crucial for a good design. For example, instability in one

1
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Dynamic
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Aerodynamic
forces

Inertial
forces

Elastic
forces

Static aeroelasticity

Structural dynamics

Flight mechanics

Figure 1.1: Collar’s triangle [1]

of the rigid modes of an aircraft, such as the phugoid, would be very detrimental to
the aircraft.

If the structure is submitted to inertial and elastic forces, it is in the domain
of structural dynamics. One important phenomenon is the effect of impacts on the
structure. For example, in the case of aircraft, landings will introduce a sudden
change in the load distribution. This change will induce some movement, which
should damp out. The structure must be designed to withstand many impacts with
the ground without breaking.

Static aeroelasticity studies the interaction between aerodynamic and elastic
forces. One example of engineering importance is that of static divergence. Under
some flow conditions, the destabilising aerodynamic loads can be higher than the
structural restoring loads, leading to structural failure.

Another, less destructive, example of the application of static aeroelasticity is the
flight shape of a wing. While the wing has a specific shape when built, the loading
required to keep the aircraft in the air leads to a deformation. This change in shape
also modifies the aerodynamic characteristics of the wing. It is the aerodynamic
properties of the deformed shape during cruise and manoeuvre conditions that are
the most important when calculating the fuel burn. Therefore, it is necessary to
predict this deformed shape in order to evaluate performance properly. Figure 1.2
shows a comparison between an undeformed wing and its corresponding flight shape
in cruise conditions.
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Figure 1.2: The flight shape, in red, compared to the undeformed shape, in black

Dynamic aeroelasticity adds inertial forces to static aeroelasticity. Turbulent
gusts in the atmosphere are one phenomenon where inertia is relevant. They are
inherently unsteady and so is the resulting response of an aircraft. Furthermore,
they are aperiodic.

Another example of the application of dynamic aeroelasticity is flutter. Take
an aerofoil, or other slender body, submerged in a flow. If appropriately designed,
the total damping of the coupled aero-structural system is positive at low speeds,
thus reducing the amplitude of any oscillations that may occur. When increasing
the airspeed, the damping may increase but it may also decrease, until it reaches
a point where it is exactly zero. This is the flutter point. Considering only small
amplitudes, such that the response is linear in nature, any disturbance will result in
undamped periodic oscillations. At the flutter point, these oscillations will continue
indefinitely at a constant amplitude. Beyond it, they will show exponential growth
in amplitude due to negative damping.

However, aeroelastic systems may feature both structural and fluid nonlinear
behaviours. In the 1950s, Woolston et al. used an analogue computer in order to
study the influence of structural nonlinearities on flutter. They found that cubic
hardening of the structure led to a movement with limited amplitude in post-flutter
flight conditions [2]. The resulting oscillations are known as limit-cycle oscillations
or LCOs. If the LCO amplitude is too large, it leads to very high structural loads
and material fatigue. Therefore, predicting the nonlinear behaviour of the system
can help improve designs and avoid structural failure.

Furthermore, there has been recent interest in using structures undergoing LCOs
for energy harvesting in order to generate electricity. For example, by immersing
a kite made of a piezoelectric material in high winds, its aeroelastic deformation
generates a current. This current can be transmitted to the ground and used to
power machinery in isolated areas.

Experiments can be used to study LCOs in a controlled environment. Another
option is numerical modelling. One possible numerical approach is to use time-
marching to study the evolution of the differential equations in time. Another
option is to use frequency-domain methods. After the results of Woolston et al.,
Shen [3] applied a technique developed by Krylov and Bogoliubov [4] for nonlinear
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mechanics. This method assumes a periodic oscillation, expanding the solution into
a series of harmonics. Each harmonic is represented as an equation with a source
term introduced by the nonlinear behaviour. These equations have to be balanced
to find the correct solution of the problem. Therefore, the method was called the
harmonic balance [3].

With increasing computational power, there has been a corresponding increase
in the use of higher-fidelity models for FSI phenomena. This has allowed the pre-
diction of limit-cycle oscillations in the transonic regime. However, time-marching
simulations are still computationally expensive. In order to reduce the computa-
tional cost of the simulation of LCOs, the harmonic balance has been implemented
in FSI codes.

There are two classes of FSI codes depending on the number of solvers used:
monolithic and partitioned. Monolithic approaches consider the flow and the struc-
ture to be part of the same problem. Meanwhile, in a partitioned code the fluid and
solid parts of the problem are treated as different fields and calculated by different
solvers. Partitioned codes are more flexible, allowing the user to change which codes
are used according to the desired level of fidelity. For higher-fidelity FSI simulations,
a partitioned approach is usually used.

1.2 Design process in fluid-structure interaction

There are several choices to be made in the design process. One of them is the
level of fidelity used to model the aeroelastic problem. There is a trade-off be-
tween fidelity and computational cost. On the one hand, using lower-fidelity fluid
models, such as linear potential solvers, results in fast calculations of flow solu-
tions. On the other hand, higher-fidelity approaches, such as the Euler or Reynolds-
averaged Navier-Stokes equations, model important fluid phenomena that can affect
the aerostructural solution.

Traditionally, aeroelastic design uses lower-fidelity fluid models, especially in
earlier phases of the process. Since they are faster, it is possible to evaluate many
different designs using many design parameters quickly. By accelerating higher-
fidelity aeroelastic calculations, their use in earlier phases of the design process
could be enabled, which could save time in later stages.

A design can be improved through an optimisation process, during which an
objective function is minimised or maximised by changing the values of some design
variables subject to some constraints. For aerostructural design, some examples of
objective functions are the lift-to-drag ratio of a wing, its mass or the fuel burn of
an aircraft. The optimal designs can be obtained by modifying the shape of the
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wing, by changing its structural properties or by a combination of aerodynamic
and structural design modifications. The final designs have to meet, among others,
structural failure and flutter constraints.

Another choice is the kind of optimisation algorithm selected to improve the
design. Optimisation algorithms can be classified depending on whether they are
gradient-based or gradient-free. Gradient-free methods, such as evolutionary algo-
rithms, let the designer study the whole design space in order to find a better solu-
tion but they cannot converge to an optimum. They are also useful when dealing
with non-smooth objective functions. Gradient-based approaches, the most basic of
which is the steepest-descent approach, converge to a local optimum. They require
obtaining the gradient of the objective function and constraints with respect to the
design variables.

The two kinds of techniques do not have to be used in isolation. A designer
could, for example, use a gradient-free method to obtain a good initial design that
is then improved by a gradient-based approach.

Many methods have been devised in order to obtain the derivative of the ob-
jective functions and constraints with respect to design variables. The most basic
approach is finite differences. This technique consists in modifying the value of the
design variables by a small amount and solving the problem again. The difference
in value of the objective function between the original and modified designs is then
used in order to estimate the gradient. Therefore, it requires that the objective
function is evaluated at least as many times as there are design variables. This is
very computationally expensive when the number of design variables is large, as is
the case in the early design stages.

For the adjoint method, the gradient calculation is rewritten such that it is
computed only once per objective function or constraint. The technique can be
applied to either the continuous or the discrete equations that model the problem.
In the former case, the adjoint equations are then discretised. Independently of the
specific approach, the adjoint method is computationally advantageous in problems
with many design variables and few objective functions.

As previously explained, higher-fidelity FSI simulations are often computed using
a partitioned approach. Using two different solvers does not make calculating gradi-
ents using finite differences significantly more complex. However, it complicates the
calculation of the adjoint solution. In order to take into account the coupling of the
two solvers, some data must be transferred from the solid to the fluid and vice-versa.
In the adjoint case, it is the gradients with respect to boundary variables, which
have to be interpolated.

Once the coupled adjoint system is defined, it can be used to solve optimisation
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problems. One important avenue of research is aerodynamic shape optimisation.
It consists in modifying the shape of an aerodynamic body in order to maximise
or minimise an objective function. The surface deformation can be expressed as a
function of shape design variables. By using the adjoint method, many design vari-
ables can be introduced without increasing the computational cost of the gradients.
Therefore, the design space available can be extended.

Shape design variables can be classified into two main families: constructive
and deformative [5]. The former fully define the surface while the latter modify an
already-existing shape. For both kinds, the gradients of the objective functions with
respect to the change they induce on the boundary must be calculated. If using a
partitioned code, the effect on the structure and the fluid has to be combined in
order to obtain the gradient.

1.3 Objective of the thesis and key questions

The objective of the present thesis is to accelerate high-fidelity, unsteady, nonlinear
FSI optimisation in order to make it available at earlier stages of the design process.
In order to do so, the harmonic balance and adjoint methods are combined. The
harmonic balance technique results in faster unsteady simulations for time-periodic
problems, while the adjoint method reduces the computational cost of gradient
calculation. During the definition of the steps to be taken, some key questions arise.

First, the harmonic balance method has to be implemented using a partitioned
FSI approach. What is needed to apply the harmonic balance to problems with
a priori unknown frequency in partitioned solvers? Since the main reason behind
using the harmonic balance approach is computational efficiency, how much faster
is it compared to time marching simulations? How accurate is the harmonic balance
solution?

Second, the adjoint method needs to be introduced for partitioned solvers. For
simplicity, it can be applied to steady problems first. Its implementation has to
be verified. How does the partitioned FSI adjoint approach work? How do the
gradients obtained using the adjoint method compare to those obtained using finite
differences? Is there a difference between fluid and solid design parameters?

The adjoint method can be applied to the harmonic balance FSI technique de-
veloped earlier. Then, shape design variables can be introduced. How does the
partitioned HB FSI adjoint approach work? Are the gradients of structural, fluid
and shape parameters comparable to those obtained by finite differences? Is the
adjoint approach faster or slower than the direct harmonic balance method? Are
there any other advantages to the harmonic balance approach for optimisation?
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Once verified, the adjoint harmonic balance approach can be applied to FSI op-
timisation problems. Are the adjoint-based gradients obtained suitable to optimise
limit-cycle oscillations and other nonlinear aeroelastic phenomena? What kinds of
objective functions can be maximised or minimised using the present approach?
How does the shape of an aerofoil change in order to avoid limit-cycle oscillations?
Can the method be combined with other objective functions or constraints?

1.4 Main contributions

In the present work, a new harmonic balance adjoint method for FSI problems is
introduced. Three main parts can be identified: development of the technique, im-
plementation in code and verification of results. For the first part, a partitioned
harmonic balance approach with a novel frequency iteration method has been de-
veloped. The adjoint method has been applied to the harmonic balance approach
developed, including defining the coupling between the fluid and structural solvers.

Regarding the implementation of the method, there are three main code compo-
nents of the partitioned FSI approach: the fluid and mesh solver, the solid solver and
the coupler. All three have been modified to accommodate the harmonic balance
adjoint method.

The fluid and mesh solver has been extended to allow the coupler to program-
matically modify the base frequency of the problem. Furthermore, it has been
adapted to introduce mesh deformation to the pre-existing harmonic balance solver.
An adjoint harmonic balance solver has also been implemented.

A frequency-domain pitch-plunge solver with the new frequency iteration method
has been developed by modifying a time-domain solver. Then, the corresponding
adjoint equations have also been added. Two structural objective functions have
been introduced in the code: the pitching amplitude squared and power dissipation
on the plunge damper. In order to enable shape optimisation of the problem, a
family of deformative shape variables, Hicks-Henne bumps, has been implemented
in the structural solver. The gradients with respect to structural and shape design
parameters have also been coded.

The coupler has been extended to work with the time-domain harmonic balance
method and frequency iteration scheme. The interpolation and coupling have been
modified to take into account the presence of several time instances and to transfer
the frequency from the solid solver to the fluid and mesh solver. Furthermore, several
interfaces have been written and extended. These interfaces allow transferring data
from the individual solvers to the coupler and vice-versa. In particular, adjoint
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interfaces for SU2 (steady and harmonic balance), the SU2 solid solver, a beam
code and the pitch-plunge solver have been implemented.

The aforementioned methods and their implementation have been verified using
a series of test cases. The direct HB approach has been compared to time-marching
results for a 2D limit-cycle oscillation test case under transonic flow conditions. The
gradients obtained using the adjoint methods, both steady and unsteady, have been
verified by comparing them to finite differences. For the steady adjoint a 2D beam
in crossflow was used, while for the unsteady approach one LCO setup with high
pitching amplitude was selected.

Finally, the adjoint harmonic balance method developed has been applied to four
limit-cycle oscillation optimisation cases. The cases take advantage of the setup used
for the verification of the direct and adjoint approaches.

1.5 Thesis overview
The present document is divided in six chapters. Fluid-structure interaction opti-
misation is introduced in the first chapter.

In the second chapter, the application of the harmonic balance approach to
coupled, partitioned FSI calculations is detailed. This technique is extended to
problems with a priori unknown base frequency. Then, the FSI calculations are
verified for a known-frequency case and an unknown-frequency setup.

The steady adjoint method for partitioned FSI calculations is described in the
third chapter. This approach is then applied to a test case of a beam in low-Reynolds
crossflow in order to verify the implementation of the coupling.

In the fourth chapter, the adjoint and harmonic balance methods are combined in
order to efficiently obtain gradients of FSI time-periodic calculations. The unknown-
frequency test case in the second chapter is used in order to verify the gradients.
Two different objective functions are used: the motion amplitude and the mean drag
coefficient.

The combined adjoint harmonic balance technique presented in Chapter 4 is used
to optimise a series of cases based on the unknown-frequency case in the fifth chapter.
These include amplitude minimisation and energy dissipation maximisation.

Finally, in the sixth chapter, the main conclusions are presented. Furthermore,
some extensions and possible uses of the proposed approach are discussed.



Chapter 2

Frequency-domain techniques for
fluid-structure interaction

As described in the previous chapter, there are many interesting phenomena that
involve fluid-structure interaction (FSI). While some of them are steady, many others
are unsteady. In order to study unsteady, but ultimately time-periodic problems,
either time-domain or frequency-domain techniques can be used. While some of
these time-periodic problems may have a known fundamental frequency, for many
others the frequency is not known.

The present chapter starts by introducing FSI computational techniques, both
steady and unsteady. Afterwards, the linear frequency-domain approach and then
the harmonic balance methods are presented. Once the frequency- and time-domain
harmonic balance are presented, frequency iteration techniques for the coupled prob-
lem are shown. Finally, the results of two aeroelastic test cases are described. They
are used to verify the coupled FSI harmonic balance algorithm.

2.1 Numerical study of fluid-structure interaction

Often, fluid-structure interaction phenomena are simulated numerically in order to
further understand their behaviour. This modelling is crucial to prevent structural
failure from occurring, either in testing or in operation, and to ensure an effective
and efficient design.

In order to carry out fluid-structure interaction simulations, an engineer is pre-
sented with various choices. Two such choices are discussed in the present section:
the level of fidelity of the fluid modelling and the coupling between the fluid and
the structure.

9



10 CHAPTER 2. FREQUENCY-DOMAIN TECHNIQUES FOR FSI

2.1.1 Different levels of fidelity

Fidelity and computational cost are tightly coupled. There is a trade-off: higher-
fidelity methods require higher computational costs. Usually, fluid modelling is more
computationally expensive than structural modelling.

Early in the design process, lower-fidelity approaches are used. They provide
faster results, which is crucial in this stage, during which thousands of calculations
are required [6]. One example of a lower-fidelity method in aerodynamics is the
incompressible linear potential equation,

∇ϕ = v (2.1)
∇2ϕ = 0, (2.2)

where v is the flow velocity vector and the corresponding velocity potential is ϕ.
However, this results in an irrotational flow and a wake, which represents a thin
discontinuity, is usually added to enable the prediction of lift. The linear potential
equation can be solved either by lifting-line, panel or field methods.

One of the most widely used linear potential techniques for aeroelastic prediction
is the doublet lattice method (DLM) [7]. It is a linear potential solver that discretises
the wing’s planform into flat panels that feature elementary solutions of the unsteady
subsonic potential equation and imposes the impermeability boundary condition on
the panel nodes [8, 9]. This is called the zero-normal velocity boundary condition.
Other linear potential approaches include the vortex lattice method (VLM) [10, Ch.
13] and the source-and-doublet panel method (SDPM) [11, 12].

The VLM is similar to the DLM but makes use of different elementary solutions
to the potential equation. Unlike the DLM, the VLM requires wake modelling; it
can be applied with a fixed or a free wake. Free wake modelling is of great impor-
tance in cases where the wake interacts with aerodynamic surfaces, such as in wind
turbines [13]. The VLM has been used to predict aircraft aeroelastic responses [14],
bird wing flapping [15] or energy-harvesting kites [16].

Unlike the DLM or the VLM, the SDPM can represent the thickness of the wing.
It can use both a fixed and a free wake. Some changes to the SDPM, a nonlinear
calculation of the pressure coefficient and a zero-normal mass flow boundary con-
dition, lead to a better match with experimental data in the sub-critical subsonic
regime [17, 18].

These linear methods work well in subsonic conditions with attached flows. Ap-
plying the Prandtl-Glauert geometric compressibility correction extends the range
of validity of steady solvers from the incompressible regime (M∞ = 0) to the com-
pressible regime. However, most commercial aircraft fly at high subsonic freestream
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conditions, which leads to the presence of regions with a locally-supersonic flow.
This is the transonic regime. In this regime, the flow becomes highly nonlinear,
which leads to a loss of prediction power for linear methods.

Furthermore, the aeroelastic behaviour of wings changes. In general, flutter mar-
gins are significantly reduced in the transonic regime. This is called the transonic
dip. Early on, it was found that supercritical wings with similar structural charac-
teristics, same planform and same maximum thickness as conventional wings had
stricter flutter limits in the transonic regime [19].

There are two main ways of extending the linear potential equation to handle
transonic flows: correcting the steady aerodynamic loads predicted by linear meth-
ods using higher-fidelity data and using the full potential equation. The two main
approaches for correcting loads are correcting the generalised aerodynamic loads
matrix and correcting the aerodynamic influence coefficient matrix.

The full potential equation is

ρ̇+∇ · (ρ∇ϕ) = 0, (2.3)

where ρ is the local density. As in the linear potential case, the velocity is given by

∇ϕ = v. (2.4)

The linear potential equation shown in Eq. (2.2) can be trivially obtained from
Eq. (2.3) by assuming that ρ is constant. Otherwise, a relation between the poten-
tial and the density has to be found in order to solve the full potential equation.
Assuming that the flow is isentropic, that the gas is perfect and that heat conduc-
tion is negligible, the density can be written as a function of the potential by means
of a thermodynamic relation [20]. The ideal gas relations for an adiabatic flow are

ρ =
p

RT
(2.5)

p

p∞
=

(
ρ

ρ∞

)γ

, (2.6)

where p is the local pressure, T the local temperature, p∞ and ρ∞ are the freestream
pressure and density, R = Cp − Cv is the specific gas constant and γ = Cp

Cv
is the

specific heat capacity ratio. Then, the local speed of sound, a, is given by

a =
√
γRT =

√
γ
p

ρ
. (2.7)

The inviscid momentum equation is

∂v

∂t
+ v · ∇v +∇h = 0, (2.8)
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where h = Cp · T is the enthalpy. Since the flow is irrotational, the second term in
Eq. (2.8) becomes

v · ∇v = ∇
(
v2

2

)
, (2.9)

where v is the magnitude of the velocity. Substituting Eq. (2.9) and Eq. (2.4) into
Eq. (2.8) and operating leads to

∇
(
∂ϕ

∂t
+ h+

v2

2

)
= 0. (2.10)

For an ideal gas, the enthalpy can be expressed as a function of the pressure and
density

h = Cp · T = Cp ·
p

R · ρ
=

γ

γ − 1
· p
ρ
. (2.11)

Substituting the enthalpy in Eq. (2.10) by this expression and integrating over an
arbitrary line, the unsteady Bernoulli equation can be written as

∂ϕ

∂t
+

γ

γ − 1
· p
ρ
+

v2

2
= C(t), (2.12)

where C(t) is a function of time [21].

Equating the value of Eq. (2.12) at freestream and local conditions and operating
results in

p

ρ
· ρ∞
p∞

= 1 + (γ − 1)
p∞

γ · ρ∞
·
(
−∂ϕ

∂t
− v2

2
+

v2∞
2

)
. (2.13)

Substituting Eq. (2.6) on the left-hand side and Eq. (2.7) on the right-hand side,
the expression of the ratio of local to freestream density is

ρ

ρ∞
=

[
1 +

γ − 1

2

[
M2

∞ − 1

a2∞

(
2
∂ϕ

∂t
+

∂ϕ

∂x
+

∂ϕ

∂y
+

∂ϕ

∂z

)]] 1
γ−1

. (2.14)

This relation results in a dependence between the gradients of the potential, ϕ, and
the local density, ρ, that can be used to close Eq. (2.3) [21].

The isentropic assumption is violated in strong shocks, that result in a marked
increase in entropy. For transonic solvers, the shock is considered weak if the up-
stream Mach number is M < 1.3 [21]. Like in the linear potential case, the full
potential equation assumes that the flow is irrotational, leading to the necessity of
adding special wake treatment. Full potential solvers, such as TRANAIR [22], have
been used in order to study aerodynamic behaviour. The full potential method has
also been used recently in order to solve steady aeroelastic problems [23] and their
optimisation [24].
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The next level of fidelity are the compressible Euler equations. These still model
an inviscid flow. They are

∂U

∂t
+∇ · Fc = 0 (2.15)

U =

 ρ
ρv
ρE

 , Fc =

 ρv
ρv ⊗ v + pI
ρEv + pv

 , (2.16)

where U is the vector of conservative variables, Fc are the convective fluxes, ρ is
the density, v is the velocity vector, E is the total specific energy, p is the pressure
and I is the identity matrix. Unlike the potential equations, whether linear or
full, the Euler equations do not require the wake to be treated in a particular way
because they are not irrotational. Furthermore, they can model strong shocks in
the transonic regime because they are not isentropic.

Viscous effects are important for drag prediction. Furthermore, in transonic
flows there is an interaction between the shock and the boundary layer. Usually,
the shock is softened and appears upstream of the inviscid prediction. This can
affect the lift and the aeroelastic behaviour of the body being studied. Similarly to
the difference between the subsonic and the transonic regime, these effects can be
taken into account in two ways: the inviscid solution can be corrected by means of
a boundary layer model or the Navier-Stokes equations can be solved.

The Navier-Stokes equations include directly the effect of viscosity. They add to
Eq. (2.15) a diffusive flux vector Fd,

∂U

∂t
+∇ · Fc −∇ · Fd = 0 (2.17)

Fd =

 0
τ
τv

 , τ = µ

(
∇v +∇vT − 2

3
I∇ · v

)
, (2.18)

where τ is the stress tensor and µ is the dynamic viscosity. The Navier-Stokes
equations are difficult to solve at high Reynolds numbers, such as the ones found
in aircraft. At those Reynolds numbers, the flow is intrinsically unsteady, with a
wide range of frequencies and scales of turbulence. In order to fully resolve the
turbulent behaviour of the flow, very fine meshes and, thus, very small time-steps
are required. This is called direct numerical simulation (DNS). Assuming that the
number of operations is proportional to the number of nodes of the mesh and the
number of time steps required, the computational cost scales with Re3.

One way to model high-Reynolds flows is to separate the turbulent oscillations
from the mean flow by using a Reynolds average or, for compressible flows, a Favre
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average. This process results in what is usually called the Reynolds-averaged Navier-
Stokes equations (RANS). They still require a fine grid, especially in the boundary
layer, but coarser than the equivalent DNS grid.

Since in many aeroelastic problems viscous effects are concentrated in the bound-
ary layer, some methods that model the behaviour of this region separately have been
proposed. These consist in solving the Navier-Stokes equations inside the boundary
layer, with some simplifications. Then, the boundary layer solution can be coupled
with an inviscid solver, that uses Euler [25, 26] or potential flow equations [27] to
provide more accurate results at a reduced computational cost.

Currently, there is some interest in using models that resolve only the larger
scales of the turbulence, such as Large Eddy Simulation (LES) [28] or mixed RANS-
LES models [29]. These simulations are computationally expensive and, like DNS,
unfeasible for complete aircraft geometries.

2.1.2 Steady coupling of fluid and solid domains

Independently of the fluid and solid models used, FSI calculations can also be clas-
sified depending on the number of solvers used. A monolithic solver is one that
treats both the fluid and solid physics as part of the same problem. A partitioned
approach uses different solvers for the fluid and solid problems. Generally, this sec-
ond approach is more flexible, since it allows switching either solver by a different
one at any given point.

In the case of a partitioned code, two fields can be considered: the structure (S)
and the fluid (F). However, since the structural displacements modify the boundary
of the fluid problem, the mesh also needs to be considered. Since creating a new
mesh is computationally expensive, often the mesh is deformed to adapt to the new
boundary. Then, the mesh can be added as a third field (M) to be solved depending
on the boundary displacements [30, 31]. Adding the respective dependence between
the variables [32, 33] 

S (u,w, z) = 0

F (w, z) = 0

M (u, z) = 0

, (2.19)

where S represents the solid solver, F represents the fluid solver and M the mesh
solver; and u are the structural displacements, w are the fluid conservative variables
and z the mesh node displacements. Note that this formulation is independent of
the equations being solved.

Equation (2.19) can be linearised with respect to each of the solver’s variables
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obtaining the expression


S

F

M

+



∂S
∂u

∂S
∂w

∂S
∂z

0
∂F
∂w

∂F
∂z

∂M
∂u

0
∂M
∂z



∆u

∆w

∆z

 =


0

0

0

 . (2.20)

The matrix containing the partial derivatives has a set of three diagonal blocks:
∂S/∂u, ∂F/∂w, ∂M/∂z. These terms depend on each solver’s own variables.
Furthermore, there are some cross-terms, outside of the diagonal. These cross-terms
represent the coupling between the solvers.

While, in theory, the full system could be solved at every iteration using a
Newton-Raphson procedure, in practice the system is usually too large and com-
plex. It would require calculating and accessing the derivatives of each of the codes
and then solving a larger system than any of the individual solvers. In practice, in-
stead of solving the full problem, the coupling can be applied by means of boundary
conditions. So, the solid problem receives the loads from the fluid solver as a Neu-
mann boundary condition. The solid solver calculates the structural displacements
and their value at the boundary is applied as a Dirichlet boundary condition of the
fluid and mesh solvers. This results in a staggered problem, with the solid and fluid
solvers alternating. This is a Block-Gauss-Seidel (BGS) scheme.

While many problems converge quickly applying a BGS scheme, others do not.
If the effect of the structural solver on the problem is too large, the solution may
diverge. One of the reasons why this can occur is added-mass effects. They are
especially important when the ratio between the fluid density and the solid density
is high enough.

One way to prevent divergence of the FSI solver is to apply underrelaxation. In
this technique, a parameter 0 < ω ≤ 1 is defined so that the new solution is only
partially updated. For example, if the underrelaxation is applied to the structural
displacements at FSI iteration n, the expression is

uF ,n = uF ,n−1 + ω · (uS,n−1 − uF ,n−1) , (2.21)

where uF ,i are the fluid boundary displacements at the ith FSI iteration and uS,i
are the displacements calculated by the solid solver at the end of the same iteration.
In this case for every iteration the solid equations are solved after the fluid equa-
tions. While the simplest case is one in which ω is constant, some schemes have
been developed to update its value in order to improve convergence. Usually, the
relaxation parameter is updated based on the value of the residuals.
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One such method is based on Aitken’s ∆2 method. It updates the relaxation
parameter for FSI iteration n+ 1, ωn+1, on the basis of the previous value, ωn, and
the residuals [34, 35].

Another way of avoiding divergence due to added-mass effects is by using other
coupling methods, such as quasi-Newton approaches. In these, the full Jacobian
is not stored, so the memory requirements are lower compared to the full Newton-
Raphson iteration. An example is the interface quasi-Newton inverse least squares
(IQN-ILS) approach. In this method the inverse of the interface Jacobian is esti-
mated from the changes in residuals at the boundary [36].

2.1.3 Interpolation of loads and displacements

The previous section has presented some methods for coupling fluid and structural
solvers. If the position of the boundary nodes matches, the transfer of forces and dis-
placements from one solver to the other is simple. However, sometimes the boundary
nodes differ. Often, the structural mesh is simpler than the fluid mesh. Hence, some
approaches have been developed in order to interpolate loads and displacements from
one mesh to another.

There are two main kinds of interpolation techniques: conservative and con-
sistent. Conservative interpolation methods conserve the total loads, the energy
transferred at the boundary and rigid-body translations of the boundary. Applying
the principle of equivalence of virtual work leads to [37]

δW = δuT
f ff = δuT

s fs, (2.22)

where δW is the virtual work, δu is the vector of virtual displacements at the nodes, f
is the vector of forces at the nodes and the subindices f and s represent the fluid and
the solid boundaries, respectively. Generally, the interpolation is linear. Then, the
solid-to-fluid interpolation matrix H transforms the solid boundary displacements
into fluid boundary displacements

uf = Hus (2.23)

and the fluid-to-solid interpolation matrix G transforms the fluid boundary loads
into solid boundary loads

fs = Gff . (2.24)

The virtual displacements are then

δuf = Hδus (2.25)

and in order to conserve the virtual work at the interface, per Eq. (2.22)

fs = HT ff . (2.26)
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Therefore, comparing Eqs. (2.24) and (2.26), for a conservative interpolation method
G = HT .

Instead of conserving the energy transferred, consistent methods conserve a con-
stant pressure distribution. This can be important for some highly-flexible problems
in which a conservative method may lead to unphysical oscillations [38]. In order to
do so, the row-sum of the pressure-transfer matrix and matrix H must be equal to
1 [38]. For other multiphysics problems, such as combined heat transfer, a consistent
approach that conserves the heat flux is desirable [33].

Determination of interpolation matrices

There are multiple methods to obtain the interpolation matrices H and G. The
simplest approach is a nearest-neighbour interpolation. In this method, each node
at a fluid boundary receives the displacement from the nearest solid boundary node.
Rigid body translations are conserved. However, if the displacement at the solid
boundary is not constant, its interpolation at the fluid boundary is not continuous.
This leads to a staircase shape of the fluid boundary.

Another method is the use of radial-basis functions. The interpolating function
is given by

w (x) = p (x) +
ns∑
k=1

αk · ϕ (∥x− xk∥) , (2.27)

where x is the coordinate of the node, p is a low-order polynomial, αk are the
coefficients multiplying the basis function ϕ and ns is the number of nodes at the
solid interface. The interpolating function has to recover the original values of the
displacements at each solid boundary node

w (xk) = uk, 1 ≤ k ≤ ns. (2.28)

In many cases, the order of the polynomial p is chosen to be 1

p (x, y, z) = β0 + β1 · x+ β2 · y + β3 · z. (2.29)

Furthermore, the coefficients αk in Eq. (2.27) have to follow

ns∑
k=1

αk · q (x) = 0 (2.30)

for all polynomials q such that deg (q) ≤ deg (p). Equations (2.29) and (2.30) to-
gether imply that if the values of uk come from a linear polynomial, the interpolating
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function is this exact linear polynomial. Therefore, rigid-body translations are re-
covered exactly. Furthermore, if function ϕ is positive-definite, the interpolant is
unique [37, 39].

Two interpolation matrices can be introduced: one that recovers the displace-
ment of the solid boundary nodes from the interpolation coefficients, Css of size
(ns + 4)× (ns + 4):

Css



β0

β1

β2

β3

α1

α2
...

αns


=


0
0
0
0
us

 (2.31)

and one that interpolates the displacements to the fluid boundary nodes, Afs of size
(nf + 4)× (ns + 4):

Afs



β0

β1

β2

β3

α1

α2
...

αns


=


0
0
0
0
uf

 . (2.32)

Assume that Css is invertible. Premultiply both sides of Eq. (2.31) by C−1
ss . The

coefficients of the interpolant in Eq. (2.27) are equal to the inverse of matrix Css

times the displacement vector. These coefficients can be substituted on the left-hand
side of Eq. (2.32). The expression for the interpolation matrix H is then

H = AfsC
−1
ss . (2.33)
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The elements of Css are

Css =



0 0 0 0 1 1 · · · 1
0 0 0 0 xs1 xs2 · · · xsns

0 0 0 0 ys1 ys2 · · · ysns

0 0 0 0 zs1 zs2 · · · zsns

1 xs1 ys1 zs1 ϕs1,s1 ϕs1,s2 · · · ϕs1,sns

1 xs2 ys2 zs2 ϕs2,s1 ϕs2,s2 · · · ϕs2,sns

...
...

...
...

...
... . . . ...

1 xsns
ysns

zsns
ϕsns ,s1 ϕsns ,s2 · · · ϕsns ,sns


, (2.34)

where xsi , ysi , zsi are the coordinates of the ith node on the solid boundary and
ϕsi,sj = ϕ

(∥∥xsi − xsj

∥∥). Since ϕsi,sj = ϕsj ,si matrix Css is symmetric. From its
structure, it is possible to see that if all the points in the solid boundary are coplanar,
the matrix is not invertible. The same issue appears for a two-dimensional case
with all the solid boundary points lying on a straight line. If matrix Css is not
invertible, per Eq. (2.33) the interpolation matrix H cannot be calculated. The
fluid interpolation matrix is given by

Afs =


1 xf1 yf1 zf1 ϕf1,s1 ϕf1,s2 · · · ϕf1,sns

1 xf2 yf2 zf2 ϕf2,s1 ϕf2,s2 · · · ϕf1,sns

...
...

...
...

...
... . . . ...

1 xfnf
yfnf

zfnf
ϕfnf

,s1 ϕfnf
,s2 · · · ϕfnf

,sns

 , (2.35)

where xfi , yfi , zfi are the coordinates of the ith node on the fluid boundary, nf

is the number of nodes on the fluid boundary and ϕfi,sj = ϕ
(∥∥xfi − xsj

∥∥). For
a conservative interpolation approach, the fluid-to-solid interpolation is performed
by transposing matrix H. In the case of a consistent interpolation technique, this
procedure is repeated for the fluid-to-solid transfer.

Function ϕ can have either global or local support. The value of globally-
supported interpolating functions depends on the distance from each node to ev-
ery node. One example of a globally-supported function is the thin-plate spline
method [40], which is given by

ϕ (∥x− xk∥) = ∥x− xk∥2 · ln (∥x− xk∥) . (2.36)

Because of the global support, matrix Css in Eq. (2.33) is full. This means that
an inversion of a full (ns + 4) × (ns + 4) matrix is required in order to obtain the
coefficients of the interpolating function [38, 41].

Local support eliminates the impact of nodes that are farther than some radius
r, known as the support radius. This elimination introduces zero-elements in matrix
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Css. If enough elements are eliminated, matrix Css is then sparse, which helps with
performance in very large problems. One example of local support is the family of
smooth, compactly-supported functions introduced by Wendland. The simplest C2

function in R3 is given by [39]

ϕ (∥x− xk∥ , ρ) =
(
1− ∥x− xk∥

ρ

)4

+

·
(
4 · ∥x− xk∥

ρ
+ 1

)
, (2.37)

where ρ = r is the support radius. The first term, a truncated power function, is
strictly positive if ∥x− xk∥ < ρ and 0 otherwise [37, 39].

2.2 Unsteady fluid-structure interaction
Section 2.1.2 has presented some methods to simulate steady fluid-structure inter-
action. However, many problems of engineering interest are unsteady. A generic,
time-marching technique for unsteady, partitioned FSI is shown in the present sec-
tion.

The equation solved is of the form

∂

∂t
U(t)−R (U(t), t) = 0, (2.38)

where U(t) is the vector of conservative variables at time t and R (U(t), t) is the
corresponding residual. For simplicity, the time step used in the fluid and structural
solvers is assumed to be the same. However, some methods use larger time steps
for the structural solver.

Unsteady FSI calculations can be classified depending on whether the coupling
is strong or weak. In weak coupling, at each time iteration the fluid solver runs first.
Then, the loads are transferred to the solid solver. This solver then calculates the
corresponding displacements, which are given as boundary conditions to the fluid
solver at the following time iteration. Figure 2.1(a) shows schematically this kind
of coupling.

While it is simple to implement, weak coupling generally requires smaller time
steps. This leads to a larger number of time steps for the same total time and, thus,
a higher computational cost.

In strong coupling, however, there is a back and forth exchange of data between
the fluid and the solid. This process is repeated at each time step until a certain
level of FSI convergence is reached. Thus, the boundary displacements are obtained
at the same time iteration as the aerodynamic loads, instead of at the previous time
iteration. The strong coupling process is shown in Fig. 2.1(b).
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Figure 2.1: Coupling of fluid and structural solvers with equal time step

2.3 Linear frequency-domain method

Time-marching simulations can represent the behaviour of coupled, unsteady fluid-
structure systems. However, they are computationally expensive. They have to
simulate the transient part of the system’s response, which may require many cycles.
While in some cases a lower-fidelity method can be used, in others higher-fidelity
approaches are needed to provide more accurate results. In order to reduce the
computational cost of these solutions while keeping higher fidelity, some methods
that work on the frequency domain have been developed. One such technique is
the linear frequency-domain method (LFD). It consists in linearising the solution
in time with respect to frequency [42]. This procedure was used by Clark and Hall
for the study of stall flutter in turbomachinery [43, 44] and has also been used to
predict loads around aerofoils, wings and aircraft [45–47].

The flow is decomposed into a mean flow and a small, time-dependent pertur-
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bation that captures the unsteady behaviour of the system:

U(x, t) ≃ Û0 + Ũ(t)
∣∣∣Ũ∣∣∣≪ ∣∣∣Û0

∣∣∣ (2.39)

x(t) ≃ x̂0 + x̃(t) |x̃| ≪ |x̂0| , (2.40)

where Û0 is the mean flow, Ũ is the unsteady component of the flow, x̂0 is the mean
displacement and x̃ the unsteady displacement. Introduce the dependence on the
displacements of Eq. (2.38)

∂

∂t
U(t)−R (x, ẋ,U(t), t) = 0 (2.41)

Assume that the mean flow follows the steady equations

R
(
x̂0,0, Û0

)
= 0. (2.42)

Linearise Eq. (2.41) around the steady solution. Then, substitute Eqs. (2.39)
and (2.40) into the linearised equation

∂Ũ

∂t
=

∂R

∂U
Ũ+

∂R

∂x
x̃+

∂R

∂ẋ
˙̃x (2.43)

The unsteady perturbation and its time derivatives can be written as a one-term
Fourier series:

Ũ(t) ≃ Û1e
iωt (2.44)

∂Ũ(t)

∂t
≃ iωÛ1e

iωt (2.45)

x̃(t) ≃ x̂1e
iωt (2.46)

˙̃x(t) ≃ iωx̂1e
iωt, (2.47)

with Û1 and x̂1 being the complex amplitudes of the flow variables and motion and
ω the frequency being studied. Substitute these series into Eq. (2.43), and group
the resulting terms (

iωI− ∂R

∂U

)
Û1 =

(
∂R

∂x
+ iω

∂R

∂ẋ

)
x̂1, (2.48)

where I is the identity matrix.

The mean flow solution is considered independent of the harmonic motion and
its frequency. Per Eq. (2.42) the mean flow can be obtained from one steady sim-
ulation. Therefore, only the oscillatory solution needs to be calculated at different
frequencies.
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While the linear frequency-domain method was first applied to non-deforming
meshes, Clark and Hall applied a change of coordinate system that moves with the
solid body. They found that this approach was more accurate than the LFD using
a non-deforming mesh [43, 44].

The LFD is adequate for linear aeroelastic problems, such as flutter onset. How-
ever, the actual mean flow is not equal to the corresponding steady flow, especially
at large amplitudes. Since the linear frequency-domain method assumes a constant
mean flow, it cannot capture the impact of the harmonic movement on the mean
flow. Furthermore, in the presence of highly nonlinear phenomena, such as shocks,
the method’s accuracy is reduced [45].

2.4 Harmonic balance

Harmonic balance refers to a family of frequency-domain methods. Unlike the LFD,
they include a coupling between the different harmonics studied. Therefore, the
mean flow, or 0th harmonic, depends on each of the Nh harmonics used. However,
this makes studying the effect of the frequency more computationally expensive
compared to the linear frequency-domain technique. Dufour et al. compared the
harmonic balance and linear frequency-domain methods around an aerofoil with
an oscillating flap. They found that in the transonic cases the harmonic balance
performed better, even when using only one harmonic [45].

Harmonic balance approaches have been used extensively in fluid applications,
both for internal flows in turbomachinery [48–50] and external flows [16, 45, 51,
52]. They are quite flexible, having been applied to fluid solvers of varying fidelity:
from Theodorsen theory [53, Ch. 7] to Reynolds-averaged Navier-Stokes models.
Furthermore, they allow the study of several fundamental frequencies, which is rel-
evant for turbomachinery, where the rotors and stators can have different numbers
of blades. For the present section, one fundamental frequency ω will be used. The
corresponding period is T = 2π/ω.

Within the harmonic balance methodology there are two main approaches: the
frequency-domain harmonic balance (FDHB) and the time-domain harmonic bal-
ance (TDHB). The FDHB transforms the time-domain equations into the frequency
domain. The time derivatives are only a function of the corresponding harmonic’s
amplitude and its frequency. The TDHB, on the other hand, selects at least 2·Nh+1
pseudo-steady time instances and inserts the time derivative as a source term on
them. Compared to the FDHB, the main advantage of the TDHB is that the ex-
isting machinery of a steady solver can be reused in order to solve an unsteady
problem.
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0 1 2 ·Nh 2 ·Nh + 1 ≡ 0Instance

0 ∆t T −∆t TTime

Figure 2.2: Diagram of time instances in a harmonic balance solution

2.4.1 Frequency-domain harmonic balance

Starting from the generic approach in Eq. (2.38), the time-domain solution U(t) is
assumed periodic with fundamental frequency ω. One period of the time-domain so-
lution is discretised into 2·Nh+1 equispaced time instances where U(t) is evaluated.
The time difference between each consecutive instance is

∆t =
2π

ω · (2 ·Nh + 1)
=

T

2 ·Nh + 1
. (2.49)

Figure 2.2 shows a diagram of how the time instances are distributed within a period.

Evaluating Eq. (2.38) in these instances, there is an uncoupled system of equa-
tions 

∂

∂t
U(t)

∣∣∣∣
t=0

−R (U(0)) = 0

...
∂

∂t
U(t)

∣∣∣∣
t=T−∆t

−R (U(T −∆t)) = 0

. (2.50)

However, the value of the time derivative term is unknown.

Similarly to the linear frequency-domain method, the function can be approxi-
mated by using a Fourier series expansion. Using Nh harmonics, this approximation
is

U(t) ≃ Û0 +

Nh∑
n=1

[
Û2n−1 cos (nωt) + Û2n sin (nωt)

]
, (2.51)

where Ûn is the nth harmonic solution. There are 2·Nh+1 real harmonic coefficients.
While Eq. (2.51) is defined using real-valued coefficients, an equivalent expansion
can be performed with complex-valued coefficients and the complex exponential. In
that case, there are Nh complex coefficients and one real coefficient, Û0.
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Define the full solution vectors of size m · (2 ·Nh + 1) for m variables in U

U∗ =

 U(0)
...

U(T −∆t)

 Û∗ =

 Û0
...

Û2Nh

 , (2.52)

where U∗ is the time solution vector and Û∗ is the frequency solution vector. The
corresponding discrete Fourier transform matrix E, such that Û∗ = EU∗, is defined
as

E =
2

2 ·Nh + 1



I1
2

· · · I1
2

I cos 2π·0
2·Nh+1

· · · I cos 2π·2·Nh

2·Nh+1

I sin 2π·0
2·Nh+1

· · · I sin 2π·2·Nh

2·Nh+1

... . . . ...

I cos 2π·Nh·0
2·Nh+1

· · · I cos 2π·Nh·2·Nh

2·Nh+1

I sin 2π·Nh·0
2·Nh+1

· · · I sin 2π·Nh·2·Nh

2·Nh+1


, (2.53)

where I is an identity matrix of size m×m [54]. Matrix E is a square m·(2 ·Nh + 1)×
m · (2 ·Nh + 1) matrix.

Obtaining the time derivative in the frequency domain is straightforward. Dif-
ferentiate Eq. (2.51) with respect to t,

∂

∂t
U(t) ≃

Nh∑
n=1

[
−nωÛ2n−1 sin (nωt) + nωÛ2n cos (nωt)

]
. (2.54)

Then, comparing Eq. (2.51) and Eq. (2.54), the frequency-domain derivative matrix
A is defined as

A = ω ·



0 0 0 · · · 0 0
0 0 −I · · · 0 0
0 I 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 −Nh · I
0 0 0 · · · Nh · I 0


. (2.55)

Introducing the expression of the time derivative from Eq. (2.55) and expressing
the result in matrix form, the frequency-domain harmonic balance equation is

AEU∗ − ER∗ (U∗) = 0. (2.56)

This expression is a system of size m · (2 ·Nh + 1), with every m equations corre-
sponding to each harmonic that needs to be balanced.
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If R (U) is linear, then the harmonics are uncoupled. However, if it is nonlinear,
there is a coupling between the lower- and higher- order harmonics. One can choose,
as in the present derivation, to either compute the discrete Fourier transform of the
residual, or to transform the calculation of the residual to the frequency domain.
Another alternative is to use a fast Fourier transform, which benefits from choosing a
number of time instances that is a power of 2 [55]. The two methods are comparable
in their results.

2.4.2 Time-domain harmonic balance

The frequency-domain harmonic balance allows solving complex problems in the
frequency domain. However, it changes the equations solved, requiring either a re-
write of the problem or transforming the solution back and forth from the frequency
domain.

Define the inverse of the matrix shown in Eq. (2.53), so that U∗ = E−1Û∗

E−1 =

I I cos 2π·0
2·Nh+1

I sin 2π·0
2·Nh+1

· · · I cos 2π·Nh·0
2·Nh+1

I sin 2π·Nh·0
2·Nh+1

...
...

... . . . ...
...

I I cos 2π·2·Nh

2·Nh+1
I sin 2π·2·Nh

2·Nh+1
· · · I cos 2π·Nh·2·Nh

2·Nh+1
I sin 2π·Nh·2·Nh

2·Nh+1

 , (2.57)

where I is an identity matrix of size m × m. Like matrix E, E−1 is a square
m · (2 ·Nh + 1) × m · (2 ·Nh + 1) matrix. The time-derivative matrix in the time
domain is defined as

D = E−1AE, (2.58)

where E−1 is the inverse discrete Fourier transform matrix, A is the frequency-
domain derivative matrix shown in Eq. (2.55) and E is the discrete Fourier transform
matrix.

For m = 1, each term di,j in matrix D is defined by

di,j =
2 · ω

2 ·Nh + 1

Nh∑
n=1

− n · sin
(

2π · n · i
2 ·Nh + 1

)
· cos

(
2π · n · j
2 ·Nh + 1

)
+ n · cos

(
2π · n · i
2 ·Nh + 1

)
· sin

(
2π · n · j
2 ·Nh + 1

)
.

(2.59)

Apply the trigonometric identity sinα cos β − cosα sin β = sin(α− β):

di,j =
2 · ω

2 ·Nh + 1

Nh∑
n=1

n · sin
[

2π · n
2 ·Nh + 1

· (j − i)

]
. (2.60)
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From this expression, it can be seen that the diagonal of the D matrix is 0. Fur-
thermore, since the sine is an odd function, di,j = −dj,i. This means that the
time-derivative matrix is antisymmetric. Another important property is that each
member of a diagonal has the same value. This is desirable, since it means that the
time derivative is not affected by a change in phase of 2π/(2 ·Nh+1) of the problem.

Transform Eq. (2.56) from the frequency domain back to the time domain,

E−1AEU∗ − E−1ER∗ (U∗) = 0;

DU∗ −R∗ (U∗) = 0.
(2.61)

A standard steady solver can be re-used to implement this method. In that case, the
time derivative source term DU∗ is added to the steady equations and the solution
is iterated until convergence. For low-dimensional cases the TDHB problem can
also be solved as a coupled system of m · (2 ·Nh + 1) equations.

2.4.3 Application within a deforming-mesh framework

While the application of the time-domain harmonic balance is straightforward, there
are some important considerations that depend on the problem being studied. The
present work deals with coupled aerostructural systems in which the boundary de-
forms. The fluid mesh is then deformed depending on these boundary values, as
described in Sec. 2.1.2.

If the cell volumes remain constant, as is the case of rigid mesh movements, the
volume can be taken out of the source term in Eq. (2.61). Otherwise, the source
term has to be modified because the cell volume appears in the vector of variables at
each time instance. For the Euler equations introduced in Eq. (2.16), the variables
used are

U =

 V · ρ
V · ρv
V · ρE

 , (2.62)

where V is the time-changing volume of the cell.

If using an arbitrary Lagrangian-Eulerian method, the grid velocities appear as a
source term in the solution. They can be calculated by multiplying the displacements
of each grid point by the time derivative matrix D, defined in Eq. (2.58). The
expression for the grid velocities is

ż∗ = Dz∗. (2.63)

They have to be updated only when either the frequency or the mesh displacements
are modified, at the start of every FSI iteration.
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2.5 Frequency iteration techniques

The harmonic balance methods presented in Sec. 2.4 assume a known, given fre-
quency. This is the case in, for example, forced resonance in turbomachinery. The
blades of a stage are excited by a fluid field that changes with a frequency that is
proportional to the rotational speed of the turbine. However, many phenomena have
an a priori unknown frequency. One example of these are limit-cycle oscillations
(LCOs), in which the frequency is a crucial parameter.

Thus, the numerical study of LCOs using the harmonic balance method requires
calculating the frequency. Ekici and Hall found that once movement amplitude is
converged, iterations at a constant but wrong frequency lead to a shifting of the
phase in every FSI iteration [56]. In order to find the correct frequency of the
problem, some techniques have been developed in order to iterate around a given
initial frequency. When used with partitioned solvers, most of them rely on using
the structural solver.

The present section deals with the procedure to find the fundamental frequency
of the coupled problem and fixing the phase of the solution. First, L2 residual norm
techniques are presented. They attempt to obtain this frequency by minimising a
structural residual norm, which adds an extra equation to be solved. This technique
and its variations are the current standard for partitioned harmonic balance FSI.

Then, phase-fixing, which consists in setting a constant phase to one of the har-
monics, is presented. Finally, a combined phase-fixing frequency-iteration technique
is introduced. It guarantees a constant phase while obtaining the correct fundamen-
tal frequency of the problem. The combined technique solves the same number of
equations as the known-frequency harmonic balance method. Similar techniques
have been widely used for monolithic solvers, using lower-fidelity fluid models, but
not for partitioned codes.

2.5.1 L2 residual norm techniques

L2 residual norm techniques work by attempting to minimise the squared norm of
the structural residual from one FSI iteration to the following one. This residual
norm can be expressed in the form

Z(ω) = ∥D(ω)x∗ +Rx∗ − F∗∥2 , (2.64)

where x∗ is the vector of solutions at every time instance, matrix D is a linear
function of ω as per Eq. (2.60), R is the Jacobian of the structural problem and F∗

is the current iteration’s fluid load vector [57].
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Assuming that the dependence of F∗ with respect to the frequency is negligible,
as argued by Ekici and Hall, the residual function Z(ω) is quadratic [56, 57]. Then,
the minimum of this quadratic function in FSI iteration n− 1 is expressed by

ωn = −ωn−1 ·
(Rx∗ − F∗)T Dx∗

x∗TDTDx∗ , (2.65)

where ωn is the new value of the fundamental frequency.

However, Yao and Marques found that adding the gradient of the fluid loads
with respect to the frequency improved convergence in certain problems [58]. They
updated Eq. (2.65) such that,

ωn = −ωn−1 ·
(Rx∗ − F∗)T

(
Dx∗ + ∂F∗

∂ω

)
x∗TDT

(
Dx∗ + ∂F∗

∂ω

) . (2.66)

While this method results in a more accurate estimate of the LCO frequency, it
requires calculating the ∂F∗/∂ω term. Yao and Marques used finite differences in
order to do so, changing slightly the value of ω in order to evaluate the gradient.
They updated the estimate of ∂F∗/∂ω every 10− 15 iterations [58, 59].

2.5.2 Phase-fixing

There is an infinite number of equivalent solutions to a periodic problem. Each of
these solutions has a different phase, shifting the results. For example, Figure 2.3
shows two different possible solutions to the same LCO problem. The solutions in
Fig. 2.3(a) and Fig. 2.3(b) are equivalent: they have the same amplitude and the
same relative shift between the two degrees of freedom. However, it is generally
better to try to converge towards one solution.

In cases where the response frequency is given by some external excitation, main-
taining the phase of this excitation can be enough. This would be the case of an
aerofoil with a forced pitching oscillation and free plunging motion.

In other cases in which there is no external excitation, a given degree of freedom’s
phase can be kept constant. One of the harmonic components of said degree of
freedom can be set to 0, thus fixing the phase. For example, in a pitching and
plunging aerofoil the first harmonic sine component of the pitching degree of freedom
can be 0.

One further advantage of phase-fixing is that it helps with convergence of the
fluid sub-problem [60]. If the phase of the structural solution is kept constant,
the flow field will differ less between FSI iterations. Therefore, the previous FSI
iteration’s fluid solution will be a better initial guess.
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t/T

(a) Original solution
t/T

(b) Phase-shifted solution

Figure 2.3: Two LCO solutions with different phase for one period

2.5.3 Combined technique

In many problems, the frequency is an unknown in the system that needs to be
calculated. This leads to more variables than equations. The L2 norm technique
solves this issue by adding another equation to be solved. Phase-fixing eliminates one
of the structural unknowns in order to keep a constant phase. Instead of changing
the phase of the newly-obtained solution at each iteration, it is also possible to
combine phase-fixing and frequency iteration procedures in the structural solver. A
similar method is commonly used in simple, monolithic codes [53, Ch. 7] where
the frequency derivative of the whole system is obtained. However, for partitioned
solvers the L2 norm technique is standard.

In order to implement the combined approach for a partitioned code, the equa-
tions of the structural solver have to be rewritten. For example, if the sine compo-
nent of the first harmonic of the pitch response is set to 0, at FSI iteration n + 1
the new solution is obtained from

[
∂

∂α0 �
�
��∂

∂α1,s

∂

∂α1,c

· · · ∂

∂ω

]
S ·


δα0

���* 0
δα1,s

δα1,c
...
δω

 = R, (2.67)

where α0 is the mean value, and αi,c and αi,s are the cosine and sine components of
the ith harmonic of the pitch response. The exponent •n represents that it is the
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value • at FSI iteration n. The new values are
αn+1
0

αn+1
1,c
...

ωn+1

 =


αn
0

αn
1,c
...
ωn

+


δα0

δα1,c
...
δω

 . (2.68)

This approach maintains the chosen component at 0 without any extra processing.
However, it requires choosing an appropriate degree of freedom to fix, which is
complex in cases with a large number of degrees of freedom.

2.6 Harmonic balance fluid-structure interaction
coupling

In order to obtain aeroelastic solutions there needs to be some sort of coupling. In
the specific case of LCOs, a given set of flow conditions results in a given amplitude,
or amplitudes. Thus, there are two main ways of predicting an LCO: imposing the
freestream flow conditions and calculating the LCO amplitude and frequency, and
imposing the amplitude and calculating the corresponding frequency and freestream
airspeed. The amplitude for the second method can be defined in several ways. Two
examples are imposing the amplitude of one of the degrees of freedom [60, 61] and the
mean energy of the movement [62]. This method requires solving another equation
for the freestream velocity. One possible approach is introducing the minimiser of
the L2 structural residual norm as a function of the velocity [62].

Imposing the freestream flow conditions, on the other hand, does not require the
extra equation. However, it requires for the LCO to have a non-zero amplitude at
the given freestream conditions. A comparison of these two methods is shown in
Fig. 2.4. These two approaches were compared by Li and Ekici and found to give
very similar results [57].

The system of equations in Eq. (2.20) can be extended to include the base
frequency as a parameter, obtaining


S

F

M

+



∂S
∂u

∂S
∂ω

∂S
∂w

∂S
∂z

0
∂F
∂ω

∂F
∂w

∂F
∂z

∂M
∂u

∂M
∂ω

0
∂M
∂z





∆u

∆ω

∆w

∆z


=


0

0

0

 . (2.69)
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Figure 2.4: Comparison of harmonic balance FSI definition of cases

The most important change with respect to the steady method is the addition of
the dependence of each of the fields on the fundamental frequency, ω.

Like in the steady case, the system of equations in Eq. (2.69) is larger than
each individual problem. Obtaining the derivative terms and solving the system
would be impractical in cases with enough degrees of freedom. Similarly, instead of
using a Newton-Raphson method the problem can be solved using a BGS method.
The loads from the fluid solver appear as a Neumann boundary condition in the
solid solver and the displacements obtained by the solid solver appear as a Dirichlet
boundary condition in the fluid and mesh solvers. The frequency can be obtained
by the structural solver using the methods described in Sec. 2.5.1 or Sec. 2.5.3, for
example. It can then be imposed as a parameter of the fluid and mesh solvers. The
grid velocity can then be obtained by the mesh solver from Eq. (2.63).

2.6.1 Prescribed freestream conditions harmonic balance
coupling algorithm

Figure 2.5 shows a flowchart describing the harmonic balance fluid-structure in-
teraction direct algorithm developed for the present work. It shows in green the
steps performed by the coupler, in blue those by the fluid solver and in red those
by the structural solver. In order to start the solution process, an initial guess for
the amplitudes of each degree of freedom and LCO frequency needs to be provided.
Results calculated at other freestream conditions can provide guesses for the am-
plitudes and frequency. If those are unavailable, the flutter frequency can give a
good initial guess for the LCO frequency close to the Hopf point. In that region the
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eigenvector corresponding to the fluttering mode, multiplied by a small amplitude,
can be used as a guess for the amplitude.

The initial displacements of the boundary are obtained from the initial guess.
They are transmitted to the fluid solver, which applies them as a Dirichlet bound-
ary condition. The fluid mesh is deformed. The grid velocity at each node, which
depends on the initial guess for the frequency, is obtained by means of Eq. (2.63).
Then, the fluid code solves the fluid harmonic balance equations. It provides as an
output the loads at the boundary, which are then interpolated to the solid bound-
ary. The solid boundary loads are transmitted to the solid solver, which solves the
solid harmonic balance equations. From the solid solver, the new frequency and
solid boundary displacements are obtained. If the absolute value of the change in
frequency and norm of the boundary displacements vector are lower than a given
tolerance, the method has converged. Otherwise, if the number of FSI iterations is
lower than the maximum number set, the displacements are interpolated and applied
to the fluid boundary. The new frequency guess is also imposed as a parameter of
the fluid and mesh solvers. These values may be relaxed according to the methods
described in Sec. 2.1.2. This procedure repeats until the tolerances are met or the
maximum number of FSI iterations is reached.

In the present work, the fluid solver implements the time-domain harmonic bal-
ance to take advantage of the already-existing machinery. The solid solver is written
in the frequency domain to more easily implement the frequency iteration algorithm
described in Section 2.5.3. The interpolation of loads and displacements is local to
each time-domain instance. Therefore, the solid solver transforms the loads to the
frequency domain and the displacements it calculates to the time domain. A more
detailed explanation of the two-degree-of-freedom rigid body motion integrator is
presented in Appendix A.

2.6.2 Fluid-structure interaction framework

For the present work CUPyDO [33, 63], an open-source FSI coupling code devel-
oped at the University of Liège1, is used and extended. CUPyDO uses a strong,
partitioned approach in order to communicate between solid and fluid solvers. It
implements both the BGS with relaxation [33, 63] and the IQN-ILS [64, 65] ap-
proaches. The BGS algorithm was extended to work with multiple time instances.
CUPyDO includes a C++ kernel which is wrapped using SWIG [66] to Python in
order to combine the former’s high efficiency with the latter’s greater flexibility.

1https://github.com/ulgltas/CUPyDO

https://github.com/ulgltas/CUPyDO


34 CHAPTER 2. FREQUENCY-DOMAIN TECHNIQUES FOR FSI

Start from
initial guess

Provide initial
displacements
to fluid solver

Provide ω0 to
fluid solver

Fluid mesh
deformation

Iterate fluid solver

Obtain fluid loads

Interpolate loads
to solid boundary

Iterate solid solver

Obtain solid displace-
ments and frequency

∥∆ω∥ < Tolω?

∥∆x∥ < Tolx?

n < Nmax
it ?

Interpolate disps.
to fluid boundary

Provide displace-
ments to fluid solver

Provide frequency
to fluid solver

End of FSI algorithm

yes

no

no

no

yes

yes

Figure 2.5: Flowchart describing the harmonic balance fluid-structure interaction
algorithm. In light blue, the actions carried out by the fluid solver; in red, those by
the structural solver; in green, those by the coupler.
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Parallelisation

CUPyDO can be compiled either in serial or in parallel. When compiled in parallel,
communication is handled via OpenMPI. In this case, the numerics are solved using
PETSc, the Portable, Extensible Toolkit for Scientific Computation [67]2. CUPyDO
uses the mpi4py [68] and petsc4py [69] libraries to provide the necessary Python
wrappers.

2.6.3 Structural solver

The structural solver used is a pitch-plunge rigid body motion integrator. The
original code was previously developed at the University of Liège [63]3 and has
subsequently been extended for this work in order to implement the frequency-
domain approach, the combined frequency iteration technique of Sec. 2.5.3 and
adjoint methods. A derivation of the frequency-domain equations for this solver can
be found in Appendix A and of the adjoint-based gradients in Appendix B.

2.6.4 Fluid solver

The fluid code used is SU2 [70], an open-source computational fluid dynamics suite4.
SU2 has adjoint, time-domain harmonic balance [50] as well as steady fluid-structure
adjoint capabilities [32, 71]. It has also been used for coupled aeroacoustic optimi-
sation using a time-marching method [72]. A way to modify programmatically the
frequencies and period used by the time-domain harmonic balance method was im-
plemented in order to enable the use of the combined frequency iteration-phase
fixing technique.

Mesh deformation in SU2

Within SU2, mesh deformation capabilities are based on a linear elastic solution.
The displacements are imposed on a given surface, as boundary conditions of the
problem. The stiffness of each element can be chosen in two main ways: inverse
distance to the deformed surface and inverse element volume. The objective in both
cases is to have higher rigidity where it is more needed, so that those elements are
less deformed than they otherwise would. With constant stiffness ill-shaped elements
are much more likely. For the present work, the unsteady mesh capabilities of SU2
were extended to allow mesh deformation and to calculate the grid velocities at each
point in harmonic balance calculations.

2https://petsc.org
3https://github.com/ulgltas/NativeSolid
4https://github.com/su2code/SU2

https://petsc.org
https://github.com/ulgltas/NativeSolid
https://github.com/su2code/SU2
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2.7 Forced-pitch, free-plunge aerofoil
In the present section, the results of applying the harmonic balance fluid-structure
interaction framework to a simple 2D case using a rigid body motion integrator,
CUPyDO and SU2 are shown. The test case consists in a symmetric 2D NACA
64A010 aerofoil subjected to a forced pitch motion and free to move in the plunge
direction. The main objective of the test case is to verify the harmonic balance-
based coupling between the solvers. For this test case, CUPyDO was extended to
work with multiple time instances using the BGS algorithm for the coupling.

A secondary objective of the case is to verify the implementation of the frequency-
domain rigid body motion integrator described in Appendix A. A similar case was
already used by Blanc et al. in order to verify their coupled approach [73].

A diagram of the structure is shown on Fig. 2.6: the forced pitch motion is
α(t) = α0+∆α ·sin (ω · t+ φ) and is positive in the clockwise direction. The plunge
motion, h, has a counteracting spring-mass-damper system and is positive upwards.

m

kh, ch
h

α0,∆α, ω

xf

b = c/2

Figure 2.6: Forced-pitch free-plunge aerofoil

The main parameters of the system are shown in Table 2.1. Some of them, such as
the imposed frequency of the movement ω = 3.89 ·

√
kh/m, match those provided by

Blanc et al. [73]. However, the parameters they included do not define the test case
fully. In particular, neither the reduced frequency nor a freestream velocity index
are provided. Using the original structural parameters and the SU2-determined
freestream parameters obtained from the Reynolds and Mach numbers led to very
high plunging amplitudes, of the order of 20 · b. In order to reduce this amplitude,
the mass and stiffness were increased by two orders of magnitude. Furthermore, the
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original case did not include any damping. Since part of the objective of this case
was to verify the harmonic balance structural solver, some damping was included.
The damping ratio of this test case is ζ = ch/

(
2 ·

√
kh ·m

)
= 0.1. The reduced

frequency of the forced motion is k = ω · b/U∞ = 0.0227, which is low. The pitching
motion is applied around the flexural axis, at xf .

Parameter Value

M∞ [−] 0.796
U∞ [ms−1] 270.876
Re [−] 13× 106

kh [Nm−1] 3000
ch [kg s−1] 189.737
m [kg] 300

xf/c [−] 0.25
α0 [◦] 0
∆α [◦] 1.01
ω [rad s−1] 12.301
φ [rad] 0

Table 2.1: Parameters of transonic forced pitch free plunge test case

2.7.1 Simulation setup

Since the aim of the present test case is the verification of the implementation,
grid convergence is not studied. The Reynolds-averaged Navier-Stokes equations
are solved with Menter’s k − ω SST turbulence model [74, 75]. In order to verify
the present harmonic balance coupled FSI approach, a time-marching solution was
obtained with the same solvers and mesh.

The time-marching simulation uses a first-order dual time stepping method. The
Courant-Friedrichs-Lewy (CFL) number of the internal pseudo-time iterations was
initially set to 10 and allowed to adapt. The time step was ∆t = T

100
≃ 0.005 108 s

and the simulation ran for ten time periods.

Two cases were run with the harmonic balance method: one with one harmonic
and another with two harmonics. Both of them used a constant CFL number of 5.

2.7.2 Comparison of unsteady results

The load coefficient time responses are shown in Fig. 2.7 as a function of t/T for the
last time period. At this point, time convergence had been attained. Figure 2.7(a)



38 CHAPTER 2. FREQUENCY-DOMAIN TECHNIQUES FOR FSI

shows the evolution of the lift coefficient during one time period, while Fig. 2.7(b)
shows the drag coefficient. They compare the time-marching results, in blue, with
the harmonic balance predictions. In orange is the one-harmonic case, with the re-
constructed signal appearing as a dashed orange line. Each time instance is a circle.
While the match for the lift coefficient is quite close, for the drag coefficient there are
significant differences in the reconstruction. These differences appear because of the
second-order effects on the drag. The two-harmonics case is plotted in green, with
its reconstruction appearing as a dotted line. The time instances are represented
as crosses. While the lift coefficient changes very little, the drag coefficient shows a
marked improvement compared to the one-harmonic case.

Besides the load coefficients, the structural response is also important. The
non-dimensional plunge time responses are compared in Fig. 2.8, scaled by the half-
chord, b. The time-marching computation appears as a solid blue line. For the
harmonic balance results, the time instances and the harmonic reconstructions are
plotted. Each time instance is represented as an orange circle for the one-harmonic
solution and a green cross for the two-harmonics solution. The reconstructions are
an orange dashed line and a green dotted line, respectively. The plunge motion
results show a very close match between the harmonic balance and time-marching
solutions. This is expected from the lift in Fig. 2.7(a).

To summarise, a one-degree-of-freedom case has been solved using the harmonic
balance method, with its predictions showing good agreement with those obtained
from the time-marching method. As was expected, the reconstruction of the drag
coefficient with only one harmonic was poor, but the lift coefficient and plunge
responses matched well. Finally, adding one harmonic significantly improved the
match of the drag coefficient.

2.8 Two-degree-of-freedom aerofoil
A known-frequency test case using the harmonic balance method was verified in the
previous section. In this second test case, the unknown-frequency coupling described
in Fig. 2.5 is applied in order to obtain the amplitude of a limit-cycle oscillation. It
consists in a NACA 64A010 aerofoil in transonic conditions that pitches and plunges
freely with linear springs. The test case has been used to verify different solvers,
including reduced order models [57, 58, 60–62, 76].

The structural model is shown in Fig. 2.9. The aerofoil has a mass m and
a moment of inertia, Iα. The pitching motion, α, is defined around the flexural
axis, xf = 0.4 · b, and is positive in the clockwise direction. The plunging motion,
h, is positive downwards. In the plunge direction, the structural restoring force
is provided by a linear spring, kh, but there is no damping, ch = 0. The pitch
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Figure 2.7: Comparison of load coefficients for one cycle between time-marching and
harmonic balance methods as a function of t/T
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Figure 2.8: Comparison of plunge response for one cycle between time-marching
and harmonic balance methods as a function of t/T
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Figure 2.9: Free pitch, free plunge 2D aerofoil

restoring force is provided by a torsional spring, kα with zero damping, cα = 0. The
dimensional values of the structural parameters are in Table 2.2.

Table 2.3 gives the values of the non-dimensional parameters that define the
problem: M∞ is the freestream Mach number, µ = m

π·ρ∞·b2 is the mass ratio, ωh/ωα

is the ratio between the natural frequencies of the pitch and plunge degrees of
freedom, xα =

xCG−xf

b
is the static imbalance and r2α = Iα

m·b2 is the radius of gyration
squared. The pitch and plunge natural frequencies are wind-off and uncoupled, so
ωh =

√
kh/m and ωα =

√
kα/Iα. The reduced velocity, Ũ = U∞

ωα·2·b , varies and is
approximately 3 at the flutter point.
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Parameter Value

b [m] 0.5
m [kg] 50.33
Iα [kgm2] 9.437
ch [kg s] 0
cα [kgm2 s] 0
kh [Nm−1] 107 559.2
kα [Nmrad−1] 80 669.4

Table 2.2: Structural parameters used for transonic NACA 64A010 test cases

Parameter Value

M∞ 0.8
µ 75
ωh/ωα 0.5
xα 0.25
r2α 0.75

Table 2.3: Non-dimensional parameters of transonic NACA 64A010 test case

The freestream Mach number, M∞ = 0.8, results in transonic flow over the
aerofoil. At α = 0 there are supersonic regions on both sides of the aerofoil that
end in a shockwave. This case is firmly in the transonic dip region, an area with
transonic flow that results in greatly reduced flutter margins.

2.8.1 Simulation setup

In order to solve the problem SU2 is used for the fluid part of the model. The
Euler equations with the time-domain harmonic balance method are used to solve
the flow.

The solid part is solved using a pitch-plunge rigid body motion integrator [63]5, in
which a frequency-domain approach and the frequency iteration technique described
in Section 2.5.3 have been implemented. While the behaviour of the structure is
linear, the aerofoil is pitched and plunged geometrically.

The CFL number was modified depending on the frequency. The higher the
frequency, the lower the maximum CFL that led to a converged solution. The CFL
number required for convergence did not show a strong dependence on amplitude.

5https://github.com/ulgltas/NativeSolid

https://github.com/ulgltas/NativeSolid
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100 · c

Figure 2.10: Domain studied

The setup used to study flutter used a small amplitude to limit the nonlinear be-
haviour of the flow and required the same CFL number at the same frequency as the
setups used to study limit-cycle oscillations with significantly higher amplitudes.

Both solvers use the same mesh in the boundary. Therefore, the matching mesh
interpolation method is used. This method ties each node on the fluid boundary to
a node on the solid boundary and vice-versa. The process used in order to obtain
the lift and moment from the boundary forces is detailed in Appendix A. A block
Gauss-Seidel algorithm was used for the coupling.

2.8.2 Steady grid convergence study

First, five O-meshes were created in order to study grid independence of the solution
using Gmsh [77]. The computational domain is shown in Fig. 2.10. The meshes
were structured, using quadrilateral elements. Their characteristics are shown in
Table 2.4, with Nel being the total number of elements over the domain and n being
the number of nodes on the aerofoil. The external boundary, blue in Fig. 2.10, had
farfield boundary conditions imposed. Since an inviscid flow solver was chosen, the
aerofoil itself had free-slip boundary conditions, with the velocity calculated as a
function of the mesh displacements. All meshes were used for both aerodynamic
and aeroelastic grid convergence studies.

Since the aerofoil is symmetric and the angle of attack is α = 0, the steady lift
coefficient will be negligible. Therefore, the zero-angle-of-attack drag coefficient is
the parameter chosen to study grid convergence. Its evolution with increasing mesh
density is shown in Fig. 2.11. The drag coefficient tends to decrease as mesh density
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Mesh Nel n

Mesh 0 1700 50
Mesh 1 3800 100
Mesh 2 8400 200
Mesh 3 18 000 400
Mesh 4 39 200 800

Table 2.4: Characteristics of meshes for transonic NACA 64A010 test case
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Figure 2.11: Drag coefficient as a function of mesh size

increases, with significant changes until Mesh 3.

2.8.3 Flutter point calculation

It is important to study how the mesh affects the coupled aerostructural solution,
which may be different from its effect on the steady aerodynamic loads such as the
drag. Since the flutter point can be obtained through a linear aeroelastic analysis
of the system, it is less computationally expensive than the full limit-cycle oscil-
lation. Furthermore, it provides a starting point for the nonlinear study. A mesh
convergence study of the flutter point is described in this section.

In order to obtain the flutter point, the approach devised by Güner based on
interpolation between reduced frequencies and dynamic-mode interpolation (DMI)
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is used. The open-source Python code aedmi6 was used for this purpose. However,
instead of dynamic mode decomposition, the time-domain harmonic balance is used.
The two methods were reported by Güner to be equivalent [78].

For this problem, the p− k method is used to find the flutter point. This tech-
nique was applied to a flutter analysis by Irwin and Guyett [79]. Then, Jocelyn
Lawrence and Jackson described it in further detail, as the British flutter method.
They presented a graphic approach in order to obtain the correct value of the criti-
cal flutter speed and frequency [80]. The name p − k method was used by Hassig,
who also introduced an iterative solution procedure that replaced the graphic ap-
proach [81]. The method assumes that the system undergoes a damped sinusoidal
motion

q (t) = q̂∗ · ep
t·U∞

b , (2.70)

where q is the time-dependent vector of modal displacements, q̂∗ is the vector of
modal amplitudes, U∞ is the freestream velocity, b is the half-chord and p = g + ik
is a complex-valued non-dimensional parameter. Its real part, g, corresponds to
the damping of the system, while its imaginary part, k = ω · b/U∞, is the reduced
frequency. The equations for the structural problem are

Mqq̈+Cqq̇+Kqq = fq, (2.71)

where Mq is the modal mass matrix, Cq the modal damping matrix, Kq the modal
stiffness matrix, q̈ the vector of modal accelerations, q̇ the vector of modal velocities
and fq is the vector of modal aerodynamic forces.

Assuming that the aerodynamic forces are linear with respect to the amplitude
of the structural modes, fq is given by

fq (t) =
1

2
ρ∞U2

∞Q (p) q̂∗ · ep
t·U∞

b , (2.72)

where ρ∞ is the freestream density and Q (p) is the modal aerodynamic force ma-
trix. This assumption is valid for low values of the modal amplitudes, q̂∗, that do
not result in aerodynamic nonlinearities. Substituting Eqs. (2.70) and (2.72) into
Eq. (2.71) and then operating leads to[

U2
∞
b2

Mqp
2 +

U∞

b
Cqp+Kq −

1

2
ρ∞U2

∞Q (p)

]
q̂∗ = 0. (2.73)

The modal aerodynamic force matrix depends on the parameter p. Assuming that
the real part of this parameter, the damping, has a small effect on matrix Q,

6https://gitlab.uliege.be/am-dept/aedmi

https://gitlab.uliege.be/am-dept/aedmi
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Eq. (2.73) becomes[
U2
∞
b2

Mqp
2 +

U∞

b
Cqp+Kq −

1

2
ρ∞U2

∞Q (ik)

]
q̂∗ = 0. (2.74)

This equation has a non-trivial solution for the eigenvalues, p, of the left-hand side.
Since Q depends on the imaginary part of p, the problem has to be solved iteratively.
Flutter onset occurs at the airspeed at which the real part of p, g, changes sign from
negative to positive.

The modal aerodynamic force matrix at each reduced frequency can be obtained
by applying the principle of virtual work to the distribution of forces [53, 82]. A
fluid simulation at reduced frequency k can be carried out for each mode shape.
The matrix formulation of Q (ik) is then

Q (ik) = WTN (ik) , (2.75)

where W is the matrix of wind-off mode shape displacements at each interface cell
centre and N is the matrix of aerodynamic forces at each interface cell. N can be
calculated by integrating the pressure over each cell. Matrix W and matrix N are
the same size. Since chordwise displacements are negligible at low amplitudes (and
0 at the linear limit) for the pitching mode and 0 for the plunging mode, the two
matrices are of size n×Nm, where n is the number of cells on the surface and Nm

is the number of modes being taken into consideration for the flutter calculation.
Matrix Q is Nm ×Nm.

In the present work, the pressure distribution is obtained from the harmonic
balance CFD simulations referenced earlier. The pressure depends on the frequency
of motion. In order to avoid the costly recalculation of these values at each studied
frequency, Q is calculated at a reduced number of frequencies. Then, it is interpo-
lated based on the value of k used as a guess. Other flutter methods, such as the g
method [83], can also be used to calculate the flutter point [78, 84].

The amplitudes imposed are ∆h/b = 0.01 and ∆α = 0.005 rad for the plunge
and pitch degrees of freedom, respectively. It was reported by Güner that for the
NACA 64A010 aerofoil and flow conditions the nonlinear behaviour of the flow was
negligible for pitch amplitudes of ∆α ≤ 1◦ ≃ 0.017 rad at a reduced frequency
k = 0.202 [78].

First, two frequencies (k = 0.075, k = 0.15) corresponding roughly to the wind-
off natural frequencies of the two structural modes at the expected flutter speed
are studied. In order to allow for the possible effect of nonlinear behaviour with
respect to the frequency, a third, middle frequency was added close to the originally
predicted flutter frequency (k = 0.11). This process is repeated for both degrees of
freedom and all the meshes studied in the previous section.
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Figure 2.12: Flutter point as a function of mesh size

The change in flutter velocity index with respect to mesh density is shown in
Fig. 2.12(a), while the corresponding flutter reduced frequencies are plotted in
Fig. 2.12(b). The results obtained using the coarsest grid are excluded from the
figure because the predicted flutter mechanism is wrong. It predicts that the pitch-
dominant mode flutters instead of the plunge-dominant mode. Since there is little
difference between the flutter results obtained from Meshes 1 to 4, Mesh 2 from
Table 2.4 is chosen. The flutter point obtained using this mesh is sufficiently con-
verged. The predicted reduced flutter speed is 0.6% lower than that of the finest
mesh, Mesh 4, while the reduced frequency is 0.3% higher.

The evolution of the damping ratios and natural frequencies of the system with
respect to the velocity index for the chosen mesh is shown in Fig. 2.13. As expected,
both the pitch- and plunge-dominant modes of the coupled system are stable at
low speeds. This appears as positive damping in Fig. 2.13(a). However, around
Ũ = 1.5 the damping of the plunge-dominant mode reaches a maximum and starts
to decrease. Finally, at ŨF = 2.853 it reaches 0 and the system flutters.

Since the flutter problem is linear, adding more harmonics to the procedure
should not significantly impact the flutter point. The same procedure was repeated
with two harmonics in order to confirm this behaviour. Table 2.5 compares the
flutter point obtained with one and two harmonics for Mesh 2, with the digits that
differ in bold. As expected, the differences are small. They are roughly two orders
of magnitude smaller than those between Meshes 2 and 3.

2.8.4 Limit-cycle oscillation prediction

Once the appropriate mesh for the problem is chosen, the calculation of the ampli-
tude of limit-cycle oscillations can be carried out. The reduced velocity is chosen
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Figure 2.13: Results of the flutter analysis

Nh ŨF kF

1 2.8532 0.11298
2 2.8530 0.11301

Table 2.5: Convergence of flutter point with number of harmonics
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to be higher than the flutter point obtained in the previous section. The flutter
point also provides an initial guess for the fundamental frequency of the limit-cycle
oscillation.

Case 1 uses a reduced velocity Ũ = 2.944. Its fluid parameters are shown in
Table 2.6 and its structural parameters are those used in order to calculate the
flutter point. A comparison of the results obtained using a time-marching and a
one-harmonic HB simulation for this particular case is shown in Fig. 2.14(a), while
the equivalent for two harmonics is plotted in Fig. 2.14(b). The two figures compare
the lift coefficient, cl, for one full cycle. Each harmonic balance time instance is
represented as an orange circle. The HB reconstruction is plotted as a dashed
orange line.

The one-harmonic simulation overestimates the amplitude of the lift coefficient.
While still overestimating this amplitude, the two-harmonic simulation provides a
better match with the time-domain prediction. However, the increase in the number
of harmonics results in a higher computational cost.

U∞ [ms−1] Ũ [−] ρ∞ [kgm−3]

Case 0 268.2 2.9012 0.8544
Case 1 272.2 2.9445 0.8544
Case 2 276.2 2.9878 0.8544
Case 3 280.2 3.0311 0.8544
Case 5 288.3 3.1177 0.8544
Case 6 296.3 3.2043 0.8544
Case 7 304.3 3.2909 0.8544
Case 8 312.3 3.3775 0.8544
Case 9 320.3 3.4641 0.8544

Case 10 340.3 3.6806 0.8544
Case 11 360.3 3.8971 0.8544

Table 2.6: Freestream conditions of various transonic NACA 64A010 test cases

For the time-marching calculation, a second-order dual time stepping method
was used. The CFL number was set to 10 and allowed to adapt. Different time steps
were tested in order to check the convergence behaviour. The final chosen time step
was ∆t = 0.001 s. It resulted in approximately 100 time steps per cycle. Halving the
value of the time step resulted in a ∼ 0.8% increase in amplitude, while doubling it
led to a ∼ 3.5% decrease. Each time step required for the most part 2 FSI iterations.
The average number of FSI iterations was 1.97. Each fluid calculation required 30
to 100 pseudo-time iterations to converge. The initial conditions imposed to the
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Figure 2.14: Comparison of lift coefficient for one cycle predicted by time-marching
and harmonic balance methods for Case 1

structural solver were the pitch and plunge obtained for the first time instance of
the harmonic balance calculation in Case 0. This instance represents the maximum
pitch. The freestream conditions for this case are shown in Table 2.6. The simulation
was run for 20 s, around 200 cycles.

The harmonic balance calculation used the results from Case 0 in order to start
the solution. The CFL number was set to 4 in order to ensure convergence of the
fluid solver. The maximum number of fluid iterations was set to 20 000 per FSI
iteration.

Similar convergence criteria were used for the time-marching and harmonic bal-
ance methods. For the fluid part, the simulation stopped when the density residual
was below a given value. The FSI coupler either moved to the following time it-
eration or ended the calculation once the norm of the displacement residual was
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below a set tolerance. The displacement residual tolerance and minimum density
residual values were the same for both methods. The harmonic balance solver used
a tolerance for the frequency of ∆ω = 0.002 rad s−1.

The simulations were run on a computer with a 3.5GHz Quad-Core Intel Core
i7 processor and 8GB of RAM. Table 2.7 compares the CPU time cost of the one-
harmonic HB approach (tHB) and the time-marching approach with the selected
time step (tTM). The harmonic balance technique is more than ten times less com-
putationally expensive than the time-marching approach.

The computational cost is separated into several steps. Since the matching
mesh interpolation method is used, the mesh mapping is simple. Furthermore, this
mapping is performed only once, at the beginning of each simulation. In both cases
it represents a negligible portion of the total time. Mesh deformation is performed
once per FSI iteration. The time-marching solver uses strong coupling, which results
in several FSI iterations per time step and, thus, several mesh deformations per time
step. The harmonic balance approach performs 2 ·Nh+1 mesh deformations per FSI
iteration, but it requires only 35 FSI iterations in total to converge. This explains
the much lower computational cost. The communication of displacements from the
structural solver to the fluid solver and of loads from the fluid solver to the structural
solver behaves similarly. Both approaches’ computational cost is dominated by the
fluid solver. The harmonic balance approach for the fluid is ∼ 9.8 times faster
than the time marching solution. For both approaches the solid solver is the second
least computationally expensive component of the total cost. The harmonic balance
solid solver is more than two orders of magnitude faster than the time marching one
because the solid harmonic solution is evaluated fewer times than its time-marching
counterpart.

Step tHB [s] tTM [s]

Mesh mapping 0.0 0.0
Mesh deformation 41.9 19 530.2
Communication 0.3 153.4
Fluid solver 19 909.6 194 308.0
Solid solver 0.1 33.3
Total 19 955.0 216 855.7

Table 2.7: Comparison of computational cost between time-marching and harmonic
balance methods for Case 1

A comparison of the CPU time and first harmonic pitching amplitude error for
time-marching and harmonic balance methods is shown in Fig. 2.15. For the time-
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marching approach, it shows in blue four computations with different time steps
(∆t = 0.004 s, 0.002 s, 0.001 s and 0.0005 s). Then, the results obtained using the
harmonic balance technique are plotted in orange for one, two and three harmonics.
The error is defined as the difference in amplitude of the first harmonic:

εα =

∣∣∣∣1− α1

α1,ref

∣∣∣∣ , (2.76)

where α1,ref is a reference value obtained from the time-marching simulation with
∆t = 0.0005 s. Note that all results obtained using the time-marching technique
underestimate the amplitude and all those obtained using the harmonic balance
overestimate the amplitude.

The error in the amplitude of the first harmonic has a very strong dependence on
the time step. The HB curve is below the time-marching one, with higher accuracy
at a lower computational cost. However, it appears that its slope is steeper. Notably,
the amplitude predicted using two and three harmonics is quite similar. It would
be expected that the simulation using three harmonics results in a better match
with the reference time-marching simulation. However, while the two harmonics
case has an error of εα ≃ 0.3%, the three harmonics computation’s error is slightly
higher at εα ≃ 0.5%. These errors are very small. It is possible that the reference
value, α1,ref , is not converged enough. Then, using a smaller time step in the time-
marching simulation would result in a larger amplitude. Another possibility is that
due to aliasing, higher-order harmonics reduce the amplitude of the first harmonic
in the two-harmonics calculation, which leads to an apparently better match for α1.

There are several reasons for the computational cost increasing with the number
of harmonics. At equal number of fluid iterations, increasing the number of har-
monics results in a corresponding increase to the number of required calculations.
The number of pseudo-steady computations for the time-domain harmonic balance
increases linearly with the number of time instances. The calculation of the source
term representing the time derivative, on the other hand, increases quadratically.
Furthermore, the CFL number had to be decreased for the higher harmonics to 1.8
for the two-harmonics case and to 1.3 for the three-harmonics computation. This
led to an increase in the number of fluid iterations required for convergence.

Finally, the number of FSI iterations was more or less constant with the number
of harmonics. Compared to the 35 required by the one-harmonic technique, the two-
and three-harmonics simulations needed 34 and 38 iterations for FSI convergence,
respectively. Therefore, they did not have a large effect on the computational cost.

In conclusion, the fluid solver dominates the computational cost of this problem.
The harmonic balance approach is significantly faster thanks to a reduction of the
cost of the fluid solver and that of the mesh deformation. If using one harmonic, the
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Figure 2.15: Comparison of CPU time and pitching amplitude error

computational cost savings are much more important. The time-marching solution
depends on the time step used, which may be because small changes in the pressure
distribution lead to large changes in the amplitude close to the flutter point.

2.8.5 Bifurcation diagram

Figure 2.15 shows that using two harmonics would improve the results, but it would
approximately double the computational cost. However, the error in amplitude of
the single harmonic approach is acceptable, being small in magnitude and more
conservative than the two-harmonics or time-marching solutions. Therefore, the
other limit-cycle oscillation simulations to plot the bifurcation diagram are carried
out using one harmonic. The results of a velocity sweep with constant freestream
Mach number M∞ = 0.8 are shown in Fig. 2.16. The freestream conditions used for
the sweep are shown in Table 2.6.

Figure 2.17 compares results obtained using the present method, in orange; those
presented by Simiriotis and Palacios [60] using a constant-amplitude harmonic bal-
ance approach, in dashed blue; and those shown by Li and Ekici [57] in dotted
purple. As in the present study, Simiriotis and Palacios used one harmonic while Li
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Figure 2.16: Limit-cycle oscillation amplitudes obtained by means of the present
frequency-varying harmonic balance algorithm
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and Ekici used three. Both groups studied the lower amplitude range of the results
shown in Fig. 2.16.
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Figure 2.17: Comparison of movement amplitudes between harmonic balance meth-
ods
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The quantities compared are the movement amplitudes, α and h/b, and the ra-
tio of the frequency of motion and the uncoupled wind-off natural frequency of the
pitching degree of freedom, ω/ωα. The trends are similar: the amplitude increases
with higher freestream velocity, and so does the frequency. However, the present
method predicts a larger amplitude and lower frequency than the other two. As
expected for a Hopf bifurcation, close to the flutter point the gradient of the am-
plitude, dα/dŨ , is very large. This may explain the large changes in amplitude
with the number of harmonics and time step observed in the previous section: small
differences in the pressure distribution will have a strong impact on the amplitude.

2.8.6 High-amplitude case

In the previous section, limit-cycle oscillations were predicted over a range of air-
speeds. Their amplitude increases with airspeed; the higher the amplitude the more
important the nonlinear behaviour of the flow. In this section, a high-amplitude
LCO is studied in further detail.

This case’s parameters are shown in Table 2.6 as Case 9. The pitching amplitude
obtained by the present method is α1 = 0.0736 rad ≃ 4.22◦, while the plunging
amplitude is h1/b = 0.531. Figure 2.18 compares the mean pressure coefficient
distribution for this case, in orange, and the steady pressure coefficient for α = 0,
in blue. Since the HB mean flow is asymmetric, the upper side is represented as a
solid line while the lower side is a dashed line. The pressure coefficient is defined
as Cp =

p−p∞
1
2
ρ∞U2

∞
. The mean pressure is obtained by averaging the pressure over the

three time instances at each node on the aerofoil surface.

There are two main differences between the steady and harmonic balance mean
flows: the shock is further downstream in the unsteady case and the steady Cp is
symmetric while the mean Cp is not. The reason behind this asymmetry is the
interaction between the shock and the time discretisation. The steady flow has
one shock on each side of the aerofoil. In the unsteady case, the two shocks are
still present but they move upstream and downstream and their strength changes
depending on the phase of the oscillation. At high enough motion amplitudes,
the shocks can completely disappear over part of the cycle. Since the number
of time instances at which the flow is calculated using the time-domain harmonic
balance method is low, estimating the mean flow from these calculations results in
an asymmetry.

The flowfield around the aerofoil obtained by means of the HB method is shown
in Fig. 2.19. The figure plots the Mach number distribution at three phases of the
cycle, corresponding to the time instances used in the TDHB flow calculations. At
φ = ω · t = 0, shown in Fig. 2.19(a), the shock appears only on the upper surface.
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Figure 2.19: Mach number around the aerofoil for each time instance in Case 9

This time instance corresponds to the maximum value of the pitch. Meanwhile,
in Fig. 2.19(b) and Fig. 2.19(c), the pitch is negative. This leads to the shock
appearing only on the lower surface in both time instances, which in turn results in
the asymmetric Cp distribution in Fig. 2.18.

The chordwise axis is an axis of symmetry of the studied case. Thus, symmetric
results should be expected a priori. However, as shown in Fig. 2.18, this is not the
case.

The waveforms used to study how this asymmetric behaviour changes with phase
and the number of harmonics are shown in Table 2.8. They are two one-harmonic
setups with different phases (waveforms 1 and 2), one two-harmonics waveform
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Waveform 1 α(t) = α0+α1,c cos(ωt)
Waveform 2 α(t) = α0+α1,s sin(ωt)
Waveform 3 α(t) = α0+α1,c cos(ωt)+

+α2,c cos(2ωt) + α2,s sin(2ωt)
Waveform 4 α(t) = α0+α1,c cos(ωt)+

+α2,c cos(2ωt) + α2,s sin(2ωt)+
+α3,c cos(3ωt) + α3,s sin(3ωt)

Table 2.8: Waveforms used to study the asymmetric flow behaviour

(waveform 3) and one with three harmonics (waveform 4). Waveform 1 was used
with positive and negative values of α1,c, finding that its sign only affected the sign
of the results, not their magnitude. Therefore, only the values corresponding to a
positive α1,c are presented.

Table 2.9 compares the mean pitch and lift coefficient for these four waveforms.
These values should be 0 because of the symmetry of the problem. However, they
are small but non-zero. This is more pronounced in the case of waveform 1, which
is the one used in order to obtain the bifurcation diagrams.

Waveform α0 [rad] cl,0 [−]

Waveform 1 −2.60× 10−3 −0.0261
Waveform 2 5.26× 10−4 −0.0062
Waveform 3 −1.36× 10−4 −0.0009
Waveform 4 −8.39× 10−5 −0.0008

Table 2.9: Comparison of mean quantities for four different waveforms

Figure 2.20 shows the mean, real and imaginary parts of the pressure coeffi-
cient scaled by the amplitude of the first harmonic of the pitching motion for the
one-harmonic studies. The harmonic balance results obtained using waveform 1 are
plotted in solid orange, while those obtained using waveform 2 are in dash-dotted
green. The time marching approach is in dashed blue. Figure 2.21 compares the
mean and the first harmonic of the pressure distributions obtained from HB simu-
lations using one, two and three harmonics. Like in Fig. 2.20, the single-harmonic
approach using waveform 1 is in solid orange and the time marching results are in
dashed blue. Waveform 3, which uses two harmonics, is in dash-dotted green and
waveform 4, with three harmonics, is in dotted purple.

The five setups’ behaviours are similar in the first 40% of the chord. In this region
they match the trends of the time-marching approach for the mean flow and the
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real and imaginary parts of the first harmonic. However, there is a clear difference
between waveform 1 and the others: the mean flow in this part of the aerofoil is not
symmetric. This is due to the mean pitch of α0 = −0.0026 rad ≃ −0.15◦. For all
other waveforms the mean pitch is significantly smaller, as shown in Table 2.9.

Around the shock, the time-marching results show a smooth transition of all
three components studied, while the harmonic balance shows jumps. These jumps
appear at the location of the shock, or shocks, in each time instance. As the number
of harmonics increases, the harmonic balance signal approaches the time-marching
response. This can be seen for the real part in Fig. 2.21(b). Waveform 4, in purple,
shows a smoother behaviour than the other results. This waveform used three
harmonics and required seven time instances.

The imaginary part is smaller in magnitude than the real part. The time-
marching case predicts a symmetric reduction of its value around the shockwave,
with a minimum at x/c ≃ 65%. The harmonic balance method, however, does not.
This is especially marked for waveforms 1 and 2, which use one harmonic. The
results obtained using these two waveforms are shown in Fig. 2.20(c). The value
of I (Cp,1/α1) for the original approach, in orange, goes from around 0.3 to around
8.5 on the upper side. However, it does not change significantly on the lower side.
Waveform 2, in green, shows an increase in the value of I (Cp,1/α1) on the upper
side as well. On the lower side, the value changes sign contrary to the time-marching
behaviour. On both sides there is a plateau of high I (Cp,1/α1) values.

Downstream of the shock, the values become similar again. There is a change in
the sign of the real part of the response, shown in Figs. 2.20(b) and 2.21(b). This
change is recovered by the harmonic balance method for all cases studied as well.

A Fourier analysis of the time-marching simulation of the problem shows promi-
nent peaks in odd multiples of the fundamental frequency. However, its even multi-
ples are absent from the signal. The case is symmetric with respect to the chordwise
axis. Express the structural displacements as a function of time:

α(t) = α0 +

Nh∑
n=1

αn,c · cos (nωt) + αn,s · sin (nωt) . (2.77)

Since the setup is symmetric, −α(t) is a solution of the problem as well. Evaluating
the expression in Eq. (2.77) at t = t+ T/2:

α (t+ T/2) = α0 +

Nh∑
n=1

αn,c · cos (nωt+ nπ) + αn,s · sin (nωt+ nπ) =

= α0 +

Nh∑
n=1

(−1)n [αn,c · cos (nωt) + αn,s · sin (nωt)] ,

(2.78)
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Figure 2.20: Mean, real and imaginary parts of the pressure coefficient distribution
for Case 9
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Figure 2.21: Mean, real and imaginary parts of the pressure coefficient distribution
for Case 9
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which is equal to −α(t) if and only if α2n,c = α2n,s = 0 ∀n ∈ N. Otherwise,
there would be at least two possible solutions to the problem. Multiple solutions
are not observed in the time-marching simulations and the second harmonic’s am-
plitude is significantly reduced using three harmonics (waveform 4). It goes from
5.5 × 10−3 rad ≃ 0.31◦ for waveform 3 to 6.2 × 10−4 rad ≃ 0.036◦ for waveform 4.
Therefore, the improvement in behaviour observed using two harmonics (waveform
3) with respect to one harmonic (waveform 1) is probably caused by the better time
resolution of the shock and not due to the effect of even harmonics.

2.8.7 FSI convergence

The previous sections have shown the results obtained by the coupled FSI harmonic
balance technique with unknown frequency for a transonic LCO. The number of
FSI iterations it takes to achieve convergence is important in order to evaluate
the efficiency of the method. There are two main outputs: the amplitude of the
limit-cycle oscillation and its corresponding frequency. Both the frequency and the
nodal displacements, which are a function of the movement amplitude, appear as
convergence criteria in Fig. 2.5. The present section describes the convergence of
one low-amplitude case and one high-amplitude case.

Low-amplitude case

In low-amplitude cases the rate of convergence of a problem depends on the total
damping. Close to the flutter point, the damping is negligible. In time-marching
simulations, this leads to a very high number of cycles required in order to reach the
final, converged LCO amplitude. In the harmonic balance approach, each FSI iter-
ation the structural displacements change by a small amount. Many FSI iterations
are then needed to achieve convergence.

One example of a low-amplitude result is Case 2 in Table 2.6. This case was
started with the structural displacements and frequency obtained from Case 1.
The initial guess for the pitching amplitude was 0.0275 rad ≃ 1.58◦. Figure 2.22
shows the evolution of the pitching amplitude (Fig. 2.22(a)) and the frequency
(Fig. 2.22(b)). Low-amplitude cases converged in 10 to 40 iterations, with Case 0
requiring the largest number of iterations.

The method used to find the frequency of the coupled LCO is one of the main
differences with respect to previous work. Therefore, it is important to compare its
convergence with previous results. Li and Ekici showed the evolution of the LCO
frequency and the structural residuals with each FSI iteration for one case. As in
the present method, they used a constant freestream conditions approach. However,



62 CHAPTER 2. FREQUENCY-DOMAIN TECHNIQUES FOR FSI

0 2 4 6 8 10 12 14

2.8

3

3.2

3.4

·10−2

FSI Iteration

α
1

[r
ad

]

(a) Pitching amplitude

0 2 4 6 8 10 12 14

60

60.2

60.4

FSI Iteration

ω
[r
ad

s−
1
]

(b) Frequency

Figure 2.22: Convergence of results with FSI iterations for the present method for
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2.8. TWO-DEGREE-OF-FREEDOM AEROFOIL 63

0 20 40 60 80 100 120 140 160 180 200
0.94

0.96

0.98

1

1.02

1.04

1.06

Nit

ω
/ω

e
[−

]

Li and Ekici [57]
Present method

Figure 2.23: Frequency convergence as a function of FSI iterations

they used three harmonics instead of one [57]. Simiriotis and Palacios, who used
one harmonic, did not include the convergence history of any case [60].

Li and Ekici compared their method to a constant amplitude approach, from
which they obtained the freestream conditions for an amplitude of 2◦ ≃ 0.0350 rad.
They used an amplitude of 0.0367 rad and the flutter frequency as the starting point
of the simulation [57].

In order to compare the two approaches, a case computed using the present
method was chosen. The setup with the closest pitching amplitude to the case
described by Li and Ekici was Case 2. It resulted in a pitching amplitude of
0.0341 rad ≃ 1.95◦. The convergence of Case 2 as a function of the FSI iteration
was shown in Fig. 2.22.

Figure 2.23 shows the ratio between the final frequency and that at each FSI
iteration for the present method (in orange) and the method using the L2 norm of
the residual (in blue) by Li and Ekici [57]. The difference in number of FSI iterations
needed to converge is of an order of magnitude. However, it should be noted that
Li and Ekici used fewer fluid iterations in each FSI iteration. They used 100 while
the present method used around 5000.

High-amplitude case

Higher amplitude cases presented a different set of challenges. When using the
method without underrelaxation some oscillations appeared between FSI iterations,
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Figure 2.24: Convergence of results with FSI iterations for the present method for
Case 9

with convergence stalling and the solution eventually diverging. Therefore, the value
of the relaxation parameter had to be lowered.

Figure 2.24 compares the convergence of Case 9 as described in Table 2.6 with
underrelaxation, in blue, and without underrelaxation, in orange. For the case
with underrelaxation, the relaxation parameter was set to ω = 0.8. After 10 to 15
iterations, the oscillations in the results of the simulation without underrelaxation
start to grow, while in the case with underrelaxation they damp out very quickly.
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2.9 Summary
The present chapter has demonstrated a novel partitioned harmonic balance method
for the study of time-periodic fluid-structure interaction problems with unknown
frequency. It differs from previous partitioned approaches in the frequency iteration
technique used. The method reduces the computational cost in CPU time of the
problem compared to time-marching simulations while increasing RAM usage. The
fluid sub-problem dominates the computational cost.

The harmonic balance technique has been applied to a transonic limit-cycle
oscillation test case. If only one harmonic is used, the method overestimates the
LCO amplitude compared to a time-marching approach in the cases studied. Time-
marching simulations are highly sensitive to the time step used.

The presence of a moving shock that disappears during parts of the cycle leads
to some differences in the flow between the time-marching and harmonic balance
techniques. The moving and disappearing shock results in the harmonic balance
method predicting a slightly asymmetric behaviour of the flow. When the number
of harmonics is increased, these differences are reduced. Three harmonics are suffi-
cient to accurately describe the flow, but this results in an increased computational
cost compared to one harmonic. One way to increase the accuracy at a reduced
computational cost could be by means of high-dimensional harmonic balance ap-
proaches that use more time instances than harmonics, such as the fast Fourier
transform-based method of Ling and Wu [85].

Convergence of the approach proposed in the present chapter depends on the
amplitude of the LCO. At low amplitudes many FSI iterations may be required.
At high amplitudes underrelaxation is needed to reach convergence. Despite these
limitations, the proposed harmonic balance method leads to a reduced number of
FSI iterations for convergence compared to other HB methods.





Chapter 3

Adjoint method for the optimisation
of steady fluid-structure interaction
problems

The optimisation of structures immersed in flows is becoming an increasingly impor-
tant design objective. Adjoint methods help to speed up optimisation in the early
design stage by reducing the number of calculations required to study the effect
of many design variables. They have been widely applied in many different fields,
including aerodynamics and structural mechanics.

In this chapter, a description of different optimisation algorithms and their classi-
fication is presented first. Then, some variational techniques to obtain the gradients
are described. The adjoint method, with a focus on steady problems, is presented in
contrast to variational approaches. Afterwards, the difference between continuous
and discrete adjoint techniques is explained.

The adjoint method requires one computation per objective function. Therefore,
two approaches to reduce the number of objective functions are shown: penalty
methods and constraint aggregation. Subsequently, the adjoint method is applied to
partitioned fluid-structure interaction (FSI) problems. Finally, the coupled adjoint
FSI algorithm is applied to a simple problem using two different structural solvers
in order to verify its implementation.

3.1 Optimisation methods
An optimisation algorithm minimises or maximises1 an objective function, J , that
depends on a series of design variables ξ through the state variables U, subject to

1Maximising a function f is equivalent to minimising its negative −f

67
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a set of constraints, K. The optimisation problem can be written as

min
ξ

J(U(ξ))

subject to R(U(ξ)) = 0

K(ξ,U(ξ)) = 0

, (3.1)

where R is the residual of the physical problem.

There are two main families of algorithms to solve the optimisation problem:
gradient-free and gradient-based. The first family allows the exploration of the
whole design space, while gradient-based methods are able to find local optima.
When using gradients, it is generally not possible to ensure that the optimum found
is global. Meanwhile, gradient-free techniques, while they can explore a large section
of the design space, they cannot converge to optima. In many cases within the
aerospace industry, current expertise allows designers to start from a good design.
In such cases, a gradient-based approach may be better suited. Both kinds of
methods can be used in the same process: first a gradient-free algorithm can find
an initial solution close enough to the global optimum and then a gradient-based
algorithm can converge towards this optimal solution.

3.1.1 Gradient-free methods

Gradient-free methods are a natural choice if the objective function has many local
optima, if it is not smooth, or if its gradients are not available or difficult to compute.
Many gradient-free optimisation algorithms are inspired by other disciplines, such
as metallurgy or biology.

Within biologically-inspired methods, one of the most widely applied families is
that of genetic algorithms. They broadly involve generating a starting set of designs.
Each design’s parameters make up a chromosome. The designs are evaluated and
then a process of selection occurs. If the objective function is to be minimised
the designs with the lowest value are kept in the population, while the others are
eliminated. Of the remaining designs, some mate, generating new chromosomes
that are a mixture of the original ones. In order to fully explore the design space,
these chromosomes then are modified. This process is called mutation. Then, the
new value of the design parameters is decoded from the chromosomes. The full
process of selection, mating and mutation is repeated until enough iterations have
occurred [86].

These kinds of optimisation methods have been applied to aerodynamic and
aeroelastic problems. Lyu et al. minimised the drag coefficient at a constant lift
of an aircraft wing by modifying its twist. They found that gradient-free methods
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required two to three orders of magnitude more computations than the gradient-
based methods they used [87]. For aeroelasticity, Khodaparast et al. applied both
genetic algorithms and the bacterial foraging optimisation algorithm [89] to an air-
craft subjected to gust loads [88].

3.1.2 Gradient-based methods

Gradient-based algorithms are useful in cases with smooth objective functions and
in which the starting point of the design is good. While gradient-free methods
only need the value of the objective function, gradient-based techniques require
obtaining the gradients of the objective function or functions with respect to the
design variables. Generally, this gradient vector is used in order to determine a
direction of descent, s, such that

sT
dJ

dξ
< 0. (3.2)

Then, a step length, ∆ξ, multiplies this direction so that for iteration k the value
of the design variables is

ξk = ξk−1 +∆ξk · sk. (3.3)

This step length can either be predetermined or obtained by means of a line search al-
gorithm. These algorithms obtain a value of ∆ξk in order to minimise J in direction
sk. While ideally the global minimum would be found, in practice the computational
cost is too high. Therefore, inexact line search algorithms were developed [90].

Finally, convergence of the optimisation algorithm can be checked in several
ways. If dJ

dξ
= 0, a local minimum of the objective function has already been

found and the gradient-based optimisation process should stop. Therefore, many
convergence criteria rely on the norms of the gradient vector. Another option is to
check the change in value of the objective function from optimisation iteration to
optimisation iteration. If this change is below a certain threshold, the optimisation
procedure can be considered converged.

Steepest-descent algorithm

One simple way to ensure that a descent direction is found is by using the conjugate
of the gradient vector as the direction. Substituting sT = −dJ

dξ
into Eq. (3.2), it

can be seen that if dJ
dξ

̸= 0 the condition is met. This is called the steepest-descent
approach.

Despite its simplicity, this method along with a backtracking line search tech-
nique [90, Ch. 3] has been successfully used in order to minimise fatigue loads in
wind turbine blades [91] and for flutter suppression in 2D aerofoils [92].
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3.2 Calculation of gradients using variational
methods

The previous section has presented two families of optimisation methods: gradient-
free and gradient-based approaches. Gradient-based techniques use the value of the
gradients of the objective function with respect to the design variables in order to
obtain a direction of descent. The two main groups of algorithms to obtain these
gradients are variational and adjoint methods. Variational approaches are described
in the present section.

The simplest variational gradient calculation technique, both conceptually and
with regard to implementation, is finite differencing. In this approach, a design
variable is modified by a small amount, and the problem is recalculated.

There are three main ways to perform the modification: forward, backward and
central differences. Start from the Taylor series expansion of the objective function,
J , around the original value of a design variable, ξ0

J(ξ) = J(ξ0) +
+∞∑
j=1

1

j!
· d

jJ

dξj

∣∣∣∣
ξ=ξ0

· (ξ − ξ0)
j . (3.4)

A step for the value of the design variable, δξ, is defined. Forward differencing sets
the new value of the design variable to ξ = ξ0 + δξ. Substitute it into Eq. (3.4) and
expand the Taylor series

J(ξ0 + δξ) = J(ξ0) +
dJ

dξ

∣∣∣∣
ξ=ξ0

· δξ + 1

2
· d

2J

dξ2

∣∣∣∣
ξ=ξ0

· δξ2 + . . . . (3.5)

Operating and isolating the first derivative term, the estimate of the gradient for
forward differences is

dJ

dξ

∣∣∣∣
ξ=ξ0

=
J(ξ0 + δξ)− J(ξ0)

δξ
+O (δξ) . (3.6)

For backward differences, the sign of the change in the design variable is negative.

J(ξ0 − δξ) = J(ξ0)−
dJ

dξ

∣∣∣∣
ξ=ξ0

· δξ + 1

2
· d

2J

dξ2

∣∣∣∣
ξ=ξ0

· δξ2 + . . . . (3.7)

Therefore, the gradient is estimated as

dJ

dξ

∣∣∣∣
ξ=ξ0

=
J(ξ0)− J(ξ0 − δξ)

δξ
+O (δξ) . (3.8)
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Both the backward and forward difference methods are first-order. They require
calculating the objective function once for the original value of ξ and an extra time
per design variable. Therefore, the number of computations of J is n + 1, where n
is the number of design variables.

Central differences increase the accuracy of the gradient estimation by elimi-
nating second-order effects. The method achieves this by evaluating the objective
function twice per design variable. Subtracting Eq. (3.7) from Eq. (3.5) only the
odd derivative terms remain

J(ξ0 + δξ)− J(ξ0 − δξ) = 2
dJ

dξ

∣∣∣∣
ξ=ξ0

· δξ + 1

3
· d

3J

dξ3

∣∣∣∣
ξ=ξ0

· δξ3 + . . . . (3.9)

The estimate of the gradient for central differences is

dJ

dξ

∣∣∣∣
ξ=ξ0

=
J(ξ0 + δξ)− J(ξ0 − δξ)

2 · δξ
+O

(
δξ2
)
. (3.10)

In this case, the objective function needs to be computed 2 ·n+1 times for n design
variables.

In order to properly apply finite differencing, one ought to study how the gradient
estimate changes with δξ. If this change is too large, there will be truncation
errors related to it, O (δξ) for forward and backward differences and O (δξ2) for
central differences. These orders of magnitude come from the neglected terms of the
Taylor series expansion in Eqs. (3.6), (3.8) and (3.10). However, if the change is too
small, condition error and a consequent loss of precision can appear. Two sources
of condition error are the use of a solution that is not sufficiently converged and the
lack of precision in the value of the objective function.

A complex-step method was proposed to solve this latter issue. Substitute a
complex step of i · δξ in the series expansion in Eq. (3.4)

J(ξ0 + δξ) = J(ξ0) +
dJ

dξ

∣∣∣∣
ξ=ξ0

· i · δξ − 1

2
· d

2J

dξ2

∣∣∣∣
ξ=ξ0

· δξ2 + . . . . (3.11)

Note that the second-order term is real-valued and has a change of sign. Therefore,
applying the imaginary part operator, I, eliminates this term but not the third-
order term. The gradients of objective function J with respect to design variable ξ
are estimated as

dJ

dξ

∣∣∣∣
ξ=ξ0

=
I (J(ξ0 + i · δξ))

δξ
+O

(
δξ2
)
. (3.12)

The complex-step method improves the accuracy of the gradients for low values of
δξ, since cancellation errors are absent. This is because there is no subtraction in
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Eq. (3.12), only an imaginary-part operator. Therefore, much smaller values of δξ
can be used, further reducing the error. Furthermore, the accuracy of Eq. (3.12)
is comparable to that of the central differences method because the O (δξ2) term
in Eq. (3.11) is real, not imaginary. For n design variables, 1 real and n com-
plex calculations are required. However, the complex-step method usually requires
adapting the code in order to use complex numbers, while finite differences methods
do not [93].

For higher-order derivatives, the complex-step method also suffers from cancel-
lation errors. In order to calculate second-order derivatives without these errors,
other variational methods such as hyper-dual numbers have been developed [94].

3.3 Basics of adjoint methods
The generic optimisation problem, algorithms to solve it and variational methods to
obtain the gradients have been presented in previous sections. For gradient-based
algorithms, the gradients of the objective function with respect to each one of the
design variables must be calculated. However, calculating these gradients with finite
differences or the complex-step method can be very expensive when there are many
design variables. This is the case, for example, in early stages of the design process.
In contrast, the adjoint method obtains the gradient of a given objective function
with respect to many design variables with one computation.

Adjoint methods have a long history in fluid dynamics. Starting with Piron-
neau [95] and Jameson [96] for aerodynamics, they represent a more efficient way
of obtaining the gradient of an objective function, J , with respect to many design
variables, ξ. Jameson originally based his approach on control theory [96]. There
are two main ways of deriving the adjoint approach, the duality and the Lagrange
formulations [97].

In the present section, the duality formulation is introduced. Then, the adjoint
problem is derived using the Lagrange formulation. The resulting equations are
compared.

3.3.1 Duality formulation

In linear programming, the optimisation problem is defined as

min gTu, subject to Au = f , u ≥ 0 (3.13)

for a given matrix A and vector f . The duality formulation allows to then rewrite
gTu as vT f , with ATv = g. The dual form can be derived from Eq. (3.13)

gTu =
(
ATv

)T
u = vT (Au) = vT f . (3.14)
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The dual of the problem in Eq. (3.13) is

max fTv, subject to ATv ≤ g. (3.15)

If this dual problem has a solution, then the primal problem from which it is derived
also has a solution and vice-versa. Furthermore, the values of the maximum of fTv
and the minimum of gTu are equal. This is the strong duality theorem [90].

For a given problem the equations solved can be written as

R (x, ξ) = 0, (3.16)

where R, the residual, is a function of the solution x and the design variables in
ξ. The length of the solution vector is m and that of the design variables vector is
n. Linearising Eq. (3.16) around the original solution, x0, and differentiating the
objective function with respect to the design variables one obtains

dJ

dξ
=

∂J

∂x

dx

dξ
+

∂J

∂ξ
, (3.17)

subject to
∂R

∂x

dx

dξ
+

∂R

∂ξ
= 0. (3.18)

On the right-hand side of Eq. (3.17), there are two terms: the direct dependence
of the objective function on the design variables, ∂J

∂ξ
, and the dependence through

the solution, ∂J
∂x

dx
dξ

. This second term is the product of a row vector of length m,
∂J
∂x

, and a matrix of size m× n, dx
dξ

. The vector of adjoint variables, λ, is defined as(
∂R

∂x

)T

λ−
(
∂J

∂x

)T

= 0. (3.19)

Taking the first term on the right-hand side of Eq. (3.17) and substituting from
Eq. (3.19) leads to

∂J

∂x

dx

dξ
=

[(
∂R

∂x

)T

λ

]T
dx

dξ
= λT ∂R

∂x

dx

dξ
. (3.20)

Then, substitute Eq. (3.18)

λT ∂R

∂x

dx

dξ
= λT

(
−∂R

∂ξ

)
. (3.21)
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Finally, it is possible to substitute Eq. (3.21) into Eq. (3.17) such that the gradient
vector is written as

dJ

dξ
=

∂J

∂ξ
− λT ∂R

∂ξ
. (3.22)

The main differences between Eqs. (3.17) and (3.22) are on the evaluation of λ
and dx

dξ
. The adjoint variables, λ, as obtained from Eq. (3.19), depend exclusively

on the solution, x0, and the objective function, J . On the other hand, dx
dξ

depends
on each design variable in ξ. Therefore, in the direct formulation one calculation
is needed per design variable, while in the adjoint formulation one calculation is
needed per objective function.

Besides the adjoint variables, the terms ∂J
∂ξ

and ∂R
∂ξ

have to be calculated. While
those two terms depend on the number of design variables studied, they are generally
much faster to calculate than the adjoint variables since they do not require matrix
inversions.

3.3.2 Formulation using Lagrange multipliers

While the duality formulation is based on control theory, Lagrange multipliers are
very commonly used in many engineering problems. As such, an alternative deriva-
tion of the adjoint equations using this approach is widely used.

In the Lagrange formulation, a so-called augmented objective function, I is de-
fined

I (x, ξ) = J (x, ξ)− λTR (x, ξ) , (3.23)

where λ is the adjoint variable vector, acting as Lagrange multipliers. Since as per
Eq. (3.16) the residual is 0, the value of the augmented objective function is equal
to that of the original function, J .

Differentiate the function I with respect to the design and solution variables

dI =

(
∂J

∂x
− λT ∂R

∂x

)
dx+

(
∂J

∂ξ
− λT ∂R

∂ξ

)
dξ. (3.24)

Then, choosing a λ that satisfies(
∂R

∂x

)T

λ−
(
∂J

∂x

)T

= 0, (3.25)

the dx term in Eq. (3.24) cancels out. From Eq. (3.25), the adjoint variables depend
only on the solution and the objective function, not on the design variables, ξ.
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Thus, with the adjoint variables as Lagrange multipliers, the gradient of the
augmented objected function with respect to the design parameters is

dI

dξ
=

∂J

∂ξ
− λT ∂R

∂ξ
. (3.26)

This expression is equivalent to the one obtained using the duality formulation,
Eq. (3.22).

3.4 Continuous and discrete adjoint methods
There are two main ways of implementing adjoint methods: the continuous and
the discrete approach. In the first case, the adjoint equations corresponding to the
problem being studied are derived and then discretised. In the second case, the
adjoint problem of the already-discretised equations is computed [98].

The continuous adjoint generally requires fewer operations and less memory [99].
However, it only provides the exact gradient of the problem if the mesh is sufficiently
converged [98]. In fluid mechanics, it has been widely used for the Euler equations.
In the case of the Reynolds-averaged Navier-Stokes (RANS) equations, the addi-
tion of turbulence modelling significantly complicates the procedure. Thus, in some
cases the frozen viscosity assumption is applied. This assumes that the value of
the viscosity does not change significantly with respect to the design variables [100,
101]. However, there have been derivations of the continuous adjoint of the RANS
equations. For example, Bueno-Orovio et al. derived them for the Spalart-Allmaras
turbulence model [102]. They obtained a better match with finite differences com-
pared to the frozen viscosity approach [99].

The discrete adjoint provides the exact gradient of the discretised objective func-
tion independently of the grid used. However, since it applies the adjoint method to
the already-discretised equations, it depends on the numerical methods used [98].

3.4.1 Algorithmic differentiation

The analytical discrete adjoint equations could be obtained in principle for given
equations and discretisation. However, changing the discretisation results in the
∂R/∂x term required for Eq. (3.19) being modified. A code that uses algorithmic
differentiation (AD) will adapt to the numerical changes introduced by changing
the discretisation without needing to re-write the adjoint equations. Furthermore,
in some cases the exact Jacobian is not available or is difficult to obtain. In those
cases, AD allows to apply the adjoint method without explicitly obtaining the Jaco-
bian. The two main ways in which AD packages differentiate codes are: source-code
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transformation, in which the package outputs a differentiated code, and operator
overloading, in which the original code’s types and operators are overloaded by their
differentiated counterparts [103].

Algorithmic differentiation can be used in either the forward mode or the back-
ward mode. The forward mode obtains the gradient of many objective functions with
respect to a given design variable. It was shown to be equivalent to the complex-step
method [93]. The reverse mode allows for computing the gradients of an objective
function with respect to many variables, which is equivalent to the adjoint method.

The two main strategies to store the values needed to compute the derivatives
are primal value and Jacobian taping. In Jacobian taping, only the derivatives with
respect to the arguments of the functions are used, while the value of the arguments
and the operations are needed in primal value taping. The main advantage of this
last method is that it requires less memory per elementary operation [104, 105].

3.5 Reduction of objective functions
As explained in Sec. 3.3, the adjoint method requires one computation for each
function for which the gradient vector is needed. This can be either the objective
function, J , or each of the constraints, K. In some cases there can be many different
constraints. One example is during aerostructural optimisation. The structure has
to withstand the loads that are applied to it. If using a finite element formulation,
every element in the structural analysis must be under the limit stress. Therefore,
there is a constraint for each element. In many practical applications, this can
result in O(104) elements and constraints [106]. In order to reduce the number of
constraints, several methods have been developed. The present section describes
two families: penalty terms and constraint aggregation.

3.5.1 Penalty terms

Penalty terms are widely used in applications in which constraints appear. Be-
sides optimisation, they are used to represent contact between solids in structural
problems.

The quadratic penalty method adds a quadratic term to the objective function.
For equality and inequality constraints the penalised objective function, Q, is given
by

Q (ξ, µ) = J(ξ) +
µ

2

∑
i

K2
i (ξ) +

µ

2

∑
i

min (Ki(ξ), 0)
2 , (3.27)

where µ > 0 is the penalty parameter. This approach reduces the problem from a
constrained optimisation to an unconstrained optimisation. However, it does not
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guarantee that the constraints are met. In order to converge towards a solution that
meets them the penalty parameter can be increased. Sometimes, this is done by
using an adaptation procedure [90, Ch. 17].

Another particular case of penalty terms is the augmented Lagrangian method.
In order to ensure that the equality constraints are met a set of Lagrange multipliers
can be introduced to Eq. (3.27)

Q (ξ, µ) = J(ξ)−
∑
i

λi ·Ki(ξ) +
µ

2

∑
i

K2
i (ξ) +

µ

2

∑
i

min (Ki(ξ), 0)
2 , (3.28)

where λi is the ith Lagrange multiplier. Note that these Lagrange multipliers are
different from those introduced in order to derive the adjoint method in Eq. (3.23).
Starting from an initial guess, the value of λi at iteration k + 1 is given by

λk+1
i = λk

i − µk ·Ki(ξk). (3.29)

This method was used by Lambe et al. in order to minimise the weight of a wing
box while preventing structural failure under climbing and diving conditions [107]
and by Jansen and Perez to reduce the weight of truss structures with buckling
constraints [108]. It can also be extended for inequality constraints [90, Ch. 17].

3.5.2 Constraint aggregation

Another way of reducing the number of constraints is by aggregating them into one.
That is, to obtain a function f of the constraints such that

max (K0, . . . , KN−1) ≤ f (K0, . . . , KN−1) , (3.30)

where Kn is the nth constraint. The value of the aggregated function must be
greater or equal than the maximum of the constraint. Therefore, if any constraint
is violated, so is f .

One example of functions used for constraint aggregation are Kreisselmeier-
Steinhauser functions. They are defined as [109]

KS[K(ξ)] =
1

ρ
ln

[
N−1∑
j=0

eρKj(ξ)

]
, (3.31)

where K is the vector of constraints, N is the number of constraints and ρ is a
positive parameter. This parameter controls the difference between the value of
KS[K(ξ)] and that of the maximum constraint. As ρ increases, the allowable de-
sign space is expanded. However, for large values of ρ the problem becomes ill-
conditioned.
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This family of functions has some desirable properties for constraint aggrega-
tion [109, 110]

KS[K(ξ), ρ] > max [K(ξ)] (3.32)

KS[K(ξ), ρ] ≤ max [K(ξ)] +
lnN

ρ
(3.33)

lim
ρ→∞

KS[K(ξ), ρ] = max [K(ξ)] (3.34)

KS[K(ξ), ρ1] ≥ KS[K(ξ), ρ2] ∀ρ1 > ρ2. (3.35)

Per Eq. (3.32), max [K(ξ)] is a lower bound of KS[K(ξ), ρ]. Equation (3.33) gives an
upper bound for the value of the KS function depending on the number of constraints
and the value of ρ. The properties described in Eq. (3.34) and Eq. (3.35) guaran-
tee that as the parameter ρ increases, the value of the Kreisselmeier-Steinhauser
function converges monotonously towards max [K(ξ)].

In order to avoid cancellation error, a modification of the function was applied
for aerostructural optimisation using the adjoint method by Poon and Martins [106]

KS[K(ξ)] = Kmax(ξ) +
1

ρ
ln

[
N∑
j=1

eρ(Kj(ξ)−Kmax(ξ))

]
, (3.36)

where Kmax is the maximum of the set of constraints, K. The expressions for the
Kreisselmeier-Steinhauser function given in Eq. (3.31) and Eq. (3.36) are equiva-
lent [110].

As opposed to penalty terms, with Eq. (3.30) all the constraints must be met.
However, for any finite ρ the maximum value of the constraints, Kmax, is lower than
the value of the function as per Eq. (3.32). Therefore, the final results can be far
from the boundary of the design envelope. This can result in a solution that is not
close to the optimum.

3.6 Application to fluid-structure interaction
The adjoint method for one field has been presented in Sec. 3.3 and various tech-
niques used to reduce the number of objective functions have been introduced in
Sec. 3.5. In this section, the method is extended to partitioned fluid-structure inter-
action (FSI) problems, which can be generalised to other multi-domain problems.
First, the adjoint equations for FSI will be derived. Then, the interpolation strate-
gies used in order to communicate the adjoint variables will be presented.

The three-field formulation for a direct FSI problem was presented in Sec. 2.1.2.
This formulation is shown in Eq. (2.19). The objective function can depend on each
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of the three fields: structural (S), fluid (F) and mesh (M). It can be written as

J = JS + JF + JM. (3.37)

An example of structural objective function is the weight of the structure. A fluid
objective function could be the drag coefficient. The mesh objective function is
included for completeness. Then, by using the linearisation around the solution in
Eq. (2.20) it is possible to define the corresponding adjoint equation

∂S
∂u

T

0
∂M
∂u

T

∂S
∂w

T ∂F
∂w

T

0

∂S
∂z

T ∂F
∂z

T ∂M
∂z

T




λu

λw

λz

 =



∂JS
∂u

+
∂JM
∂u

∂JF
∂w

+
∂JS
∂w

∂JM
∂z

+
∂JF
∂z

+
∂JS
∂z

 , (3.38)

where λu, λw and λz are the respective adjoint variables for each solver. The indi-
vidual sets of equations can be rewritten as

∂S
∂u

T

λu =
∂JS
∂u

+
∂JM
∂u

− ∂M
∂u

T

λz

∂F
∂w

T

λw =
∂JF
∂w

+
∂JS
∂w

− ∂S
∂w

T

λu

∂M
∂z

T

λz =
∂JM
∂z

+
∂JF
∂z

− ∂F
∂z

T

λw +
∂JS
∂z

− ∂S
∂z

T

λu

. (3.39)

Each set of equations can be solved in a staggered way, like they are for the direct
FSI problem. Isolate the source terms introduced by the coupling in Eq. (3.39)

∂JM
∂u

− ∂M
∂u

T

λz

∂JS
∂w

− ∂S
∂w

T

λu

∂JF
∂z

− ∂F
∂z

T

λw +
∂JS
∂z

− ∂S
∂z

T

λu

. (3.40)

Comparing these coupling terms to Eq. (3.22), they represent the gradients of the
objective functions with respect to the other solvers’ output variables. Except in
the case of the mesh, these terms are only non-zero for the boundary values that
are transferred between solvers. The position of the mesh nodes has an effect on the
fluid solver independently of their location on or off the boundary. An augmented
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objective function can be defined for each field; IS for the solid, IF for the fluid, IM
for the mesh: 

IS = JS +

(
∂JM
∂u

− ∂M
∂u

T

λz

)
u

IF = JF +

(
∂JS
∂w

− ∂S
∂w

T

λu

)
w

IM = JM +

(
∂JF
∂z

− ∂F
∂z

T

λw +
∂JS
∂z

− ∂S
∂z

T

λu

)
z

. (3.41)

The gradients of these one-field augmented objective functions’ are equal to the
gradients of the coupled objective function.

3.6.1 Interpolation of adjoint gradients

As in the direct case, presented in Sec. 2.1.3, solving the partitioned FSI adjoint
equations requires some interpolation between the fluid and solid boundaries. The
simplest case is that of matching boundary meshes, in which each node on the fluid
boundary corresponds to one node on the solid boundary. In that case, the gradients
are transferred from node to node. For other cases, the adjoint interpolation depends
on the direct interpolation.

This interpolation affects the crossterms in Eq. (3.39). As per Eq. (2.23), for a
linear interpolation

uf = Hus, (3.42)
where uf and us are the nodal displacements at the fluid and solid boundary, re-
spectively and H is the solid-to-fluid interpolation matrix. Define the source term
introduced in Eq. (3.39) to the solid adjoint equation as a function of the fluid
interface displacements

dJ

duf

∣∣∣∣
M

=
∂JM
∂uf

− ∂M
∂uf

T

λz. (3.43)

This term is a row vector while the displacements are column vectors. For consis-
tency, transpose this gradient and apply the chain rule based on the linear interpo-
lation in Eq. (3.42)

dJ

dus

∣∣∣∣T
M

= HT dJ

duf

∣∣∣∣T
M

= HT

(
∂JM
∂uf

− ∂M
∂uf

T

λz

)T

. (3.44)

This is the value of the source term as a function of the solid boundary displacements.
The same procedure can be applied to the fluid variables at the boundary. The fluid-
to-solid interpolation matrix G is defined such that

ws = Gwf , (3.45)
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where ws represents the relevant fluid variables applied to the solid nodes and wf are
the fluid variables on the fluid nodes. Usually, for FSI problems the variables trans-
ferred from the fluid to the solid are the nodal forces. Express the coupling source
term in the fluid adjoint equation in Eq. (3.39) as a function of the interpolated
variables and then apply the chain rule:

dJ

dws

∣∣∣∣
S
=

∂JS
∂ws

− ∂S
∂ws

T

λu; (3.46)

dJ

dwf

∣∣∣∣T
S
= GT dJ

dws

∣∣∣∣T
S
= GT

(
∂JS
∂ws

− ∂S
∂ws

T

λu

)T

. (3.47)

The source term at the boundary for the fluid adjoint equation is thus obtained.

In the case of a conservative approach, as seen in Sec. 2.1.3, the solid-to-fluid
displacement interpolation matrix H, in Eq. (2.23), is transposed to obtain the fluid-
to-solid force interpolation matrix G, in Eq. (2.26). Therefore, the matrices can be
re-used for the adjoint problem. This is not the case in a consistent interpolation
approach. In that case, transposing the direct transfer matrices H and G is required.

3.6.2 Coupled steady fluid-structure interaction adjoint
algorithm

A coupled FSI adjoint method for partitioned solvers has been presented in the
previous sections. The algorithm used for its implementation is detailed in the
present section. It is based on the technique used to obtain the steady FSI direct
solution. Figure 3.1 shows a flowchart of the algorithm.

First, the direct FSI solution has to be computed. The converged fluid and solid
solutions obtained using the direct method are loaded in memory by the respective
adjoint solvers. Then, the solid displacements obtained from the direct solution
are interpolated and applied to the fluid boundary. The fluid mesh is deformed
depending on the value of these displacements. This part of the process sets the
converged direct FSI solution.

The fluid adjoint code solves the adjoint equations. Then, the gradient of the
objective function with respect to the displacements of the fluid boundary is ex-
tracted. This process is undertaken by the mesh solver. The gradient vector is
interpolated to the solid boundary as described in Sec. 3.6.1. The solid adjoint code
then solves its adjoint equations. This computation obtains the value of the gradient
of the objective function with respect to the forces induced by the fluid at the solid
boundary. The gradients with respect to the forces are interpolated to the fluid
boundary. The fluid solver then takes them into account. This process is repeated
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until either the norm of the residual is smaller than the specified tolerance or the
number of FSI adjoint iterations is higher than the specified maximum.

The convergence criterion used is based on the magnitudes transferred to the
fluid solver from each solid boundary node, like in the direct case. For the adjoint
solver, it is the magnitude of the change of the vector of gradients with respect to
the fluid loads. This magnitude is represented as ∥∆ dJ

dF
∥ in Fig. 3.1.

3.7 Verification of coupled gradients

The steady adjoint coupling algorithm described in Sec. 3.6.2 has to be verified.
In order to perform this verification, a simple 2D case is solved using two different
structural codes: the SU2 suite’s solid solver and pyBeam. The fluid solver used
in both cases was SU2 [70]. SU2 includes both a direct and an adjoint solver, with
fluid-structure adjoint capabilities [32, 71]. It uses CoDiPack and the reverse mode
of algorithmic differentiation in order to solve the discrete adjoint equations [105,
111]. It also has continuous adjoint capabilities but those are not used in the present
work.

In order to calculate the coupled gradients, the source terms introduced in
Eq. (3.41) are added using the registerOutput CoDiPack function call. This func-
tion records the objective function so that its gradients with respect to the design
variables can be calculated using algorithmic differentiation.

For both structural codes, the coupling is performed by using and extending
CUPyDO. It already could simulate direct FSI problems [33, 63]. For the present
work it was extended with adjoint capabilities and provided interfaces for the two
solid solvers.

The case consists of a beam subject to incompressible crossflow, as shown in
Fig. 3.2. The flow is steady. The cantilever beam is clamped at its base. The height
of the beam is 0.01m and its width is 5× 10−4m. The material’s Young’s modulus
was set to E = 50 000Pa, while its Poisson ratio was ν = 0.35.

The Reynolds number of the flow is Re = ρ·Ui·h
µ

= 10, where Ui is the inlet
velocity and h is the height of the beam. Since the Reynolds number is very low,
the flow should be laminar. Therefore, the fluid is modelled by the Navier-Stokes
equations.

The numerical fluid domain used for the problem is shown in Fig. 3.3. A non-slip
boundary condition is imposed on the upper and lower walls. The non-slip walls
appear in blue in Fig. 3.3. The inlet and outlet are at a distance of 0.16m from the
beam upstream and downstream, respectively. They are drawn in black. A non-slip
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Figure 3.1: Flowchart describing the steady adjoint fluid-structure interaction algo-
rithm. In light blue, the actions carried out by the adjoint fluid solver; in red, those
by the adjoint structural solver; in green, those by the coupler.
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E, ν
Ui po

Figure 3.2: 2D beam in crossflow with relevant parameters

boundary condition is imposed on the beam itself, which is drawn in red in Fig. 3.3.
This boundary is allowed to move, which in turn deforms the fluid mesh.

Figure 3.3: Fluid domain for 2D beam in crossflow

3.7.1 SU2 fluid solver and SU2 solid solver

The SU2 CFD suite [70] includes a solid-mechanics, geometrically nonlinear solver
that implements the discrete adjoint method by using algorithmic differentiation [71].
The test case is used in order to verify the coupling of the structural and fluid solvers
through CUPyDO. In this setup, the nodes at the fluid and solid boundaries match.
Therefore, a matching-meshes interpolator was used.

Direct simulation setup and results

Figure 3.4 shows the value of the pressure around the deflected beam. Upstream of
the beam, the pressure increases as the velocity decreases. Downstream, a region of
low pressure appears. At the tip of the beam, there is a region of localised, very low
pressure. The loads applied cause the beam to undergo a large, nonlinear deflection
that reduces its height. The top of the beam rotates. The drag coefficient was
cd = 2.86.
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Figure 3.4: Flow field around cantilever beam in crossflow using SU2

Verification of adjoint gradients

The objective function chosen is the drag coefficient (cd). The structural parameters
chosen to verify the gradients were the material’s Young’s modulus (E) and its
Poisson ratio (ν). For the fluid solver, the pressure at the outlet (po) was selected.

The evolution of the gradients obtained using finite differences as a function of
the design step is shown in Fig. 3.5. Forward finite differences are in blue, backward
finite differences in orange and central finite differences in green. The coupled adjoint
gradients are represented as a dashed black line. They do not depend on the step
size. The final steps chosen in order to balance condition and truncation error are
∆E = ±10Pa, ∆ν = ±0.0001 and ∆po = ±0.1Pa. The outlet pressure step is large
compared to the values used. As shown in Fig. 3.5(c), this magnitude is subject to
important cancellation error at lower values of the finite differences step. Table 3.1
shows a comparison between adjoint and central finite differences results for the
sensitivities of the drag objective function with respect to three design parameters.
The digits that differ between the two methods are bold.

The finite differences and adjoint gradients are quite close. Taking finite differ-
ences results as a reference, the largest relative difference is of around 0.01%. This
difference is for the outlet pressure, for which there were issues with cancellation
error and a relatively large step was required.

Figure 3.6 shows the evolution of the gradient of the drag coefficient with respect
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Figure 3.5: Comparison of gradients obtained using forward finite differences (blue),
backward finite differences (orange), central finite differences (green) and the coupled
adjoint method (dashed black) as a function of the step

Method
dcd
dE

[Pa−1]
dcd
dν

[−]
dcd
dpo

[Pa−1]

Adjoint 9.3756826× 10−6 0.407070045 −3.5168× 10−5

Finite differences 9.3756836× 10−6 0.407070085 −3.5173× 10−5

Table 3.1: Verification of 2D beam in cross flow test case using the SU2 structural
solver
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to Young’s modulus (dcd
dE

) as the adjoint FSI simulation progresses. After the first
iteration there is an overestimation of its value which then quickly decreases. After
10 FSI iterations the gradient is sufficiently converged, with the difference between
iterations being lower than the difference between central differences and the adjoint
method shown in Table 3.1.
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Figure 3.6: Evolution of derivative of drag coefficient with respect to Young’s mod-
ulus

3.7.2 SU2 fluid solver and pyBeam solid solver

pyBeam is a geometrically nonlinear beam solver. It implements flexible beam
elements and rigid elements that allow to transfer the rotation to the boundaries.
The discrete adjoint method is implemented by using algorithmic differentiation
using CoDiPack.

The main objective of this test case was to verify the implementation of con-
servative interpolation methods for the coupling of adjoint problems. A secondary
objective was the verification of the pyBeam interface implemented in CUPyDO,
for both the direct and adjoint solvers.

The structural model used 20 beam elements and 40 rigid elements perpendicular
to the direction of the beam. These last elements rotate rigidly around the elastic
axis of the beam, transferring its rotation to the fluid boundary. The model is
shown in Fig. 3.7. The x-axis coordinates are exaggerated in order to show the rigid
elements more clearly. Each node, of which there were 63, appears as a circle in
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Figure 3.7: Solid mesh for 2D beam test case using beam elements

the figure. The flexible elements are plotted in blue and the rigid elements in red.
The lowest node was fixed in both the translation and rotation degrees of freedom
in order to clamp the beam.

The interpolation of loads and displacements was performed using a conserva-
tive Compact C2 radial-basis function technique [39] already implemented in CU-
PyDO [63]. If all boundary nodes lie on the same straight line for a 2D case or on the
same plane for a 3D case, one of the interpolation matrices, Css, is not invertible.
This results in an infinite number of possible solutions, which is not physical. The
rigid elements define the outer boundary of the beam. This outer boundary, unlike
the elastic axis, is not a single straight line.

The value of the pressure field around the beam is shown in Fig. 3.8. The
behaviour is similar to the one observed in Sec. 3.7.1 for the SU2 solid solver, with
a region of high pressures upstream and a downstream low-pressure region. The
structural deformation is large. While a geometrically linear solver would maintain
the height of the beam constant, the present case shows significant shortening due
to the structural deformation. The drag coefficient obtained was cd = 2.80. This
value is smaller than the one obtained using the SU2 structural solver.

Figure 3.9 compares the undeformed geometry of the beam, in blue, the deformed
shape obtained using pyBeam, in green, and the deformed shape obtained using the
SU2 structural solver, in orange. The pyBeam beam is more deflected than the SU2
beam, which leads to a lower value of the drag coefficient. Using pyBeam assumes
that the beam is rigid in the transverse direction, which is not the case in SU2. This
could account for the difference in beam deflection.
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Figure 3.8: Flow field around cantilever beam in crossflow using SU2 and pyBeam
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Figure 3.9: Comparison of deformed and undeformed beam geometries
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Adjoint gradients

As in the previous case, the drag coefficient was chosen as the objective function.
The material’s Poisson’s ratio does not affect the solution because the beam is rigid
in the transverse direction. Therefore, the two parameters chosen are the Young’s
modulus of the solid material, E, and the pressure at the outlet, po.
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Figure 3.10: Comparison of gradients obtained using forward finite differences
(blue), backward finite differences (orange), central finite differences (green) and
the coupled adjoint method (dashed black) as a function of the step

The convergence of the finite difference gradients as a function of the step is
shown in Fig. 3.10. Forward finite differences are in blue, backward finite differences
in orange and central finite differences in green. As a reference value, the coupled
adjoint gradients, which are independent of the step size, appear as a dashed black
line. The steps chosen for the comparison were ∆E = ±1Pa and ∆po = ±0.001Pa.
Table 3.2 compares the gradients obtained using the adjoint method and those
obtained by central finite differences.

The gradients obtained by the present method are close to those obtained by
finite differences, within a few parts per million. Compared to the gradients ob-
tained using the SU2 solid solver, the gradient with respect to the outlet pressure
is approximately three orders of magnitude larger and its sign is different. This
may be because of the use of a conservative interpolation approach that is not con-
sistent. In interpolation approaches that are not consistent, a constant pressure is
not recovered on the solid boundary when applied on the fluid side. Therefore, the
average pressure level can have a much more significant impact on the result. The



3.8. SUMMARY 91

Method
dcd
dE

[Pa−1]
dcd
dpo

[Pa−1]

Adjoint 1.017567× 10−5 1.745935× 10−2

Finite differences 1.017564× 10−5 1.745933× 10−2

Table 3.2: Verification of 2D beam in cross flow test case using the beam structural
solver

SU2 test case used a matching-meshes interpolator, which is consistent. Hence, the
main effect of the increased pressure in the SU2 test case is a slight shortening of
the beam that barely affects the drag coefficient. This could explain the difference
in value of the gradient between the two test cases.

The gradient of the drag coefficient with respect to the material’s Young’s mod-
ulus is similar in magnitude to the gradient obtained using the SU2 solid solver. It
is slightly larger, probably because of the larger deflection of the beam.

Figure 3.11 shows the convergence of dcd
dE

with the number of adjoint FSI itera-
tions. The gradient shows some slight oscillations around its converged value, first
overestimating it. These oscillations quickly damp out and after around 10 FSI
iterations the difference between iterations is smaller than the one between finite
differences and the adjoint method shown in Table 3.2. This behaviour is similar to
the one observed in the previous setup with the SU2 solid solver.

3.8 Summary
The present chapter has presented a partitioned approach for the computation of
gradients of steady, coupled FSI problems by means of the adjoint method. This
approach has been applied to a simple 2D test case in order to verify its implemen-
tation. The gradients obtained using the partitioned adjoint technique have been
compared to those obtained using central finite differences. Two different structural
codes have been used. The first one was a finite element-based code in which the
boundary nodes of the fluid and structure matched. The second code was a beam
solver that required some interpolation between the fluid and solid boundary. This
interpolation was performed with a conservative radial-basis function technique. In
the two test cases the gradients obtained by the present method are consistent with
those obtained by finite differences.
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Figure 3.11: Evolution of derivative of drag coefficient with respect to Young’s
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Chapter 4

Adjoint method for the optimisation
of unsteady fluid-structure
interaction problems

As previously explained, the optimisation of fluid-structure interaction (FSI) prob-
lems is of growing importance. Some FSI problems are steady, but many others
are unsteady. A partitioned harmonic balance (HB) approach for the calculation of
unsteady time-periodic FSI problems with unknown frequency has been presented
in Chapter 2. The adjoint method for partitioned steady FSI problems has been
described in Chapter 3. A combination of these two approaches in order to reduce
the computational cost of optimisation of unsteady FSI problems is presented in
this chapter.

First, the time-domain unsteady adjoint approach is presented for a single field.
The continuous-in-time and discrete-in-time derivations of the unsteady adjoint are
included and compared. Since the unsteady adjoint approach has high storage re-
quirements, some techniques for reducing this cost are introduced. Then, the defini-
tion of the unsteady objective function is discussed, with an emphasis on windowing
and averaging. Afterwards, the coupled FSI HB adjoint method is derived. Some
specifics of the coupling are discussed. Subsequently, aerodynamic shape optimisa-
tion and the definition of design variables is explained.

Finally, the FSI HB adjoint method is verified using one of the limit-cycle oscil-
lation (LCO) setups from Sec. 2.8. Two objective functions are chosen: the pitching
amplitude of the LCO and the mean drag. The gradients obtained by the present
method are compared to those obtained via finite differences for aerodynamic shape,
structural and fluid design variables.

93
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4.1 Unsteady adjoint methods in fluid dynamics

While many cases in design where optimisation is required are steady, there has been
growing interest in unsteady cases. In order to apply the adjoint method to unsteady
problems, the formulation has to be adapted to the kinds of differential equations
being solved to model these problems. These are unsteady adjoint methods.

Usually, unsteady problems can be modelled by a differential equation in the time
domain. Similar to the difference between continuous and discrete adjoint solutions
explained in Sec. 3.4, there are two ways of applying the adjoint method to these
equations. The first procedure is to obtain the adjoint of the unsteady equations
and then discretise them in time and the second one is to obtain the adjoint of the
already-discretised equations.

4.1.1 Continuous adjoint

The partial differential equation solved by the unsteady direct problem is

∂

∂t
U(t)−R (U(t), t) = 0, t ∈ [0, tf ] , (4.1)

where U(t) is the vector of conservative variables at time t, R is the residual and
tf is the final integration time. The design variables, ξ, can be introduced to the
expression of the residual as

∂

∂t
U(t)−R (U(t), ξ, t) = 0, t ∈ [0, tf ] . (4.2)

The objective function, J , can be defined as an integral in time

J =

∫ tf

0

j (U, ξ) dt, (4.3)

where j is a function of the conservative and design variables. Linearise Eq. (4.3)
around U and ξ

dJ =

∫ tf

0

(
∂j

∂U
dU+

∂j

∂ξ
dξ

)
dt. (4.4)

Then, linearise Eq. (4.2) with respect to the same variables

∂

∂t
dU−

(
∂R

∂U
dU+

∂R

∂ξ
dξ

)
= 0. (4.5)
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The augmented objective function, I, can be obtained by introducing a Lagrange
multiplier, λ, augmenting Eq. (4.4) with Eq. (4.5)

dI =

∫ tf

0

(
∂j

∂U
dU+

∂j

∂ξ
dξ

)
dt −

−
∫ tf

0

λT

[
∂

∂t
dU−

(
∂R

∂U
dU+

∂R

∂ξ
dξ

)]
dt.

(4.6)

Since as per Eq. (4.5) the second integral is 0, the augmented and original objective
functions have the same value. A similar procedure, also using Lagrange multipliers,
was applied to the steady case in Sec. 3.3.2.

Integrate by parts the time derivative term of the second integral in Eq. (4.6)∫ tf

0

λT ∂

∂t
dU dt = λTdU

∣∣tf
0
−
∫ tf

0

∂λT

∂t
dU dt =

= λ(tf )
TdU(tf )− λ(0)TdU(0)−

∫ tf

0

∂λT

∂t
dU dt.

(4.7)

Assume that the initial conditions depend exclusively on the design variables1,
dU(0) = dU(0)

dξ
dξ. Substituting Eq. (4.7) into Eq. (4.6) and grouping the terms

multiplying each variational the equation becomes

dI = λ(0)T
dU(0)

dξ
dξ − λ(tf )

TdU(tf ) +

+

∫ tf

0

[(
∂j

∂U
+

∂λT

∂t
+ λT ∂R

∂U

)
dU+

(
∂j

∂ξ
+ λT ∂R

∂ξ

)
dξ

]
dt.

(4.8)

Define the adjoint variables, λ, so that they are a solution to the differential
equation

∂λ

∂t
+

∂R

∂U

T

λ+
∂j

∂U

T

= 0. (4.9)

It follows that the adjoint variables are independent of the design variables, ξ.
Substituting into Eq. (4.8), the dU term cancels out leaving

dI = λ(0)T
dU(0)

dξ
dξ − λ(tf )

TdU(tf ) +

∫ tf

0

(
∂j

∂ξ
+ λT ∂R

∂ξ

)
dξ dt. (4.10)

The final conditions of the adjoint variables can be introduced in order to eliminate
the term multiplied by dU(tf )

λ(tf ) = 0. (4.11)
1One example of this is the freestream conditions of the flow being used to initialise the flowfield

in iteration 0
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Thus, the final expression of the gradient is

dI

dξ
= λ(0)T

dU(0)

dξ
+

∫ tf

0

(
∂j

∂ξ
+ λT ∂R

∂ξ

)
dt, (4.12)

where the adjoint variables, λ, follow the differential equation in Eq. (4.9) and
have as final condition the one expressed in Eq. (4.11). Two important features
of unsteady adjoint calculations appear: there is a change in sign of the residual
between the direct differential equation in Eq. (4.1) and the adjoint differential
equation in Eq. (4.9) and because of the final condition, the adjoint equation is
integrated backwards in time.

A derivation of the unsteady, continuous adjoint equations for the unsteady
Euler equations was obtained by Nadarajah and Jameson. They applied it to a
minimisation of the average drag of a pitching aerofoil [112].

4.1.2 Discrete adjoint

The previous section has shown the derivation of the continuous-in-time adjoint
equations. However, the direct problem is already discretised in time. The adjoint of
these discrete equations can be obtained from the formulation used. The continuous
time interval [0, tf ] is discretised into N +1 time steps. For simplicity, the time step
is kept constant, at ∆t = tf/N . Using a first-order implicit backward differentiation
approach, the result of discretising Eq. (4.1) can be written as

R∗n (Un−1,Un, ξ
)
:=

Un −Un−1

∆t
+R (Un, ξ) = 0 n ≥ 1, (4.13)

where R∗n is the unsteady residual at time step n, Un is the vector of conservative
variables in time step n and R is the steady residual. The initial conditions, applied
in time step 0, are a function of the design variables:

U0 = U0 (ξ) . (4.14)

The objective function for a time-marching simulation is defined as

J (ξ) =
N∑

n=0

∆t · Jn (Un, ξ) , (4.15)

where Jn is the value of the objective function at time step n. It is the discrete
equivalent of the continuous function in Eq. (4.3).
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Define the augmented objective function by adding the adjoint variables, acting
as Lagrange multipliers, to Eq. (4.15) as

I (ξ) = J (ξ) +
N∑

n=1

λT
nR

∗n =

= ∆t · J0
(
U0, ξ

)
+

N∑
n=1

∆t · Jn (Un, ξ) + λT
nR

∗n (Un−1,Un, ξ
)
,

(4.16)

where λn are the adjoint variables in time instance n. The unsteady residual, R∗n,
was defined to be 0 in Eq. (4.13). Therefore, the augmented objective function, I, is
equal in value to the original one, J . Equation (4.16) can then be linearised around
ξ and U

dI = ∆t
∂J0

∂U0
dU0 +

N∑
n=1

[
∆t · ∂J

n

∂Un
+ λT

n

∂R∗n

∂Un

]
dUn+

+
N∑

n=1

[
λT
n

∂R∗n

∂Un−1

]
dUn−1+

+
N∑

n=1

[
∆t · ∂J

n

∂ξ
+ λT

n

∂R∗n

∂ξ

]
dξ.

(4.17)

Reorganise Eq. (4.17) to combine dUn−1 and dUn terms

dI =

[
∆t

∂J0

∂U0
+ λT

1

∂R∗1

∂U0

]
dU0 +

[
∆t · ∂J

N

∂UN
+ λT

N

∂R∗N

∂UN

]
dUN+

+
N−1∑
n=1

[
∆t · ∂J

n

∂Un
+ λT

n

∂R∗n

∂Un
+ λT

n+1

∂R∗n+1

∂Un

]
dUn+

+
N∑

n=1

[
∆t · ∂J

n

∂ξ
+ λT

n

∂R∗n

∂ξ

]
dξ.

(4.18)

This leaves a term that depends on dU0. Per Eq. (4.14), these initial conditions
only depend on the design variables. Therefore, the first term is[

∆t
∂J0

∂U0
+ λT

1

∂R∗1

∂U0

]
dU0 =

[
∆t

∂J0

∂U0
+ λT

1

∂R∗1

∂U0

]
dU0

dξ
dξ. (4.19)

The adjoint variables, λT
n , are defined such that they follow

λT
N

∂R∗N

∂UN
+∆t · ∂J

N

∂UN
= 0 n = N

λT
n

∂R∗n

∂Un
+∆t · ∂J

n

∂Un
+ λT

n+1

∂R∗n+1

∂Un
= 0 n ∈ [1, N − 1]

. (4.20)
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This results in the elimination of all dUn terms in Eq. (4.18). The expression of
the unsteady residual is shown in Eq. (4.13). Therefore, the partial derivative of
R∗ with respect to the conservative variables can be expressed as a function of the
steady residual, R, and the time step, ∆t. Substitute this expression in Eq. (4.20)

λT
N

(
1

∆t
+

∂RN

∂UN

)
+∆t · ∂J

N

∂UN
= 0 n = N

λT
n

(
1

∆t
+

∂Rn

∂Un

)
+∆t · ∂J

n

∂Un
− λT

n+1

1

∆t
= 0 n ∈ [1, N − 1]

. (4.21)

Finally, the gradient of the augmented objective function with respect to the design
variables is

dI

dξ
= ∆t · ∂J

0

∂ξ
+ λT

1

∂R∗1

∂U0

dU0

dξ
+

N∑
n=1

[
∆t · ∂J

n

∂ξ
+ λT

n

∂R∗n

∂ξ

]
, (4.22)

with λT
n obtained from Eq. (4.21). Rumpfkeil and Zingg presented a similar deriva-

tion for a second-order implicit backward differentiation time-stepping approach [113].

Comparing the discretised form of the unsteady adjoint problem in Eq. (4.21)
and that of the forward problem in Eq. (4.13) the change in sign of the residual is
apparent. Furthermore, the value of the adjoint variables in time step n, λn, depends
on the value of λn+1∀n < N . Therefore, the adjoint solution is integrated backwards
in time, from the last time step in which the objective function is evaluated to
the first time step of the solution. This is consistent with the continuous-in-time
approach.

4.1.3 Techniques for reducing the cost

There are two main concerns regarding the cost of unsteady adjoint solutions: the
computational cost needed to calculate the adjoint variables and the data storage
required for the direct solution. Thus, techniques for reducing both have been
developed and applied.

Computational cost

Reducing the computational cost of unsteady adjoint solutions is important for prac-
tical applications of the method. A gradient-based optimisation algorithm requires
a direct solution in order to obtain the value of the objective function and an adjoint
solution in order to obtain the corresponding gradient. The optimisation process
usually takes O(10−100) gradient evaluations. Any gain in speed will be multiplied
by this value.



4.1. UNSTEADY ADJOINT METHODS IN FLUID DYNAMICS 99

Nadarajah and Jameson presented some techniques for reducing the computa-
tional cost. Besides the usual full unsteady method, they used a steady adjoint
approach with the unsteady flow solution, a steady adjoint with a time-averaged
flow solution and multipoint design. The objective was to reduce the time-averaged
drag coefficient of a pitching aerofoil at constant mean lift coefficient. While these
techniques resulted in significant time savings and a reduction in the drag, the re-
sults were slightly different from those obtained by the full unsteady method [112].
In a periodic problem, if the frequency is known a priori, a limited number of cycles
may be used.

Data storage

Since the adjoint solution depends on the direct solutions in future time steps,
previous solutions have to be stored. If the mesh has many elements, the solution
files will take up a large amount of storage space. In order to mitigate this problem,
some algorithms have been developed.

One of the first families of methods used to reduce storage usage were check-
pointing algorithms. These techniques first solve the forward problem only storing
a subset of all the solutions. Then, the adjoint problem is solved starting from the
last time iteration, backwards. However, the solutions not stored have to be recom-
puted. This increases the computational cost of the adjoint solution while reducing
the data storage required [114–116].

Some of the methods that reduce computational cost also reduce storage re-
quirements. However, they do not solve the unsteady adjoint equations, leading
to a reduction of fidelity. One such technique is the steady adjoint using a time-
averaged flow solution used by Nadarajah and Jameson [112].

More recently, Papadimitriou proposed a two-step approach to estimate the ini-
tial conditions for the adjoint problem. In this method, the unsteady flow calcu-
lations are integrated first but only the time-averaged solution is stored. Then,
the adjoint equations are integrated backwards in time using the averaged solution.
This gives an estimate of the initial values of the unsteady adjoint problem. Finally,
the flow and adjoint equations are integrated forwards in time, simultaneously. This
decreases the number of solutions that have to be stored on disk at the expense of
approximately doubling the computational cost compared to a traditional unsteady
adjoint method. However, the adjoint solution obtained is not exact [117].
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4.2 Definition of unsteady objective functions
In unsteady problems, the objective function is defined in principle at all time
steps. Depending on the specific problem, some definitions will make more sense.
Examples include minimising the average drag coefficient or the maximum stress on
a structure. The transient part before the problem converges in time might not need
to be studied. In those cases, a window in which the objective function is defined
can be used.

4.2.1 Averaging

One way to define the objective function is to average it through the whole time
domain. The objective function is

J (ξ) =
1

tf − t0

∫ tf

t0

f (t, ξ) dt, (4.23)

where t0 and tf are the start and end times of the simulation. Its discretised form
is

J (ξ) =
1

Nf

Nf∑
n=0

fn, (4.24)

where Nf is the total number of time steps and fn is the value of function f at time
step n.

Zhang et al. implemented this approach and used it in order to improve the flut-
ter characteristics of the Isogai model. Their objective function was the damping
obtained by using the Hilbert transform [92]. Mani and Mavriplis used this method
in order to minimise the average drag of a pitching 2D aerofoil in transonic condi-
tions under an average lift constraint [118]. Averaging over the whole time domain
includes the transient part of the solution in the definition of the objective function.

4.2.2 Maximum

If instead of the average, the maximum value is important there are some methods
similar to those described for constraints in Sec. 3.5. For example, Jacobson used the
Kreisselmeier-Steinhauser (KS) function in time in order to keep the gust response
of an aerofoil within bounds [119] and in time and space to prevent the structural
failure of a pitching wing while minimising its weight [119, 120]. The function is
defined as

KS[K(ξ, t), ρ] = Kmax(ξ) +
1

ρ
ln

∫ tf

0

[
eρ(K(ξ,t)−Kmax(ξ))

]
dt, (4.25)
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where Kmax is the maximum value of the constraint in time. Unlike the discrete
constraint aggregation in Sec. 3.5.2, the inequality KS[K(ξ, t), ρ] > Kmax does not
hold. However, as ρ increases the KS function approaches the maximum [119].

4.2.3 Windowing

In most unsteady cases there is a transient part before time convergence is reached.
Often, the value of the objective function during this transient is not of interest for
optimisation. A time window that only includes the steady state can be defined.

In problems in which the base frequency of the problem is known a priori, such
as the oscillations of helicopter rotor blades or turbomachinery, a limited number
of cycles can be kept. The start time of the window is then tstart = tf − n · T for n
cycles of period T . If using an averaged objective function, it can be defined as

J (ξ) =
1

n · T

∫ tf

tstart

f (t, ξ) dt, (4.26)

where f is the chosen objective function. Discretise the equation in time

J (ξ) =
1

n ·NT

Nf∑
i=Nstart

f i, (4.27)

where Nf is the total number of time steps, NT is the number of time steps in one
time period, Nstart = Nf − n · NT is the first iteration of the window and fn is
the value of function f at time step n. Note that even though outside the window
∂f i/∂Ui = 0, the adjoint term in Eq. (4.22) is non-zero.

This approach has been used for the optimisation of many time-periodic prob-
lems. Zhou et al. used windowing in order to reduce the noise produced by a pitching
aerofoil in transonic flow conditions. They eliminated the first two motion cycles
out of 10 in the calculation [72]. Nielsen and Diskin targeted a specific value of
torque produced by a wind turbine. They also maximised the thrust produced by a
flapping wing. In both cases, they only kept the last period of the simulation [121].

If the frequency of the motion is unknown and the effect of the transient part is
not desired, a fixed-length window may be used. The process is similar to the one
previously described for known-frequency cases but with T being a free parameter.
Therefore, its influence in the solution obtained has to be studied.

Windowing was applied by Srinath and Mittal to a low-Reynolds aerofoil using
the Navier-Stokes equations. One of the objective functions was to match an average
lift coefficient of cl = 0.75. In those conditions, vortex shedding appeared. They
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compared three different window lengths: a very short window, a window that
corresponded to approximately one vortex-shedding cycle and one that corresponded
to approximately three vortex-shedding cycles. They found that using the second
and third windows led to similar designs, while the optimisation algorithm diverged
when using the shortest window [122]. Kiviaho et al. wrote the calculation of the
flutter point as an optimisation problem. They used the matrix pencil method in a
time window including approximately five oscillations in order to find the minimum
damping of the modes of a two degree of freedom aerofoil [123].

Mishra et al. used a window around the last sixth of the first revolution of a
helicopter rotor. Their objective was to reduce the torque coefficient while keeping
the thrust produced by the rotor approximately constant. They used a penalty
method in order to achieve this. The optimised geometry resulted in a better per-
formance even after time convergence had been reached beyond the optimisation
window [124].

4.3 Fluid-structure interaction harmonic balance
adjoint method

While the adjoint method is faster when the number of design variables is higher than
the number of objective functions, adjoint time marching simulations are still very
costly. Furthermore, even with checkpointing they require storing the solution at
many time steps. For periodic problems the harmonic balance can be used. Besides
the reduction in computational cost, it only requires storing 2 ·Nh + 1 solutions for
Nh harmonics.

Another advantage of the harmonic balance method is that defining the objective
function can be more straightforward. The amplitudes and average of magnitudes
of interest are obtained directly from the solver, without needing to use windowing
techniques. In some periodic problems the frequency depends on the design parame-
ters, further complicating windowing. Furthermore, the harmonic balance approach
is not affected by changes in time convergence. If the rate of time convergence is
adversely affected during the optimisation process, a time-marching simulation may
not reach the desired level at the original end point. Conversely, the problem may
converge in time faster, leading to superfluous computations. The harmonic balance
technique, on the other hand, ensures a certain level of convergence of the solution.

Choi et al. applied the discrete adjoint harmonic balance to a helicopter rotor in
forward flight. In that case, they used a computational fluid dynamics code to obtain
the periodic aerodynamic loads around one of the rotor’s blades [125]. More recently,
Prasad et al. presented an FSI harmonic balance method for unknown-frequency
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problems. In order to solve the direct problem, they used a fixed-energy approach.
Then, they derived the adjoint equations corresponding to their approach [62].

Apply the adjoint transformation to the formulation in Eq. (2.69):

∂S
∂u

T

0
∂M
∂u

T

∂S
∂ω

T ∂F
∂ω

T ∂M
∂ω

T

∂S
∂w

T ∂F
∂w

T

0

∂S
∂z

T ∂F
∂z

T ∂M
∂z

T




λu

λw

λz

 =



∂J

∂u

∂J

∂ω

∂J

∂w

∂J

∂z


. (4.28)

Compared to the steady system of equations in Eq. (3.38), there are four extra
terms: the dependence on the fundamental frequency of the objective function, the
solid, the fluid and the mesh solvers. Equation (3.38) can be rearranged as

∂S
∂u

T

λu =
∂J

∂u
− ∂M

∂u

T

λz

∂S
∂ω

T

λu =
∂J

∂ω
− ∂F

∂ω

T

λw − ∂M
∂ω

T

λz

∂F
∂w

T

λw =
∂J

∂w
− ∂S

∂w

T

λu

∂M
∂z

T

λz =
∂J

∂z
− ∂F

∂z

T

λw − ∂M
∂z

T

λu

, (4.29)

showing that there is an additional equation to be solved. If the combined phase-
fixing and frequency iteration technique from Sec. 2.5.3 is used to solve the direct
problem, the equation in u corresponding to the fixed degree of freedom is not
needed.

4.3.1 Derivation of the adjoint equations of the
time-domain harmonic balance

The direct time-domain harmonic balance (TDHB) approach is presented in Sec. 2.4.
It assumes a periodic solution which is expanded using a Fourier series. The TDHB
uses 2 ·Nh +1 time instances equispaced along a cycle to approximate the solution.
The generic expression of this problem is in Eq. (2.61). Apply the TDHB to a
generic solver,

R (U∗, ω, ξ) := DU∗ −R∗ (U∗, ξ) = 0, (4.30)



104 CHAPTER 4. ADJOINT METHOD FOR UNSTEADY FSI PROBLEMS

where D is the time-derivative matrix described in Eq. (2.58), U∗ is the vector of
conservative variables of the problem at each time instance and R∗ is the steady
residual at each time instance. Recall that D is proportional to the base frequency
and differentiate Eq. (4.30) with respect to ω:

∂R
∂ω

T

=

(
1

ω
DU∗

)T

. (4.31)

The derivative with respect to the conservative variables is

∂R
∂U∗

T

= DT −
(
∂R∗

∂U∗

)T

, (4.32)

where R is the fluid problem’s steady residual. The adjoint equation for problem
R (U∗, ω, ξ) is (

∂R
∂U∗

)T

λ−
(

∂J

∂U∗

)T

= 0. (4.33)

This expression can be obtained from the steady result in Eq. (3.19). Substitut-
ing the harmonic balance derivative in Eq. (4.32) into the adjoint equation, the
expression for the time-domain harmonic balance adjoint variables, λ, is

DTλ−
(
∂R∗

∂U∗

)T

λ−
(

∂J

∂U∗

)T

= 0 (4.34)

for all conservative variables. The frequency equation obtained by substituting
Eq. (4.31) into the second equation in Eq. (4.29) is

(Du∗)T λu = ω
∂J

∂ω
− (Dw∗)T λw − (Dz∗)T λz, (4.35)

where u∗,w∗, z∗ are the vectors of solid displacements, fluid conservative variables
and mesh positions at every time instance.

The time-domain harmonic balance equation is given in Eq. (4.30) for a time-
domain problem following the differential equation

∂

∂t
U(t)−R (U(t), t) = 0. (4.36)

The adjoint differential equation corresponding to the direct problem in Eq. (4.36)
is

∂λ

∂t
+

∂R

∂U

T

λ+
∂j

∂U

T

= 0. (4.37)
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Apply the TDHB to the adjoint problem

Dλ+

(
∂R∗

∂U∗

)T

λ+
∂J

∂U∗

T

= 0. (4.38)

As per Eq. (2.60), matrix D is antisymmetric. This means that the matrix used
in Eq. (4.34) is DT = −D. Substituting this into Eq. (4.34) and comparing it to
Eq. (4.38), the adjoint solution obtained would be the same. Therefore, applying
the time-domain harmonic balance method to the time-domain adjoint equation
is equivalent to applying the adjoint method to the direct time-domain harmonic
balance equations under the conditions described in Sec. 2.4.2.

4.3.2 Derivation of the adjoint equations of a
frequency-domain rigid-body motion integrator

Besides the time-domain harmonic balance, a frequency-domain approach is also
used for the structural solver in the present work. In particular, a frequency-domain
rigid-body motion integrator with pitching and plunging degrees of freedom has been
implemented. The derivation of the equations for the direct solver are described in
further detail in Appendix A. The state-space equations of the problem are

x =


α̇

ḣ
α
h

 ;


m Sα 0 0
Sα Iα 0 0
0 0 1 0
0 0 0 1

 ẋ+


ch 0 kh 0
0 cα 0 kα
−1 0 0 0
0 −1 0 0

x−


−L
M
0
0

 = 0, (4.39)

where Sα = m · (xf − xCG) is the dimensional static imbalance, m is the mass of
the aerofoil, ch is the plunge damping, kh is the plunge stiffness, Iα is the moment
of inertia around the flexural axis, cα is the pitch damping, kα is the pitch stiffness,
h and α are the plunge and pitch displacements. The plunge is positive downwards
and the pitch is positive clockwise. This convention is shown in Fig. 2.9. The
corresponding frequency-domain equations are(

M̂A+ K̂
)
x̂− EF∗ = 0, (4.40)

where M̂ is the frequency-domain mass matrix, A is the frequency-domain time-
derivative matrix, K̂ is the stiffness matrix, E is the discrete Fourier transform
matrix described in Eq. (2.53), F∗ is the vector of loads at each time instance
and x̂ is the frequency-domain vector of displacements. Substituting the values of
Eq. (4.40) into the first equation in Eq. (4.29), the adjoint equations of the solid
solver are (

M̂A+ K̂− ∂F̂

∂x̂

)T

λ̂ =
∂J

∂x̂
− ∂M

∂x̂

T

λ̂z, (4.41)
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where λ̂ is the vector of frequency-domain adjoint variables, F̂ = EF∗ is the
frequency-domain vector of loads, J is the objective function and −∂M

∂x̂

T
λ̂z is the

mesh component of the gradient.

The derivative of Eq. (4.40) with respect to the frequency was obtained in order
to implement the combined phase-fixing/frequency-iteration technique described in
Sec. 2.5.3. It is

∂S
∂ω

=
1

ω

(
M̂Ax̂

)
. (4.42)

Substitute this derivative into the second equation in Eq. (4.29)

1

ω

(
M̂Ax̂

)T
λ̂ =

∂J

∂ω
− ∂F

∂ω

T

λw − ∂M
∂ω

T

λz. (4.43)

The right-hand side includes the fluid dependence −∂F
∂ω

T
λw and the mesh depen-

dence terms −∂M
∂ω

T
λz.

Equation (4.41) includes an explicit, linear dependence that appears as the
M̂A + K̂ term. Furthermore, there is a dependence of the load with respect to
the displacement, ∂F̂

∂x̂
. While the lift depends only on the sum of the fluid forces at

each node, the moment depends on the relative location of the nodes themselves.
The moment at each time instance is given by

M =
Nn∑
n=0

F n
y · (xn − xc) + F n

x · (yn − yc) , (4.44)

where Nn is the number of nodes at the boundary, F n is the force applied on node
n, xn and yn are the x and y coordinates of node n and xc and yc are those of the
centre of rotation. The derivative can be obtained by applying the chain rule

∂F̂

∂x̂
=

∂F̂

∂F∗
∂F∗

∂x∗
∂x∗

∂x̂
= E

∂F∗

∂x∗E
−1 (4.45)

where E−1 is the inverse Fourier transform matrix described in Eq. (2.57). The
gradient of the moment with respect to the pitching angle in the time domain can
be easily obtained from the expression of the moment in Eq. (4.44) and that of the
node coordinates in Eq. (A.8)

∂M

∂α
=

Nn∑
n=0

F n
x · (xn − xc) + F n

y · (yn − yc) . (4.46)

The other gradients
(
∂L
∂h
, ∂L
∂α
, ∂M

∂h

)
are 0. These terms are then substituted into

Eq. (4.45). They have to be calculated once for each optimisation iteration. They
are then substituted into the left-hand side of Eq. (4.41). A derivation of the partial
gradients of objective functions of interest and the total gradients with respect to
shape and structural design variables is presented in Appendix B.
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Coupling terms

The adjoint structural solution needs the fluid and mesh components of the gradi-
ents with respect to the frequency and the boundary displacements in order to be
coupled. This stands in contrast with the direct solution, in which the structural
solver provides the frequency and boundary displacements to the fluid and mesh
solvers. The coupling source term on the adjoint frequency equation is represented
by the last two terms of the right-hand side of Eq. (4.43). The boundary condi-
tions of the adjoint problem are represented by the last term of Eq. (4.41) for the
structural displacements’ gradients.

The gradients to be provided to the fluid solver can be calculated from the adjoint
variables. Recall the expression of the fluid source term in Eq. (4.29)

dJ

dw

∣∣∣∣
S
=

∂J

∂w
− ∂S

∂w

T

λu, (4.47)

where w are the fluid conservative variables, S is the solid residual and λu is the
vector of solid adjoint variables. In the present setup, the variables transferred from
the fluid solver to the solid solver are the nodal forces at each time instance. How-
ever, the solid solver, S, is written in the frequency domain. Therefore, Eq. (4.47)
is in this case

dJ

dF∗

∣∣∣∣
S
=

∂J

∂F∗ − ∂S
∂F∗

T

λ̂u, (4.48)

where F∗ is the vector of nodal forces at each time instance and λ̂u is the vector
of frequency-domain adjoint variables of the solid solver. The calculation of the
derivative ∂S

∂F∗ is easier in the time domain. Isolate the term dependent on the
frequency-domain adjoint variables in Eq. (4.48) and operate

∂S
∂F∗

T

λ̂u =

(
∂S
∂S∗

∂S∗

∂F∗

)T

λ̂u =
∂S∗

∂F∗

T

ET λ̂u, (4.49)

where S∗ is the time-domain equivalent of the solid solver at each time instance.
The derivative of the time-domain equations with respect to the nodal forces, ∂S∗

∂F∗ ,
can be calculated from the expressions in Appendix A. The transformation of the
adjoint variables from the frequency domain to the time domain is

λ = ET λ̂. (4.50)

Since the objective function generally does not directly depend on the nodal
forces, the first term on the right-hand side of Eq. (4.48) is 0. Therefore, the
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gradient with respect to the force at boundary node n is given by

dJ

dF n
x

= λα · (yn − yc) (4.51)

dJ

dF n
y

= −λh − λα · (xn − xc) , (4.52)

where λα is the time-domain adjoint variable from the pitch equation and λh that
of the plunge equation. The x axis nodal forces only modify the moment, while the
y axis nodal forces affect both the lift and moment. The dependence of the moment
on the nodal forces can be calculated by differentiating Eq. (4.44) with respect to
them. As per Eq. (4.39), the sign of the lift is negative. Note that the sign of the
second term on the right-hand side of Eq. (4.47) is negative.

4.3.3 Coupling of the adjoint FSI HB partitioned approach

The coupling is similar to the partitioned direct harmonic balance approach de-
scribed in Sec. 2.6.1 and to the partitioned steady adjoint described in Sec. 3.6.2.
The process is shown as a flowchart in Fig. 4.1.

First, a direct solution must be obtained. The direct fluid and structural solu-
tions are loaded. Then, the structural displacements and frequency are imposed to
the fluid solver. The fluid mesh is deformed based on the boundary displacements.
Then, the fluid and mesh adjoint solvers calculate a solution without the solid ad-
joint coupling terms. The gradient of the objective functions with respect to the
frequency and the boundary displacement is obtained. The gradient with respect to
boundary displacement is then interpolated as described in Sec. 3.6.1 and imposed
on the solid boundary. Since as described in Sec. 2.5 the direct solid solver calcu-
lates the frequency, the adjoint solid solver requires the corresponding gradient. The
adjoint solid solver then obtains its adjoint variables, calculates the gradients with
respect to the boundary forces and transfers them to the coupler. For the following
iteration, the coupler interpolates the gradients from the solid to the fluid boundary
as described in Sec. 3.6.1. These are then used by the fluid solver. The fluid adjoint
solution is then a coupled solution.

This process is repeated until either convergence or the maximum number of FSI
iterations is reached. The convergence criterion chosen is based on the boundary
conditions imposed in the fluid solver. For the harmonic balance adjoint solver, as
was the case in the steady coupling described in Sec. 3.6.2, it is the magnitude of
the change of the vector of gradients with respect to the fluid loads.
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Figure 4.1: Flowchart describing the harmonic balance adjoint fluid-structure inter-
action algorithm. In light blue, the actions carried out by the adjoint fluid solver;
in red, those by the adjoint structural solver; in green, those by the coupler.
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4.4 Design variables for shape optimisation
Shape optimisation is the discipline that deals with modifying the shape of bodies
in order to maximise or minimise an objective function. An appropriate definition
of the shape-related design variables is important in order to define the design space
to be studied.

Masters et al. described two broad families of design variables: constructive
and deformative [5]. Constructive design variables define a surface from a set of
geometric characteristics. Some examples of this approach are the NACA 4- and
5-digit series aerofoils [126, 127]. They are two families of aerofoils of varying thick-
ness, camber and maximum camber position. Another constructive approach is
the PARSEC parametrisation method described by Sobieczky. It defines a sixth-
order polynomial based on the values of 11 parameters: leading edge radius, upper-
and lower-crest location and curvature and a set of trailing edge geometric parame-
ters [128]. Deformative design variables, on the other hand, modify the shape of an
already-existing surface [5].

The design variables can define either the surface or the whole volume. In the first
case, either a mesh deformation or a remeshing step needs to be included. Remesh-
ing steps are often very expensive, especially around complex, three-dimensional
geometries.

One example of the use of aerodynamic shape optimisation is matching a given
pressure distribution around an aerofoil. The objective of these tests is to recover
the correct aerofoil shape. By comparing the final and reference shapes, the shape
parametrisation method’s application in a computational fluid dynamics context can
be verified and its limits can be tested. Other common objective functions include
lift to drag ratio maximisation.

4.4.1 Node position

The simplest design variables that one can consider are the location of the nodes
at the boundary. However, any modification of these is, by its very nature, discon-
tinuous. This results in high-frequency components that can lead to ill-conditioned
problems [129]. Furthermore, the design variables are applied to the grid being
studied, not to the underlying geometry. If the same geometry needs to be used in
a different solver (structural, higher- or lower-fidelity. . . ) the changes would need
to be interpolated. Jameson applied a smoothing procedure to the objective func-
tion for reverse design to ensure its continuity even in the presence of transonic
flows with shocks [96]. Mani and Mavriplis used this method for various inverse de-
sign problems, including unsteady load- and pressure distribution-matching of 2D
aerofoils [118].
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4.4.2 Hicks-Henne bumps

Hicks and Henne presented, among other functions, a family of bumps used to
minimise the drag in a supercritical wing [130]. Unlike the node positions, these
functions are continuous and smooth in the open interval ]0, 1[. They do not include
high-frequency components. The bumps only modify the direction perpendicular to
the chord. These functions are known as Hicks-Henne bumps.

The generic equation for them is [131]

y(x) = y0(x) +
N∑
i=0

ξi · fi(x) (4.53)

fi(x) =

0, x = 0[
sin
(
π · x

log 0.5
log t1

)]t2
, x ∈ ]0, 1]

, (4.54)

where y is the non-dimensional vertical position, y0 is the original value of y, x is the
non-dimensional position along the chord, N is the number of bumps, ξ is the value
of the design variable, fi is the ith bump, t1 ∈ ]0, 1[ is a parameter representing the
value of x where fi(x) is maximum and t2 > 0 is a parameter controlling the width of
the bump. The maximum value of the bump function is fi (t1) = 1. For the second
parameter, Masters et al. used a value of t2 = 1 after performing a parametric study
on an aerofoil database [5]. Hicks and Henne originally proposed t2 = 3 [130].

These bumps were first defined for two-dimensional profiles. Therefore, in order
to modify a 3D wing some sort of interpolation between profiles is required. One
issue that limits their use is that, for t2 > 1, they cannot modify the thickness or
curvature very close to the trailing edge. This problem occurs because the left limit
of the derivative of fi at x = 1 is 0 [92]. Furthermore, the bump functions are not
orthogonal [129].

Hicks-Henne bumps been used in order to minimise the average drag around an
aerofoil in transonic flow [100]. They have also been used to minimise the torque-to-
thrust ratio of a helicopter rotor blade. Since the case was three-dimensional, Choi
et al. defined the bumps in nine sections along the span and interpolated between
the sections [125].

4.4.3 Basis splines

Another method is to parametrise the surface using basis splines, also called B-
splines. Since this technique is widely used in computer-aided design (CAD) pack-
ages, it provides a direct link between the CAD model and the optimised design.
Unlike Hicks-Henne bumps or using the node positions as design variables, this
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method does not modify a base shape. Instead, the original shape is parametrised
and then those parameters are used as design variables. For m control points the
positions are a function of a parameter, t ∈ [t0, tm]

x(t) =
n−1∑
i=0

PiNi,k(t), (4.55)

where n = m− k, Pi is the position of the ith control point and Ni,k is the B-spline
of order k < m, given by

Ni,0(t) =

{
1 t ∈ [ti, ti+1]

0 t /∈ [ti, ti+1]
(4.56)

Ni,k(t) =
t− ti

ti+k − ti
Ni,k−1(t) +

(ti+k+1 − t)

ti+k+1 − ti+1

Ni+1,k−1(t), (4.57)

where ti is the ith control point’s position in the parametrised space. The values
are chosen such that ti ≤ ti+1. The order of the basis spline, k, controls how local
the changes are. If k increases, the influence of a given control point extends farther
away. If k = n, the B-splines are called Bézier curves. The parameter t can be
bounded between 0 and 1, in which case the Bézier curve is a linear combination
of Bernstein basis polynomials. For aerofoil parametrisation, usually the chordwise
coordinate of the control points is kept constant [5]. When the number of control
points is large, B-splines can lead to high-frequency oscillations of the surface [129,
132].

One extension of the B-spline technique is the non-uniform rational basis spline
(NURBS) method. This approach allows a non-uniform spacing of the control points
in t and changes the basis functions used. The basis functions are rational and given
by

Ri,k(t) =
Ni,k(t) · ωi∑n−1
j=0 Nj,k(t) · ωj

, (4.58)

where ωi is the ith point’s weight [133]. The interpolated positions are

x(t) =
n−1∑
i=0

PiRi,k(t). (4.59)

Lepine et al. performed an inverse design, matching a target pressure distribution
around aerofoils in transonic conditions. They used 13 control points, from which
they selected 11 design parameters [133]. Srinath and Mittal used the NURBS
method with 10 design variables and three fixed points to parametrise a 2D aerofoil
in low-Reynolds conditions [122].
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4.4.4 Free-form deformation boxes

The free-form deformation (FFD) approach was proposed by Sederberg and Parry
for deforming solids in computer graphics [134]. The method creates an overset box
over the original, undeformed geometry. The overset box, which is a parallelepiped,
has a set of l×m×n equispaced control points. Their displacement deforms the box
which in turn deforms the geometry. Express the coordinates x, y, z as a function
of the box’s system of coordinates s, t, u

x = x0 + sS+ tT+ uU, (4.60)

where x = [x y z]T , x0 is the physical coordinate of the (0, 0, 0) point in the box’s
system of coordinates and S, T, U are the vectors defining the parallelepiped’s
edges. The transformed coordinates arest

u

 = [S TU]−1 (x− x0) . (4.61)

The transformed coordinates of the box are bounded to [0, 1], which means that the
interpolation can be calculated as a linear combination of Bernstein basis polyno-
mials. The jth Bernstein basis polynomial of order i is

Bi,j(x) =

(
j
i

)
(1− x)j−i xi. (4.62)

The parametrisation of the deformation is then

x =
l∑

i=0

Bi,l(s)

[
m∑
j=0

Bj,m(t)

[
n∑

k=0

Bk,n(u)Pijk

]]
, (4.63)

where Pijk is the vector of coordinates of the respective control point. As is the
case in the B-spline method in Eq. (4.55), the control point coordinates become the
coefficients of the basis polynomials. These coordinates are the design variables.

Lamousin and Waggenspack extended the FFD approach from parallelepipeds
to generic NURBS-based volumes. These were used in order to more easily relate
the shape of the deformed box and that of the surface in computer graphics. Unlike
in the case of the parallelepiped, the position of the points in the box’s system
of coordinates has to be found iteratively [135]. Samareh used an FFD technique
employing a bidimensional surface defined by NURBS instead of a three-dimensional
box. This method was applied to maximise the lift-to-drag ratio of a morphing
aircraft [136]. The MASSOUD shape parametrisation tool also provides a relation
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between the FFD variables and geometry parameters of interest for aerostructural
optimisation [137, 138].

Within aerodynamic optimisation, the FFD approach has been used to min-
imise the average drag at constant average lift of a wing [100]. In aeroelasticity,
MASSOUD has been used for the minimisation of take-off weight of a wing under
structural failure and lift constraints for steady and unsteady problems [119, 120,
139].

4.5 Verification of unsteady coupled gradients

The partitioned HB FSI adjoint algorithm described in Sec. 4.3.3 is verified by
applying it to a transonic limit-cycle oscillation (LCO) test case. This test case
was used in Sec. 2.8 to verify the direct harmonic balance approach with unknown
frequency. It is a 2D NACA 64A010 aerofoil that can move in the pitch and plunge
degrees of freedom. The reduced velocity of the case lies beyond the flutter point,
which leads to an oscillation. However, the nonlinear behaviour of the flow limits its
amplitude. The flow is modelled using the Euler equations, which are inviscid. One
of the high-amplitude setups in Sec. 2.8, Case 9, is used to perform the verification.
The fluid freestream conditions are given in Table 2.6 and the structural parameters
in Table 2.2. The direct harmonic balance simulation uses one harmonic, which
requires 3 time instances.

Two different objective functions are defined: the squared norm of the pitching
amplitude and the mean drag coefficient. The first objective function is computed
by the structural solver, while the second one is computed by the fluid solver. For
each objective function, the gradients obtained using the adjoint method are then
compared to those obtained by means of a finite differencing scheme.

The original aerofoil is plotted in blue in Fig. 4.2. In order to verify the gradients
of the two objective functions, a deformative method is used. Twelve Hicks-Henne
bumps on each side of the aerofoil are defined as design variables. The chordwise
location of the ith bump’s peak is obtained using a half-cosine distribution

xi = 1− cos

(
π · i

2 · n+ 1

)
, (4.64)

where n is the number of bumps in each side. This distribution leads to a higher
concentration of bumps close to the leading edge and wider spacing at the trailing
edge. The locations of the peaks, which correspond to parameter t1 in Eq. (4.54),
appear as orange circles in Fig. 4.2. Parameter t2 was set to 3, as was the case in
the original definition of the bumps. The shape of the twelve bumps on each side of
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Figure 4.2: NACA 64A010 aerofoil, in blue, with the peak of the Hicks-Henne design
variables marked as orange circles
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Figure 4.3: Shape of the Hicks-Henne bumps used as design variables

the aerofoil is shown in Fig. 4.3. If the value of the design variable is positive, the
boundary of the aerofoil is deformed away from the chord. Note that close to the
trailing edge the value of the bumps is always very close to 0, even for the bump
with t1 = 0.94.

The Hicks-Henne bumps and their derivatives were implemented in the rigid
body motion integrator. The bumps were chosen because of their ease of implemen-
tation, extensive use in the literature for 2D profiles and smoothness.

Direct harmonic balance simulations were carried out to verify the gradients
using central finite differences for both objective functions. The step length for
the bump functions was ∆ξ = ±1 × 10−4 · c. Economon performed a convergence
analysis of the step length of Hicks-Henne bumps in a transonic test case and found
little difference between 1× 10−6 · c and 1× 10−4 · c [101].
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4.5.1 Movement amplitude

One possible objective function is the movement amplitude. Generally, a large LCO
amplitude is not desirable, but a small one might be tolerated under certain condi-
tions. Therefore, reducing its value can be useful. For this test case the objective
function is defined as J = |α1|2, where α1 is the amplitude of the first harmonic of
the pitching motion. Because of the use of the harmonic balance method, this value
is directly available from the structural solver without needing to calculate a maxi-
mum. The main objective of this case is to verify the implementation of gradients
of a structural objective function within the coupled adjoint FSI approach.

The Hicks-Henne bumps that are used in order to modify the shape of the aerofoil
deform the surface in a direction normal to the chord. Figure 4.4 shows the value
of the gradients of the objective function calculated using the adjoint harmonic
balance technique with respect to each boundary node’s y coordinate at zero pitch.
The expression used to calculate this value is shown in Appendix B in Eq. (B.16).
The upper surface appears in blue while the lower surface appears in orange. In
principle, the two curves should match because the test case is symmetric. However,
as explained in Sec. 2.8.6, the direct harmonic balance solution is not symmetric
because of the reduced number of harmonics. As a result of this asymmetry, the
two curves do not match, but they follow similar trends.
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Figure 4.4: Sensitivity of the pitching amplitude with respect to each boundary
node’s y coordinate

From Fig. 4.4, the changes in the shape of the aerofoil needed to reduce the
pitching amplitude of this LCO can be deduced. It should be thinner close to the
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leading edge until approximately 20% of the chord. At that point, the gradient turns
negative and an increase in thickness would be preferred. Then, at around 60% of
the chord and until the trailing edge, the sign of the gradient changes again. Even
though the magnitude of the gradient is small, in this region the aerofoil should be
thinner. Finally, it should be noted that the trailing edge has strong oscillations.
Using the node coordinates as design variables could lead to a saw-tooth shape of the
optimised aerofoil close to the trailing edge. The gradients have a larger magnitude
in the first half of the chord, which justifies the higher density of design variables in
that region.

Verification of gradients

Figure 4.5 shows the gradient of the amplitude with respect to the Hicks-Henne
bumps. The centres of these bumps are shown in Fig. 4.2. Figure 4.5 compares
the gradients obtained by using the coupled FSI HB adjoint method described in
Sec. 4.3.3 and those obtained by central finite differences. The adjoint results ap-
pear as blue circles and the finite differences values appear as orange crosses. The
differences are small.

The trends of the gradients on the upper and lower sides of the aerofoil are
similar but the values are different. Close to the leading edge the values are positive,
which means that increasing the aerofoil’s thickness in that region would increase
the amplitude. Then, in the middle region they are negative. Finally, the last
design variable, the centre of which is very close to the trailing edge, has a positive
value. This matches the behaviour observed in Fig. 4.4. The oscillations close to
the trailing edge are smoothed out by the shape of the bump.

Table 4.1 compares the gradients of the amplitude objective function with respect
to various structural parameters and the Mach number obtained by using finite
differences and by using the present adjoint method. The steps used in the finite
differences scheme for each design parameter appear in the last column of the table.
They were chosen so that the change in the objective function was small enough
to eliminate third-order effects but still measurable. The results obtained using
the adjoint method are very similar to those obtained using finite differences. The
maximum difference is under 0.6% in the case of the moment of inertia, Iα. The
other gradients are closer, in all cases the adjoint method slightly overestimating
the magnitude of the gradient.

Increases in mass and torsional stiffness lead to a decrease in LCO amplitude,
while increases in plunging stiffness and moment of inertia increase the LCO ampli-
tude. In the first case, the modes’ natural frequencies move away from each other,
which in turn increases the flutter speed. Therefore, the current freestream condi-
tions would be closer to the bifurcation point so that, in the case of a supercritical
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Figure 4.5: Comparison of adjoint and central finite difference gradients of the
amplitude objective function with respect to the surface design variables

Hopf bifurcation, the amplitude would decrease. The plunge damping decreases the
amplitude, while the pitch damping increases it. This could be due to the fluttering
mode being plunge-dominant.

In the present setup, the freestream velocity and dynamic pressure increase with
increasing Mach number. Despite this, Table 4.1 shows that the amplitude decreases
as the Mach number increases. This phenomenon occurs because the flight condition
lies beyond the transonic flutter dip, so the flutter speed increases with the Mach
number.

Comparison of computational cost

Since the main objective of the present work is to make higher-fidelity FSI optimi-
sation more feasible, it is crucial to compare the computational cost incurred when
using the coupled adjoint method with that of the direct method.

The direct solution’s numerical parameters are those used in Sec. 2.8.6. The
case required using underrelaxation in order to converge. Therefore, the relaxation
parameter was set to ω = 0.7, which led to a converged solution. This same value
was used in order to obtain the adjoint solution.

Some numerical parameters differed between the fluid direct and adjoint solvers.
The adjoint CFL number was set to 2 instead of 3. Consequently, the minimum
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Parameter Gradients Parameter values

Adjoint Finite differences ξo ∆ξ

kh [Nm−1] 1.834× 10−7 1.825× 10−7 107 559.2 100
kα [Nmrad−1] −3.835× 10−7 −3.820× 10−7 80 669.4 100
ch [kg s] −2.543× 10−5 −2.529× 10−5 0 0.1
cα [kgm2 s] 1.786× 10−5 1.778× 10−5 0 0.1
m [kg] −2.176× 10−4 −2.168× 10−4 50.33 0.1
Iα [kgm2] 1.537× 10−3 1.528× 10−3 9.437 0.01

M∞ [−] −3.684× 10−1 −3.674× 10−1 0.8 0.001

Table 4.1: Verification of gradients of amplitude

number of iterations was increased from 2000 to 5000 in order to ensure a sufficient
reduction in the residual. The relaxation parameter of the adjoint calculation was
also set to ω = 0.7.

Table 4.2 compares the CPU time used by the original direct setup described
in Sec. 2.8 (tdir) and the adjoint calculation (tadj) for this particular test case. The
adjoint solution required 18 FSI iterations to reach convergence, which is close to the
20 required by the direct solution. In both cases mesh mapping is immediate because
of the matching meshes method used. The adjoint solution required a much shorter
time to perform the mesh deformation because the boundary only moves once, at
the beginning of the adjoint calculation. Therefore, the mesh was already deformed
at later FSI adjoint iterations. Communication of fluid and solid gradients took a
similar time in the two solutions.

It should be noted that the adjoint approach needs one direct solution and one
adjoint calculation per objective function. This results in a total of 1+2 calculations
for two objective functions. The total CPU time spent to obtain the gradients using
the proposed adjoint approach would be 31.2× 103 s. The central finite differences
technique needs 2n+1 direct simulations for n design variables. In the present case,
with n = 24 + 6 + 1 = 31, it would be 63 direct simulations, which would take
901.5× 103 s of CPU time, approximately 30 times higher.

In both cases the most time-consuming part of the calculation was the fluid
solver: 99.8% of the CPU time for the direct solver and 99.99% for the adjoint
solver. The adjoint solver reduced significantly this cost by approximately 43%,
despite requiring a larger number of fluid iterations. This reduction drove the overall
reduction in computational cost. The solid solver required a minimal time in both
cases. The solid adjoint solver was approximately four times faster than the direct
one.
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Step tdir [s] tadj [s]

Mesh mapping 0.00 0.00
Mesh deformation 26.30 0.08
Communication 0.15 0.13
Fluid solver 14 511.43 8340.57
Solid solver 0.08 0.02
Total 14 540.49 8341.27

Table 4.2: Comparison of computational cost between direct and adjoint harmonic
balance methods

4.5.2 Mean drag coefficient

The gradients of a structural objective function with respect to shape design vari-
ables have been verified in the previous section. A fluid objective function is in-
troduced in the present section: the mean drag coefficient of the LCO, J = cd,0.
The mean corresponds to the zeroth harmonic of the drag coefficient, which can be
obtained from the sum of the drag coefficients in each of the time instances divided
by the number of time instances. The main objective of this section is to verify
the gradients of a fluid objective function within the coupled adjoint framework.
Combining these results with those described in Sec. 4.5.1, the complete framework
would be verified.

Verification of gradients

Figure 4.6 shows the gradient of the mean drag coefficient with respect to each of the
design variables in Fig. 4.2. It compares the adjoint method results, which appear
as blue circles, and central finite differences predictions, which appear as orange
crosses.

Comparing these gradients to those obtained for the amplitude objective function
in Fig. 4.5, they follow a broadly similar trend. In these flow conditions, the effect
of the oscillation amplitude on the mean drag is very important.

The gradients of the mean drag coefficient with respect to the same parameters
shown in the previous section are shown in Table 4.3. The gradients obtained by
the adjoint and finite differences methods are compared. The same finite differences
simulations were used for the amplitude objective function in Table 4.1 and for the
mean drag objective function. The results follow broadly the same trends as those
of the amplitude objective function, with the adjoint method slightly overestimating
the magnitude of the gradients. The maximum difference between the predictions
of the two methods is in the case of the moment of inertia as well, though in this
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Figure 4.6: Comparison of adjoint and central finite difference gradients of the mean
drag with respect to the surface design variables

case the discrepancy is under 0.35%. As expected, the signs match those obtained
for the amplitude objective function, albeit with a larger magnitude.

Parameter Gradients Parameter values

Adjoint Finite differences ξo ∆ξ

kh [Nm−1] 8.650× 10−7 8.624× 10−7 107 559.2 100
kα [Nmrad−1] −1.834× 10−6 −1.830× 10−6 80 669.4 100
ch [kg s] −1.263× 10−4 −1.259× 10−4 0 0.1
cα [kgm2 s] 7.609× 10−5 7.590× 10−5 0 0.1
m [kg] −9.217× 10−4 −9.199× 10−4 50.33 0.1
Iα [kgm2] 7.355× 10−3 7.330× 10−3 9.437 0.01

M∞ [−] −1.1992 −1.1978 0.8 0.001

Table 4.3: Verification of gradients of mean drag coefficient

Evolution of gradients with the coupling

The evolution of dcd,0/dM∞ as the FSI solution converges is shown in Fig. 4.7. In the
first iteration, before the influence of the structure is included in the computation,
the value is positive. That is, if the movement amplitudes and frequency were kept
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constant, the mean drag coefficient would increase with the Mach number. This
behaviour is expected since a higher freestream Mach number leads to a stronger
shock and, thus, to a higher shock drag.

However, as the simulation progresses the gradient changes sign. If the Mach
number increases, the mean drag decreases. This is because for this test case the
amplitude of the limit-cycle oscillation decreases with increasing Mach number.
Since under these conditions the mean drag increases with the movement amplitude,
the drag decreases as well. This phenomenon counteracts the positive contribution
of the increased strength of the shock.
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Figure 4.7: Evolution of the gradient of the drag coefficient with respect to the
Mach number with FSI iteration

4.6 Summary

A partitioned technique that combines the harmonic balance and adjoint methods
to obtain gradients for the optimisation of FSI problems has been proposed. The
approach can be applied to problems with an a priori unknown frequency. In order
to validate the technique, it has been applied to a 2D limit-cycle oscillation test
case.

Two objective functions have been defined: a structural and a fluid objective
function. The gradients of these objective functions with respect to shape, structural
and fluid design parameters have been obtained. They have been compared to those
obtained using central finite differences. Both objective functions show a very good
match of the gradients, independently of the kind of design parameter.
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The proposed approach shows several advantages compared to traditional time-
marching methods: it only requires storing a very small number of flow solutions,
it is less costly and many objective functions of interest, such as motion amplitude,
are very easy to define. Since one harmonic is used to solve the direct problem,
only 3 time instances have to be saved to disk. The computational cost of one
harmonic balance adjoint calculation is lower than that of one harmonic balance
direct calculation. For a case with 2 objective functions and 31 design variables, the
adjoint technique is approximately 30 times faster than central finite differences.





Chapter 5

Optimisation of time-periodic
fluid-structure interaction problems

A harmonic balance-based algorithm to obtain gradient vectors using the adjoint
method has been described and verified in Chapter 4. The technique has been
developed to optimise time-periodic fluid-structure interaction (FSI) problems in
which the frequency is unknown. The results of the optimisation of four FSI test
cases using this algorithm are shown in the present chapter.

The test cases act on a symmetric NACA 64A010 aerofoil in transonic conditions
that undergoes a limit-cycle oscillation (LCO). The aerofoil is allowed to move in
the pitching and plunging degrees of freedom restrained by linear springs. The setup
is shown in Fig. 2.9. This case is the same one used to verify the gradients obtained
using the proposed adjoint harmonic balance method in Sec. 4.5. It corresponds
to Case 9, described in Sec. 2.8. The structural parameters are given in Table 2.2
and the flow conditions appear in Table 2.6. The original amplitude of the pitching
motion was of 0.0735 rad ≃ 4.21◦.

As was the case in the previous chapter, the solvers used are SU2 and the rigid
body motion integrator. The flow is solved using the Euler equations, which are
inviscid. The design variables are 24 Hicks-Henne bumps, 12 on the upper side
and 12 on the lower side. One harmonic is used. The upper and lower bumps are
allowed to take different values, which lets the aerofoil break its symmetry. They
are the design variables used for verifying the adjoint gradients. The location of
the peaks of the bumps is shown in orange in Fig. 4.2. As explained in Sec. 4.5,
the Hicks-Henne bumps and their derivatives were implemented in the rigid body
motion integrator, which also calculates the boundary deformation resulting from
the bumps. Then, this deformation was imposed as a displacement of the boundary
on the fluid solver.

125
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Figure 5.1: NACA 64A010 aerofoil, in blue, with the thinnest aerofoil within the
design space in dashed orange

The amplitude for all the shape design variables, which is normalised by the
chord, is bounded such that ∆ξ ∈ [−1.0×10−3, 1.0×10−3]. The original aerofoil, in
blue, and the thinnest aerofoil possible with these bounded amplitudes, in dashed
orange, are plotted in Fig. 5.1. The original aerofoil has ξ = 0, that is, the amplitude
of all the bumps is 0. The thinnest aerofoil in the design space has the design
variables take the value ξi = −1.0 × 10−3 ∀i ∈ [0, 23]. The figure’s scale on the y
axis is exaggerated in order to better show the difference between the two aerofoils.

The present chapter introduces four optimisation test cases: two unconstrained
and two constrained. The first case is an unconstrained minimisation of the ampli-
tude of the LCO. The second case uses a fluid objective function to minimise the
mean drag. Since the first two optimisation cases increase the drag coefficient at
α = 0, a constrained minimisation of the amplitude is performed. Then, a final
case that maximises energy dissipation on the plunging degree of freedom’s damper
is included. This last optimisation case also includes a constraint on the pitching
amplitude of the aerofoil.

5.1 Minimisation of LCO amplitude by shape
optimisation

Large amplitudes of limit-cycle oscillations can be destructive. In those cases, re-
ducing the amplitude of the LCO is important. The first optimisation test case uses
the gradients obtained in Sec. 4.5.1, scaled by the original value of the objective
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function. The optimisation problem is

min
ξ

J(ξ) =
|α1|2

|α1,o|2
,

subject to ξi ∈
[
−1.0× 10−3, 1.0× 10−3

]
∀i ∈ [0, 23],

(5.1)

where ξ is the vector of design variables, ξi is the value of the ith design variable,
|α1| is the norm of the first harmonic’s pitching amplitude and α1,o is the value of
said pitching amplitude for the original aerofoil. The squared norm was used to
prevent a change in sign of the pitching amplitude leading to a maximisation. Since
the sine amplitude was set to 0 as described in Sec. 2.8, the norm is equal to the
absolute value of the cosine amplitude |α1| = |α1,c|. The objective function is then

J(ξ) =
α2
1,c

|α1,o|2
. (5.2)

This greatly simplifies the calculation of derivatives. It is an unconstrained optimisa-
tion problem with bounded design variables. Therefore, the SciPy1 implementation
of a limited-memory BFGS algorithm, L-BFGS-B [140, 141] is used.

5.1.1 Optimisation process

The optimisation process consisted of four iterations. After the fourth iteration,
the aerofoil’s flutter speed increased beyond the imposed freestream conditions.
Therefore, the pitch amplitude and its gradients became 0. The path of reduction
of the amplitude is shown in Fig. 5.2.

The resulting aerofoil’s camber line and thickness distribution are shown in
Fig. 5.3. The camber line is in Fig. 5.3(a) and the thickness distribution is in
Fig. 5.3(b). The NACA 64A010 aerofoil used as a starting point is in blue and the
optimised one is in dashed orange. As expected from the gradients in Sec. 4.5.1,
the optimised aerofoil is thinner close to the leading and trailing edges and thicker
in the middle. Its maximum thickness increases from 10% to 10.7% and the po-
sition of this maximum thickness moves downstream. Interestingly, the optimised
aerofoil is slightly cambered with a reflex camber line. The maximum camber is of
approximately 0.1%. The camber line appears because the results obtained by the
harmonic balance method are not symmetric and the design variables can break the
symmetry of the original aerofoil. The crossing point of the camber line is around
46% of the chord.

1https://scipy.org/

https://scipy.org/


128 CHAPTER 5. OPTIMISATION OF TIME-PERIODIC FSI PROBLEMS

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Optimisation iteration

J

Figure 5.2: Evolution of the amplitude objective function, J , in blue circles

5.1.2 Steady results

Figure 5.4 compares the steady pressure coefficient (Cp) distribution over the orig-
inal, in blue, and optimised, in orange, aerofoils at α = 0. Since the optimised
aerofoil is asymmetric, the upper side is represented as a dashed line and the lower
side is a dotted line. A steady CFD simulation using SU2 was used for both aero-
foils. In order to generate the deformed mesh for the optimised aerofoil, the design
capabilities of SU2 were used.

The optimised aerofoil has a stronger shock that appears farther downstream.
In the original aerofoil it occurred at 52% of the chord, while in the optimised one
it occurs at 56% and 58% of the chord on the upper and lower sides, respectively.
The stronger shocks result in a larger value of the drag coefficient. The influence of
the camber can also be observed, with slight differences in the pressure distribution
between the upper and lower surface of the aerofoil.

This modified pressure distribution leads to a non-zero lift coefficient at α = 0
of −0.015. Furthermore, the drag at α = 0 increases from 0.00270 to 0.00516, a
relative increase of ∼ 91%.

5.1.3 Flutter point

As previously explained, the aerofoil’s movement amplitude was eliminated at the
end of the optimisation procedure. This implies that the flutter point lies at a higher
freestream velocity than the one studied. In order to confirm this, the flutter process
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Figure 5.3: Comparison of the original NACA 64A010 aerofoil and the minimum
amplitude aerofoil
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Figure 5.4: Comparison of the steady pressure coefficient distribution around the
original NACA 64A010 aerofoil and the minimum amplitude aerofoil at α = 0

described in Sec. 2.8 is applied to the new aerofoil. The deformed mesh obtained
for the steady calculations is used for the flutter calculations.

At the end of the last unsteady simulation, a mean pitch of α0 = 0.0024 rad ≃
0.14◦ is recovered. While this mean pitch depends on the dynamic pressure, for
simplicity it is kept constant during the flutter calculation.

A freestream velocity sweep at a constant Mach M∞ = 0.8 is performed. The
resulting damping and frequency curves are shown in Fig. 5.5(a) and Fig. 5.5(b),
respectively. Both figures show the pitch-dominant mode in orange and the plunge-
dominant mode in blue. The flutter point appears as a dashed black line, showing
both the flutter speed and the ζ = 0 line. The damping and frequency curves
calculated for the original aerofoil are shown as dash-dotted grey lines.

The flutter point for the optimised aerofoil lies at a reduced airspeed of ŨF =
3.473, compared to the original aerofoil’s flutter airspeed of ŨF = 2.853. This
represents an increase of approximately 22% of the flutter airspeed. Since the case’s
reduced airspeed is slightly lower, at Ũ = 3.465, there is no flutter.

As was the case in the original aerofoil, the plunge-dominant mode is the one to
flutter. The damping of the pitch-dominant mode is lower for the optimised aerofoil
than for the original aerofoil for all freestream velocities. The plunge-dominant
mode, on the other hand, behaves in a similar fashion for the two aerofoils for
Ũ < 2. At higher airspeeds, the slope of the plunge-dominant damping of the
optimised aerofoil is shallower than for the original aerofoil, which leads to the
increased flutter speed. As seen in Fig. 5.5, the frequencies of the modes are farther
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Figure 5.5: Results of the flutter analysis for the minimum amplitude aerofoil

apart compared to the original at high values of the reduced airspeed. This is mostly
due to the absence of a reduction in the frequency of the pitch-dominant mode.

5.2 Mean drag objective function minimisation

Since the unconstrained amplitude minimisation led to an increased drag coefficient,
using the mean drag coefficient in the objective function could lead to an aerofoil
in which this increase was not as marked. Furthermore, as seen in Sec. 4.5.2, the
gradients of the mean drag coefficient are highly correlated with the gradients of the
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Figure 5.6: Evolution of the mean drag objective function, J , in blue circles

amplitude. For the present test case, the objective function is defined as

min
ξ

J(ξ) =
c̄d
c̄d,o

,

subject to ξi ∈
[
−1.0× 10−3, 1.0× 10−3

]
∀i ∈ [0, 23],

(5.3)

where c̄d is the mean drag coefficient for the unsteady problem and c̄d,o is the mean
drag coefficient for the original design. Thus, the value of the original objective
function is Jo = 1. As in the unconstrained case, the L-BFGS-B algorithm was
used [140, 141].

5.2.1 Optimisation process

The path the optimisation followed is shown in Fig. 5.6. The value of the drag
objective function, J , is shown in blue circles. At the end of the optimisation process,
there was an 84% reduction of the average drag coefficient. The final amplitude was
reduced more than an order of magnitude, to 0.0064 rad ≃ 0.18◦.

The camber line and thickness distribution of the final optimised aerofoil are
shown in dashed orange in Figs. 5.7(a) and 5.7(b), respectively. The NACA 64A010
aerofoil is plotted in solid blue. The optimised aerofoil is very similar to the one
obtained by minimising the amplitude, being somewhat thicker than the original
(10.5% of the chord) and having a slight, reflex camber (maximum of 0.1% of the
chord). Compared to the aerofoil described in Fig. 5.3, the present test case’s
camber had its crossing point farther downstream, around 58% of the chord. After
this point, the negative camber is minimal.
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Figure 5.7: Comparison of the original NACA 64A010 aerofoil and the minimum
mean drag aerofoil
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Figure 5.8: Comparison of the steady pressure coefficient distribution around the
original and minimum mean drag aerofoils at α = 0

5.2.2 Steady results

Figure 5.8 shows the steady pressure distribution around the original and optimised
aerofoils at α = 0. The same process described in Sec. 5.1.2, with steady CFD
simulations, was applied. The Cp distribution around the original aerofoil is plotted
in blue and around the optimised aerofoil in orange. The upper side for the optimised
aerofoil is represented as a dashed line and the lower side as a dotted line. The
shock, which is located around 57% of the chord in both sides, is stronger than the
original one but weaker than in the unconstrained minimisation of amplitude. The
asymmetry is significantly less marked.

The reduced asymmetry leads to a steady lift coefficient that is closer to zero,
cl = 0.0027, for α = 0. The corresponding steady drag coefficient is cd = 0.00431,
which is lower than that obtained in Sec. 5.1 but still ∼ 60% larger than the original
value.

5.2.3 Flutter point

The setup described in Sec. 5.1.3 is used in order to obtain the flutter point of
the optimised aerofoil. Since in this case the final pitching amplitude is not 0, a
steady FSI simulation is performed in order to obtain the steady pitch angle. The
steady pitch is smaller than that of the amplitude-minimised aerofoil. Its value is
α = 0.0005 rad ≃ 0.03◦.

The flutter point is at a reduced airspeed of ŨF = 3.432. It is slightly lower
than the airspeed used for the computation, Ũ = 3.465. This is coherent with the
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behaviour observed during the optimisation, with the final design having a low, but
non-zero pitching amplitude. The flutter point shows an increase of approximately
20% with respect to the unoptimised aerofoil.

5.3 Drag-constrained LCO amplitude minimisation

A mean-drag objective function minimisation has been presented in the previous
section. However, there was a smaller, but still significant increase in the steady
drag coefficient of the aerofoil at α = 0. One way to prevent this issue is by means
of a drag-constrained optimisation process.

The optimisation problem is defined as

min
ξ

J(ξ) =
|α1|2

|α1,o|2
,

subject to ξi ∈
[
−1.0× 10−3, 1.0× 10−3

]
∀i ∈ [0, 23],

K(ξ) =
cd
cd,o

∣∣∣∣
α=0

≤ 1.1,

(5.4)

where cd is the steady drag coefficient and cd,o is the steady drag coefficient of the
original aerofoil. The constraint allows a 10% increase in the zero-angle-of-attack
steady drag coefficient of the aerofoil. For this constrained optimisation, the Sequen-
tial Least Squares Programming (SLSQP) algorithm for constrained optimisation
implemented in SciPy2 was used [142]. Since for this test case the cd constraint
is steady, it is implemented using SU2’s design capabilities. SU2 uses the steady
discrete adjoint method in order to calculate the gradients with respect to the shape
design variables. The constraint is a purely fluid one, so there is no coupling with a
structural solver.

5.3.1 Optimisation process

The optimisation path is shown in Fig. 5.9. The objective function, J , is shown as
blue circles, while the constraint, K, appears as orange crosses. The maximum value
of the constraint appears as a dotted black line. The first iteration greatly reduces
the value of the objective function. However, the steady drag constraint is violated.
At the end, after 15 iterations, the final design meeting the constraint is obtained.
The amplitude of the pitching motion is reduced to α1 = 0.0305 rad ≃ 1.75◦. This
represents a ≃ 60% reduction in amplitude.

2https://scipy.org/

https://scipy.org/
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Figure 5.9: Evolution of the amplitude objective function and the steady drag con-
straint during the optimisation process

The final optimised aerofoil’s camber line and thickness distribution are shown
in Fig. 5.10. The asymmetry in the camber line is much more pronounced than
in the unconstrained optimisation cases, with a more significant reflex camber line
(0.3% of the chord). The crossing point is at 64% of the chord, farther downstream.
After this point, there are some oscillations which may be caused by the reduced
density of design variables close to the trailing edge. The aerofoil is thinner than
the previous two unconstrained optimisation cases, but still thicker than the original
one at 10.2% thickness. Unlike those cases, the thickness close to the trailing edge
is not reduced.

5.3.2 Steady results

The steady pressure distribution around the optimised aerofoil is shown in Fig. 5.11
in dashed orange for the upper side and in dotted orange for the lower side. The
original Cp distribution appears as a solid blue line. As in the two unconstrained
cases, the pressure around the leading edge is increased, while the shock moves
downstream and strengthens. However, the extent of the shock’s movement is much
lower in this case. Since the fluid model used, Euler, does not include viscous
behaviour, the drag force is computed from the pressure distribution.

As expected from the significant camber line, the asymmetry of the pressure
distribution is quite pronounced. The shock on the upper side is at 54% of the chord,
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Figure 5.10: Comparison of the original NACA 64A010 aerofoil and the steady drag-
constrained optimised aerofoil
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Figure 5.11: Comparison of the steady pressure coefficient distribution around the
original NACA 64A010 and the steady drag-constrained aerofoil at α = 0

while on the lower side it is at 57%. The load coefficients at α = 0 are cl = −0.0252
and cd = 0.00297. Interestingly, the lift coefficient is negative despite the mostly-
positive camber line. The camber line’s maximum is at 21% of the chord, which
is upstream of the maximum thickness. This positive maximum leads to a higher
deflection on the upper side, which causes the shock wave to occur earlier on that
side. Since on the lower side the shock wave appears farther downstream, the total
lift is negative. The drag coefficient meets the constraint, while the lift coefficient
is larger in magnitude than the ones obtained by unconstrained optimisation.

5.3.3 Flutter point

The steady pitch induced by the asymmetric pressure distribution at the imposed
freestream conditions is α = 0.0037 rad ≃ 0.21◦. This value is used for the flutter
calculation.

For the drag-constrained optimised aerofoil, flutter occurs at ŨF = 3.169 instead
of ŨF = 2.853. The increase is of approximately 11%, around half the one observed
in the unconstrained optimisation cases. This is coherent with the smaller reduction
in amplitude observed.

5.4 Power dissipation maximisation

The optimisation test cases shown previously concerned minimising the amplitude of
a limit-cycle oscillation. However, LCOs are not always undesirable. One example of
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an engineering problem in which they are needed are energy-harvesting applications.
They use the self-excited motion of a body in order to generate electricity for remote
operations.

An optimisation problem inspired by such applications is treated in the present
section. Since the method has not been applied to a code capable of solving the
piezoelectric or inductive equations used for energy harvesting, the plunging damper
is used instead. The objective of the test case is to maximise the power dissipated
by this damper while not exceeding a maximum amplitude. Thus, the expression of
the optimisation problem is

max
ξ

J(ξ) =
1

T

∫ T

0

ch · ḣ2 dt =
1

2 ·Nh + 1

2·Nh∑
i=0

ch · ḣ2,

subject to ξi ∈
[
−1.0× 10−3, 1.0× 10−3

]
∀i ∈ [0, 23],

ξ24 = ζh ∈ [0, 0.2] ,

K(ξ) =
|α1|2

|α1,o|2
≤ 1,

(5.5)

where T is the period of the LCO, ch is the damping of the plunge degree of freedom,
ḣ is the plunge velocity and Nh is the number of harmonics. The constraint is the
pitching amplitude of the original test case, α1,o = 0.0735 rad ≃ 4.21◦. This con-
straint limits indirectly the maximum power dissipation. Besides the Hicks-Henne
bumps used in the other optimisation problems, the plunge damping is included
as a design variable. The plunge damping is bounded between 0 and a value such
that ζh = ch/(2

√
kh ·m) = 0.2. From Eq. (5.5) it can be seen that if ch = 0, the

derivative with respect to the shape variables is 0. In order to allow the optimiser
to modify the shape of the aerofoil in the first iteration, the starting value is such
that the corresponding wind-off uncoupled damping coefficient is ζh = 0.01.

The power can be turned non-dimensional for ease of comparison. One possible
scaling is

P̄ =
J

mω3
hb

2
, (5.6)

where P̄ is the non-dimensional average power, J is the power dissipation objective
function defined in Eq. (5.5), ωh is the uncoupled wind-off natural frequency of the
plunge mode and b is the half-chord [143].

In this case, one harmonic balance adjoint simulation is used for the energy
dissipation and another for the amplitude constraint. The direct harmonic balance
simulation is re-used for the objective function and the constraint in order to reduce
the computational cost. As in Sec. 5.3, the Sequential Least Squares Programming
(SLSQP) algorithm was used.
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5.4.1 Optimisation process

The evolution of the energy dissipation objective function appears in Fig. 5.12(a)
and the corresponding value of the amplitude constraint is in Fig. 5.12(b). Since
the damping is non-zero, the first design is not exactly equal to the original test
case. As shown in Table 4.1, the pitching amplitude decreases with increasing ch.
Therefore, the first design has a lower amplitude than the original, zero-damping,
one.

The evolution of damping is shown in Fig. 5.13(b). In the second design iteration,
the optimiser reduces the damping to 0. This results in an elimination of the energy
dissipation and an increase in pitching amplitude that violates the constraint. Then,
the damping starts to increase. In iteration 3, it reaches the upper bound, ζh =
0.2. The pitching amplitude is significantly reduced and so is the dissipated power.
Afterwards, it oscillates around the values that will lead to the optimised solution.
After iteration number 13, the changes in the magnitudes of interest are marginal.
The optimised solution has a damping ratio of ζh = 0.074 that leads to a non-
dimensional dissipation in the plunging damper of P̄ = 0.0207.

At constant plunging amplitude, the power generated is proportional to the
movement frequency squared. Consequently, this frequency increases during the
optimisation process from the original value of 63.6 rad s−1 to 68.2 rad s−1. The
evolution of the frequency is shown in Fig. 5.13(a). Comparing it to Fig. 5.13(b)
and to Fig. 5.12(b), it can be seen that high-frequency designs also have a higher
damping ratio and a reduced amplitude. The optimiser finds a balance between
these three magnitudes in order to maximise the dissipated power.

The final design is shown in dashed orange in Fig. 5.14. It is compared to the
original aerofoil, in solid blue. Unlike the aerofoils that minimise the amplitude, the
present case results in a thinner aerofoil. Its maximum thickness is of 9.1%. It also
has a slight reflex camber, comparable to the one in the drag minimisation shown
in Sec. 5.2 (maximum of 0.1%, but negative). Contrary to the other optimisation
cases, it is first negative and then positive.

5.4.2 Steady results

The steady pressure coefficient distribution for the optimised (in orange) and original
(in blue) aerofoils is plotted in Fig. 5.15. Since the optimised aerofoil is asymmetric,
its upper side is represented as a dashed line and its lower side is a dotted line. The
pressure distributions around both aerofoils were calculated using a steady CFD
computation at α = 0.

Compared to the other optimised aerofoils, the asymmetry of the pressure distri-
bution is smaller, with only slight differences close to the leading edge. Furthermore,
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power dissipation aerofoil
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Figure 5.15: Comparison of the steady pressure coefficient distribution around the
original NACA 64A010 aerofoil and the maximum power dissipation aerofoil at
α = 0

the strength of the shock is significantly reduced as it moves upstream, to approx-
imately 47% of the chord. This results in a lower value of the drag coefficient,
cd = 0.00258, compared to the original cd,o = 0.00270. As a result of the reduced
asymmetry, the lift coefficient is negligible.

5.5 Summary
The results of optimisations using the FSI harmonic balance method presented in
Chapter 2 and the corresponding adjoint method described in Chapter 4 have been
shown in the present chapter. A summary table with some magnitudes of interest
of the five studied aerofoils is presented in Table 5.1. The table compares the
steady drag and lift coefficients at α = 0 and the pitching amplitude and mean drag
coefficients of the unsteady results.

The optimisation process has been demonstrated for unconstrained and con-
strained cases, including combining steady and unsteady calculations. The results
for those cases minimising the amplitude follow similar trends, even when including
a strict steady drag constraint. In general, thicker aerofoils lead to lower amplitudes
and higher flutter points, but they increase the strength of the shock and, thus, the
steady drag.

In all the optimisation cases it can be seen that small modifications to the shape
of the aerofoil can lead to very important changes to the predicted amplitude of
LCOs. However, it must be noted that the fluid model is inviscid, which can limit
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the applicability of the results. Finally, the case maximising the energy dissipation
has shown that the method can be applied to more complex objective functions.

Obj. function Constraint Steady results (α = 0) Unsteady results

cd [−] cl [−] |α1| [rad] c̄d [−]

Original 0.00270 0 0.07357 0.02699
Pitching amp. None 0.00516 −0.01497 0 0.00511
Mean drag None 0.00431 0.00274 0.00637 0.00436
Pitching amp. Steady drag 0.00297 −0.02521 0.03050 0.00759
Power diss. Pitching amp. 0.00258 −0.00044 0.07353 0.02170

Table 5.1: Comparison of the optimised aerofoils





Chapter 6

Conclusions and future work

6.1 Conclusions

The main objective of the present work is to accelerate the gradient-based optimi-
sation of time-periodic fluid-structure interaction (FSI) problems. To that effect a
harmonic balance (HB) adjoint technique for FSI using a partitioned approach has
been developed, implemented and verified.

In order to apply the method, two basic building blocks are needed: a direct
solver and an adjoint solver. The direct solver provides the physical solution and
the adjoint solver calculates the gradients.

The first building block consists in a partitioned FSI harmonic balance approach
for problems with unknown frequency. It includes a new frequency iteration method
for partitioned solvers, inspired by monolithic approaches. The technique combines
phase-fixing and frequency iteration, removing one structural unknown from the
problem. Unlike other frequency iteration approaches, this new method does not
require the inclusion of an additional frequency equation.

The complete FSI harmonic balance approach was verified on a typical nonlinear
aeroelastic problem with unknown frequency. It consists in a pitch-plunge aerofoil
undergoing a limit-cycle oscillation (LCO) in the transonic flow regime. The inviscid
Euler equations are used to model the flow field. The proposed harmonic balance
approach was successfully verified by comparing its predictions to those of time-
marching simulations.

Several test cases with reduced velocities beyond the flutter point have been
used to obtain the bifurcation diagram. Two cases are studied in more detail: one
with lower pitching amplitude and another one with higher pitching amplitude. The
present approach is one order of magnitude faster than a time-marching simulation

147
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for the low-amplitude test case studied. However, there are some differences be-
tween the predicted limit-cycle oscillation amplitudes using the HB method with
one harmonic and the time marching approach. Namely, the LCO amplitude is
overpredicted and a non-physical break of symmetry occurs.

The differences are more important in the higher-amplitude case. For this case,
the effect of the phase and the number of harmonics on the harmonic balance solution
has been studied. If a sine waveform is used for the pitch instead of a cosine
waveform, the break of symmetry is reduced. The discrepancy between harmonic
balance and time-marching results can also be reduced by increasing the number of
harmonics. While simulations with more harmonics lead to a closer match with the
results of the time-marching approach, they result in an increased computational
cost. Despite this, all harmonic balance simulations were faster than the time-
marching calculations.

One further advantage of the harmonic balance method is that it only requires
mesh convergence. In contrast, time-marching requires both mesh- and time-convergence.
That is, the end time of the simulation must be long enough for all the transients to
have decayed in order to accurately determine the oscillation amplitude. It is not
possible to select in advance the time necessary to reach the steady-state solution.

The second building block of the present optimisation methodology consists in
the derivation of the adjoint equations for the aeroelastic harmonic balance method.
First, a partitioned approach for steady FSI adjoint calculations was implemented
and verified. It works with both matching meshes and conservative radial-basis
function interpolation methods. A 2D beam in crossflow was used to verify the
calculations. Two different structural solvers were employed: a geometrically non-
linear FEM-based code and a beam method. The drag coefficient was selected as
an objective function. The gradients obtained matched those calculated using finite
differences for structural and fluid parameters using both codes.

The final step was to extend the adjoint calculation to unsteady problems. The
frequency iteration technique introduces one adjoint equation, while phase-fixing
removes another. These adjoint equations were implemented in the pitch-plunge
solver used to model the 2D transonic LCO. Furthermore, Hicks-Henne bumps were
introduced to the structural solver as shape design variables.

The high-amplitude transonic limit-cycle oscillation test case was used to ver-
ify the adjoint harmonic balance method. Two unsteady objective functions were
defined: the amplitude of the pitching motion and the mean drag coefficient.

The harmonic balance adjoint technique has several advantages. One is that it
only requires saving 2 · Nh + 1 solutions for Nh harmonics. Whereas for the time-
marching direct problem 20000 time iterations were saved, for the one-harmonic
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solution only 3 time instances had to be stored. Furthermore, the calculation of
the objective functions and their derivatives is very simple to implement, since both
objective functions are outputs of the harmonic balance solver. There is no need to
define a window or to try to estimate a maximum in order to calculate the mean
drag or the pitching amplitude.

For the case studied here, each harmonic balance adjoint calculation is faster
than the harmonic balance direct calculation. In total, six structural, one fluid
and 24 shape design parameters were used for the comparison. With two objective
functions and 31 design variables, the proposed adjoint approach is approximately
30 times faster than central finite differences. The resulting values of the gradients
were compared to those evaluated using finite differences and they show a very good
match for both objective functions. Interestingly, the mean drag decreases with the
Mach number. In this case it is probably because of the reduced motion amplitude.

Finally, the complete adjoint harmonic balance approach has been applied to
the optimisation of four test cases. Two of them were unconstrained and two were
constrained. The unconstrained cases reflected the objective functions studied for
the verification of the adjoint approach. They were pitching amplitude and mean
drag minimisation.

The first case eliminated the limit-cycle oscillation, leading to a flutter point
slightly beyond the freestream conditions of the problem. However, it significantly
increased the steady drag coefficient of the aerofoil. The second case reduced the
amplitude of the LCO, since in this case, higher amplitudes lead to higher values of
the mean drag.

The two constrained cases demonstrated different aspects of the method. The
first one consisted in a steady drag-constrained amplitude minimisation. For that
case, a constraint using a fluid solver was implemented. This shows that the pro-
posed methodology can take into account different kinds of solvers. It succeeded in
reducing the amplitude, though by a lesser amount than the unconstrained prob-
lems.

The second constrained case attempted to maximise power dissipation on a
plunge damper while keeping pitch amplitude below its original value. The ob-
jective function was inspired by energy harvesting applications. Both the power
dissipation and the pitch constraint were calculated using the proposed harmonic
balance technique.

In general, thicker aerofoils led to a reduction of the LCO amplitude. This reduc-
tion was accompanied by an increase in the flutter speed of the three minimisation
cases. Furthermore, since the direct solver introduces a break in the symmetry of
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the problem the optimiser modified the camber line of the aerofoil. This led to a
reflex camber line in all four cases.

In conclusion, the combined harmonic balance adjoint technique proposed in this
work is significantly faster than time-marching approaches or finite differences for
the studied cases. It can be used to optimise different objective functions and can
be combined with other approaches. While the computational cost is still high, the
method represents an important step towards cheap, higher-fidelity LCO calcula-
tions for optimisation.

6.2 Suggestions for further work

6.2.1 Reducing the computational cost

One of the issues seen in the direct solution in Sec. 2.8 is that the lack of time reso-
lution in flows with discontinuities, such as shocks, leads to unexpected behaviour.
In particular, the harmonic balance method resulted in a non-physical break of sym-
metry and a change in the estimation of the loads for the case studied here. While
using more harmonics significantly improves the solution, the computational cost is
also increased. Two possible ways to reduce the computational cost of more accu-
rate solutions are suggested here: introducing a frequency-domain harmonic balance
solver and introducing the derivative of loads with respect to the frequency in the
frequency iteration technique.

Frequency-domain harmonic balance fluid solver

There are two main approaches for frequency-domain harmonic balance CFD solvers:
the convolution method and Fourier transform-based techniques. The former ap-
proach with one harmonic was used by Ning and He in order to calculate the flow
around an oscillating turbine blade [144]. However, it was reported by Hall et al.
that for the Euler equations the convolution method requires O(N3

h) operations per
iteration, where Nh is the number of harmonics. This makes using the approach un-
feasible for moderate numbers of harmonics. Furthermore, some terms in turbulence
models are too complex to obtain analytically in the frequency domain [48].

The nonlinear terms of the equations could also be estimated using a Fast
Fourier-Transform (FFT). The main advantage with respect to the convolution tech-
nique is that the FFT requires fewer operations, especially if the number of time
instances is a power of 2 [85]. The FFT-based approach was applied by McMullen
et al. to both the Navier-Stokes and Reynolds-averaged Navier-Stokes equations and
a rigid mesh [145].
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Derivative of loads with respect to frequency

In order to improve the convergence of the L2 residual norm technique, Yao and
Marques introduced the derivative of loads with respect to frequency. This ap-
proach could be adapted in order to work with the combined technique proposed in
Sec. 2.5.3.

6.2.2 Impact of shape changes on interpolation matrices

Since the matrices used for interpolation depend on the position of the bound-
ary nodes for non-matching meshes and aerodynamic shape optimisation modifies
the external shape of a body, it would be interesting to study the effect of the
interpolation-related terms on the gradients. The present study used matching
meshes, so this effect was absent.

6.3 Further applications of the coupled adjoint
harmonic balance method

6.3.1 Multipoint constraints

The optimisation test cases in Chapter 5 have centred around the limit-cycle os-
cillation of an aerofoil at a specific Mach number. However, LCOs may appear at
a range of conditions that must be studied. The method described in the present
work could be applied to implement multipoint LCO amplitude constraints.

6.3.2 Extension to three dimensions

Many problems of engineering interest, such as the limit-cycle oscillations of wings,
are three-dimensional. One example is the Goland+ wing, which was introduced by
Eastep and Olsen [146]. If a store is added to this wing, it undergoes LCOs in the
transonic regime [59, 147, 148].

The harmonic balance coupling described in Sec. 2.6.1 for the direct problem
and in Sec. 4.3.3 for the adjoint problem can be applied in 3D cases without any
modifications. However, such an application would also require a three-dimensional
structural solver. A finite element method simulation that models the complete
structure could be used. However, the frequency iteration technique proposed in
Sec. 2.5.3 requires fixing the phase of one state and a reduced number of structural
states simplifies the choice. Many aeroelastic problems are formulated by means of
linear modal models or nonlinear beam approaches, which already feature a small
number of states.
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6.3.3 Nonlinear structural solver

Besides aerodynamic nonlinearities, structural nonlinear behaviour may also lead
to limit-cycle oscillations. For the two-degree-of-freedom model described in Ap-
pendix A, the springs can be modified to include behaviour such as freeplay, hys-
teresis or hardening/softening. Using a structural solver with cubic stiffness is a
useful way of modelling hardening and softening of the spring. A nonlinear mass
matrix could also be implemented in the code.

6.3.4 Extension of multi-physics coupling

There has been considerable interest in using aeroelastic movement for energy har-
vesting. Several aeroelastic phenomena, such as vortex-induced vibrations, gallop-
ing or limit-cycle oscillations have been studied. Such studies are usually conducted
very low Mach numbers, in the incompressible regime [149]. In order to extend
the present method to energy-harvesting applications, piezoelectric [150, 151] and
inductive [143] coupling terms would have to be added.

6.3.5 Surrogate model of the harmonic balance approach

Surrogate models are a family of reduced-order approaches that approximate the
response of complex systems based on known responses. Some surrogate models
use derivatives in order to improve the prediction of the desired magnitudes [152,
153]. If the number of outputs is much smaller than the number of inputs, adjoint
methods can be used in order to reduce the computational cost of applying these
techniques. The harmonic balance method, both direct and adjoint, could be used
to provide the known values for the surrogate model at a reduced cost.
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Appendix A

Derivation of a frequency-domain
rigid body motion integrator

A.1 Derivation of the equations
Start from the standard dimensional aeroelastic system of equations for a two-
degree-of-freedom pitch and plunge aerofoil{

Sα · α̈ +m · ḧ+ ch · ḣ+ kh · h = −L

Sα · ḧ+ Iα · α̈ + cα · α̇ + kα · α = M
, (A.1)

where Sα = m · (xf − xCG) is the dimensional static imbalance, m is the mass of the
aerofoil, ch is the plunge damping, kh is the plunge stiffness, Iα is the moment of
inertia around the flexural axis, cα is the pitch damping, kα is the pitch stiffness, h
and α are the plunge and pitch displacements according to the convention defined
in Fig. 2.9. Rewrite Eq. (A.1) in a matrix form,[

m Sα

Sα Iα

] [
α̈

ḧ

]
+

[
ch 0
0 cα

] [
α̇

ḣ

]
+

[
kh 0
0 kα

] [
α
h

]
−
[
−L
M

]
= 0. (A.2)

However, unlike Eq. (2.38), this equation has a second derivative term. By writing
it as a state-space model,

x =


α̇

ḣ
α
h

 ;


m Sα 0 0
Sα Iα 0 0
0 0 1 0
0 0 0 1

 ẋ+


ch 0 kh 0
0 cα 0 kα
−1 0 0 0
0 −1 0 0

x−


−L
M
0
0

 = 0, (A.3)

the order of the equations of motion is reduced to 1. However, this system of
equations has twice the number of degrees of freedom. It has a mass and a structural
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restoring force matrix,

M =


m Sα 0 0
Sα Iα 0 0
0 0 1 0
0 0 0 1

 ; K =


ch 0 kh 0
0 cα 0 kα
−1 0 0 0
0 −1 0 0

 . (A.4)

Note that the structural restoring force matrix includes both stiffness and damping
contributions.

Extend the mass and structural restoring force matrices to take into account the
2 ·Nh + 1 time instances,

M∗ =


M 0 · · · 0
0 M · · · 0
...

... . . . ...
0 0 · · · M

 K∗ =


K 0 · · · 0
0 K · · · 0
...

... . . . ...
0 0 · · · K

 , (A.5)

where 0 is an m×m zero matrix. Since the problem is linear, the frequency-domain
matrices are equal to the time-domain matrices: M̂ = M∗, K̂ = K∗. In this case, the
number of degrees of freedom is m = 4. Substitute the frequency-domain matrices
and operate (

M̂A+ K̂
)
x̂− E


−L
M
0
0

 = 0, (A.6)

where x̂ is the vector of displacements and velocity amplitudes, A is the frequency-
domain time derivative matrix in Eq. (2.55) and E is the Fourier transform operator
described in Eq. (2.53). This is the frequency-domain equation solved by the code.

A.2 Application of displacements
In the present implementation, the displacements are applied and transferred in
the time domain. Therefore, the first step is transforming the frequency-domain
displacements, x̂, to the time domain

x = E−1x̂. (A.7)

The time-domain displacement vector’s definition appears in Eq. (A.3).

The new coordinates of node n at the boundary are given by a rotation and a
displacement on the y axis. The expression of these coordinates is[

xn

yn

]
=

[
cosα sinα
− sinα cosα

] [
xn,0 − xc,0

yn,0 − yc,0

]
+

[
xc,0

yc,0

]
+

[
0
−h

]
, (A.8)
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where xn,0 and yn,0 are the original coordinates of node n and xc,0 and yc,0 are the
original coordinates of the centre of rotation.

A.3 Calculation of loads
The solid solver requires two kinds of loads: the lift and the moment around the
centre of rotation. Both can be obtained from the x and y components of the forces
applied in each boundary node, Fx and Fy.

L =
Nn∑
n=0

F n
y (A.9)

M =
Nn∑
n=0

F n
y · (xn − xc) + F n

x · (yn − yc) , (A.10)

where Nn is the number of nodes at the boundary, F n is the force applied on node
n, xn and yn are the x and y coordinates of node n and xc and yc are those of the
centre of rotation.

The position of the nodes appears in the calculation of the moment, as shown in
Eq. (A.10). As described in the previous section, the position of the nodes depends
on the value of the pitching and plunging motions. Therefore, there is a dependence
of the value of the loads on the displacements.

A.4 Phase-fixing and frequency-iteration
procedure

A combined technique for phase-fixing and frequency-iteration was presented in
Sec. 2.5.3. This technique has been applied to the rigid-body motion solver. In
order to do so, the derivative of the structural equations with respect to the motion
frequency, ∂S

∂ω
, has to be obtained.

Differentiating the left-hand side of Eq. (A.6)

∂S
∂ω

=
∂

∂ω

(
M̂Ax̂

)
+

∂

∂ω

(
K̂x̂
)
. (A.11)

Of these terms, only the time-derivative matrix, A, depends on the frequency. From
Eq. (2.55), it is a linear function of ω. Therefore, the derivative of the structural
equations is

∂S
∂ω

=
1

ω

(
M̂Ax̂

)
. (A.12)
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If all terms in vector x̂ except for the zeroth harmonic are zero, this derivative vector
is zero. This occurs if the time-domain solution is constant in time. If ∂S

∂ω
is zero,

the matrix is rank-deficient and the problem cannot be solved. Thus, the structural
solution needs an initial guess of the amplitudes of motion in order to provide a
solution.



Appendix B

Gradient calculation for an adjoint
frequency-domain rigid body motion
integrator

The solver must provide the derivative with respect to the loads at the boundaries.
It takes as an input the derivative with respect to the displacements of each of the
boundary nodes.

B.1 Calculation of source terms

Source terms appear on the right-hand side of the adjoint equation in Eq. (4.41).
They are the partial derivative of the objective function with respect to the move-
ment amplitude. These partial derivatives are only non-zero for structural objective
functions. In the present work, two such objective functions have been implemented:
the pitching amplitude and the plunge damper power dissipation.

B.1.1 Pitching amplitude

Because of the use of a frequency-domain method, the pitching amplitude’s deriva-
tives are easy to obtain. Since the sine component is set to 0, assuming that the
cosine component is positive the frequency-domain derivative of the amplitude is

∂ |α̂1|
∂α̂

=
∂α̂1,c

∂α̂∗ = [0 1 0 · · · 0]T . (B.1)

This term does not need to be written in the time domain. For Sec. 4.5.1 the
square of the pitching amplitude was used instead. This way, the sign of the cosine
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component is not taken into account. The corresponding vector of derivatives is

∂ |α̂1|2

∂α̂
= [0 2α̂1,c 0 · · · 0]T . (B.2)

B.1.2 Power dissipation

The power dissipation on the plunge damper is

J =
1

2 ·Nh + 1

2·Nh∑
i=0

ch · ḣ2. (B.3)

Differentiate it with respect to the time derivative of the plunge degree of freedom
in the time domain:

∂J

∂ḣ
=

2 · ch
2 ·Nh + 1

· ḣT . (B.4)

This gradient can then be transformed to the frequency domain

∂J

∂
˙̂
h

=
2 · ch

2 ·Nh + 1
·
(
E−1 ˙̂hE

)T
. (B.5)

The source term obtained in this manner is added to the right-hand side of the
equations.

B.2 Application of shape design variables
Any shape deformation has to be applied before the displacements. This deformed
shape is the one that then moves in the pitching and plunging degrees of freedom.

For the present thesis, the Hicks-Henne bumps were implemented. The generic
expression of these bumps is

y(x) = y0(x) +
N∑
i=0

ξi · fi(x) (B.6)

fi(x) =

0, x = 0[
sin
(
π · x

log 0.5
log t1

)]t2
, x ∈ ]0, 1]

, (B.7)

where x and y are the chordwise and perpendicular position, ξi is the ith bump’s
amplitude, t1 is a parameter that controls where the maximum of the bump is
reached and t2 controls the width of the bump. In order to match the original
definition of the bumps as well as that used by SU2, t2 was set to 3. The shape is
not modified along the chordwise axis.
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B.3 Calculation of sensitivities from adjoint
variables

B.3.1 Gradient with respect to design variables

Structural design variables

Recall the expression of the gradient of an objective function, J , with respect to a
design variable, ξ, using the adjoint method

dJ

dξ
=

∂J

∂ξ
− λ̂T ∂R̂

∂ξ
, (B.8)

where λ̂ are the frequency-domain adjoint variables and R̂ is the frequency-domain
residual. The derivatives with respect to some structural parameters are

dJ

dkh
=

∂J

∂kh
− λ̂T

h ĥ (B.9)

dJ

dkα
=

∂J

∂kα
− λ̂T

α α̂ (B.10)

dJ

dch
=

∂J

∂ch
− λ̂T

hAĥ (B.11)

dJ

dcα
=

∂J

∂cα
− λ̂T

αAα̂ (B.12)

dJ

dm
=

∂J

∂m
− λ̂T

hAAĥ+ (xf − xCG) ·
(

∂J

∂Sα

− λ̂T
hAAα̂− λ̂T

αAAĥ

)
(B.13)

dJ

dIα
=

∂J

∂Iα
− λ̂T

αAAα̂, (B.14)

where ĥ is the vector of amplitudes of the plunge degree of freedom and α̂ is that
of the pitch degree of freedom. Note that the partial derivatives of the residual
with respect to the structural parameters are the degrees of freedom and their time
derivatives. Since the degrees of freedom are computed in order to obtain the direct
solution, the gradients simplify to a scalar product of two already-computed vectors.
Therefore, they are very cheap to calculate.

Shape design variables

Assume that the objective function is only a function of the mesh and fluid variables.
The fluid components of the gradients have to be rotated according to the pitching
angle. The moment, on the other hand, depends on the location of the boundary
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as per Eq. (A.10). Expressing the values on the time domain, the gradients with
respect to the nth mesh point’s coordinates are

dJ

dxn

=
dJ

dxn

∣∣∣∣
F
· cosα− dJ

dyn

∣∣∣∣
F
· sinα− λα ·

(
F n
y · cosα− F n

x · sinα
)
, (B.15)

dJ

dyn
=

dJ

dxn

∣∣∣∣
F
· sinα +

dJ

dyn

∣∣∣∣
F
· cosα− λα ·

(
F n
y · sinα + F n

x · cosα
)
, (B.16)

where dJ
dxn

∣∣∣
F

and dJ
dyn

∣∣∣
F

are the components of the gradient provided by the fluid
solver. These gradients are calculated for each time instance. The final result is
the sum over the time instances. The time-domain adjoint variables are calculated
according to Eq. (4.50).

B.3.2 Partial derivative of power dissipation with respect to
structural parameters

The only objective function that depends directly on a structural parameter is the
power dissipation on the plunge damper. Since it is directly proportional to the
plunging velocity squared, the derivative is

∂J

∂ch
=

ḣ2

2 ·Nh + 1
. (B.17)

This value is calculated and added over every time instance.
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