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General Introduction: Regulatory
Framework and Market Dynamics

If none of it’s of interest to you, you’d be the first
—Bo Burnham, “Welcome to the Internet”

0.1 The Rise of Big Tech Platforms

Since its introduction to the public in the mid-1990s, the Internet has evolved into a
global digital economy of unprecedented scale. The digital landscape has reshaped how
businesses operate and interact with consumers, and the economy is today heavily de-
pendent on digital and internet technologies. With more than 5 billion users, this new
economy is characterized by a rapid pace of technological and conceptual innovation that
makes it a highly competitive arena (Schimmer, Mueller-Stewens, and Sponland 2010).

Google (Alphabet), Apple, Facebook (Meta), Amazon and Microsoft (often grouped
under the labels Big Tech, GAFAM or tech giants) have long been the most successful
companies in this arena.1 Their strategic actions have not only shaped the information

1Today, Big Tech platforms are ranked in the top 10 most visited multi-platform U.S. web properties (Statista
2024).

xi



xii CHAPTER 0. GENERAL INTRODUCTION

economy as we know it today but also serve as prime examples of how profitable mar-
ket positions can be achieved online (Schimmer, Mueller-Stewens, and Sponland 2010).
Globalisation and technological change (e.g. increased automation and digitisation) have
created opportunities for these highly productive firms to grow at the expense of less ef-
ficient rivals (De Loecker, Eeckhout, and Unger 2020, Valletti and Zenger 2019), who
may not have been able to exploit the potential of digital technologies (Criscuolo 2019).
The slow diffusion of digital technologies and the costly, time-consuming investments
required in complementary intangibles — such as data, proprietary software, and hu-
man and organisational capital — have become crucial competitive assets that reinforce
market leaders’ positions (Brynjolfsson, D. Rock, and Syverson 2019, Crouzet and Eberly
2019, Jovanovic and Rousseau 2005).

In the recent years, the persistence and strengthening of the tech giants’ market posi-
tions have been raising concerns.2 In the short run, the success of these firms has provided
significant benefits to users. However, in the long run, the growing concentration of
digital markets seems to reduce business dynamism (Criscuolo 2019, Valletti and Zenger
2019). In response, reforms to the legal framework regulating digital industries are be-
ing discussed. In September 2022, the European Parliament and the Council adopted a
regulatory tool aiming to ensure a greater degree of competition in the European mar-
ket for digital services: the "Digital Markets Act". This legal framework regulates the
activities of large digital platforms through a series of obligations (e.g. interoperability)
and prohibitions (e.g. self-preferencing).

Big Tech’s strong market position also has implications for the impact of their acqui-
sitions strategies: “Mergers are more prone to be problematic when the pricing power
of merging firms is already large to begin with” (Valletti and Zenger 2019: 49). The
high pace at which these incumbent platforms acquire smaller players of the sector is
often perceived as a threat to healthy competition. As of today, Big Tech platforms have
bought more than 800 companies (see Figure 1). Some of these acquisitions attract a lot
of media interest because of the notoriety of the acquired company and the sums spent

2See for instance ACCC (2019), Crémer, Montjoye, and Schweitzer (2019), Furman et al. (2019), or Scott
Morton et al. (2019).
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by the buyer - e.g. the acquisition of WhatsApp by Facebook in 2014 for $22 billion, or
LinkedIn by Microsoft in 2016 for $27 billion, although few of them have been reviewed
by a competition authority3. Even when they are reviewed, competition authorities are
often unable to demonstrate a likely consumer harm.4

Figure 1: Big Tech acquisitions over time

Source: Author’s compilation based on Standard Poor’s CapIQ (2022), Parker et al. (2021), Gautier and
Lamesch (2021), and the USPTO Patent Assignment Dataset (2022).

Note: The decrease in the number of Big Tech acquisitions since 2015 should be weighed against the fact that
acquisitions after that date are on average associated with bigger target firms (in terms of funding amounts and
number of employees, Orbis Global data and author’s computations).

3Around 97% of acquisitions in the technology sector have reportedly never been subject to scrutiny by a
competition authority (Kwoka and Valletti 2021). Many digital mergers are not reviewed because they do not meet
the legal threshold for intervention in terms of the individual turnover of the acquired start-up (See Article 1(2)
of the European Merger Regulation, EC/139/2004.). In response, since March 2021, the European Commission
allows Member States to refer to it the examination of transactions that do not meet the turnover thresholds if the
turnover does not reflect the actual or future competitive potential of at least one of the merging parties (Guidance
on the application of the referral mechanism set out in Article 22 of the Merger Regulation 2021/C 113/01, 2.2§19.).

4There are two recent exceptions from the UK Competition and Markets Authority (CMA): Microsoft’s 2023
blocked deal to buy Activision, a leading video games publisher, and Giphy, one of the largest distributors of gifs
on the Internet, that Facebook was reordered to sell in 2022.



xiv CHAPTER 0. GENERAL INTRODUCTION

0.2 Evaluating Big Tech Acquisitions

Competition authorities are in charge of controlling a market that is becoming more
complex and opaque every day, and over which digital platforms have an advantage in
terms of access to information thanks to the data they collect on their users (Parker,
Petropoulos, and Van Alstyne 2021). This difficulty in accurately assessing the anticom-
petitive potential of Big Tech acquisitions can be partially explained by some specificities
of digital markets: large returns to scale (i.e. the cost of producing a digital service is
much less than proportional to the number of users served), network externalities (i.e.
the larger the number of users of a digital service, the greater the value of that service),
and the key role of data (Crémer, Montjoye, and Schweitzer 2019).

By giving incumbents a strong competitive advantage, these characteristics of digital
markets foster their concentration. It is crucial that the methodology employed to review
digital mergers accounts for these specificities, as failing to do so would lead to wrong
decisions. For instance, after authorising the acquisition of Whatsapp by Facebook,5 the
Commission recognized that it had overlooked the key role played by network exter-
nalities. Since the Facebook/Whatsapp merger, users looking for a messaging service
used by a large number of their contacts found themselves locked into the Facebook
ecosystem. As a result, Facebook’s user base continued to grow and became increasingly
valuable to companies looking to target their advertising. Now essential, Facebook can
afford to offer advertisers ever more expensive advertising tools without seeing their de-
mand diminish.

This price effect is well understood by economic theory; in a static environment ab-
sent efficiencies and synergies, a horizontal merger relaxes a competitive pressure, which
leads to higher prices, restricted output and a lower consumer surplus. But mergers also
have an effect on innovation, and thus on future prices and products quality. And in-
novation is key in the digital world; the tech giants are spending billions in R&D and

5The European Commission authorised the Facebook/Whatsapp merger because it considered that there
were sufficient alternative messaging services (See Commission decision of 3 October 2014 in Case M.7217 –
Facebook/WhatsApp).
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many of the firms they acquired are young and innovative startups that often develop
new technologies.

A merger between two firms can have positive effects on innovation, and this could be
used as an argument in the “balance of harm” approach of competition authorities. The
EU and US reviewing agencies consider the potential innovative benefits of a merger in
the context of “efficiencies” (Esteva Mosso 2018). For instance, in “TomTom/Tele Atlas”
(2008), the European Commission recognised that the merger between a navigation sys-
tems provider and a digital maps developer would allow to deliver “better maps - faster”.
At the same time, a merger might also harm firms’ incentives to innovate, as illustrated
with the “Dow/DuPont” (2017) merger case in which the European Commission ex-
pressed concerns that the merger would have reduced innovation. In order to complete
the merger, the parties agreed to divest assets in overlapping markets to preserve the in-
dustry’s incentives to innovate. In some cases, mergers are even used to kill innovative
products that threaten those of the incumbents, as documented by Cunningham, Ed-
erer, and Ma (2021) for the pharmaceutical industry. In the digital industry, there is a
fear that the acquisition of start-ups by a dominant platform results in the strengthening
of its dominance, a reduction of effective competition, and a loss of innovation (Motta
and Peitz 2021).

In practice, the standard approach to assessing the effects of a merger on innovation
is to define a counterfactual, i.e. how innovation would evolve absent the merger. But
there are many channels through which Big Tech acquisitions impact innovation, and
the associated predictions are not necessarily aligned. In addition, innovation is uncer-
tain by nature. Answering the ex-ante question of how innovation would develop if the
incumbent platform was not allowed to take over a start-up is thus very challenging (De
Coninck and Muellern 2023), making it difficult to predict the effect of an acquisition on
competition: “Uncertainty about what products the incumbent and the nascent com-
petitor will actually offer in the future has a further consequence - uncertainty about
the degree to which those products will actually compete.” (Hemphill and Wu 2020:
1887–88). With this thesis, I propose to take an ex-post approach instead, and to study the
observed innovative activity around Big Tech acquisitions.



xvi CHAPTER 0. GENERAL INTRODUCTION

0.3 Contributions of this Thesis

Innovation is difficult to measure and cannot be quantified as easily as a product’s price.
Because my goal is to track innovation activities around Big Tech acquisitions, I make
use of patent data that allows me to capture the transferable components of Big Tech-
acquired technologies.

Unlike products, that often change names, patented technologies can be tracked as
they move across firms. In the first chapter of my thesis, I use this feature of the patent
data to assess the impact of Big Tech acquisitions on the development of acquired tech-
nologies. But patents expire and technologies evolve. In contrast, the talent of the people
who generated the innovation is an asset that can produce a continuous flow of future
innovation. Therefore, my second chapter explores another strategy Big Tech uses to
access innovative technologies; acquiring the talent behind these technologies. Finally,
next to examining how much acquired technologies are developed and how productive
the acquired inventors are, it is important to consider the nature of the innovation itself.
Some innovation just marginally improves an existing technology, while some other
completely revolutionises the state of the art. In the third chapter, I propose shifting the
focus to the disruptive nature of Big Tech-acquired technologies.

My results suggest that, when buying an innovative start-up, Big Tech mainly ac-
quires a potential, a capability to innovate, rather than a fully developed product. The
development of the (existing) acquired technologies is often just a temporary phase. In-
stead, the tech giants tend to leverage the acquired inventors’ potential to drive further
innovation. Finally, I show that, by strategically acquiring innovative start-ups, Big Tech
can disrupt markets in which it holds a weaker position.



Chapter 1

Tracking Technology Developments after
a Big Tech Acquisition1

Abstract

In the past 20 years, large digital platforms have made many acquisitions, mainly
young and innovative startups. Few of them have been reviewed by competition
authorities and little is known about the evolution of the startups after they have
been acquired. This paper intends to fill this gap by looking at the development of
the technologies owned by the acquired firms. We focus on technologies protected
by patents and we investigate whether an acquisition by a tech giant contributes to
their development. For this analysis, we use citations to acquired patents as a proxy
for the development of the acquired technology, and we identify where these cita-
tions originated. We show that acquisition temporarily increases the development
effort on the acquired technology. Interestingly, the decline following this initial
boost starts earlier for citations originating from the acquirer than for citations by
the rest of the industry. We also find that the slow down in the acquirer’s devel-
opment effort is stronger for acquired inventions in large patent portfolios.

1This chapter is co-authored with Axel Gautier.
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2 CHAPTER 1. TRACKING TECHNOLOGY DEVELOPMENTS

1.1 Introduction

One of the most notable transformations of our economy over the last 30 years is its
move towards digitisation. Google (Alphabet), Apple, Facebook (Meta), Amazon and
Microsoft (which are often grouped under the labels GAFAM or Big Tech) supported
that transformation by bringing more and more social and economic activities to the
online world. From almost non-existent in the early 1990s, these companies are now
among the most valuable companies worldwide.

Being the primary gateways through which people use the Internet places Big Tech
in a position of dominance in digital markets. In order to maintain quality services at
reasonable prices, regulators and competition authorities must ensure that other market
players can still enter digital markets and compete with these dominant firms. Among
the many challenges that the digital economy poses in that regard (e.g. strong network
effects, multi-sidedness, data-driven economies of scope, etc.), the role of mergers and
acquisitions (M&A) by Big Tech is increasingly considered2, especially given the very
high rate at which these platforms acquire start-ups. In an interview on CNBC3, Tim
Cook, Apple’s CEO, illustrated that: “We acquire everything that we need that can fit and has
a strategic purpose to it. And so we acquire a company on average, every two to three weeks.”.

Next to the expected effect on prices coming from the loss of a competitive pressure,
competition authorities also consider the likely impact of Big Tech start-ups acquisi-
tions on innovation. The existing evidence shows that the startup’s products are often no
longer developed after acquisition. Gautier and Lamesch (2021) found that 60% of the
products of firms acquired by the big techs are no longer supplied, maintained or up-
graded after acquisition. Affeldt and Kesler (2021) focus on mergers involving ‘apps’ and
they document that half of those apps were discontinued after an acquisition by a tech
giant. Eisfeld (2022) studies startup acquisition in the software industry and finds that
57% of the acquired products have been discontinued under their original brand name

2See for instance Argentesi et al. 2021; Crémer, Montjoye, and Schweitzer 2019; “Stigler Report” 2019.
3Berkshire Hathaway’s annual shareholder meeting, interview by Becky Quick on CNBC in 2019.
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after acquisition.4 However, product discontinuation does not mean that the acquired
technology is no longer used, as it could continue to exist under a new brand name, be
integrated in a new product or more generally in the acquirer’s ecosystem. As a matter of
fact, little is known about the development of technologies after acquisition. This paper
intends to fill this gap.

After acquisition, the target becomes part of the tech giant. Engineers, research labs,
projects and products are transferred to the acquirer and integrated in its ecosystem. To
assess the impact of big tech acquisitions on innovation, and instead of tracking product-
level development, this paper focuses on the projects’ underlying technology, materi-
alised by patents. By tracking patents as they move across firms, we are able to identify
whether a technology continues to be developed after acquisition. More specifically, the
patent system is such that, when some inventors build on an existing technology, they
must cite the patents protecting that technology. This implies that the development of
a technology is materialised by citations that are made to the patents protecting it. The
number of citations made by the acquirer itself thus reflects the intentions of the acquirer
towards this technology; a technology that it wants to develop will receive more citations
than a technology that is destined to stagnate. We can therefore use the citations made
by the acquirer as a proxy for its innovation effort to develop the acquired technology. A
higher (lower) research effort translates into more (less) citations to the acquired patents.
We thus intend to assess the impact of acquisition on the development of acquired tech-
nologies, as proxied by citations to the acquired patents.

For our analysis, we construct a sample of firms acquired by Big Tech since 1996 and
we identified those that have filed some patents prior to their acquisition. Some acquired
firms do not own patents either because they did not develop technologies or because
they did not patent the technologies they developed. Not patenting an invention could
be a strategic decision (e.g. firms that do not wish to disclose information could pre-
fer secrecy over patenting, Arundel 2001), but it could also simply derive from a low
probability of imitation, high costs of patenting (e.g. administrative costs and renewal

4Product discontinuation is particularly a concern when the target is small (Gautier and Lamesch 2021).
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fees), the length of the grant procedure,5 or from the conditions for patentability not
being met (Belleflamme and Peitz 2015). In our sample, 29% of the acquired firms have
a patented technology at the time of acquisition. This represents 76% of the 133 biggest
acquired firms (i.e. with a total funding above $10 million).6

Next, we retrieve all the citations made by the acquirer to the acquired patents. We
use the evolution of these citations as a proxy for the improvements by the acquirer to
the acquired technology. By exploiting the time series nature of our data, we develop
a methodology to identify the dynamic effect of acquisition on Big Tech citations to
acquired patents. Life-cycle and business-cycle trends in the evolution of Big Tech ci-
tations are captured by controlling for the patent age and the date at which the citation
was made. In a first model specification, the short-term impact of acquisition is iden-
tified from the sharp breaks in citations trajectories immediately following acquisition.
Second, using propensity scores, we introduce a control group of non-acquired patents
that are comparable to acquired patents. We then compare the remaining time trends in
Big Tech citations to acquired patents with respect to comparable non-acquired patents
using a difference-in-differences design.

In our analysis, we consider the number of citations to acquired patents during a pe-
riod of 4 years around acquisition. Our empirical analysis shows that acquisition seems
to first give a boost to the development of the acquired technology as citations increase
directly after the merger. But, after 1.5 year, the developments made by Big Tech to ac-
quired technologies start slowing down. We observe that citations by the acquirer follow
an inverse U-shaped curve and this result is robust to many specifications that we tested.
This suggests that the boost in the development of the technology by its acquirer fades
away in the long run.

A possible explanation for the inverse U-shaped curve in citations after acquisition is
that the acquired technologies are close to maturity and need few developing steps before

5US patents take approximately 32 months from their filing date to be granted (as computed based on the
’grant lag’ from the OECD Patent Quality Indicators database, July 2021).

6Based on funding data retrieved from Crunchbase.
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being commercialised. In such a case, we should observe a similar citation pattern in the
rest of the industry. To test for this hypothesis, we look at the evolution of citations by
the other firms in the industry, i.e. citations by the non-acquiring firms. Our analysis
does not corroborate this technology maturity hypothesis as we observe that the rest of
the industry keeps further developing these technologies up to 2.5 years after their acqui-
sition. On this basis, we conclude that the improvement potential of the technology has
not been exhausted after acquisition, so technology maturity alone is unlikely to explain
Big Tech’s declining interest for the development of acquired technologies.

Finally, we test whether our baseline results on the technology development by its
acquirer vary across acquired patents portfolios of different sizes. We find that the boost
in the acquirer’s citations just after acquisition is stronger and more persistent for patents
belonging to relatively small patent portfolios. For patents belonging to large portfolios,
we do not observe a significant boost in citations just after acquisition and the slow down
after 1.5 year is more pronounced. A potential explanation for this result is that, for small
targets, the acquisition decision is largely driven by a specific technology, whereas large
targets may own many patents that are of little interest to the acquirer.

Related literature

Our paper is related to the literature on mergers and innovation. This literature studies
the impact of a merger on the innovation by the merging entity, the competitors and
the acquired company.

The start-up innovative effort can first be impacted through the possibility of buyout.
In case it does not manage to bring its project to the market, a start-up might want to
secure the outside option of being acquired by a bigger firm. The prospect of acquisition
can boost the innovative effort of the start-up because the acquisition rents increase the
expected profit from innovation (Cabral 2021, Motta and Peitz 2021). However, while
doing so, the start-up might strategically distort the direction of its innovation in or-
der to maximise the acquisition rents (Dijk, José L Moraga-González, and Motchenkova
2021, Katz 2021).
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Mergers might also impact innovation by the acquirer’s competitors, actual or poten-
tial. When firms are competing in innovation, a merger has an impact on the innovation
effort of the outsiders to the merger. Federico, Langus, and Valletti (2018) show that a
merger reduces the innovation effort by the merged entity but increases the research
effort of the competitors (i.e. research efforts are strategic substitutes). Innovation by ac-
tual competitors might be hindered when startups that could have enabled them to catch
up technologically are bought by the leading platform (Bryan and Hovenkamp 2020a).

Empirically, the effect of digital M&As on innovation by competitors of the merging
entity has been tackled in a recent study by Affeldt and Kesler (2021). These authors
study Big Tech acquisitions in the Google Play Store. They find that, after the acquisi-
tion of an app by a tech giant, competing apps are less likely to be invented or updated
and developers shift their innovation effort to non-competing apps. Koski, Kässi, and
Braesemann (2023) and Eisfeld (2022) study the impact of mergers on potential com-
petitors. Koski, Kässi, and Braesemann (2023) provide evidence that mergers decrease
entry. Eisfeld (2022) has more nuanced results; she shows that a more stringent merger
policy would reduce entry, as buyout is one of the main motivation for entry. However,
it may increase entry if only “strategic” mergers (i.e. acquisitions by large incumbents
that would reinforce their market dominance) were blocked .

In this paper, we focus on the effect of digital M&As on innovation by the merging
entity itself. The total innovation effect resulting from the acquisition of a start-up by a
large digital platform is the combination of both positive and negative effects. Positive
effects include the capacity of the acquisition to solve the “appropriability” problem of in-
novators who are not able to internalise all the knowledge spillovers to non-innovating
firms (e.g. through imitation), which reduces their incentives to innovate in the first
place (Shapiro 2011). By merging, they can internalise these externalities (Federico, Lan-
gus, and Valletti 2018). José Luis Moraga-González, Motchenkova, and Nevrekar (2022)
show that the merger leads to a reallocation of the innovation effort by the merged en-
tity among the research projects in its portfolio, which may have positive welfare effects.
Next, when a merger leads to an increase in margins, the acquiring firm faces higher in-
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centives to innovate in order to expand demand (Bourreau, Jullien, and Lefouili 2021). In
addition, by merging, companies are pooling complementary skills and assets together.
For instance, while the start-up might have the flexibility and reactivity to contribute
innovative ideas, a large platform might be better equipped to exploit the full potential
of the innovation (Crémer, Montjoye, and Schweitzer 2019, Cabral 2021).7

The main driver of the negative effects of M&As on innovation is their impact on the
market structure. According to the the so-called Arrow replacement effect, dominant
firms have intrinsically lower incentives to innovate and market power reduces innovative
efforts (Aghion et al. 2005). Innovation is a competitive tool through which a firm can
steal business from its competitors. By merging, previously competing firms internalise
these business stealing effects, which thus reduces their incentives to innovate (Federico,
Langus, and Valletti 2018; Federico, Morton, and Shapiro 2020; Motta and Tarantino
2016). A second mechanism through which M&As can deter innovation by the merging
entity is the effect on the output. Innovation allows a firm to increase its margins by
setting higher prices. But, in the absence of efficiency gains, M&As lead to a decrease
in the merging firms’ output. As a result, there is less to gain from margin-enhancing
innovation (Bourreau, Jullien, and Lefouili 2021).

While a large platform may be better equipped to complete the acquired project, it
may not have the incentive to develop it further (Motta and Peitz 2021, Fumagalli, Motta,
and Tarantino 2020). Eventually, it may terminate the acquired project to reinforce its
position on the market and be sheltered from competition. Incumbents might use acqui-
sitions as a way to get rid of start-ups that represent potential competition because they
are developing substitute products. This is documented in Cunningham, Ederer, and
Ma (2021) who show that, in the pharmaceutical industry, big pharma acquires startups
developing drug projects competing with their own and terminate the startup’s project
after acquisition, i.e. acquisition “kills” innovation.

7If big techs use mergers to acquire technologies, it is likely to boost the research effort of the startup (Cabral
2021) but it may reduce the organic innovation by the big tech itself. This reverse-kill phenomenon is discussed
in Caffarra, Crawford, and Valletti 2020.
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Several papers have tried to assess empirically the impact of mergers on innovation,
by looking either at the number of patents or at the patents’ citations. For instance,
Haucap, Rasch, and Stiebale (2019), using data from the pharmaceutical industry, show a
significant decline in the number of patents post-merger. Interestingly, the merger also
negatively affects the R&D of the rivals. Fons-Rosen, Roldan-Blanco, and Schmitz (2021)
compare patents belonging to acquired and non-acquired startups with similar charac-
teristics. They find that an acquired patent’s citations increase, on average, by 22% after
acquisition. In their study, they compare periods of 7 years before and after acquisition
but they do not look, as we do, at the evolution of citations over time. In addition, these
authors did not differentiate between citations by the acquirer and citations by other
firms, which we find to have different post-acquisition trends.

There are three papers closely related to ours that study the impact of mergers in dig-
ital industries. Doan and Mariuzzo (2022) analyse the cloud computing industry. They
compare the innovation effort, measured by the number of patents, before and after the
merger. They document an increase in the number of patents from 40% one year af-
ter the merger to 60% three years after. Accordingly, mergers seem to have a positive
impact on the innovation of the merged entity, and this effect is stronger for leading
firms on the market. Gugler, Szücs, and Wohak (2023) study the impact of GAFAM
acquisitions on venture-capital funding and innovation, measured by patents. The main
difference with our work is that they do not analyse the impact of the merger at the
technology/patent level, as we do, but at a more aggregated ‘market’ level. These au-
thors construct comparable groups of firms and technology classes, treated or not by
the acquisition events and they estimate the impact of acquisition by comparing the two
groups in a difference-in-differences set-up. They find a significant negative impact of
acquisitions on venture-capital funding. The effect on innovation is less clear-cut. The
initial negative effect observed for mergers before 2010 becomes positive for mergers
after this date, and its magnitude varies across acquirers, with stronger effects (both pos-
itive and negative) for Microsoft. Finally, Prado and Bauer (2022) study the impact of
GAFAM acquisitions on the activities of venture capital funds. They found that an ac-
quisition by a tech giant in a given industry increases the venture capital activity in that
industry with a significant increase in the number of deals and funding. However, the
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authors also show that this effect is only transitory and fades away after several quarters,
an effect that is similar to the impact we measure on citations.

In Section 1.2, we describe the main features of Big Tech acquired technologies (1.2.1)
and the construction of our working datasets (1.2.2). Sections 1.3 discusses our empirical
strategy to take out the effect of endogenous factors from the technology developments
around the time of acquisition. We present descriptive evidence in Section 1.4 and our
main results in Section 1.5, with tests of robustness in Section 1.5.3. We develop additional
analyses and extensions in Sections 1.6 and 1.7, and Section 1.8 concludes.

1.2 Empirical Methodology

In this section, we describe the data collection and the construction of the working
datasets.

1.2.1 Data and Variables

We construct a database of firms acquired by Big Tech, which we match to the patents
these firms filed to the US Patent and Trademarks Office (USPTO).8 Citations to these
patents can then be linked to their investigators based on the application identifiers of
the citing patents.

Big Tech acquisitions

Our working sample is constructed in three steps, as presented in Table 1.1.

We first create a dataset of firms’ acquisitions by Alphabet, Amazon, Apple, Meta
and Microsoft. To obtain as complete of a list as possible, we merge four different
databases: Standard & Poor’s CapIQ (2022), Geoff, Marshall and Parker (2021), Gautier
and Lamesch 2021, and the USPTO Patent Assignment Dataset (2022).9 We retrieve

8USPTO-published patents represent around 82% of Big Tech-acquired patents, and 93% of Big Tech patents
(as computed based on the OECD Patent Statistics, July 2021).

9We do not consider equity investments, licensing deals or joint ventures as acquisitions. We also do not
include companies selling some of their assets as there is no transfer of the company’s ownership. However, we do
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information on the identities of the acquired firms and on the dates at which their ac-
quisitions were announced. On this basis, we identify 855 public Big Tech acquisitions
closed between January 1996 and January 2021 (see first column of Table 1.1).

Next, we match acquired firms with a portfolio of patents based on the name of the
applicant organisation. We focus on US-granted patents,10 which we collect from both
the OECD Patent Statistics (built based on the PATSTAT database) and the USPTO
Patent Views databases. By matching acquired firms with intellectual property, we can
identify all (granted) patents filed by a Big Tech-acquired firm to the USPTO.

Finally, we focus on patents filed before acquisition. Patents filed under the target’s
name after acquisition are considered as filed by the acquirer. We find that 273 of Big
Tech-acquired firms have filed at least one patent application, of which 252 before being
acquired (see second and third columns of Table 1.1).

Table 1.1: Number of Big Tech-acquired firms

Firms acquired by Big Tech
btw. Jan 1996 and Jan 2021

Acquired firms with at least one
US-granted patent

Acquired firms with at least one
US-granted patent pre-acquisition

Amazon 105 34 27
Apple 126 53 52
Facebook 104 18 18
Google 263 75 67
Microsoft 257 93 88

TOTAL 855 273 252

Note: This table illustrates the steps that are taken to select, among all Big Tech-acquired firms, those that have
patented a technology. Patents are identified based on their application number.

Since we identify technology developments by tracking patents as they move across
firms, we will restrict our analysis to those 252 acquisitions associated with patent-protected
technologies. While this only represents 29% of all Big Tech-acquired firms, this share

include companies that are only partially acquired but whose remaining assets are shut down, because the target
company is no longer an independent entity after acquisition.

10The focus on granted patents is explained by the fact that information on the application filing date - a
necessary information to derive who of the target or the acquirer filed the patent - is only available for USPTO
granted patents. Because there is a lag between the filing date and the granting date, an acquired patent could be
granted after acquisition (see Appendix A.1 for some details on the patenting process).
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rises to 76% when we consider the biggest firms, i.e. with a total funding above $10
million (see Appendix A.2 for a graphical representation).11

Patent data

We collect information from Patent Views on the patents acquired by Big Tech
through the acquisition of the company that filed these patents.

Patent age To control for potential trends in the technology development over a
patent’s life, we compute the patent age based on its filing date.

Forward citations The use and the further development of a patented technology can
be proxied by forward citations received by the patent. Because ‘prior art’ is included in a
patent by citations to previous patents, forward citations to the acquired technology re-
flect whether the technology is being further improved after acquisition. Appendix A.3
discusses the potential limitations attached to this use of patent citations data.

We identify the investigators of forward citations to Big Tech-acquired patents from
the application identifiers of the patents containing these citations. For instance, patents
cited by their acquirer can be identified by selecting all granted patents filed by Big
Tech itself,12 and then matching their application identifiers to the filing firms of the
citing patents. In addition, we observe the date at which each citing patent was filed. On
this basis, we can derive the number of citations received by a patent in a given month
as the number of citing patents filed during that month.13

The most recent patents are less likely to receive citations from granted patents simply
because the citing patents are not yet granted, i.e. there is a ’grant lag’. Because citations
data is available until July 2022, and to avoid biases due to some citing US patents not
yet being granted by that time and hence not observed, we end our study period in June

11Based on data retrieved from Orbis. The total funding is the sum of the variable Shareholdersfunds up to the
year before acquisition.

12The Patent Views database covers all citations made by US granted patents.
13We assume citations are observed from the date of filing.
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2017, 5 years before the data collection. Appendix A.4 illustrates that, from 2018 onwards,
citing patents are indeed less likely to appear in the Patent Views database.

Acquired firms

In the end, for each patent in our database, we can identify the acquirer, the timing of
acquisition, the patent’s age, and the number of forward citations made every month to
this patent. We construct a dataset containing all the patents belonging to Big Tech-
acquired firms, and we select those firms that have published at least one patent further
cited by their acquirer before July 2017. We end up with a working sample of 143 firms,
i.e. 143 patent portfolios. Table 1.2 presents summary statistics on these data samples.

Table 1.2: Big Tech-acquired patents portfolios

Portfolio size
(patents #)

Patent age at
acquisition (y)

Firms Count Mean SD Mean SD

Big Tech acquired portfolios

AMZN 27 22.07 64.62 3.31 2.59
APPL 52 14.21 19.72 4.00 2.59
FCBK 18 7.56 17.68 4.31 4.37
GOOG 67 30.98 143.16 3.90 2.14
MSFT 88 16.52 51.88 3.86 2.79

TOTAL 252 19.84 83.12 3.87 2.71

Big Tech acquired portfolios cited
by their acquirer before July 2017

AMZN 12 15.25 24.81 3.00 2.45
APPL 29 19.79 23.49 4.83 3.22
FCBK 6 5.17 4.88 3.16 3.28
GOOG 35 56.66 195.84 5.04 2.38
MSFT 61 22.57 61.46 4.52 3.58

TOTAL 143 29.01 105.83 4.52 3.17

Notes: This table provides summary statistics on Big Tech-acquired patents portfolios.
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1.2.2 Working sample

For our analysis, we construct two samples of patents. The first sample is composed of
patents filed by a company later acquired by Big Tech. Our objective is to track the
patented technology after its acquisition by a tech giant. We also construct a sample of
comparable patents but that have not been acquired.

Acquired patents

We thus consider Big Tech-acquired patents that received at least one forward citation by
their acquirer (further simply referred to as ‘acquired patents’). Next, we select a balanced
panel of patents observed during 4 years around the date at which the acquisition is
announced.

The pre-treatment period is defined with a view to include most targets, indepen-
dently from the age at which they were acquired. As such, we do not want to go back in
time as far as a year before acquisition, as a significant number of (future) targets were not
yet incorporated at that time,14 and hence would not be observed over the whole study
period. However, we want to be able to observe pre-acquisition potential trends in cita-
tions. With this trade-off in mind, we choose a period of 9 months before the acquisition
announcement (see Figure 1.1), which allows to observe the evolution of citations before
acquisition without excluding younger targets.

14Firms acquired within a year of their incorporation represent around 20% of Big Tech acquisitions (author’s
computations based on incorporation data retrieved from Crunchbase and Orbis).
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Figure 1.1: Big Tech citations to acquired patents over acquisition time

Note: The graph plots the average number of citations by the acquirer before and after acquisition.

For the post-treatment, we choose a period of 3 years after the acquisition announce-
ment. Again, the choice of the 3 years post-treatment period is the result of a trade-off
between keeping a reasonable number of observations while observing a sufficiently long
period of time to analyse the dynamics of the technology developments after acquisition.
Let us note that, because we end our study period in June 2017 to avoid biases in the
citations count, restricting our baseline sample to patents observed up to 3 years after
acquisition means that we can only use acquisitions undertaken until May 2014, which
represent 58% of all 855 Big Tech acquisitions.

Of all acquired patents observed in this 4 years-window, 541 (accounting for 80 tar-
gets) are associated with at least one citation over the study period and can thus be used
in our analysis of the evolution of the number of citations around acquisition.
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Non-acquired patents

To control for unobserved factors that may impact the time trend in citations, we in-
troduce a group of patents that are not treated by the acquisition event but that are
comparable to Big Tech-acquired patents; namely patents that are cited by the tech gi-
ants but never acquired by them (further simply referred to as ‘non-acquired patents’).
These patents are assigned placebo acquisition dates by drawing from the distribution of
observed Big Tech acquisitions.15 We assume a lognormal distribution of the acquisition
date 𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛𝑝 assigned to the non-acquired patent 𝑝:

𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛𝑝 ∼ 𝐿𝑁 (𝜇, �̂�2)

where the mean 𝜇 and variance �̂�2 are obtained from the distribution of observed
acquisition dates.

We then select a balanced panel of non-acquired patents observed every month be-
tween 1 year since simulated acquisition and 3 years after. On this basis, we obtain two
groups: i. a balanced panel of patents acquired between January 1996 and June 2017 and
observed in a 4 year-window around acquisition, ii. a balanced panel of patents that were
never acquired, but that have been assigned a placebo acquisition date between January
1996 and June 2017 and are observed in a 4 year-window around this placebo.

The first column of Table 1.3 presents the number of patents in these two groups:
541 patents undergo an acquisition event, and 70,136 are assigned a placebo acquisition
date. The next columns of Table 1.3 present summary statistics of the citations count
variable for each tech giant, separately for acquired patents and non-acquired patents.
Based on a t-test at the 1% level, we find that acquired patents are on average more cited
by Big Tech than non-acquired patents (with around 8 citations/acquired patent against
5 citations/non-acquired patent). This citations count variable exhibits a high variability;
a majority of patents in the data set are only cited once, but a few patents are cited many
times (see distribution at the monthly level in Appendix A.5).

15A similar study design is developed by Kleven, Landais, and Søgaard (2019), who assign placebo births to
individuals who never had children by drawing from the observed distribution of age at first child among parents.
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Table 1.3: Observations over the whole study period

Cited patents Big Tech citations

Count Count Mean SD Min Max

Big Tech acquired

AMZN 41 354 8.63 9.48 1 39
APPL 160 1,318 8.24 16.44 1 110
FCBK 7 28 4 5.51 1 16
GOOG 129 1,248 9.67 12.02 1 75
MSFT 204 1,194 5.85 16.70 1 205

TOTAL 541 4,142 7.66 15.11 1 205

Big Tech non-acquired

AMZN 7,036 24,854 3.53 9.40 1 118
APPL 21,283 116,405 5.47 13.44 1 575
FCBK 2,455 12,946 5.27 10.69 1 105
GOOG 17,135 83,191 4.86 9.74 1 214
MSFT 29,613 99,751 3.37 9.16 1 237

TOTAL 70,136 337,147 4.81 11.60 1 598

Note: This table presents the number of observations contained in the balanced sample of patents observed in a 4
year-window around (simulated) acquisition. There are two reasons why Facebook is underepresented. First, the
company is not very active from a patenting point of view. Second, Facebook started acquiring smaller firms later
than the other tech giants, so most of its patented acquired technologies are not observed 3 years after acquisition.

To ensure the comparability of acquired and non-acquired patents with respect to
all determinants of citations (except for the acquisition status), we use inverse probabil-
ity weighting. This weighting consists in reinforcing the contribution of observations
that are, pre-treatement, more similar to observations in the other patents group. Be-
cause most determinants of a patent’s citations are unobserved, patents will be weighted
directly based on the citations they received pre-acquisition. Non-acquired patents as-
sociated with the biggest weights are thus those that are, pre-acquisition, most like ac-
quired patents with respect to their forward citations. The procedure is described in
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Appendix A.6.

1.3 Model

In the previous section, we described how we collected patent citations data to capture
the developments of Big Tech-acquired technologies. In this section, we make use of
the time series nature of this data to identify the effect of the acquisition event.

We consider two identification strategies. First, a sharp event study, that relies on
the assumption that the acquisition event is not determined by the outcome (i.e. patent
citations), and on the smoothness of the average citations path absent acquisition. Second,
we relax the smoothness assumption in an alternative model with a control group for
acquired patents.

1.3.1 Baseline - Sharp event study

For our baseline model, we adopt a sharp event study approach as developed by Kleven,
Landais, and Søgaard (2019). The development of the acquired technology by the ac-
quiring firm is measured by citations to the associated patents. We study the evolution
of the number of forward citations by the acquirer as a function of event time dummies,
which represent the quarters (three months) in which citing patents are filed with re-
spect to the time of acquisition 𝑡 = 0.16 To identify the impact of a Big Tech acquisition,
we must correct for the potential endogeneity coming from determinants of the tech-
nology development other than acquisition. Most of these determinants are unobserved
or even unknown, but we could indirectly control for them by introducing life-cycle
trends (e.g. the number of forward citations might depend on the stage of a patent’s life)
and business-cycle trends (e.g. the industry’s R&D might be more or less dynamic in
given years).

We denote by 𝐶𝑖𝑡𝑝,𝑗,𝑡,𝑑 the number of forward citations to patent 𝑝 of the target

16The event time dummies are constructed by situating the month in which the patent is filed with re-
spect to the month in which it is acquired and, to limit variability, aggregating by quarter: 𝑡 ∈ {−3 =

(−10𝑚, −9𝑚, −8𝑚), ..., 0 = (−1𝑚, 0𝑚, 1𝑚), ...} with 0𝑚 when the filing month coincides with acquisition.



18 CHAPTER 1. TRACKING TECHNOLOGY DEVELOPMENTS

firm 𝑗 at event time 𝑡 and date 𝑑. Target-specific fixed effects are captured by 𝑓 𝑖𝑟𝑚 𝑗 .
We control for life-cycle trends and business-cycle trends by including the patent’s age
𝑎𝑔𝑒𝑝,𝑑 and a full set of calendar date 𝑑 dummies in the vector 𝑀′ (𝑑 = 1996𝑞1, 1996𝑞2,
..., 2017𝑞2).17 The effects of all included regressors are identified because patents are
acquired at different times; conditional on date and age, there are variations in event
time. We define the following model:

𝐶𝑖𝑡𝑝,𝑗,𝑡,𝑑 = 𝑓 (𝐽 ′𝜃1, 𝑓 𝑖𝑟𝑚 𝑗 𝜉
1, 𝑎𝑔𝑒𝑝,𝑑𝛽

1, 𝑀′𝛾1) + 𝜀1
𝑝,𝑗,𝑡,𝑑

(1.1)

where 𝐽 ′ is a vector containing the time dummies at the quarterly level (𝑡 = −3, ...,
−1, 0, 1, ..., 12) excluding the base category 𝑡 = 0.

To define the function 𝑓 (.), we must account for the nature and distribution of the
response variable: the citations count. The most widely used model for a count regres-
sion is the Poisson distribution. However, the Poisson model assumes that the mean and
variance of the errors are equal. In our case, the variance of the citations count is much
larger than its mean: a majority of patents in the data set are only cited once, but a few
patents are cited many times. Fitting a negative binomial model is a way to correct for
the over-dispersion observed in the distribution of the citations count variable (Ajiferuke
and Famoye 2015).18

The negative binomial distribution function of the citations count can be written as:

𝑃

(
𝐶𝑖𝑡 = 𝐶𝑖𝑡𝑝,𝑗,𝑡,𝑑 | 𝑡, 𝑎𝑔𝑒𝑝,𝑑 , 𝑑, 𝑓 𝑖𝑟𝑚 𝑗

)
) =(

1/𝛿 +𝐶𝑖𝑡𝑝,𝑗,𝑡,𝑑 − 1
𝐶𝑖𝑡𝑝,𝑗,𝑡,𝑑

) ©«
𝛿𝜇

(
𝑡, 𝑎𝑔𝑒𝑝,𝑑 , 𝑑, 𝑓 𝑖𝑟𝑚 𝑗

)
1 + 𝛿𝜇

(
𝑡, 𝑎𝑔𝑒𝑝,𝑑 , 𝑑, 𝑓 𝑖𝑟𝑚 𝑗

) ª®®¬
𝐶𝑖𝑡𝑝,𝑗,𝑡,𝑑 ©«

1

1 + 𝛿𝜇

(
𝑡, 𝑎𝑔𝑒𝑝,𝑑 , 𝑑, 𝑓 𝑖𝑟𝑚 𝑗

) ª®®¬
1/𝛿

where 𝜇 (.) is the mean of the model and 𝛿 is the dispersion parameter, which accounts
for a variance of the data that is higher than the mean, and 𝐶𝑖𝑡𝑝,𝑗,𝑡,𝑑 = 0, 1, 2, ....

17The calendar date dummy is defined as the quarter associated with the month in which the citing patent is
filed, e.g. (2013𝑚7, 2013𝑚8, 2013𝑚9) = 2013𝑞3.

18We test whether the Negative Binomial model is appropriate by comparing it to a Poisson model using the
likelihood ratio test. We find that the 𝛿 dispersion parameter for model 1.1 is significantly different from zero (𝜒2

= 2985), which contradicts the assumption of the Poisson model. On this basis, we can confirm that a Negative
Binomial regression should be used.
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On this basis, we identify the changes in the acquired technology development
that can be attributed to a Big Tech acquisition as the changes in citations with re-
spect to the time of acquisition. Because the negative binomial model is used, 𝜃1

𝑡 iden-
tifies the expected difference in log citations between quarter 𝑡 and the reference group
(𝑡 = 0): 𝜃1

𝑡 = 𝑙𝑛(𝐶𝑖𝑡𝑝,𝑗,𝑡,𝑑 | 𝑎𝑔𝑒𝑝,𝑑 , 𝑑, 𝑓 𝑖𝑟𝑚 𝑗 ) − 𝑙𝑛(𝐶𝑖𝑡𝑝,𝑗,0,𝑑 | 𝑎𝑔𝑒𝑝,𝑑 , 𝑑, 𝑓 𝑖𝑟𝑚 𝑗 ). To ob-
tain a more intuitive interpretation of our results, we will use the incident rate ratios:
𝑒𝜃

1
𝑡 =

𝐶𝑖𝑡𝑝,𝑗,𝑡,𝑑 |𝑎𝑔𝑒𝑝,𝑑 ,𝑑,𝑓 𝑖𝑟𝑚 𝑗

𝐶𝑖𝑡𝑝,𝑗,0,𝑑 |𝑎𝑔𝑒𝑝,𝑑 ,𝑑,𝑓 𝑖𝑟𝑚 𝑗
. By taking the exponential function, the difference in log

citations becomes the ratio of the citations count at a given event time to the citations
count at acquisition. The validity of the approach is further discussed in Appendix A.7.

1.3.2 Introducing a control group

While life-cycle and business-cycle trends can be directly controlled for, some other
determinants of the technology development are unobserved (e.g. upward trends in for-
ward citations due to technology spillovers). To disentangle the cross-sectional correla-
tion in the data from the effect of acquisition, we introduce a control group not treated
by the acquisition event: Big Tech-cited (but never acquired) patents. These patents
are assigned placebo acquisition dates randomly drawn from the distribution of observed
acquisitions by assuming a lognormal distribution (as described in Section 1.2.2). We
rewrite model 1.1 as follows:

𝐶𝑖𝑡𝑝,𝑡,𝑑 = 𝑓 (𝐽 ′𝜃2, 𝐴𝑝 𝜄
1, 𝐽 ′𝐴𝑝𝛼1, 𝑎𝑔𝑒𝑝,𝑑𝛽

2, 𝑀′𝛾2) + 𝜀2
𝑝,𝑡,𝑑

(1.2)

where 𝐴𝑝 = 1 if patent 𝑝 is acquired, 𝐴𝑝 = 0 otherwise.19

On this basis, we can estimate the impact of Big Tech (simulated) acquisition for both
acquired and non-acquired patents separately. If life-cycle and business-cycle trends cap-
tured all determinants of the evolution of citations other than acquisition, the impact of
acquisition for non-acquired patents after controlling for age and date should be null.
In other words, the trend in citations to non-acquired patents over event time captures

19In this second model specification, firms fixed effects are no longer accounted for as we cannot retrieve the
identities of all the firms cited by Big Tech patents.
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the remaining unobserved heterogeneity. The effect of acquisition can therefore be esti-
mated as the event time impact for acquired patents with respect to non-acquired patents.
When the outcome variable is negative binomial-distributed, this can be estimated by
the “Difference-in-semielasticities" (DIS),20 i.e. the acquisition status’ impact on the
semielasticity of citations with respect to the event time: 𝑒 (𝜃

2
𝑡 +𝛼1

𝑡 ) − 𝑒 (𝜃
2
𝑡 ) . The validity

of the identification parallel trends assumption can be verified from the pre-acquisition
DIS.

1.4 Preliminary analysis: Comparing average citations counts

To start with, we present some preliminary evidence on the evolution of citations after
acquisition.

A patent receives, on average, 0.09 citation/month before being acquired and 0.18
citation/month after. This increase in citations after acquisition suggests that the acquir-
ing firm invests in the technology of the acquired firm and continues to develop it after
acquisition.

Citations thus appear on average twice as high after acquisition than before. To make
the same comparison absent life-cycle and business-cycle trends, we define simplified
versions of models 1.1 and 1.2, with the dummy variable 𝑃𝑜𝑠𝑡 taking the value 1 after
acquisition:

𝐶𝑖𝑡𝑝,𝑗,𝑑 = 𝑓 (𝑃𝑜𝑠𝑡 𝜃1, 𝑓 𝑖𝑟𝑚 𝑗 𝜉
1, 𝑎𝑔𝑒𝑝,𝑑𝛽

1, 𝑀′𝛾1) + 𝜀𝑝,𝑗,𝑑 (1.3)

𝐶𝑖𝑡𝑝,𝑑 = 𝑓 (𝑃𝑜𝑠𝑡 𝜃2, 𝐴𝑝 𝜄
1, 𝑃𝑜𝑠𝑡 𝐴𝑝𝛼

1, 𝑎𝑔𝑒𝑝,𝑑𝛽
2, 𝑀′𝛾2) + 𝜀𝑝,𝑑 (1.4)

The estimation results are presented in Table 1.4. The parameter estimates based on
the sample of acquired patents only (Model 1.3) show a significant increase in citations
after acquisition. The model estimates that an acquired patent receives 35% (IRR = 𝑒𝜃

1
=

20When the conditional mean function is non-linear, the parameter associated with the interaction term does
not provide a consistent estimate of the interaction effect (Shang, Nesson, and Fan 2018).
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1.35*** (0.10)) more citations by its acquirer after the acquisition. The results for Model
1.4 on (unweighted) acquired and non-acquired patents are similar, with an estimated
citations increase of 48% (DIS = 𝑒 (𝜃

2+𝛼1 ) − 𝑒 (𝜃
2 ) = 0.48*** (0.12)) after acquisition.

Table 1.4: Big Tech citations to acquired and non-acquired patents

Model (3) Model (4)

Post .30∗∗∗ .15∗∗∗
(.07) (.01)

Acquired .50∗∗∗
(.06)

Post#Acquired .34∗∗∗
(.07)

Firms FE Yes No

Date dummies and Age Yes Yes

Patents #
acquired 541 541
non-acquired 77,522

Std. err. in parentheses
∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001

This preliminary evidence tends to show that the target technology development by
the acquirer increases significantly after acquisition. In other words, that the acquirer is
doing significantly more research effort to develop the acquired technology. In the next
section, we refine this analysis by reinforcing the contribution of non-acquired patents
that are more similar to acquired patents, and by allowing the effect of acquisition to
vary over event time.

1.5 Impact of acquisition on the acquired technology

In this section, we present our main results regarding the impact of a Big Tech acqui-
sition on the development of the acquired technology, as measured by citations to the
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associated patents. Model 1.1 is estimated on the balanced panel of Big Tech-acquired
patents. Model 1.2 is estimated on the balanced panel of trimmed Big Tech-acquired
and non-acquired patents weighted based on their inverse probabilities. These models
allow us to track the evolution of citations over time and give a more accurate view of
the technology development by the acquirer after acquisition.

1.5.1 Results: Baseline - Sharp event study

We estimate our models by including the full set of time dummies (at the quarter level).
This allows us to see the evolution of citations up to three years after acquisition. The
results of Model 1.1 are presented on Figure 1.2. On the figure, we represent the esti-
mated incident rate ratios (𝑒𝜃

1
𝑡 ) for each quarter and we include 95% confidence bands

around the event coefficients. We control for life-cycle and business-cycle trends and
for the acquired firm fixed effect. The estimated coefficients represent the ratios of the
citations count for each event time to the citations count at acquisition. A value above 1
means that citations increase after acquisition.

Our results confirm the preliminary evidences that acquisition increases citations but
now we can identify that this increase is only temporary. Citations experience a non-
lasting boom after acquisition. Looking at the results in more details, on Figure 1.2,
we observe that citations increase significantly up to 1.5 year after acquisition (citations
then appear to be more than 50% higher compared to their acquisition level). After that,
citations start slowing down. The evolution of citations by the acquirer thus follows a
bell curve and, as we will show, this result is robust to many alternative specifications.
These results suggest a continuous development of acquired technologies but the R&D
effort of the acquirer is fading away after some time.
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Figure 1.2: Big Tech citations to acquired patents relative to acquisition

Notes: The graph shows the incident rate ratios for acquired patents: 𝑒𝜃
1
𝑡 from model 1.1. These coefficients are

estimated on a balanced sample of patents in a 4 year-window around acquisition.

Since the impact of acquisition is identified from the sharp breaks in citations tra-
jectories immediately following acquisition, our identification strategy can handle the
smooth trend in citations which, even if not significant, appears slightly positive in the
quarters before acquisition. In the next section, we propose an alternative identification
strategy, with which we aim to take out the citations trend (even smooth) coming from
factors exogenous to the acquisition event.

1.5.2 Results: Introducing a control group

We present on Figure 1.3 the DIS estimated based on Model 1.2. For this estimation, we
use the balanced panel of trimmed Big Tech-acquired and non-acquired patents. The
contribution of each observation has been multiplied by its inverse probability weight.
These estimates can be interpreted as the changes in the number of acquirer’s citations at
event time 𝑡 relative to the acquisition time, having controlled for life-cycle and business-
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cycle trends, for acquired patents with respect to non-acquired patents. A value above 0
means that, compared to non-acquired patents, citations to acquired patents are higher
than at acquisition.

In support of the assumption that citations to acquired and non-acquired patents
(conditional on the propensity scores) would move in parallel absent acquisition, we
see that the DIS are insignificant in the pre-acquisition period. Just after acquisition,
we see that Big Tech citations grow faster for acquired patents than for non-acquired
patents (independently from life-cycle and business-cycle trends), identifying a boost in
the development of acquired technologies by the acquiring platform. After 1.5 year, these
technology developments start slowing down, suggesting that the boost in the acquired
technology development fades away in the long run.

Figure 1.3: Big Tech citations to acquired patents w.r.t. non-acquired patents, relative
to the (simulated) acquisition announcement

Notes: The graph shows the DIS between acquired and non-acquired patents: 𝑒 (𝜃
2
𝑡 +𝛼

1
𝑡 ) − 𝑒 (𝜃

2
𝑡 ) from model

1.2. These coefficients are estimated on a balanced sample of patents in a 4 year-window around (simulated)
acquisition.
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The results of our different models are convergent and they show that citations ex-
perience a boom after acquisition. We interpret this as an increased research effort by
the acquirer to further develop the technologies it acquires. However, this boom in the
acquirer’s R&D activity is not lasting and, after 1.5 year, the identified effect fades away.
In the next section, we will show that this inverse U-shaped trend is robust to alternative
model specifications.

1.5.3 Robustness checks

To test for the robustness of our results, we replicate our baseline analysis with alternative
model specifications. These robustness checks are presented in Appendix A.8.

Additional regressors First, we propose to replicate our analysis with more citations
determinants included as regressors in the model. In particular, we control for the ac-
quirer’s identity (Microsoft versus others), for the technology field to which the acquired
patent belongs and for the origin of the publishing company.

Alternative study periods Second, we replicate our analysis based on alternative study
periods. First, we change the study period by extending the pre-treatment period from
3 to 5 quarters (15 months before acquisition). Second, we reduce our study period to 2
(instead of 4) years around acquisition. Third, we reduce our post-treatment period such
as to include Motorola Mobility, which was acquired by Google but later sold to Lenovo
and hence not included in our baseline sample.

Heterogeneity-robust treatment effects Finally, we aim to obtain estimates that are
robust to heterogeneous treatment effects (see Borusyak, Jaravel, and Spiess 2024; De
Chaisemartin and d’Haultfoeuille 2024; Sun and Abraham 2021), i.e. to potential varia-
tions in the effect of acquisition across acquisition dates. To obtain heterogeneity-robust
estimates in our non-linear context, we adopt the approach developed by Wooldridge
(2023). We first group patent portfolios based on the date in which they were acquired
to construct ‘acquisition-cohorts’. We then estimate the treatment effects for each co-
hort separately, and we aggregate all these cohort-specific treatment effects to obtain the
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average treatment effects.

In all these alternative specifications, we find results that are consistent with our base-
line estimates, with a significant but non-lasting boost in citations after acquisition.

1.6 Technology development by non-acquiring firms

To explain the observed slow down in citations after acquisition, we put forward the
hypothesis of technology maturity; the acquired technology could be less developed be-
cause of diminishing returns to the innovative effort. According to this hypothesis, the
tech giants are acquiring technologies that are close to maturity. By pooling skills and
assets following acquisition, they manage to complete the development of the technol-
ogy, which is not further developed but, instead, directly included in a product. In other
words, the development slows down because the technology reaches its maturity.

A corollary of this hypothesis is testable: if the slow down of the acquired technology
development by its acquirer was explained by technology maturity, we should observe a
similar slow down of its development by the rest of the industry. In our patents context,
this would translate into citations by the acquirer and citations by the rest of the industry
following a similar pattern.

We estimate model 1.1 on two separate samples: Big Tech-acquired patents cited by
their acquirer, and Big Tech-acquired patents cited by other firms than their acquirer.
Out of the 541 Big Tech-acquired patents in our sample, 484 are also cited at least once
over our study period by other firms than their acquirer. The estimated incident rate
ratios (𝑒𝜃

1
𝑡 ) are presented on Figure 1.4, separately for these two citing groups.

On Figure 1.4 (b), we observe that the acquisition by a tech giant induces a positive
effect on the citations by non-acquiring firms; they increase by up to 50% after acqui-
sition. The acquisition acts as a signal, putting the acquired firm in the spotlight and
boosting the research effort in its technology field. However, while citations by the ac-
quirer already start slowing down after 1.5 year, citations by other firms than the acquirer
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keep increasing up to 2.5 years after acquisition.

Figure 1.4: Citations to Big Tech-acquired patents relative to acquisition

(a) by the acquirer (b) by other firms

Notes: The graph shows the incident rate ratios for acquired patents: 𝑒𝜃
1
𝑡 from model 1.1. These coefficients are

estimated on a balanced sample of patents in a 4 year-window around acquisition.

These results do not corroborate the technology maturity hypothesis. The rest of
the industry continues to invest to develop the acquired technology while the acquirer’s
innovative effort has already started fading away.21 This suggests that, at the time we
observe a decline in the acquirer’s effort to develop the acquired technology, this tech-
nology’s improvement potential has not been fully exhausted. So technology maturity
alone does not seem to provide a credible explanation for the slow down of the acquired
technology development by its acquirer.

21This positive impact of acquisition on the non-merging parties is consistent with the model of Federico,
Langus, and Valletti (2018). As a response to acquisition, the rest of the industry does more research effort, pos-
sibly to catch-up and to compensate for the disappearance of the independent startup. Let us also note that this
contrasts with Affeldt and Kesler (2021)’s finding that outsiders invest less in the product - in their context, an app
- development after its acquisition by a tech giant.
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1.7 Extension: Effects across portfolio sizes

In this section, we extend our baseline results on the technology development by its
acquirer. We aim to investigate whether the effect of acquisition varies with the size of
the acquired patents portfolio. To do that, we refine model 1.1 by allowing the event time
impact to vary with the size of the target’s patents portfolio:

𝐶𝑖𝑡𝑝,𝑗,𝑡,𝑑 = 𝑓 (𝐽 ′𝜃5, 𝐿𝑎𝑟𝑔𝑒𝑝𝜁
2, 𝐽 ′𝐿𝑎𝑟𝑔𝑒𝑝𝜂2, 𝑎𝑔𝑒𝑝,𝑑𝛽

5, 𝑀′𝛾5, 𝑓 𝑖𝑟𝑚 𝑗 𝜉
3) + 𝜀3

𝑝,𝑗,𝑡,𝑑
(1.5)

where 𝐿𝑎𝑟𝑔𝑒𝑝 takes the value 1 if patent 𝑝 belongs to a large portfolio.

In our sample, almost half of the observations belong to a portfolio with 32 or more
published patents. We therefore identify a large acquired portfolio as containing at least
32 patents. We use a second measure based on a cutoff value of 5 patents for the portfolio
size. In this second specification, patent 𝑝 belongs to a large portfolio if it contains more
than 5 patents, with a majority of patents falling in this category.

The estimated incident rate ratios are presented on Figure 1.5. We see that technolo-
gies belonging to small portfolios are more developed by their acquirer than technologies
belonging to large portfolios. For patents in a portfolio with 32 or more patents, the boost
in the acquirer’s citations just after acquisition is insignificant, while a negative effect is
observed after 1.5 year. On the contrary, for patents in smaller portfolios, the decline in
citations is less pronounced and the effect remains positive even at the end of the study
period. The alternative definition of a large portfolio gives similar - although less pro-
nounced - results.

An intuitive interpretation of this result is that, for small targets, the acquisition of
a specific technology explains a significant share of the acquisition decision while, for
large targets, a bigger share of the acquisition decision is left unexplained, i.e. many
patents in a large portfolio may be of little interest to the acquirer.22 This suggests that
the acquisition of small portfolios is more likely to have been driven by a specific patent,

22Let us however remind the reader that patents should be cited at least once by the acquirer to be included
in our sample.
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which the acquirer invests significant effort into further developing.

Figure 1.5: Big Tech citations to acquired patents relative to acquisition, by target’s size

(a) <= 32 vs > 32 patents (b) <= 5 vs > 5 patents

Notes: The graphs show the incident rate ratios from model 1.5 for small (𝑒𝜃
5

) and large (𝑒𝜃
5+𝜂2

) acquired
portfolios.

1.8 Conclusion

With this paper, we aim to bring empirical evidence of the effect of acquisitions in dig-
ital markets on acquired innovative technologies. Information provided by the patent
system allows us to track technologies before and after they are bought by ‘Big Tech’,
i.e. Alphabet, Apple, Meta, Amazon and Microsoft. To study the development of an ac-
quired technology, we use information on citations made to the patents protecting that
technology in subsequent patents. Accordingly, the development of Big Tech-acquired
technologies by their acquirer is proxied by Big Tech’s citations to acquired patents.
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Just after acquisition, we find a positive effect of acquisition on the improvements
made by Big Tech to acquired technologies. After 1.5 year, these developments of the
acquired technology by the acquiring platform start slowing down. A potential expla-
nation for this result is that the acquired technology reaches full maturity thanks to the
pooling of skills and assets of the digital platform and the acquired start-up. However,
these Big-Tech acquired technologies keep being improved by the rest of the industry
up to 2.5 years after acquisition, which means that their improvement potential has not
been fully exhausted. On this basis, we conclude that technology maturity alone cannot
explain the slow down in the development of Big Tech-acquired technologies.

More generally, our analysis contributes to the understanding of the impacts of
mergers and acquisitions on the evolution of the acquired products and technologies,
a research field where empirical evidence remains scarce. We have chosen to focus our
analysis on acquisitions by Big Tech, mainly because of the very high rate at which
these platforms have acquired start-ups in the past twenty years. Our conclusions are
thus based on acquisitions by dominant firms, mainly in the digital sector. Future work
could have a larger focus, including less powerful acquirers and more diverse industries.



Chapter 2

Talent Acquisition and Technology
Leadership: A Study of Digital Platforms1

Abstract

In this paper, we track inventors from firms acquired by Big Tech platforms, and
we identify those who continue to innovate for their acquirer post-acquisition.
Drawing on firm-level and patents databases, we find that inventors working pre-
acquisition on technologies that are closer to their acquirer’s “core” fields are more
likely to keep innovating for their acquirer. We extend our analysis by inves-
tigating hypothetical explanations for this finding. First, we find that inventors
specialising in core technologies are easier for the acquirer to assess, which could
partially explain that they are more likely to stay active after acquisition. However,
post-acquisition, these talented core inventors are often directed away from their
acquirer’s core technology fields. These results suggest that Big Tech acquires
inventors in its core technology fields mainly because it can better evaluate their
value, rather than to keep them focused on those core technologies.

2.1 Introduction

In the digital economy, knowledge is what creates value. As an alternative to internal
R&D efforts, companies can generate this knowledge by leveraging the expertise of other

1This chapter is co-authored with Axel Gautier.
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firms. When it is patented, knowledge can be accessed through licensing agreements or
acquired via patent assignments. It can also be copied (e.g. reverse engineering, indus-
trial espionage). But these are temporary measures, as patents expire and technologies
evolve.2 The talent of the people who generated the knowledge, on the other hand,
is an asset that can produce a continuous flow of future knowledge. In this paper, we
are interested in how firms integrate such talent into their own research teams to access
external knowledge.

Directly hiring talent from a competitor is not always easy. Within Silicon Valley, en-
trepreneurs might fear for their reputation and investor relationships (Polsky and Coyle
2013). Knowledge is also sometimes embedded in a team of people and could dissipate if
the team is torn apart (Jaravel, Petkova, and Bell 2018). Acquiring the entire firm instead
could be more efficient in accessing its talent. The practice of acquiring a firm with the
main aim to access its know-how and human capital is often referred to as ‘acqui-hiring’
(Polsky and Coyle 2013).3

An acquirer who successfully retains the acqui-hired staff and integrates them effec-
tively can benefit from knowledge transfer and access to expertise.4 The practice allows
to quickly onboard an entire team through one transaction (J. D. Kim 2020), and to
avert knowledge leaks that could accelerate the depreciation of the acquired human cap-
ital (Selby and Mayer 2013). Entrepreneurs themselves may also prefer acqui-hiring over
defection because selling a startup to a leading company often elevates their status within
Silicon Valley (Polsky and Coyle 2013), and because it may be financially advantageous
compared to direct talent recruitment due to the favorable tax treatment on capital gains
versus compensation income (Polsky and Coyle 2013).5

2Higgins and Rodriguez (2006) find that companies facing expiring patents are more likely to engage in
mergers and acquisitions.

3In an ‘acqui-hiring’ context, the acquiring firm is primarily seeking experience, expertise and engineering
talent, not necessarily an existing product (Varian 2021).

4In R&D-intensive industries, the retention of employees’ tacit knowledge is key (Grant 1996). But there
are many reasons why the acquirer might not be able to retain or properly integrate the acqui-hired staff, see
for instance Block, Fisch, and Van Praag (2017); Campbell et al. (2012); Michaels, Handfield-Jones, and Axelrod
(2001); Ranft and Lord (2000); Ranft and Lord (2003); Seitz and Kopp (2023) and Xiao and Dahlstrand (2023).

5Despite these advantages for the parties to the merger, scholars warn of the inefficiencies associated with
the concentration of inventors in large incumbents, where their innovative output is expected to be lower than
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For Alphabet, Apple, Meta, Amazon and Microsoft (aka “Big Tech”), gaining access
to the target’s talent is an important driver of start-ups acquisitions. Acquiring the talent
from innovative start-ups is a way for incumbents to source knowledge that is critical to
maintain an existing technological leadership6 (Puranam, Singh, and Zollo 2006) or, in-
stead, to venture into new product areas where the acquirer’s own experience is limited
(Varian 2021). With this paper, we aim to provide an empirical analysis of the strategies
behind the practice of talent acquisition along these goals of technology leadership and
diversification. To do so, we want to go further than testing whether or not the target
inventor keeps working at the acquirer’s (like in studies focusing on the retention rate7).
Instead, we want to study the profiles of inventors who keep innovating for their acquirer
after acquisition. We ask: Are inventors of technologies in which Big Tech is already
strong more likely to further innovate for their acquirer?

To answer this question, we first construct a database of all the firms acquired by Big
Tech, which we match to firm-level data from Orbis Global and to patent data from the
USPTO PatentsView database. We then develop our analysis at the level of inventors
from Big Tech-acquired firms. We identify these inventors from the patents they filed
at Big Tech-acquired firms, so we focus on inventors who have filed at least one patent
application before being acquired. Among these target inventors, we want to identify
those who will develop intellectual property for their acquirer. To do so, we check when
the name of an inventor previously filing patents for the target is found after acquisition
in a patent filed by the acquirer. And we can test whether this varies with the nature
of the innovation developed by the target inventor pre-acquisition. We find that 74%
of Big Tech targets are associated with at least one inventor further patenting for their

in young firms (Akcigit and Goldschlag 2023), and with “talent hoarding", when acquisition aims to deprive a
competitor in which the startup employees would have been more productive (Benkert, Letina, and Liu 2023;
Bryan and Hovenkamp 2020a) and obtain monopsony power over specialised talent (Bar-Isaac, Johnson, and
Nocke 2023).

6Such practice could be viewed as a substitute to the - much less desirable - exclusionary practices (e.g.
reducing interoperability with the startup’s product or by imitating its main features) in which digital platforms
engage to drive startups away from their core market (Motta and Peitz 2021, Shelegia and Motta 2021).

7See for instance Seitz and Kopp (2023), who hand-collected data on founders’ retention, Xiao and Dahlstrand
(2023), who used employer-employee data of the Swedish high-tech sectors, and Ranft and Lord 2003, who ran
a survey of managers to identify the retention of key employees.
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acquirer, and that inventors working pre-acquisition on technologies that are closer to
their acquirer’s “core technologies” (i.e. patented technologies of which a tech giant owns
a significant share) are more likely to keep innovating for their acquirer after acquisition.

Next, we test two hypotheses that could explain this result. We first suggest that
Big Tech might more easily assess the value of inventors when they work on its core
technologies, and hence better exploit their talent, while talented inventors active in
technologies outside of their acquirer’s core business might not be recognised for their
true worth. This hypothesis is supported by the finding that, for the latter “non-core”
inventors, talent does not translate into a higher probability to keep innovating for their
acquirer. However, once acquired, more talented core inventors seem to move away
from their acquirer’s existing core businesses. These results suggest that Big Tech ac-
quires inventors in its core technology fields mainly because it can better assess their
value, rather than to maintain their focus on those core technologies.

Related literature

Our paper is related to the literature on the interactions between the technologies of
merging firms.

At the product level, theory predicts that the merger between substitute technolo-
gies should lead lower ex-post R&D efforts due to the termination of concurrent R&D
programs (Cassiman, Colombo, et al. 2005), while merging complementary technolo-
gies brings about synergies and economies of scope, which should in turn stimulate the
R&D process (Caves 1989; Cohen and Levin 1989; Röller, Stennek, and Verboven 2006).
At the firm level, empirical studies of high-tech industries usually find that the greatest
innovative output occurs when there is a high degree of overlap in the technological
profiles between the acquirer and the target (Cloodt, Hagedoorn, and Van Kranenburg
2006; Kapoor and Lim 2007). However, in the case of Big Tech acquisitions, the ac-
quirer is disproportionately bigger than its target so the effect on the aggregated R&D
output is unlikely to be observable. What can be observed, instead, is what happens to
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the acquired knowledge, and how this relates to the ex-ante technological similarities
between the acquirer and the target.

Mergers and acquisitions are a crucial means for both enhancing and diversifying
a firm’s internal knowledge base (Rosenkopf and Almeida 2003, Zheng, Ulrich, and
Sendra-García 2021). The acquisition of related firms complements the acquirer’s inter-
nal knowledge base, whereas acquiring unrelated firms broadens the scope of knowledge
(Lodh and Battaggion 2015). Case studies of Big Tech acquisitions usually find that ac-
quirers are strengthening their own segments. For instance, Argentesi et al. (2021) find
that acquisitions by Meta and Amazon focus on areas of economic activity in which they
are already strong. Similarly, Gautier and Lamesch (2021) find that Microsoft, Amazon
and Apple mostly acquire products targeted to their main user segment. This might
be explained by the fact that companies with a technologically similar patent portfolio
can better integrate the target’s knowledge (Ahuja and Katila 2001; Arts, Cassiman, and
Hou 2021; Cassiman and Veugelers 2006). Similarly, technological similarities between
the acquirer and the target are expected to play a role in the future of acquired inventors.

On the one hand, the acquisition of smaller firms brings in specialized expertise and
talent that can help the acquirer expand to areas where it has limited experience (Varian
2021). On the other hand, the acquirer might better assess and integrate new ideas when
the acquired inventors’ expertise aligns with its existing R&D portfolio. In an empirical
study in the field of biotechnology, Verginer et al. (2022) find that inventors who oper-
ate within the same patent classes as their acquirer tend to maintain higher productivity
levels following the acquisition. In addition, from the inventor’s perspective, an exper-
tise distinct from that of the acquiring firm could be more valued outside of the merged
entity and hence increase the likelihood of departure post-acquisition (Verginer et al.
2022). With this paper, we want to test how the findings of this literature extend to the
digital world, and whether Big Tech’s target inventors whose expertise aligns with their
acquirer’s existing R&D portfolio are more or less likely to keep innovating for their
acquirer.

We describe the construction of our dataset and the variables of interest at the firm,
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inventor and technology levels in Section 2.2. Section 2.3.1 sets up our research ques-
tions and empirical strategies, of which Sections 2.4.1 and 2.4.2 discuss some extensions.
Section 2.5 concludes.

2.2 Data

2.2.1 Firms’ characteristics

We identify firms acquired by Big Tech and the dates at which their acquisitions were
announced from four different databases: Standard & Poor’s CapIQ (2022), Geoff, Mar-
shall and Parker (2021), Gautier and Lamesch (2021), and the US Patent and Trademarks
Office (USPTO) Patent Assignment Dataset (2022). On this basis, we identify 859 firms
acquired by Big Tech between January 1996 and January 2021.

Firm level data is collected from the Orbis Global database. Out of the 859 Big Tech-
acquired firms that we identified, 395 can be found in Orbis Global.8 We collect infor-
mation on the firm’s country of origin, number of employees, incorporation date, and
funding amount. Orbis contains some missing values for the number of employees and
the funding amount; we add an online search step to try and fill them in. Table 2.1
presents some summary statistics on the obtained dataset.

The distribution of the number of employees and of the funding data is highly skewed
(see Appendix B.1). To better capture the information contained in the number of em-
ployees data, we define a variable 𝐹𝑖𝑟𝑚𝑆𝑖𝑧𝑒𝑇 based on the OECD thresholds: small firms
with < 50 employees, medium firms with [50; 250[ employees, and large firms with
>= 250 employees. Similarly, we split the sample into three categories based on the
quantiles of the funding data: 𝐹𝑢𝑛𝑑𝑖𝑛𝑔𝑇 ∈ {≤ $230𝑀 ; ]$230𝑀, $1, 730𝑀]; > $1, 730𝑀}.

8Targets that are located in Asia, Canada or South America are less likely to be found in Orbis, as well as
targets acquired before 2006.

https://data.oecd.org/entrepreneur/enterprises-by-business-size.htm#:~:text=SMEs%20are%20further%20subdivided%20into,employ%20250%20or%20more%20people.
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Table 2.1: Big Tech acquired firms

Origin EmplNbr Funding ($1M) Incorp

obs. US = 1 obs. Mean SD obs. Mean SD obs. [min,max]

AMZN 45 76% 24 3877 17716 24 1570 7306 47 1978, 2020
APPL 59 58% 38 708 86 49 56 130 61 1992, 2019
FCBK 50 62% 28 194 797 28 24 45 53 1989, 2020
GOOG 107 76% 59 422 2472 56 143 596 112 1967, 2020
MSFT 121 73% 60 293 1237 65 259 1516 122 1978, 2019

TOTAL 382 71% 209 687 6186 222 297 2553 395 1967, 2020

This table presents some summary statistics on Big Tech targets matched with Orbis data. 𝑈𝑆 = 1 when the
Orbis variable CountryISOcode is associated with the value "US", 𝐸𝑚𝑝𝑙𝑁𝑏𝑟 is the value taken by the Orbis
variable Numberofemployees in the year before acquisition, and 𝐹𝑢𝑛𝑑𝑖𝑛𝑔 is the sum of the Orbis variable
Shareholdersfunds up to the year before acquisition.

2.2.2 Inventors’ characteristics

To collect information on inventors acquired by Big Tech, we will be using the content
of patent documents, with a focus on US patents filed by Big Tech platforms (i.e. the
acquirers) and by Big Tech-acquired firms (i.e. the targets). Patents are attributed to the
acquirer if they are filed under the acquirer’s name, or if they are filed under the target’s
name after acquisition.9

Patent data is collected from the USPTO PatentsView database (e.g. patent number,
patent date, application identifier, publication author, CPC technology field and inven-
tor’s names10). Out of the 859 identified Big Tech’s targets, 252 have filed at least one
patent application before being acquired.

Patent information

The USPTO PatentsView database contains patent-level data (see Appendix B.2 for de-
scriptive statistics) that can be used to describe the profiles of target inventors. We con-

9Around 5% of the patents associated with a target’s name are filed after acquisition. In a robustness check,
we will further only attribute to the acquirer those patents filed under the acquirer’s name.

10Harmonized inventors’ names can be found at https://patentsview.org/download/data-download-dictionary.

https://patentsview.org/download/data-download-dictionary
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struct the following variables at the inventor-level:

• the total number of patents in which the inventor is listed,

• the number of patents in which the inventor is listed as first author,

• the number of patents originating from the US in which the inventor is listed,

• the number of patents in which the inventor is listed together with some co-
author,

• the number of months since the inventor’s first filing before acquisition,

• the number of months since the inventor’s last filing before acquisition.

These variables are constructed over all the patents filed by a given inventor for the
target firm.

Technology leadership

We aim to determine whether the acquired inventor was working on a technology in
which her acquirer is focusing its own innovative efforts. To do so, we identify tech-
nologies belonging to her acquirer’s “core” fields in the year of acquisition.

Core technologies are patented technologies of which a tech giant owns a significant
share. This is translated in our patents context as: a significant share of the total number
of patents classified in that technology field. So core technologies are defined based on
the relative frequency at which they appear in a tech giant’s patent portfolio.

The technology fields to which a patent belongs is recorded in the CPC classifica-
tion, which contains 131 subsections at the two-digits level.11 To identify Big Tech “core”
fields, we first compute, at the yearly level, the number of patents classified in each of
the 131 cpc subsections across the whole USPTO patent database. Next, we compute
the share represented by each tech giant’s portfolio in these respective subsections.12 We
consider that a given cpc subsection represents a Big Tech core technology field, in a

11See detailed list: https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html
12Most Big Tech’s patents are classified in the Physics Section, e.g. ‘Computing; Calculating or Counting’

(CPC G06).

https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html
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given year, if the Big Tech’s portfolio contains at least 1%13 of all occurrences of that
technology in that year. Because big tech platforms might change the fields in which
they specialize over time, this definition allows a dynamic setting in which we can iden-
tify whether the acquired technology belongs to a core field at the time of acquisition.

Based on this information at the patent-level, we can construct a variable𝐶𝑜𝑟𝑒𝑖 at the
inventor-level, defined as the share of core fields averaged across all the patents filed by
inventor 𝑖:

𝐶𝑜𝑟𝑒𝑖 =
1
𝑃

∑︁
𝑝

1
𝐹

∑︁
𝑓

𝐼𝑓 ,𝑝,𝑖

where 𝐼𝑓 ,𝑝,𝑖 = 1 if a given field 𝑓 listed in the patent 𝑝 filed by the inventor 𝑖 is asso-
ciated with at least one of the acquirer’s core fields in the year of acquisition.

On average, 34% of the fields listed in patents filed by a target inventor belong to one
of her acquirer’s core technologies at the time of acquisition. However, we observe very
high peaks on the upper and lower bounds of the distribution of the𝐶𝑜𝑟𝑒𝑖 variable: out of
4, 966 target inventors,14 1, 077 (22%) are associated exclusively with core technologies,
and 2, 573 (52%) are not associated with any core technology.

For this reason, we also construct a binary variable 𝐶𝑜𝑟𝑒𝑖 , capturing whether an in-
ventor 𝑖 is active in her acquirer’s core technology fields:

𝐶𝑜𝑟𝑒𝑖 =𝑚𝑎𝑥 𝐼𝑝,𝑖

where 𝐼𝑝,𝑖 = 1 if a given patent 𝑝 filed by the inventor 𝑖 is associated with at least one
of the acquirer’s core fields in the year this patent was acquired.15

13Based on this threshold, half of the acquired patents are associated with a Big Tech core technology.
14Out of the 5,056 inventors from firms acquired by Big Tech between 1996 and 2021, 90 are only listed in

Reissue or Design patents, which are not associated with information on the patent’s CPC classification. So the
variable 𝐶𝑜𝑟𝑒𝑖 can be constructed for 4,966 inventors.

15See Appendix B.3 for statistics on 𝐶𝑜𝑟𝑒 aggregated at the target level.
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Market value

We construct a proxy for market value based on three indicators of a patent’s economic
value: family size, grant lag and number of claims. The definitions of these variables
and the reasoning behind their inclusion in the market value index are presented in Ap-
pendix B.4.

To construct the market value index, we propose two approaches. First, we define
a simple linear combination of the three indicators of a patent’s value. By taking the
average value16 of this linear combination for all the patents 𝑝 filed by a given inventor
𝑖, we can define a first measure of the market value of the inventor’s innovation history:

𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑖 =
1
𝑃

∑︁
𝑝

{𝐹𝑎𝑚𝑖𝑙𝑦𝑆𝑖𝑧𝑒𝑝 −𝐺𝑟𝑎𝑛𝑡𝐿𝑎𝑔𝑝 +𝐴𝑑 𝑗𝐶𝑙𝑎𝑖𝑚𝑠𝑝 } (a)

This index is further normalized such as to be comprised between 0 and 1 by min/max
scaling.17

To improve on this first definition, we propose a second approach. We define a vector
that captures as much as possible of the variation in the data along the three indicators of
a patent’s value. We thus intend to approximate our 3-D value space by a linear combina-
tion of all 3 (normalized) indicators along which the spread of patents is maximised. This
vector is computed using a Principal Components Analysis, as described in Appendix B.5.
By taking the total value of this vector for all the patents 𝑝 filed by a given inventor 𝑖, we
can define a second measure of the market value of the inventor’s innovation history:

𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑖 =
∑︁
𝑝

{𝑒𝑣1 �𝐹𝑎𝑚𝑖𝑙𝑦𝑆𝑖𝑧𝑒𝑝 + 𝑒𝑣2 �𝐺𝑟𝑎𝑛𝑡𝐿𝑎𝑔𝑝 + 𝑒𝑣3 �𝐴𝑑 𝑗𝐶𝑙𝑎𝑖𝑚𝑠𝑝 } (b.1)

where 𝑒𝑣𝑥 are the coordinates of the vector.

16In this simple definition of the index, the three indicators of a patent’s value have not been normalised, so
indicators with higher expected values have more weight. The indicator with the highest weight is the family
size: 𝐸 [𝐹𝑎𝑚𝑖𝑙𝑦𝑆𝑖𝑧𝑒 ] > 𝐸 [𝐺𝑟𝑎𝑛𝑡𝐿𝑎𝑔] > 𝐸 [𝐴𝑑 𝑗𝐶𝑙𝑎𝑖𝑚𝑠 ]. Aggregating by taking the mean value across all the
patents filed by a given inventor ensures that we are not artificially boosting the index for inventors associated
with proportionally higher levels of the family size variable.

17Min/max scaling: 𝑋 = (𝑋 −𝑚𝑖𝑛 (𝑋 ) ) /(𝑚𝑎𝑥 (𝑋 ) −𝑚𝑖𝑛 (𝑋 ) ) .
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In other words, the value of the inventor’s innovation history is computed as the
weighted sum of all the patents filed by this inventor pre-acquisition, where the weights
capture these patents’ market values. Because this definition allows to maximise the vari-
ation in our data, i.e. to best differentiate inventors based on their innovation history,
we will use it as the baseline definition of the market value index.

Two important methodological choices have been made to construct this index. First,
the summation over all the patents filed by a given inventor means that prolific inventors
(i.e. filing many patents) will be on average associated with a higher market value. The
reasoning behind this choice is that the more patents over which an inventor can be
observed, the more information the acquirer can obtain about her innovation history.
However, this choice implies a size effect that inflates the market value index for more
productive inventors. For this reason, we also propose an alternative index by taking the
average value of the vector for all the patents filed by a given inventor:

𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑏𝑖𝑠𝑖 =
1
𝑃

∑︁
𝑝

{𝑒𝑣1 �𝐹𝑎𝑚𝑖𝑙𝑦𝑆𝑖𝑧𝑒𝑝 + 𝑒𝑣2 �𝐺𝑟𝑎𝑛𝑡𝐿𝑎𝑔𝑝 + 𝑒𝑣3 �𝐴𝑑 𝑗𝐶𝑙𝑎𝑖𝑚𝑠𝑝 } (b.2)

A second methodological choice in the definition of our market value index is the ex-
clusion of a variable capturing the technological importance of a patent for the develop-
ment of subsequent technologies; the number of citations it receives (forward citations).
This is because forward citations are a stock that builds over time, so patents published at
different times cannot be compared. To overcome this problem, we propose to consider
the number of forward citations received by a patent over a period of five years after its
publication date. This means that this variable can only be used for patents published at
least five years before the end of our study period (in July 2022), so in July 2017. Because
publication typically occurs around 18 months after the filing date (Squicciarini, Der-
nis, and Criscuolo 2013), we restrict this third specification of our market value index to
patents filed - and hence inventors acquired - before January 2016. Forward citations are



42 CHAPTER 2. TALENT ACQUISITION & TECHNOLOGY LEADERSHIP

added to the market value index linearly:

𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑡𝑒𝑟𝑖 =∑︁
𝑝

{𝑒𝑣𝑡1 �𝐹𝑎𝑚𝑖𝑙𝑦𝑆𝑖𝑧𝑒𝑝 + 𝑒𝑣𝑡2 �𝐺𝑟𝑎𝑛𝑡𝐿𝑎𝑔𝑝 + 𝑒𝑣𝑡3 �𝐴𝑑 𝑗𝐶𝑙𝑎𝑖𝑚𝑠𝑝 + 𝑒𝑣𝑡4 �𝐹𝑤𝑑𝐶𝑖𝑡𝑝 } (b.3)

Talent acquisition

Our main variable of interest captures whether an inventor keeps patenting for her ac-
quirer after acquisition. We collect information on the unique inventor id(s) in the tar-
get’s patent portfolio, and check whether these same id(s) can be found in the acquirer’s
portfolio after acquisition: 𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 1 if an inventor’s id 𝑖 in the target’s patent portfo-
lio can be found in the acquirer’s portfolio.18 This allows us to identify inventors who
keep patenting for their acquirer. Those inventors who don’t (𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 0) could have
either stopped patenting altogether after the acquisition, or they could be patenting for
some other firm; in both cases, they are not developing intellectual property for their
acquirer.19

This measure can be further refined to better capture potential synergies deriving
from acquisition by focusing on cases where newly hired inventors collaborate with the
acquirer’s staff: 𝑇𝑎𝑙𝑒𝑛𝑡∗𝑖 = 1 if the acquirer’s portfolio contains a patent associated with
an inventor’s id 𝑖 from the target’s portfolio together with an inventor’s id from a patent
published by the acquirer pre-acquisition.

From Appendix B.6, we can see that, in 74% of cases, at least one start-up inventor
will be further patenting for their acquirer and, in 49% of cases, they do so in collabo-
ration with some of their acquirer’s existing employees. After normalizing by the total
number of inventors, we can also see that inventors hired at Facebook’s are proportionally
more likely to keep developing patented technologies than inventors hired at Google’s

18Some inventors (< 1% sample) filed patents for different targets pre-acquisition. For these inventors, we
consider only their last employer (i.e. the target for which they last filed a patent) before acquisition.

19Let us note that using patent data to identify target inventors suffers from a limitation; it only captures
inventors who publish patents. Some technologies might not be patented, because they are simply not patentable,
or due to a low probability of imitation and/or high costs of patenting.
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or Microsoft’s.

2.2.3 Working sample

We describe in Table 2.2 below the profiles of target inventors at the time of their acqui-
sition by a tech giant, separately for inventors who will keep innovating for their acquirer
(i.e. who will file some patent for their acquirer after acquisition) and those who won’t.

Table 2.2: Statistics over all the patents filed by Big Tech-acquired inventors

Stop innovating Keep innovating Test
3293 (65.13%) 1763 (34.87%)

Patents (Total) 8559 6950 .
Patents over last 9m (Total) 714 1388 .
Patents (Mean) 2.60 (5.59) 3.94 (6.12) <0.00
Patents over last 9m (Mean) 1.33 (0.74) 1.98 (2.86) <0.00
First author patents (%) 0.55 (0.46) 0.58 (0.43) 0.05
First author patents over last 9m (%) 0.47 (0.48) 0.54 (0.46) 0.01
Core patents (%) 0.44 (0.48) 0.49 (0.49) <0.00
Core patents over last 9m (%) 0.57 (0.49) 0.53 (0.49) 0.14
Market value (Mean) -0.04 (0.08) -0.05 (0.18) 0.18
Market value over last 9m (Mean) -0.04 (0.08) -0.05 (0.19) 0.02
US patents (%) 0.83 (0.38) 0.79 (0.41) <0.00
US patents over last 9m (%) 0.82 (0.39) 0.74 (0.44) 0.00
Co-authored patents (%) 0.94 (0.22) 0.94 (0.20) 0.78
Co-authored patents over last 9m (%) 0.95 (0.21) 0.95 (0.21) 0.79
Months between first filing and acquisition 52.02 (38.06) 40.33 (32.10) <0.00
Months between last filing and acquisition 40.00 (34.31) 22.21 (22.74) <0.00

Mean (Standard deviation): p-value from a pooled t-test.
Frequency (Percent%): p-value from Pearson test.
This table presents patent statistics at the inventor-level. Negative average Market values come from the fact that patents filed by
Big Tech-acquired inventors are less valuable than the average patent in the USPTO database. However, acquired patents are
different in many respects from the average patent. The market value index should not be used to compare inventors across the
whole patent database. Instead, we will be using it to compare acquired inventors among themselves.

Out of the 5, 056 inventors from firms acquired by Big Tech between 1996 and 2021,
1, 763 (35%) will file some patent for their acquirer after acquisition. Interestingly, we
observe that inventors who keep innovating for their acquirer had filed on average more
patents pre-acquisition, so they were on average more prolific than inventors who stop
patenting after acquisition. They were also more often identified as “first author” of
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the patent, indicating a lead over the research project, and had filed, on average, more
patents originating from outside the United States. In addition, these inventors who
keep patenting for their acquirer appear to have started filing patents for the target later
in time, so they could be considered more “junior” inventors. Finally, they tend to file
their last patent for the target closer to the acquisition date, which is a sign that they
were still active short before acquisition.

2.3 Innovating for the acquirer

In this section, we will examine the question of whether and why inventors of Big Tech
core technologies (i.e. who have filed some “core” patents) are more likely to further
innovate for their acquirer. To do so, we want to isolate the effect of working on a core
technology from other potential determinants of whether a target inventor keeps inno-
vating for her acquirer.

We consider the following inventor’s characteristics (at the time of acquisition): the
number of patents filed by the inventor for the target, whether the inventor has filed some
patent as first author - since “lead” engineers are more likely to have been the targets of
the acquirer - and whether the inventor has filed some patent originating from the US.
We also include the inventor’s first patent filing - as a proxy for how experienced she is
- and her last filing before acquisition - which captures whether the inventor was still
active at the time of acquisition. Finally, the outcomes of interest (𝑇𝑎𝑙𝑒𝑛𝑡 and 𝑇𝑎𝑙𝑒𝑛𝑡∗)
are constructed based on whether an inventor was ever found in her acquirer patent port-
folio after acquisition. The period over which these outcomes are measured thus varies
depending on the time at which the inventor joins the acquirer’s team (i.e. the acqui-
sition date). For this reason, we must control for the length of the period over which
the outcome is measured; the number of months between acquisition and the end of the
study period (in July 2022). In a robustness check, we will propose a more conservative
approach with regard to the comparability of the outcome across inventors by defining
a fixed study period.

First, we test whether the technological environment in which Big Tech acquisitions
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take place influences talent engagement (Section 2.3.1). We find that inventors working
pre-acquisition on technologies in which their acquirer has been focusing its own in-
novative efforts are more likely to keep innovating for their acquirer after acquisition.
Second, we will evaluate two hypotheses that could explain this finding: i. Big Tech
could more easily assess the value of inventors when they work on its core technologies
(Section 2.4.1), ii. Big Tech could be acquiring talent with the aim to have more people
working on these core technologies in its research team (Section 2.4.2).

2.3.1 Baseline - Inventors of Big Tech core technologies

In this section, we want to explore the role of Big Tech technology leadership on the
likelihood for acqui-hired inventors to further innovate for their acquirer. Studies such
as Argentesi et al. (2021) and Gautier and Lamesch (2021) suggest that acquirers focus on
reinforcing their existing segments. Conversely, Big Tech may acquire smaller firms to
leverage specialized expertise and talent for expansion into peripheral activities (Varian
2021). With this baseline analysis, we aim to test empirically whether inventors of tech-
nology fields in which Big Tech is already strong are more likely to further innovate for
their acquirer.

We consider all inventors of Big Tech-acquired technologies. Among these target
inventors, we identify those who keep innovating for their acquirer from the patents
they file post-acquisition. The outcome variable𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 1 when the inventor 𝑖 ’s id can
be found in her acquire’s patent portfolio after acquisition, 0 otherwise. The probability
for a start-up inventor to file some patent for her acquirer is modelled as follows:

𝑃 (𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 1) = 𝐹
(
𝛼 + 𝛽𝐶𝑜𝑟𝑒𝑖 + 𝜏𝑀𝑆𝑖𝑛𝑐𝑒𝐴𝑐𝑞𝑢𝑖𝑖 +

∑︁
𝑘

𝛾𝑘𝑋𝑖,𝑘 +
∑︁
𝑙

𝜁𝑙𝑌𝑖,𝑙 + 𝜇𝐵𝑇 𝑖

)
(2.1)

where 𝐹 (𝑧) = 𝑒𝑧

(1+𝑒𝑧 ) is the cumulative logistic distribution.

The regressor of interest (𝐶𝑜𝑟𝑒𝑖 ∈ {0, 1}) captures whether inventor 𝑖 has filed some
patent belonging to one of her acquirer’s core technology fields (i.e. fields of which the
acquirer owns at least 1% of all published patents) by the time of acquisition. 𝑀𝑆𝑖𝑛𝑐𝑒𝐴𝑐𝑞𝑢𝑖𝑖
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captures the number of months between acquisition and the end of the study period.
Inventor-level controls 𝑋𝑖 include the number of patents filed by the inventor for the
target (𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝐶𝑜𝑢𝑛𝑡𝑖 ), the year in which the inventor filed a patent for the first time
(𝐹𝑖𝑟𝑠𝑡𝐹𝑖𝑙𝑖𝑛𝑔𝑖 ), whether the inventor filed a patent originating from the United States
(𝑈𝑆𝑖 ∈ {0, 1}), whether the inventor filed some patent as first author (𝐹𝑖𝑟𝑠𝑡𝐴𝑢𝑡ℎ𝑜𝑟𝑖 ∈
{0, 1}), and the number of months since the inventor’s last patent filing for the target
(𝑀𝑆𝑖𝑛𝑐𝑒𝐿𝑎𝑠𝑡𝐹𝑖𝑙𝑖 ). We also include the acquirer’s identity fixed effects (𝐵𝑇𝑖 ∈ {𝐺𝑂𝑂𝐺,
𝐴𝑃𝑃𝐿, 𝐹𝐶𝐵𝐾, 𝐴𝑀𝑍𝑁,𝑀𝑆𝐹𝑇 }). Target-level controls 𝑌𝑖 include the firm’s incorporation
year (𝐼𝑛𝑐𝑜𝑟𝑝𝑇

𝑖
), country of origin (𝑈𝑆𝑇

𝑖
∈ {0, 1}), number of employees (𝐹𝑖𝑟𝑚𝑆𝑖𝑧𝑒𝑇

𝑖
∈ {<

50, [50; 250[, ≥ 250}), and funding amount category (𝐹𝑢𝑛𝑑𝑖𝑛𝑔𝑇
𝑖
∈ {≤ $230𝑀 ; ]$230𝑀,

$1, 730𝑀]; > $1, 730𝑀}).

Estimates

The parameters of Model (2.1) estimated by Maximum Likelihood can be found in Ta-
ble 2.3 when the outcome variable is defined based on all target inventors found in the
acquirer’s portfolio after acquisition (𝑇𝑎𝑙𝑒𝑛𝑡𝑖 ), and in Appendix B.7 when the outcome
variable only considers those target inventors collaborating with some of their acquirer’s
employees after acquisition (𝑇𝑎𝑙𝑒𝑛𝑡∗

𝑖
). We see that having filed a core patent is positively

associated with the probability of further patenting for the acquirer.

The 𝛽 parameters can be more easily interpreted in odds ratios (𝑒𝛽 ). If we look at
the most complete model in Table 2.3 (last column), we have 𝑒𝛽 = 1.76∗∗∗; the odds of
further patenting for the acquirer are about 76% greater for inventors active in their
acquirer’s core technology fields at acquisition. From Appendix B.7, we see that these
inventors are also on average more likely (𝑒𝛽 = 1.59∗) to further patent for their acquirer
in collaboration with some of the acquirer’s existing employees.
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Table 2.3: Inventors innovating for their acquirer, Model (2.1)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent
Core 0.404∗∗∗ 0.356∗∗∗ 0.313∗∗∗ 0.291∗∗∗ 0.292∗∗∗ 0.452∗∗∗ 0.445∗∗∗ 0.510∗∗∗ 0.563∗∗∗

(4.82) (4.05) (3.50) (3.19) (3.19) (3.82) (3.73) (3.54) (3.66)

MSinceAcqui 0.012∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.012∗∗∗ 0.013∗∗∗ 0.017∗∗∗ 0.017∗∗∗ 0.019∗∗∗ 0.020∗∗∗
(15.92) (19.93) (19.02) (6.72) (7.11) (7.83) (7.83) (7.97) (8.04)

PatentsCount 0.070∗∗∗ 0.107∗∗∗ 0.105∗∗∗ 0.040∗∗∗ 0.034∗∗∗ 0.035∗∗∗ 0.036∗∗∗ 0.032∗∗∗ 0.032∗∗∗
(9.12) (11.88) (11.57) (4.66) (4.09) (3.73) (3.75) (3.41) (3.37)

FirstFiling 0.189∗∗∗ 0.187∗∗∗ -0.022 -0.011 -0.018 -0.018 -0.034 -0.038
(14.52) (13.55) (-1.14) (-0.56) (-0.83) (-0.83) (-1.40) (-1.56)

US -0.260∗∗∗ -0.227∗∗ -0.227∗∗ -0.264∗∗ -0.014 -0.106 -0.610
(-3.02) (-2.57) (-2.56) (-2.08) (-0.03) (-0.24) (-1.09)

MSinceLastFil -0.030∗∗∗ -0.029∗∗∗ -0.030∗∗∗ -0.030∗∗∗ -0.034∗∗∗ -0.036∗∗∗
(-14.17) (-13.74) (-12.79) (-12.78) (-12.93) (-13.08)

FirstAuthor 0.294∗∗∗ 0.334∗∗∗ 0.334∗∗∗ 0.272∗∗∗ 0.266∗∗∗
(4.21) (4.31) (4.32) (3.23) (3.10)

Incorp𝑇 0.009 0.009 -0.014 -0.018∗
(1.04) (1.02) (-1.34) (-1.65)

US𝑇 -0.255 -0.064 0.358
(-0.67) (-0.15) (0.68)

FirmSize𝑇 -0.568∗∗∗ -0.611∗∗∗
(-7.31) (-5.28)

Funding𝑇 0.082
(0.67)

Constant -1.779∗∗∗ -383.650∗∗∗ -378.974∗∗∗ 43.302 20.953 15.684 15.850 94.411∗ 112.447∗∗
(-14.66) (-14.59) (-13.61) (1.11) (0.53) (0.35) (0.35) (1.89) (2.19)

Observations 4966 4966 4806 4806 4806 4051 4051 3593 3519
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

2.3.2 Robustness checks

To test for the robustness of our results, we replicate our baseline analysis with alter-
native definitions of the dependent (𝑇𝑎𝑙𝑒𝑛𝑡) and independent (𝐶𝑜𝑟𝑒) variables. The pa-
rameter of Model (2.1) estimated based on this alternative specification are presented in
Appendix B.8.

Alternative definitions of the dependent variable

Fixed observation period To better ensure the comparability of the outcome of in-
terest (𝑇𝑎𝑙𝑒𝑛𝑡 or 𝑇𝑎𝑙𝑒𝑛𝑡∗) across all inventors, we propose to construct the analysis based
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on a fixed time period. The idea is that the period over which we test whether a target
inventor is found in her acquirer patent portfolio would be the same for all inventors.

We choose to define 𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 1 when the inventor 𝑖 ’s id can be found in her ac-
quire’s patent portfolio within 4 years after acquisition (𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 0 if she never patents
for her acquirer or if she does so more than 4 years after acquisition). We thus ignore
all inventors who were acquired less than 4 years before the end of the data collection in
July 2022. So we consider inventors acquired up until July 2018.20

Just like for the baseline estimates, we find that inventors active in their acquirer’s
core technology fields are on average more likely to further patent for their acquirer,
and the effect is even larger: the odds of further patenting for the acquirer are about 2.61
times greater for inventors active in their acquirer’s core technology fields (see Table
B.6).

Two months buffer after acquisition As a second robustness check, we want to ac-
commodate a period during which uncertainty persists regarding the patented technol-
ogy investigator (whether still target or already acquirer).

We choose to define 𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 1 when the inventor 𝑖 ’s id can be found in her ac-
quire’s patent portfolio from two months onwards after acquisition (𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 0 if she
never patents for her acquirer or if she does so less than two months after acquisition).

On this basis, we observe that inventors active in their acquirer’s core technology
fields are 2.16 time more likely to further patent for their acquirer (see Table B.8). So our
previous results are also robust to this alternative specification.

Inventors filing under the acquirer’s name So far, we have included in the acquirer’s
portfolio all the patents filed under the acquirer’s name or under the target’s name after

20This 4 years threshold also allows to account for an observed drop in the probability to further patent for
the acquirer when acquired after 2018 (see Appendix B.9). This can partially be explained by the fact that the
USPTO PatentsView data covers granted patents, so the most recent patents are less likely to be observed simply
because they might not be granted yet.
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acquisition. This means that an inventor who keeps filing patents under her target’s
name after acquisition is considered as patenting for her acquirer. Of all the inventors
associated with 𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 1 in our baseline analysis, 19% have not filed any patent under
their acquire’s name.

One could argue that inventors who don’t use their acquirer’s name when filing a
patent after acquisition are not fully integrated whithin their acquirer’s research lab. In-
stead, they stay somehow more independent and this might go along with a research
history that is more distant from their acquirer’s core fields, which might drive our 𝛽
estimates downwards. For this reason, we propose to check for the robustness of our
results to restricting𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 1 to those target inventors filing some patents under their
acquirer’s name.

The outcome of this alternative specification confirms our intuition, as the 𝛽 estimates
appear even larger than in the baseline analysis: inventors active in their acquirer’s core
technology fields are on average 2.93 times more likely to further patent under their
acquirer’s name after acquisition (see Table B.10).

Alternative definitions of the independent variable

Inventors of core technologies within a year As an additional robustness check, we
want to test whether our results hold when using an alternative definition of the re-
gressor of interest; instead of capturing whether an inventor has ever filed some patent
belonging to one of her acquirer’s core technologies, 𝐶𝑜𝑟𝑒𝑖 ∈ {0, 1} will now capture
whether she does so within a year before acquisition.

Our results show that the coefficient associated with 𝐶𝑜𝑟𝑒𝑖 is still positive, but it is
no longer statistically significant for the more complete model specifications (see last
columns of the regression output in Table B.12). This absence of statistical significance
could be explained by the reduced sample size; only 852 inventors (17% of inventors
from Big Tech targets) have been active in their acquirer’s core technology fields within
a year of their acquisition. So statistical power might not be sufficient to estimate the
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most complete versions of our model (i.e. including all control variables).

Core technologies defined at the 3-digit level We define Big Tech’s core technolo-
gies based on the relative frequency at which those technologies appear in Big Tech’s
patent portfolios. For our baseline analysis, we computed the number of patents classi-
fied in each cpc subsection at the two-digits level (CPC section symbol followed by a
two-digit number, e.g. G06 for ‘Computing; Calculating or Counting’). With this ro-
bustness check, we propose a more precise mapping by narrowing the definition to the
three-digit level (e.g. G06F for ‘Electric Digital Data Processing’). Using this alternative
definition of core technologies, the variable 𝐶𝑜𝑟𝑒 can be constructed in the same way as
before (see Section 2.2.2).

In Table B.14, we see that our main results are robust to this alternative definition;
inventors active in their acquirer’s core (3-digit) technology fields are 1.62 time more
likely to further patent for their acquirer.

2.4 Extension: Assessing potential explanations for our baseline
results

In the previous section, we found that inventors working pre-acquisition on technologies
in which their acquirer is focusing its own innovative efforts are more likely to keep
innovating for their acquirer after acquisition. In this section, we examine two potential
explanations for this finding.

2.4.1 1𝑠𝑡 hyp.: Inventors of core technologies are more easily assessed

Could Big Tech more easily assess the value of inventors when they work on its core
technologies, and hence better exploit their talent, which would explain that these in-
ventors are more likely to stay active after acquisition?

To examine this first hypothesis, we use the 𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑖 index to proxy for the value
of inventor 𝑖 ’s innovation history (i.e. the market value of the patents this inventor filed
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pre-acquisition, as defined in Section 2.2.2). Next, we rewrite Model (2.1) to allow the
effect of this value index on the probability for the inventor to keep innovating for her
acquirer to vary depending on whether the inventor has filed some core patent (𝐶𝑜𝑟𝑒𝑖 ):

𝑃 (𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 1) = 𝐹 (𝛼 ′ + 𝛽1𝐶𝑜𝑟𝑒𝑖 + 𝛽2𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑖 + 𝛽3𝐶𝑜𝑟𝑒𝑖𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑖

+ 𝜏 ′𝑀𝑆𝑖𝑛𝑐𝑒𝐴𝑐𝑞𝑢𝑖𝑖 +
∑︁
𝑘

𝛾 ′
𝑘
𝑋𝑖,𝑘 +

∑︁
𝑙

𝜁 ′
𝑙
𝑌𝑖,𝑙 + 𝜇′𝐵𝑇 𝑖 ) (2.2)

For inventors associated with 𝐶𝑜𝑟𝑒𝑖 = 1, the odds ratio for a one-unit increase in the
value of their innovation history is 𝑒𝛽2+𝛽3 , for those with 𝐶𝑜𝑟𝑒𝑖 = 0 it is 𝑒𝛽2 .

Estimates

The parameter estimates of Model (2.2) are presented in Table 2.4. Based on the baseline
definition of the 𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑖 index (see equation (b.1)), we estimate that, for inventors
active in technologies outside of their acquirer’s core business (𝐶𝑜𝑟𝑒𝑖 = 0), a history of
more valuable patents does not translate into a higher probability to keep innovating for
their acquirer; they actually have 97% fewer chances to do so (𝑒𝛽2 = .03∗∗∗) for each unit
increase in their innovation value.

The coefficient associated with𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑖 captures two mechanisms: inventors who
stay at their acquirer’s are expected to be more likely to further patent if they have a more
valuable innovation history, but a more valuable innovation history might also help them
find another job more easily at some other firm’s. Based on our results, the latter mech-
anism seems to be stronger for non-core inventors. In Appendix B.10, we can see that
these results are robust to using the alternative definitions of the market value index (see
equations (a), (b.2) and (b.3)).

These findings suggest that talented inventors active in technologies outside of their
acquirer’s core business might not be recognized for their true worth at their acquirer’s.
Instead, a history of more valuable patents might help them find another job in which
their talent could be better exploited. This corroborates the hypothesis according to
which being better assessed by their acquirer partly explains why inventors of core tech-
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nologies are more likely to keep innovating for their acquirer.

Table 2.4: Inventors innovating for their acquirer, Model (2.2)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent
Core=1 0.487∗∗∗ 0.465∗∗∗ 0.433∗∗∗ 0.381∗∗∗ 0.376∗∗∗ 0.564∗∗∗ 0.559∗∗∗ 0.612∗∗∗ 0.687∗∗∗

(5.57) (5.05) (4.63) (4.01) (3.95) (4.55) (4.49) (4.11) (4.30)

MarketVal -1.866∗∗∗ -3.427∗∗∗ -3.632∗∗∗ -2.592∗∗∗ -2.424∗∗∗ -2.561∗∗∗ -2.560∗∗∗ -3.223∗∗∗ -3.358∗∗∗
(-3.83) (-6.47) (-6.76) (-4.84) (-4.52) (-4.33) (-4.33) (-5.11) (-5.23)

Core=1 × MarketVal 2.338∗∗∗ 3.157∗∗∗ 3.436∗∗∗ 2.843∗∗∗ 2.717∗∗∗ 3.395∗∗∗ 3.392∗∗∗ 3.662∗∗∗ 3.860∗∗∗
(4.10) (5.21) (5.57) (4.69) (4.48) (4.97) (4.97) (5.18) (5.37)

MSinceAcqui 0.011∗∗∗ 0.030∗∗∗ 0.031∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.018∗∗∗ 0.018∗∗∗ 0.021∗∗∗ 0.022∗∗∗
(15.40) (20.24) (19.46) (7.30) (7.58) (8.09) (8.09) (8.46) (8.54)

PatentsCount 0.065∗∗∗ 0.101∗∗∗ 0.099∗∗∗ 0.037∗∗∗ 0.032∗∗∗ 0.031∗∗∗ 0.032∗∗∗ 0.030∗∗∗ 0.030∗∗∗
(8.40) (11.25) (10.90) (4.34) (3.83) (3.38) (3.39) (3.22) (3.21)

FirstFiling 0.210∗∗∗ 0.212∗∗∗ 0.002 0.010 0.001 0.001 0.004 0.004
(15.29) (14.49) (0.09) (0.48) (0.04) (0.04) (0.15) (0.14)

US -0.257∗∗∗ -0.218∗∗ -0.217∗∗ -0.262∗∗ -0.091 -0.245 -0.731
(-2.94) (-2.43) (-2.42) (-2.06) (-0.23) (-0.56) (-1.30)

MSinceLastFil -0.029∗∗∗ -0.028∗∗∗ -0.029∗∗∗ -0.029∗∗∗ -0.033∗∗∗ -0.034∗∗∗
(-13.54) (-13.20) (-12.45) (-12.44) (-12.24) (-12.34)

FirstAuthor 0.260∗∗∗ 0.299∗∗∗ 0.300∗∗∗ 0.224∗∗∗ 0.214∗∗
(3.67) (3.82) (3.82) (2.62) (2.45)

Incorp𝑇 0.012 0.012 -0.012 -0.018
(1.27) (1.26) (-1.13) (-1.60)

US𝑇 -0.174 0.029 0.485
(-0.46) (0.07) (0.91)

FirmSize𝑇 -0.589∗∗∗ -0.597∗∗∗
(-7.48) (-5.08)

Funding𝑇 0.039
(0.32)

Constant -1.744∗∗∗ -427.012∗∗∗ -429.059∗∗∗ -4.857 -21.036 -27.318 -27.166 15.161 27.368
(-13.84) (-15.35) (-14.54) (-0.12) (-0.51) (-0.57) (-0.57) (0.29) (0.50)

Observations 4880 4880 4720 4720 4720 3967 3967 3509 3435
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

A question that naturally arises from this result is whether these inventors of valuable
core technologies are expected to keep working in similar technology fields after acqui-
sition. Is Big Tech hiring experts because it wants to develop their areas of expertise,
or is it hiring the best talents, regardless of their specialization, to further expand into
peripheral fields? This question will be examined in the next section.
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2.4.2 2𝑛𝑑 hyp.: Big Tech acquires talent to improve its core technologies

We have argued so far that inventors of core technologies can be better assessed by their
potential acquirer, which could partially explain that they are more likely to keep inno-
vating after acquisition. But uncertainty persists as to what Big Tech ends up using this
talent for once it has joined the new research team. Are they simply more often further
innovating for their acquirer because they were better assessed in the first place, or could
it be a strategy for Big Tech to acquire inventors skilled in its core technologies with the
aim to have more people working on these technologies in its research team? In other
words, are these inventors of core technologies hired for their general talent, or for their
expertise in specific fields?

To examine this question, we want to assess whether the best inventors of Big Tech
core technologies keep working on these technologies after they joined their acquirer’s
team. We thus focus on inventors who are further innovating for their acquirer (i.e. who
have filed some patent for the target before being acquired and for their acquirer after
acquisition, 𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 1). This means that our analysis is prone to a selection bias: the
technology choices of inventors who do not keep patenting for their acquirer are not
observed, while patenting for the acquirer might not be random. For instance, those in-
ventors with a more positive relation between their innovation value and the probability
to file core patents could be less likely to keep patenting for their acquirer and hence to
be observed.

Inventor keeps innovating for the acquirer

Inventor focuses on core technologies

1 0

0

So there might be two dimensions to the relationship between an inventor’s inno-
vation value and her propensity to keep working on her acquirer’s core technologies.
First, the direct effect of the inventor’s ability to develop certain technologies. Second,
the fact that some inventors might be selectively less likely to be observed after acquisi-
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tion (e.g. if they don’t comply with what is expected of them based on their value type).
To study the determinants of how inventors direct their innovative effort while keeping
constant the effect of selection into further innovating for the acquirer, we propose to
use a Heckman (1979)-type selection model.

We collect information on how close the patents filed by target inventors are to their
acquirer’s technology. In Section 2.2.2, we defined the 𝐶𝑜𝑟𝑒𝑖 variable as the share of
fields listed in patents filed by inventor 𝑖 that belong to her acquirer’s core business. This
variable can be constructed with a time dimension based on the patents filing dates; up
to two years before the acquisition of the target, and over a period of two years starting
two months after acquisition. This two months buffer aims to accommodate a period
during which uncertainty persists regarding the patented technology investigator. We
obtain a dataset at the inventor-level with information on the share of core fields before
acquisition (𝐶𝑜𝑟𝑒𝐵𝑒𝑓 𝑜𝑟𝑒𝑖 ), for both inventors who keep patenting for their acquirer and
those who don’t, and on the share of core fields over a period starting two months af-
ter acquisition (𝐶𝑜𝑟𝑒𝐴𝑓 𝑡𝑒𝑟

𝑖 ), for inventors who keep patenting for their acquirer only.21 22

Now, we want to assess whether target inventors who have patented more valuable
inventions pre-acquisition are more likely to keep working on their acquirer’s core tech-
nologies. The regression equation thus aims to capture the effect of the market value of
the inventors’ innovation history (𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑖 ) on the share of core fields averaged across

21Out of the 2,645 inventors observed (up to 2 years) before acquisition, 1,037 inventors keep patenting for
their acquirer (of which 1,013 are associated with some information on 𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙 and all inventor-level control
variables), coming from 134 targets, and 1,608 do not keep patenting for their acquirer (of which 1,501 are associated
with some information on 𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙 and all inventor-level control variables), coming from 144 targets.

22For inventors who keep patenting for their acquirer, we find no significant difference between the share of
core fields before and after acquisition: based on a t-test, we cannot reject that the mean value of 𝐶𝑜𝑟𝑒𝑖 across
all inventors filing before and after acquisition (.409 and .407, respectively) is the same. So, on average, we do
not observe a shift in the probability for a target inventor to patent technologies belonging to her acquirer’s core
field.
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all the patents filed by this inventor after acquisition (𝐶𝑜𝑟𝑒𝐴𝑓 𝑡𝑒𝑟

𝑖 ):

𝐶𝑜𝑟𝑒
𝐴𝑓 𝑡𝑒𝑟

𝑖 =

𝛼 + 𝜂1𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑖 + 𝜂2𝐶𝑜𝑟𝑒
𝐵𝑒𝑓 𝑜𝑟𝑒

𝑖
+ 𝜂3 𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑖 𝐶𝑜𝑟𝑒

𝐵𝑒𝑓 𝑜𝑟𝑒

𝑖
+

∑︁
𝑘

𝛾𝑘𝑥𝑖,𝑘 + 𝜇𝐵𝑇 𝑖 + 𝑢𝑖

(2.3)

where 𝑥𝑖 contains the year in which the inventor filed a patent for the first time (𝐹𝑖𝑟𝑠𝑡𝐹𝑖𝑙𝑖𝑛𝑔𝑖 ),
whether the inventor filed a patent originating from the United States (𝑈𝑆𝑖 ), the share of
patents the inventor filed as first author (𝐹𝑖𝑟𝑠𝑡𝐴𝑢𝑡ℎ𝑜𝑟𝑆ℎ𝑖 ), the number of months between
acquisition and the end of the study period (𝑀𝑆𝑖𝑛𝑐𝑒𝐴𝑐𝑞𝑢𝑖𝑖 ), and 𝑢𝑖 ∼ 𝑁 (0, 𝜎). 𝐶𝑜𝑟𝑒𝐵𝑒𝑓 𝑜𝑟𝑒

𝑖

accounts for the fact that high levels of 𝐶𝑜𝑟𝑒𝐴𝑓 𝑡𝑒𝑟

𝑖 could be associated with two differ-
ent scenarios: an inventor starts patenting in her acquirer’s core fields after acquisition
(𝐶𝑜𝑟𝑒𝐵𝑒𝑓 𝑜𝑟𝑒

𝑖
= 0), or she keeps patenting in these same fields she was already working on

before acquisition (𝐶𝑜𝑟𝑒𝐵𝑒𝑓 𝑜𝑟𝑒
𝑖

= 1). Since we want to explain why core inventors are
more likely to further innovate for their acquirer after acquisition, we are interested in
the case where 𝐶𝑜𝑟𝑒𝐵𝑒𝑓 𝑜𝑟𝑒

𝑖
= 1.

Selection model

In order to correct for selection, we need to define an exclusion restriction. We choose
the variable associated with the number of months since the inventor’s last patent filing
for the target (𝑀𝑆𝑖𝑛𝑐𝑒𝐿𝑎𝑠𝑡𝐹𝑖𝑙𝑖 ), which is a proxy for whether the inventor is still active
at the time of acquisition.

Exogeneity The instrument we propose is expected to be uncorrelated with 𝑢𝑖 : being
active at the time of acquisition should not be directly linked with the share of core fields
in the patents an inventor files after acquisition. It is difficult to test for the validity of
this exclusion restriction based on 𝐶𝑜𝑟𝑒𝐴𝑓 𝑡𝑒𝑟

𝑖 , because the effect of 𝑀𝑆𝑖𝑛𝑐𝑒𝐿𝑎𝑠𝑡𝐹𝑖𝑙𝑖 could
be direct, but also indirect through the probability of being observed after acquisition
(𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 1). Hence, we propose to test it based on 𝐶𝑜𝑟𝑒𝐵𝑒𝑓 𝑜𝑟𝑒𝑖 .

We estimate the Pearson (1896) product-moment correlation coefficient between
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𝐶𝑜𝑟𝑒
𝐵𝑒𝑓 𝑜𝑟𝑒

𝑖 and 𝑀𝑆𝑖𝑛𝑐𝑒𝐿𝑎𝑠𝑡𝐹𝑖𝑙𝑖 on the full sample of inventors who keep patenting for
their acquirer and those who don’t. We obtain a correlation coefficient of −0.008 that is
not different from zero at all standard confidence levels. We conclude that the correlation
between our instrument and the share of core fields in the patents an inventor files before
acquisition is not significant. This suggest that the direct effect of this instrument on the
share of core fields after acquisition should also be insignificant, and that only an indirect
effect through the probability of being observed after acquisition would remain.

Relevance The instrument we propose could also be correlated with the inventor-level
controls (in 𝑥𝑖 and 𝐵𝑇 𝑖 ), so these controls may influence 𝑇𝑎𝑙𝑒𝑛𝑡𝑖 via 𝑀𝑆𝑖𝑛𝑐𝑒𝐿𝑎𝑠𝑡𝐹𝑖𝑙𝑖 . To
isolate the direct effect of 𝑀𝑆𝑖𝑛𝑐𝑒𝐿𝑎𝑠𝑡𝐹𝑖𝑙𝑖 on 𝑇𝑎𝑙𝑒𝑛𝑡𝑖 from the effect these controls may
have on𝑇𝑎𝑙𝑒𝑛𝑡𝑖 through𝑀𝑆𝑖𝑛𝑐𝑒𝐿𝑎𝑠𝑡𝐹𝑖𝑙𝑖 , we include 𝑥𝑖 and 𝐵𝑇 𝑖 in the selection equation,
of which we define a Probit estimate:

𝑃 (𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 1) = Φ (𝛼1 + 𝜂1
1𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑖 + 𝜂1

2𝐶𝑜𝑟𝑒
𝐵𝑒𝑓 𝑜𝑟𝑒

𝑖
+ 𝜂1

3 𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑖 𝐶𝑜𝑟𝑒
𝐵𝑒𝑓 𝑜𝑟𝑒

𝑖

+
∑︁
𝑘

𝛾1
𝑘
𝑥𝑖,𝑘 + 𝜇1𝐵𝑇 𝑖 + 𝜅 𝑀𝑆𝑖𝑛𝑐𝑒𝐿𝑎𝑠𝑡𝐹𝑖𝑙𝑖 ) (2.4)

where Φ is the standard cumulative normal distribution.

To be relevant, the instrument must be correlated with the probability to be observed
after acquisition; the𝜅 parameter from this selection equation must be significantly differ-
ent from zero. We can check this from Appendix B.11, presenting the first-step parameter
estimates from equation (2.4). We confirm the relevance of our instrument based on the
significance of the �̂� parameter (−.01∗∗∗).

Estimates

Using Heckman’s (1979) procedure, we estimate the two-step parameters from the re-
gression equation (2.3) augmented with the nonselection hazard computed from the fit-
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ted values of the selection equation (2.4):

𝐶𝑜𝑟𝑒
𝐴𝑓 𝑡𝑒𝑟

𝑖 = 𝛼2 + 𝜂2
1𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑖 + 𝜂

2
2𝐶𝑜𝑟𝑒

𝐵𝑒𝑓 𝑜𝑟𝑒

𝑖
+ 𝜂2

3 𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑖 𝐶𝑜𝑟𝑒
𝐵𝑒𝑓 𝑜𝑟𝑒

𝑖

+
∑︁
𝑘

𝛾2
𝑘
𝑥𝑖,𝑘 + 𝜇2𝐵𝑇 𝑖 + 𝜆

𝜙 ( �𝑃 (𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 1))
Φ( �𝑃 (𝑇𝑎𝑙𝑒𝑛𝑡𝑖 = 1))

+ 𝑣𝑖 (2.5)

where 𝜙 and Φ are the standard normal probability density and cumulative distribu-
tion functions, respectively.

Provided that 𝑀𝑆𝑖𝑛𝑐𝑒𝐿𝑎𝑠𝑡𝐹𝑖𝑙 is a valid exclusion restriction, which we argued in
the previous section, these parameters capture the responses in the observed values of
𝐶𝑜𝑟𝑒

𝐴𝑓 𝑡𝑒𝑟 to independent variations in the regressors, i.e. keeping constant the effect of
selection into 𝑇𝑎𝑙𝑒𝑛𝑡 = 1.

Table 2.5 presents the two-step parameter estimates from model (2.5), where the pa-
rameter associated with 𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙 thus captures the share of the variation in 𝐶𝑜𝑟𝑒𝐴𝑓 𝑡𝑒𝑟

explained by the exogenous part of the market value of the inventor’s innovation history.
The two-step parameter estimates of 𝜂2

1 +𝜂
2
3 is negative (−.18∗∗∗), so core inventors who

have patented more valuable inventions pre-acquisition are less likely to keep innovating
in their acquirer’s core technologies (and this is independent from whether they keep
innovating for their acquirer at all).23

Next to our baseline definition of the independent variable, 𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙 , this model
is also estimated based on the three alternative market value indices defined in equations
(a), (b.2) and (b.3). As can be seen from Appendix B.12, our results are robust to these
alternative definitions: 𝜂2

1 +𝜂
2
3 = −.29∗∗ (for𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙), −1.76∗∗∗ (for𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑏𝑖𝑠 ) and

−.16∗∗∗ (for 𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑡𝑒𝑟 ).

23We also observe that the 𝜆 parameter associated with the nonselection hazard in the second step of the
selection model is not significant. This means that there does not seem to be a bias due to, for instance, inventors
associated with both a high innovation history market value and many core patents not being observed.
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Table 2.5: Heckman two-step parameters

MeanCore_After

MarketVal 0.034
(0.093)

Core_Before = 1 0.654***
(0.022)

Core_Before=1 × MarketVal -0.216*
(0.120)

MSinceAcqui -0.000
(0.000)

FirstFiling 0.004
(0.003)

US -0.080***
(0.018)

FirstAuthorSh 0.042**
(0.018)

Constant -8.926
(5.757)

lambda -0.022
(0.068)

Observations 2,515
BT dummies Yes

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Our results thus show the opposite of what would be expected if Big Tech were
acquiring inventors skilled in its core technologies to increase the number of in-house
researchers focused on these areas. Instead, core inventors with a history of more valuable
patents appear to direct their innovation efforts towards novel research projects.

2.5 Conclusion

In this paper, we analyse the innovative activity of inventors from firms acquired by Big
Tech. Drawing on firm-level and patents databases, we find that inventors working pre-
acquisition on technologies in which their acquirer is focusing its own innovative efforts
are more likely to keep filing patents for their acquirer after acquisition.
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As we show, this outcome can be partially attributed to Big Tech’s enhanced tal-
ent assessment capabilities in its core technology fields, which explains that inventors of
core technologies are more likely to stay active after acquisition. However, we also find
that, once acquired, these talented core inventors are redirected towards fields in which
their acquirer has less expertise. These results suggest that Big Tech acquires inventors
in its core technology fields mainly because it can better assess their value, rather than to
maintain their focus on those core technologies.

This paper highlights the interplay between talent acquisition and technological spe-
cialisation in the digital economy. Our analysis focuses on inventors joining their ac-
quirer’s team. An interesting extension for future research would be to investigate what
happens to inventors who leave their company after its acquisition by a tech giant and
join some other firms.





Chapter 3

How and Where Does Big Tech Disrupt?

Abstract

Despite their considerable R&D investments, the tech giants might not always
seem to have what it takes to bring disruptive innovation to the market. For these
leading firms, the acquisition of start-ups could be a way to disrupt at lower cost.
But acquiring and shelving disruptive inventions might also enable big tech plat-
forms to stifle disruption in markets where they are already strong. We propose
to use a patent-based measure of the extent to which a firm develops disruptive
innovation. We first document, based on this measure of disruption, Big Tech’s
innovative activity. Alongside the ‘buy vs build’ principle, we find that Big Tech’s
acquired inventions tend to be more disruptive than those that it develops inter-
nally. Next, we test whether the adoption of those acquired disruptive technologies
varies with the competitive environment in which the acquisition takes place. Our
results suggest that disruptive technologies that have been adopted by Big Tech
belong to industries in which these tech giants hold a weaker market position.

3.1 Introduction

When studying innovation, the economic literature has traditionally mainly focused on
how much innovation is produced. More recently, an increasing number of studies have
been focusing on the type of innovation that is produced. Is it some type of innovation
that just marginally improves an existing technology, or does it completely revolutionise
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the state of the art?

Since Christensen (1997), the literature refers to these innovation types as “sustain-
ing” versus “disruptive” innovation. Gans (2016) developed a more modern notion of
disruption, from the perspective of the incumbent: “when successful firms fail because they
continue to make the choices that drove their success” (p.9). Another influential definition,
proposed by Cabral (2023), distinguishes between an innovation that establishes a new
dominant firm (competition for the market), as opposed to an innovation that results
in a higher technology level (competition in the market). In line with this idea, Ace-
moglu, Akcigit, and Celik (2014) refer to technologies causing the most fundamental
“creative destruction”. In the management literature, Govindarajan and Kopalle (2006)
developed a scale to measure disruption based on five characteristics of the innovation,1

with a focus on how the market only gradually comes to value the innovation’s attributes.

In this paper, we will prefer a less market-oriented and more technology-oriented
definition of disruption. To define a technological change, the literature has long been
using the distinction between improving an existing technology and introducing a new
approach to technical practice (Reinganum 1983; Tushman and P. Anderson 2018). Ac-
cording to this definition, disruption identifies, from the mass of minor improvements
on existing technologies, those few novel technologies that significantly impact technical
progress (Scherer and Harhoff 2000; Trajtenberg 1990).

We apply our analysis of disruptive technologies to digital markets. To do so, we
focus on the leading firms of the sector in the US, often grouped under the labels Big

1The five characteristics used by Govindarajan and Kopalle (2006) to define a disruptive innovation are: i.
it underperforms on dimensions mainstream customers value, ii. mainstream customers initially do not value the
innovation’s attributes, iii. it is simpler and cheaper than existing offerings, iv. it appeals to low-end, financially
unattractive niche customers, v. it can disrupt high-end markets with radical technology. Govindarajan and
Kopalle (2006) tested for the internal validity of this scale based on a survey of senior executives from differ-
ent industry sectors, in which they were asked to rank the innovations that had been commercialized by their
strategic business unit (SBU) along the five items. For instance, to capture the ability of an innovation to attract
new customer segments, the authors used the following question (to be answered on a 7-point scale, strongly
disagree/strongly agree): "During the past 5 years, the new products that were introduced by this SBU were very
attractive to a different customer segment at the time of product introduction.". They showed that executives
belonging to the same SBU tend to give similar rankings.
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Tech, GAFAM or tech giants. Each of these leading firms established its dominance by
commercialising a disruptive technology: search engines for Alphabet, personal com-
puters for Apple, social networks for Meta, online shopping for Amazon, and operating
systems for Microsoft (Lemley and Wansley 2024). Since then, big tech platforms have
themselves not been displaced by the disruptive technology of another innovative firm.
There has, however, been many cases of digital start-ups bringing some disruptive in-
novation to the market.

As an example, let us consider the case of Agawi, an app-streaming start-up whose
technology enabled users to access apps on their smartphones without having to down-
load them first (Efrati 2015). While this technology was originally used for in-app adver-
tisements, it provided an alternative method for discovering content within apps, direct-
ing users away from Google’s search engine and web browsers (Boyacıoğlu, Özdemir,
and Karim 2024). In 2014, Google acquired Agawi (Lunden 2015).

Such case study is very informative about the dynamics of disruptive technologies
in digital markets, and it offers a strong rationale for exploring disruption patterns on a
more aggregated level. To do so, we use in this paper information found in the patents
published or acquired by Big Tech. We follow Arts, Hou, and Gomez (2021) to construct
a patent-based measure of disruption. These authors build a database of the keywords
extracted from the title, abstract, and claims of all the patents filed at the USPTO be-
tween 1980 and 2018, and they propose to identify patents covering fundamentally new
technologies based on the ‘new’ keywords (i.e. keywords appearing for the first time in
the USPTO database) that they contain.

Based on this measure of disruption, we first propose some empirical evidence on the
extent to which Big Tech adopts disruptive technologies, both through in-house inno-
vation and through the acquisition of start-ups. Theory predicts that start-ups are more
able/have more incentives to develop disruptive inventions (Acemoglu, Akcigit, and Ce-
lik 2014; Christensen 1997; R. M. Henderson and Clark 1990), and this is backed-up by
empirical evidence showing that incumbents often lag behind in introducing disrup-
tive product innovation or delay its diffusion (Antonio and Kanbach 2023; Ben-Slimane,
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Diridollou, and Hamadache 2020; Hynes and Elwell 2016). In line with these predic-
tions, we find that big tech platforms tend to disrupt less than their targets.

Google’s technology might have been less disruptive than Agawi’s, but this does not
necessarily stem from Google’s failure to disrupt. Instead, this might be a strategic choice
on the part of the tech giant to ‘buy’ instead of ‘build’ (Caffarra, Crawford, and Val-
letti 2020). In other words, the disruption effort of Big Tech and of its targets might
be strategic substitutes and, instead of trying to replicate Agawi’s technology, Google
might choose to buy it. A question broadly discussed in such scenario (see for instance
Fumagalli, Motta, and Tarantino 2020) is whether Google will adopt this disruptive
technology or, instead, shelve it to avoid directing users away from Google’s mobile
web browsers.

While a case-by-case analysis would be necessary to answer this question for each Big
Tech acquisition separately, in this paper we propose a methodology that allows to study
broader patterns. To do so, information on the new keywords contained in a patent text
can also be used. First, we identify whether a target had a disruptive technology before
being acquired from the combination of new keywords in its patent portfolio. In turn, if
its acquirer is adopting the technology, these new keywords combinations should appear
in the acquirer’s own patent portfolio. We find that, for about 3/4 of Big Tech acquisi-
tions, the disruptive technology is later adopted by its acquirer.

Finaly, we expect that variations might arise across market environments in which
the innovative activities take place. Theoretical literature suggests that large incumbents
may not only have more to loose from adopting a disruptive invention in markets that
they are leading (Arrow 1972, Holmes, Levine, and Schmitz Jr 2012), but they might also
seek to hinder the disruption brought by innovative start-ups in those markets (Shapiro
2011). We aim to provide empirical evidence to complement these theoretical predic-
tions. To do so, we use two different metrics of the market environment. First, we
define a proxy for market size based on the number of companies with similar business
characteristics to Big Tech targets. Second, we build an indicator of dominance based on
market shares data. Our results suggest that the adoption of disruptive technologies from
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acquired start-ups does not vary across market sizes. However, we find that disruptive
technologies that have been adopted by Big Tech (historically) belong to fields in which
the tech giants have a weaker market position (today).

Background and Research Questions

There is a suspicion that the tech giants are not very good at disrupting (Ezrachi and
Stucke 2022, R. M. Henderson and Clark 1990, Schmidt 2023). Because of their size,
they might be little responsive to the evolution of the market and they might lack cre-
ativity (Crémer, Montjoye, and Schweitzer 2019). They might also find it organisa-
tionally challenging to invest in disruptive technologies (Christensen 1997; Bresnahan,
Greenstein, and R. M. Henderson 2011).

To address these challenges and stay ahead in the technological race, these industry
leaders often resort to acquiring smaller, more flexible start-ups (Bryan and Hovenkamp
2020a). These high growth young firms are identified as the main drivers of innovation
in the most recent endogenous growth models (Acemoglu, Akcigit, Alp, et al. 2018, Ak-
cigit and Kerr 2018). This is particularly important in digital markets, where start-ups
play a major role in bringing disruptive innovations (Jorgenson 2001, Zucker, Darby,
and Brewer 1998). Many of today’s most popular and successful products started out
with smaller companies that were later acquired by larger corporations (Cabral 2018),
e.g. Microsoft/PowerPoint (1987), Google/YouTube (2006), and Facebook/Instagram
(2012). The acquisition of innovative start-ups can thus come as a substitute to the in-
cumbent’s own in-house disruption effort in a “build vs. buy” scenario (Caffarra, Craw-
ford, and Valletti 2020).2

2We thus focus on the incumbent’s disruption effort. Although it is a very interesting topic, this paper does not
explore the relationship between the startup’s own disruption efforts and its acquisition potential. The literature
on this topic tends to predict a negative effect of acquisition. Anticipating its acquisition, the start-up strategically
distorts the direction of its innovation in order to maximise the acquisition rents (Dijk, José L Moraga-González,
and Motchenkova 2021, Katz 2021). This leads to less radical innovation and lower quality (Cabral 2018, Katz
2021). In addition, the ability to innovate for buyout makes it less desirable for the start-up to develop a disruptive
innovation that would allow it to replace the dominant firm. Cabral (2018) refers to this phenomenon as the
“complacency effect”.
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Building on this literature, our first research question boils down to:

First research question Are Big Tech’s acquired inventions more disruptive than their in-
house innovation?

Next, we will be interested in the relationship between disruption and the market
environment. Aghion et al. (2005)’s textbook finding is “an inverted-U relationship be-
tween product market competition and innovation.”.3 Again, we aim to redirect the
focus from how much innovation is produced to how disruptive is innovation across differ-
ent market environments.

For most authors, disruption is not only defined by the nature of the technology
change (i.e. improving an existing technology vs. developing a substitute to this exist-
ing technology), but also by its ability to threaten the incumbent’s competitive position
in one of its key business areas (Adner 2002; Boyacıoğlu, Özdemir, and Karim 2024):
“whether the disruptive technology is improving from below along a trajectory that will
ultimately intersect with what the market [i.e. existing users] needs.” (Christensen 1997,
p.54). As such, the market environment is an important determinant of Big Tech’s in-
centives to disrupt, both internally or through acquisition.

On the one hand, large incumbents are expected to be more disruptive when they
target adjacent markets, e.g. Microsoft Bing challenging Google in search (Federico,
Morton, and Shapiro 2020), as they might lack the incentives to disrupt markets that
they are leading. On the other hand, disruption is less desirable for these leading firms
when they have fewer firms to compete with, because they have more to loose from the
"forgone rent" (Arrow 1972, Holmes, Levine, and Schmitz Jr 2012) and less to gain from
business-stealing effects (Bryan and Hovenkamp 2020a; Federico, Morton, and Shapiro
2020). Instead, the acquisition of disruptive start-ups can be viewed as a tactic to stifle
disruption in markets where the acquirer is already strong (Lemley and Wansley 2024;
Shapiro 2011), leading to both the loss of a disruptive entrant and reduced competitive
pressure on the incumbent, e.g. Facebook’s acquisition of Instagram (Federico, Morton,

3See also Sutton (2001).
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and Shapiro 2020).4

In line with these considerations, we formalise a second research question:

Second research question How does Big Tech’s disruptive technology adoption vary across
market environments?

3.2 Data

For our different analyses, we will be using information found in US patents filed by Big
Tech itself and by Big Tech-acquired firms.

We identify firms acquired by Big Tech and the dates at which their acquisitions
were announced from four different databases: Standard & Poor’s CapIQ (2022), Geoff,
Marshall and Parker (2021), Gautier and Lamesch (2021), and the US Patent and Trade-
marks Office (USPTO) Patent Assignment Dataset (2022). Patent data is collected from
the USPTO Patent Views database (e.g. patent number, patent date, application identi-
fier, publication author, CPC technology field and inventors’ names5), and is matched to
Arts, Hou, and Gomez (2021)’s patent text measures. We identify 859 firms acquired by
Big Tech between January 1996 and January 2021, of which 252 have filed at least one
patent application before being acquired.

3.2.1 Disruption

Patent data is often used in the literature to empirically capture the distinction between
an incremental vs. disruptive innovation.

Some authors choose to use information on patent citations (Si and Chen 2020) and
on ‘development paths’, i.e. chains of patents citing one another. For instance, the dis-

4On the start-ups’ side, Cabral (2018) models that, since an increase in firm dominance implies a bigger profit
from becoming the next dominant firm, the entrant’s incentives to develop a disruptive innovation that allows it
to become the next dominant firm are higher in a more concentrated market.

5Harmonized inventors’ names can be found at https://patentsview.org/download/data-download-dictionary.

https://patentsview.org/download/data-download-dictionary
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ruption index created by Funk and Owen-Smith (2017) measures the number of patents
citing a focal patent, excluding those that share common citations with this focal patent.
The idea is that a disruptive patent will be cited by subsequent work that is less likely
to also reference its predecessors (M. Park, Leahey, and Funk 2023). In a study by Mo-
meni and Rost (2016) on the photovoltaic industry, a technology is identified as disruptive
if the associated patents are highly cited and belong to multiple development paths. In
Cheng et al. (2017), interdisciplinary patent citations are used as a proxy for technological
disruption, defined as the impact of a technology on existing technology development
trends. However, the use of patent citations to measure disruption suffers from an im-
portant limitation; it does not reflect the technical content of the patent itself (Arts, Hou,
and Gomez 2021).

Unlike patent citations, patent classification does capture information on the inven-
tion technical content. Rosenkopf and Nerkar (2001) and Shane (2001) propose to cap-
ture how much an invention differs from previous inventions in the field by counting the
number of IPC technology classes listed in the patents cited by this patent, but in which
the patent is itself not classified. However, patent (sub)classes are usually too broad to
capture the detailed technical content of the invention (Arts, Hou, and Gomez 2021;
Righi and Simcoe 2019; Thompson and Fox-Kean 2005). To address this issue, some
other authors propose to use the text describing the invention protected by the patent.
For instance, J. Kim, Y. Park, and Lee (2016) use the keywords contained in the patent
document. They identify ‘disruptive signals’ as keywords appearing with an increasing
frequency. Using a similar approach, Arts, Hou, and Gomez (2021) identify all the key-
words appearing for the first time in the USPTO database. These authors provide data
for all utility patents granted by the USPTO, making it easy to match with our Big Tech
patents database.

Arts, Hou, and Gomez (2021)’s data will further allow us to capture the extent to
which Big Tech and their targets develop disruptive innovation. It is available for all
utility patents granted by the USPTO up to May 2018. By that date, 233 out of the
252 targets for which we have patent data have been granted at least one US patent.
In Appendix C.1, we compare some descriptive statistics of the 252 Big Tech acquired
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patents portfolios with those 233 matched with Arts, Hou, and Gomez (2021)’s database.

New keywords

Arts, Hou, and Gomez (2021) build a database of the keywords extracted from the title,
abstract, and claims of all the patents filed at the USPTO between 1980 and 2018. On this
basis, they identify patents covering fundamentally new technologies from the number
of unique keywords pairs introduced for the first time in the USPTO database that they
contain.

To corroborate its validity, Arts, Hou, and Gomez (2021) show that this text-based
metric outperforms the traditional measures based on patent classification (like in Rosenkopf
and Nerkar 2001 and Shane 2001) and patent citations (like in Momeni and Rost 2016)
in predicting whether a patent is linked to a prestigious award.6 This result intuitively
validates the capacity of new keywords to capture the impact of a novel idea.

As an extension, we also propose to more directly encompass this notion of impact in
the disruption metric itself. The idea is that counting new keywords is by construction
limited to how a patent stands out from prior knowledge, thus without reference to its
impact on future knowledge. In order to directly integrate this notion of future impact in
the disruption metric, we propose to weight the number of new keywords combinations
in a patent by an index capturing the number of forward citations received by this patent
(see Appendix C.2 for the construction of the metric).

6The following awards are considered: Nobel Prize, Lasker Award, A.M. Turing Award, National Inventor
Hall of Fame, National Medal of Technology and Innovation, Benjamin Franklin Medal, and Bower Award.
Additionally, the authors exploit the heterogeneity in the patent examination procedures across various patent
offices, and the idea that the United States Patent and Trademark Office (USPTO) may be issuing a substantial
number of weak or invalid patents. Patents granted by the USPTO but simultaneously rejected by both the
European Patent Office (EPO) and the Japanese Patent Office (JPO) are assumed to lack novelty or represent only
minor incremental advances over existing prior art. To assess the ability of their text-based metrics to correctly
classify award patents, the authors use precision (i.e. the fraction of predicted award patents that are correctly
classified), recall (i.e. the fraction of real award patents that are correctly identified) and AUC (i.e. area under
the ROC-curve). We select the measure with the strongest discriminatory power to classify patents linked to
prestigious awards.
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3.2.2 Market environment

An important aspect of disruption relates to the market environment in which it takes
place. Incumbents may not only lack the incentives to disrupt markets that they are lead-
ing (Arrow 1972, Bryan and Hovenkamp 2020a, Holmes, Levine, and Schmitz Jr 2012;
Shapiro 2011), but they might also seek to hinder the disruption brought by innovative
start-ups in those markets (Shapiro 2011; Federico, Morton, and Shapiro 2020).

Defining a market environment is often a delicate task. In the digital economy,
where technologies are complex and not always directly tied to a specific function, cir-
cumventing the market itself can be challenging. As such, a market definition at the
industry level would not be sufficiently precise. Instead, we choose to exploit a precise
mapping to technological areas. Within these technological areas, different metrics can
then be used to define the market environment.

In Section 3.2.2, we propose a simple metric based on the number of firms active in
the same 4-digit NACE class. Of course, competition does not materialise in the same
way among all the firms belonging to the same market. For a competitive analysis, we
propose to use a measure of market power at the product level (Section 3.2.2). Price and
cost data is rarely available at the product level, so measuring market power based on
markups (i.e. ratio of the output price to its marginal cost) would not be suitable for our
analysis. Instead, we choose to identify the key players of a product market based on
their market shares.

Market size

As a first metric of the market environment, we use information on the “peer group size”
from the Bureau Van Dijk database. A peer group is defined as companies with simi-
lar business characteristics based on the Statistical Classification of Economic Activities
(NACE, at the 4-digit level). The group size, i.e the number of companies belonging to
that group in the database, can then be used as a measure of market size.7

7See for instance Asdrubali and Signore (2015).
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On this basis, we are able to build a measure of the size of the markets in which
Big Tech acquisitions take place. Out of the 859 firms acquired by Big Tech between
January 1996 and January 2021, 395 are found in the Bureau Van Dijk database. In the
Appendix (Table C.1), we present the 70 groups to which Big Tech targets belong, and
the number of companies in each of these groups, as of today. 43% of Big Tech targets
are found within two main groups: ‘Computer programming activities’ (NACE 6201)
and ‘Other software publishing’ (NACE 5829).

Market power

We aim to determine whether Big Tech’s targets belong to product markets in which
their acquirer is dominant.

Using market shares data from Statista,8 we first identify the product markets where
the tech giants are ranked among the key players. Statista market shares data covers the
years 2019-2023, and most market data is only available for the latest year, so this mea-
sure of market power is static.

To classify Big Tech’s targets in product categories, we then webscrape from crunch-
base.com, for each of the identified target, its trade description and the markets in which
it is active. When the Crunchbase classification is incomplete, we add additional product
markets based on an online search (e.g. We add "Video Conferencing" to the list of mar-
kets associated with SKYPE.). Each target is thus associated with one or more product
markets. Out of the ∼2.000 sub-markets in Crunchbase data, we identify 249 different
product markets to which Big Tech targets belong.

For illustrative purposes, we have classified these markets in 12 main product cate-
gories (see Appendix C.3 for the classification).9 On Figure 3.1, we show the evolution
of the number of Big Tech targets by product category. "Artificial Intelligence" and

8The market shares are computed by Statista based on different metrics; sales, revenue, number of users,
shipment shares, app downloads, etc.

9In most cases, product markets associated with a same firm fall into the same product category. For firms
associated with more than one product category, we manually selected the category that best fits the trade de-
scription (e.g. We selected "Application Development Software" rather than "Cloud Storage" for GITHUB).

https://www.crunchbase.com/
https://www.crunchbase.com/
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"Entertainment" exhibit the fastest growth from 2000 onwards, overtaken by "Network
Systems" since 2015.

Figure 3.1: Big Tech acquisitions over time, by product category

Note: The graph plots the (lowess smoothed) average number of acquisitions, separately for each of the 12
product categories in which were classified the markets in which Big Tech targets are active.

Finally, we want to identify whether a target belongs to a market in which its ac-
quirer is dominant. To do so, we match all 249 markets from Crunchbase to markets
from statista.com (see Appendix C.3 for the matching). We construct a measure of the
acquirer’s market dominance as a dummy capturing whether the acquirer is ranked as a
key player in at least one of the markets in which its target is active:

𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡𝑇 =𝑚𝑎𝑥 𝐼𝑚,𝑘

where 𝐼𝑚,𝑘 = 1 if the market 𝑚 of which the acquirer is a key player overlaps with
the market 𝑘 in which its target 𝑇 is active.

https://www.statista.com/markets/
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Because our analysis will further rely on patent data, we focus on the 252 targets
that have filed at least one patent application before being acquired, out of which 250 are
found in Crunchbase.10 From Table 3.1, we can see that half of the observed Big Tech
targets belong to a market in which their acquirer is dominant.

Table 3.1: Big Tech acquired firms

Count Dominant𝑇 = 1

AMZN 27 17 (63%)
APPL 52 19 (37%)
FCBK 18 6 (33%)
GOOG 67 22 (33%)
MSFT 86 62 (72%)
TOTAL 250 126 (50%)

3.3 How does Big Tech disrupt?

In this section, we want to test whether Big Tech’s acquired inventions are more or less
disruptive than their in-house inventions.

Let us note that our analysis is not informative regarding Big Tech’s disruptive po-
sitioning with respect to a potential entrant, because we do not consider start-ups’ in-
ventions that were never acquired by Big Tech. Instead, we are comparing Big Tech’s
internally developed inventions and inventions developed by other firms conditional on
being acquired by Big Tech.

To measure "disruptiveness", we use the text-based metric from Arts, Hou, and
Gomez (2021): the number of unique keywords combinations contained in a patent

10In 2022, we webscraped market data on all 859 Big Tech targets. We then realized that some of Crunchbase
market classifications were not sufficiently precise. To check for the relevance of Crunchbase classification, we
aimed to further webscrape information on the target’s trade description. However, in 2023, Crunchbase blocked
IP addresses making requests at a high frequency, making webscraping from their website very challenging. We
decided to collect the missing information manually and, to save time, we only did so for targets associated with
some patent data.
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document that are introduced for the first time in the USPTO database (𝐷𝑖𝑠𝑟𝑢𝑝𝑡). As an
extension, and to account for the patent’s impact on future knowledge, we also propose
to weight the number of new keywords combinations based on the number of forward
citations received by the patent (𝐷𝑖𝑠𝑟𝑢𝑝𝑡∗).

Our sample thus covers all the patents granted to the 5 tech giants and their 233 tar-
gets with some patented inventions matched with textual data. We observe that Big
Tech tends to publish proportionally more of very little disruptive patents (with 0 new
keywords combination, see Figure C.2 in the Appendix) than their targets. This is likely
because the tech giants can more easily afford to make bad investments from time to
time. To account for this, we will test for the robustness of our results to the exclusion
of patents with a disruption value of zero.

When aggregating across firms (i.e. patent portfolios), we can see in the Appendix
that Big Tech is, on average, less disruptive than its targets (see Tables C.5 and C.6). This
result also holds when we exclude patents with a disruption value of zero (see Tables C.7
and C.8).

3.3.1 Comparing internally developed and acquired inventions

A difference in the average disruption metrics between internally developed and acquired
patent portfolios might not be fully attributable to different disruption levels. Our goal
is to compare inventions that are developed internally and those that are acquired by Big
Tech while keeping constant other determinants of our disruption metric. To do so, we
construct the analysis at the patent level, which allows to capture more variation in other
potential endogenous determinants of the disruption metric.

Relevant patents

A first reason to refine the analysis is that not all patents in a portfolio are relevant for
assessing the disruptiveness of technologies developed by a firm. This is because most
of the information is contained into patents that are very disruptive, but these might be
hidden in a mass of very little disruptive patents. In the literature, this is sometimes dealt
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with by selecting the top percentiles of the distribution of patents.11 However, in our
analysis, we are comparing patent portfolios that are very different in sizes (with around
15.500 patents for Big Tech vs. 16 patents for their targets). So selecting, for instance,
the top 10% patents at Microsoft is very different from selecting the top 10% patents at
Skype. Instead, we propose to adapt the selected values based on the company size.

As a proxy for the company size, and since we are mainly interested in the innova-
tion potential of the company, we use the number of inventors who have published some
patent for the company. This variable is constructed based on the number of unique in-
ventor id(s) in the firm’s patent portfolio. Next, we sort all the patents published by this
firm based on their disruption indices. Our sample is then restricted to all the patents
that are ranked in the top 𝑥 , where 𝑥 is the number of inventors at the firm. When the
number of patents in the firm’s portfolio is lower than the number of inventors, we just
keep all the patents.

Other determinants of the disruption metric

By construction, our disruption metrics are likely to be systematically higher for patents
containing more text, and hence more keywords. To correct for this first potential
source of endogeneity, we include two proxies for the patent text length: the num-
ber of claims (𝐶𝑙𝑎𝑖𝑚𝑠𝑁𝑏𝑟 ) and the number of distinct 4-digit IPC technology subclasses
(𝑃𝑎𝑡𝑒𝑛𝑡𝑆𝑐𝑜𝑝𝑒)12 contained in the firm’s patent portfolio.

Next, to control for potential scale effects, we include the average number of countries
in which the inventions patented by the firm are protected (𝐹𝑎𝑚𝑖𝑙𝑦𝑆𝑖𝑧𝑒), and dummies
capturing the industries to which the patent belongs (𝐶𝑃𝐶). While GAFA platforms
assume similar roles in online activities, Microsoft is sometimes considered separately
(Galloway 2018, Simon and Joel 2011). For this reason, we also include a dummy variable
taking the value of 1 for Microsoft’s - published or acquired - top patents (𝑀𝑆𝐹𝑇 ).

11See for instance Morzenti 2022.
12Inventions at the intersection of several technology classes (likely common for big companies like the tech

giants) might contain more text.
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Finally, we include dummies for the patent grant year (𝐺). This controls for the fact
that Big Tech’s patents are likely to have been, on average, granted earlier in time than
its targets’, while our measures of disruption may be time-sensitive.

Model

To ensure that the differences in disruption between Big Tech’s top patents (𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑑 =

0) and its targets’ (𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑑 = 1) can be attributed to the identity of the firm behind
the protected inventions, we need to keep constant the identified potential endogenous
determinants of disruption:

𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑝 =

𝑓 (𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑑𝑝 , 𝑀𝑆𝐹𝑇𝑝 , 𝑃𝑎𝑡𝑒𝑛𝑡𝑆𝑐𝑜𝑝𝑒𝑝 ,𝐶𝑙𝑎𝑖𝑚𝑠𝑁𝑏𝑟𝑝 , 𝐹𝑎𝑚𝑖𝑙𝑦𝑆𝑖𝑧𝑒𝑝 ,𝐶𝑃𝐶𝑝 ,𝐺𝑝 ) + 𝜀𝑝
(3.1)

We first define the disruptiveness of a patent 𝑝 (𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑝 ) as the number of new
keywords combinations contained in the patent. This variable only takes non-negative
values, and its distribution is skewed to the left (see Appendix C.4); most observations
are associated with very few new keywords combinations. To correct for this over-
dispersion observed in the distribution of the dependent variable, we fit a Negative Bi-
nomial regression model, which allows for a variance greater than the mean (Wooldridge
2010, pp.657-659):

𝑉𝑎𝑟 (𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑝 ) = 𝐸
(
𝛽0 + 𝛽1𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑑𝑝 + 𝛽2𝑀𝑆𝐹𝑇𝑝 + 𝛽3𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑑𝑝𝑀𝑆𝐹𝑇𝑝 + 𝑧𝑝𝛾 + 𝜂𝐺𝑝

)
+ 𝜂2 [

𝐸
(
𝛽0 + 𝛽1𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑑𝑝 + 𝛽2𝑀𝑆𝐹𝑇𝑝 + 𝛽3𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑑𝑝𝑀𝑆𝐹𝑇𝑝 + 𝑧𝑝𝛾 + 𝜂𝐺𝑝

) ]2

where the vector 𝑧 contains the control variables (𝑃𝑎𝑡𝑒𝑛𝑡𝑆𝑐𝑜𝑝𝑒,𝐶𝑙𝑎𝑖𝑚𝑠𝑁𝑏𝑟 , 𝐹𝑎𝑚𝑖𝑙𝑦𝑆𝑖𝑧𝑒
and 𝐶𝑃𝐶 dummies), and 𝜂2 is the variance of the error term.

Model (3.1) is estimated by Maximum Likelihood. In the log-likelihood function, we
use the probability mass function of the negative binomial distribution. The obtained
coefficients estimates are presented in Table 3.2, and in the Appendix for the alternative
measures of disruption.
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Table 3.2: Disruption of Internally developed vs Acquired top patents

(1) (2) (3) (4) (5)

Disrupt
Acquired=1 0.538∗∗∗ 0.526∗∗∗ 0.524∗∗∗ 0.564∗∗∗ 0.526∗∗∗

(14.84) (14.43) (14.37) (15.62) (14.43)

MSFT=1 0.434∗∗∗ 0.435∗∗∗ 0.436∗∗∗ 0.552∗∗∗ 0.553∗∗∗
(31.03) (31.06) (31.11) (38.79) (38.35)

Acquired=1 × MSFT=1 -0.481∗∗∗ -0.473∗∗∗ -0.479∗∗∗ -0.597∗∗∗ -0.541∗∗∗
(-7.36) (-7.22) (-7.29) (-9.17) (-8.29)

Patent Scope 0.021∗∗∗ 0.017∗∗∗ 0.014∗∗ 0.014∗∗
(3.66) (2.90) (2.31) (2.20)

Family Size 0.010∗∗∗ 0.001 0.002
(4.72) (0.38) (0.80)

Number of Claims 0.028∗∗∗ 0.028∗∗∗
(39.70) (39.57)

Constant 3.367∗∗ 3.346∗∗ 3.340∗∗ 3.041∗ 3.159∗
(1.99) (1.98) (1.98) (1.82) (1.90)

Observations 76764 76446 76446 76444 76440
Pseudo 𝑅2 0.012 0.012 0.012 0.015 0.016
Year dummies Yes Yes Yes Yes Yes
CPC dummies No No No No Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

We find that the parameters associated with acquired (vs internally developed) top
patents are positive for all tech giants except for Microsoft: 𝛽1 = .526∗∗∗ for GAFA,
and 𝛽1 + 𝛽3 = −.015 for Microsoft. This means that, after controlling for other factors
that may impact our first measure of disruption, acquired inventions are, on average,
more disruptive than internally developed inventions (or, in the case of Microsoft, not
significantly different). This result is robust to weighting the number of new keywords
combinations based on the number of forward citations: 𝛽1 = .790∗∗∗ and 𝛽1+𝛽3 = .174∗∗

(see Table C.9 in the Appendix), and excluding patents with zero disruptive value: 𝛽1 =

.486∗∗∗ and 𝛽1 + 𝛽3 = .020 (see Table C.10).
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3.4 Where does Big Tech disrupt?

To answer our first research question, we compared the top patents of Big Tech plat-
forms and Big Tech-acquired firms, and we concluded that Big Tech’s inventions are on
average less disruptive than inventions developed by its targets. However, this difference
does not necessarily stem from Big Tech’s failure to disrupt. Instead, Big Tech might
see the acquisition of disruptive start-ups as a substitute to bringing in-house disruptive
innovation in technological markets where it is less strong. Conversely, the acquisition
of disruptive start-ups can be viewed as a tactic to stifle disruption in markets that the
tech giants are leading (Lemley and Wansley 2024; Shapiro 2011). If such strategic con-
siderations were to underline Big Tech’s disruption effort, we should observe different
disruption patterns depending on the market environment in which the innovative ac-
tivities take place.

3.4.1 Technology adoption

To trace disruptive technologies later adopted by their acquirer, we compare the text of
patents in the target firms’ portfolio and in the acquirer’s portfolio.

Based on Arts, Hou, and Gomez (2021), we identified disruptive technologies from
combinations of keywords introduced for the first time in history by granted US utility
patents. We now postulate that, when the acquirer is adopting a disruptive technology
on which the target was working, the associated new keywords combinations will ap-
pear in the acquirer’s own patent portfolio: 𝐴𝑑𝑜𝑝𝑡𝑎,𝑡 takes the value of the number of
new keywords combination(s) from a given patent 𝑡 of the target 𝑇 ’s portfolio found in
another patent 𝑎 of the acquirer’s portfolio. We construct the variable𝐴𝑑𝑜𝑝𝑡𝑇 as the total
number of new combinations of keywords further reused by the acquirer:

𝐴𝑑𝑜𝑝𝑡𝑇 ≡
∑︁
𝑎

∑︁
𝑡

𝐴𝑑𝑜𝑝𝑡𝑎,𝑡

Since technology adoption is measured up until May 2018 (end of Arts, Hou, and
Gomez (2021)’s study period), we restrict our analysis to acquisitions that have been un-
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dertaken up until that date: these represent 196 out of the 225 targets for which textual
data is available and that have patented some disruptive technology (i.e. that are associ-
ated with at least one new keywords combination).

As can be seen from Table 3.3, for about 3/4 of Big Tech acquisitions, a keywords
combination introduced for the first time in history by a target patent is further found in
its acquirer’s portfolio. So it seems that a large majority of Big Tech acquisitions involve
the adoption of the target’s disruptive technology.

Table 3.3: Big Tech acquired patents portfolios

Count 𝐴𝑑𝑜𝑝𝑡𝑇 > 1

AMZN 19 14 (74%)
APPL 41 25 (61%)
FCBK 11 8 (73%)
GOOG 57 40 (70%)
MSFT 68 54 (79%)
TOTAL 196 141 (72%)
This count includes Big Tech patents portfolios ac-
quired by May 2018 with textual data and at least
one new keywords combination.

To compare the variable 𝐴𝑑𝑜𝑝𝑡𝑇 across patent portfolios, we must account for a size
effect; for the fact that targets with a higher number of disruptive technologies are more
likely to have some of them later adopted by their acquirer, and that more innovative
acquirers are more likely to adopt the acquired technology. This will further be captured
by the number of acquirer/target units combinations:

𝐶𝑜𝑚𝑏𝑖𝑇 = 𝑁𝑒𝑤𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝑠𝑇 · 𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑁𝑏𝑟𝐴

where 𝑁𝑒𝑤𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝑠𝑇 is the number of new combinations of keywords in the tar-
get’s patent portfolio, and 𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑁𝑏𝑟𝐴 is the number of patents in the acquirer’s port-
folio.13

13This term also captures variations in the length of the period during which the acquirer could potentially
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3.4.2 Disruptive technology adoption across market environments

To test whether our results vary depending on the market environment in which these
innovative activities take place, we focus on two features of the market: the market size
and the acquirer’s market power. Because the market environment pertains to interac-
tions between firms, this market data is collected at the firm level, so we run the analysis
at the target level.

Model

We assume a Negative Binomial distribution of the technology adoption variable to ac-
count for the over-dispersion observed in the data; a majority of disruptive technologies
are not adopted (i.e. new combinations of keywords never reused) by the acquirer, but
a few targets are associated with many new combinations of keywords further reused
by the acquirer. On this basis, we can test whether the disruptive technology adoption
depends on the market environment in which the acquisition takes place:

𝐴𝑑𝑜𝑝𝑡𝑇 = 𝑓 (𝑋𝑇 ,𝐶𝑜𝑚𝑏𝑖𝑇 , 𝑍𝑇 ) + 𝑣𝑇 (4)

The regressor of interest (𝑋𝑇 ) either captures the size of the market in which the ac-
quisition takes place (𝑃𝑒𝑒𝑟𝑆𝑖𝑧𝑒𝑇 ), or the acquirer’s market power (𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡𝑇 ∈ {0, 1}). In
addition to the size effect, captured by𝐶𝑜𝑚𝑏𝑖𝑇 , we also control for some target’s charac-
teristics in 𝑍𝑇 : the year in which the target filed a patent for the first time (𝐹𝑖𝑟𝑠𝑡𝐹𝑖𝑙𝑖𝑛𝑔𝑇 ),
whether the target has filed some patent originating from the United States (𝑈𝑆𝑇 ∈
{0, 1}), and the year in which the target is acquired (𝐴𝑐𝑞𝑢𝑖𝑌𝑒𝑎𝑟𝑇 ).

We thus want to test whether Big Tech’s adoption of disruptive technologies from
acquired start-ups varies with the number of firms/competitive pressure in the product
markets to which the start-ups belong. Let us recall that Statista market power data cov-
ers the period 2019-2023 and Orbis market size data has been collected in 2024, while
technology adoption is measured up until May 2018. So what we are testing is whether
the tech giants have adopted more disruptive technologies (historically) in technology

adopt the disruptive technology, since 𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑁𝑏𝑟𝐴 is higher for earlier acquisitions.
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fields in which competition is weaker (today).

The coefficients estimates, obtained by Maximum Likelihood with the probability
mass function of the negative binomial distribution, are presented in Tables 3.4 and 3.5.
In the last column, we present the parameters estimated based on acquisitions up to 2016
(thus excluding 2017 and 2018). This restriction aims to test whether our results are
robust to excluding acquired technologies that have been in their acquirer’s portfolio for
less than 1.5 year, and thus might not have been adopted yet.

Table 3.4: Market size and Disruptive technology adoption

(1) (2) (3) (4) (5)
All All All Excl. >=2017 Excl. >=2017

Adopt
PeerSize -0.000 -0.000 -0.000 -0.000 0.000

(-0.61) (-0.73) (-0.24) (-0.07) (0.01)

Combi 0.000∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗ 0.000∗∗∗
(2.27) (2.75) (3.21) (2.18) (3.18)

US 1.054∗ 0.474 0.160 0.100
(1.78) (1.03) (0.26) (0.21)

FirstFiling -0.066 -0.049
(-1.64) (-1.27)

Constant -21.950 -22.892 135.907∗ -19.232 102.424
(-0.00) (-0.00) (1.69) (-0.00) (1.32)

Observations 124 124 124 106 106
Pseudo 𝑅2 0.041 0.044 0.025 0.031 0.025
AcquiYear dummies Yes Yes Yes Yes Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01
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Table 3.5: Acquirer’s market power and Disruptive technology adoption

(1) (2) (3) (4) (5)
All All All Excl. >=2017 Excl. >=2017

Adopt
Dominant -1.128∗∗∗ -1.095∗∗∗ -1.020∗∗ -1.021∗∗ -0.914∗∗

(-2.79) (-2.73) (-2.53) (-2.50) (-2.26)

Combi 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗
(3.92) (4.06) (3.53) (3.95) (3.41)

US 0.403 0.496 0.156 0.344
(1.07) (1.26) (0.40) (0.82)

FirstFiling -0.053 -0.080
(-0.93) (-1.32)

Constant 9.780∗∗∗ 9.339∗∗∗ 114.654 9.526∗∗∗ 169.093
(6.69) (6.16) (1.01) (6.58) (1.40)

Observations 191 191 191 169 169
Pseudo 𝑅2 0.052 0.053 0.053 0.049 0.050
AcquiYear dummies Yes Yes Yes Yes Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

While the disruptive technology adoption does not seem to vary across market sizes
(see Table 3.4), we do observe a negative relationship with the acquirer’s market dom-
inance (see Table 3.5): Big Tech has adopted (historically), on average, 60% to 64% (=
1 − 𝑒𝛽 ) fewer disruptive technologies in markets in which it is dominant (today). In
other words, the acquirer’s market power negatively relates with the adoption of disrup-
tive technologies from acquired start-ups.

3.5 Conclusion

This paper sheds light on the adoption of disruptive innovation in digital markets. We
study the innovative activities of the tech giants, both in-house and through the acqui-
sition of disruptive start-ups.

On the one hand, large Big Tech platforms are often considered insufficiently re-
sponsive to develop in-house disruptive innovation, so they compensate by acquiring
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smaller, more agile start-ups (Bresnahan, Greenstein, and R. M. Henderson 2011; R. M.
Henderson and Clark 1990). On the other hand, these tech giants might not face the
right incentives to disrupt markets that they are leading (Bryan and Hovenkamp 2020a;
Holmes, Levine, and Schmitz Jr 2012) and, instead of adopting the acquired technol-
ogy, they might aim to shelve it to avoid directing users away from their existing ser-
vices (Lemley and Wansley 2024; Shapiro 2011). In line with this existing literature, our
analysis reveals nuanced insights into the relationship between Big Tech platforms and
disruption, with findings that vary with the origin of the invention and the competitive
context in which it is developed.

Our results first suggest that Big Tech’s acquired inventions are more disruptive than
those that it develops internally. However, this difference does not necessarily stem from
Big Tech’s failure to disrupt, as the acquisition of disruptive start-ups might be used as a
substitute to bringing in-house disruptive innovation in technological markets where it
is less strong. In line with this hypothesis, we find that disruptive technologies adopted
through acquisition predominantly emerged from markets where the tech giants hold a
weaker position.

These results suggest that inventions developed by the tech giants tend to be relatively
little disruptive and that, to remain on the technology edge in markets in which they hold
a weaker position, these leading firms often resort to acquiring disruptive start-ups. As
a potential improvement to this analysis, future research could focus on developing a
dynamic measure of Big Tech’s market power across its various technological domains.
This would provide a clearer understanding of Big Tech’s ex-ante motivations for adopt-
ing disruptive technologies both within and outside of dominated markets. In addition,
further research could offer valuable insights into the strategies employed by the other
main players of the digital sector, e.g. Tesla, Samsung, Oracle, Alibaba, Adobe, IBM.





Appendix A

85



86 APPENDIX A.

A.1 Timing of the patenting process

Before a patent is granted, it must be filed and published. The legal requirement for the
patent office to publish a patent application is 18 months from the filing. This 18-month
limit is respected for 95% of all US patent applications (Tegernsee 2012). Earlier publica-
tion is often observed: half of US patent applications are published within 9 months after
they were filed (Martin 2015).

Publication means that the content of a patent application is known to the public;
that is becomes “prior art". However, it does not necessarily mean that the application
will result in a (granted) patent, which grants to the applicant the exclusive rights over
the use and sale of the invention. On average, US patents are granted within 32 months
of their filing date (as computed based on the ’grant lag’ from the OECD Patent Quality
Indicators database, July 2021).

A.2 Focus on patent-protected technologies

Figure A.1: Big Tech targets with and without patents, by funding amounts

Notes: For readability, the funding amount variable is log-transformed and the sizes of the circles are
a function of its values. The two largest blue circles are associated with AQUANTIVE (acquired by
Microsoft in May 2007) and WHOLE FOODS MARKET (acquired by Amazon in June 2017).
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A.3 Citations data to capture technology developments

In our study, we use patent citations as a proxy for the innovation effort in a given tech-
nology field. Because all previous knowledge used in an innovation has to be cited in the
patents protecting this innovation, if a technology stops being developed, one should ob-
serve fewer citations to the patents protecting this technology. On the contrary, a tech-
nology that is further developed will be cited in many subsequent patents. Information
about patents citations is therefore very useful to study Big Tech’s acquisition strategies,
because it allows to infer the use that is made of an acquired technology in subsequent
innovation. More specifically, we can capture the improvements that are made by an
acquirer to an acquired technology based on the number of acquirer’s citations to the
patents protecting that technology.

Of course, using patent data to identify changes in the acquired technology de-
velopment suffers from an important limitation; it only accounts for patent-protected
technologies. Some innovations might not have been patented, because they are simply
not patentable or due to high costs of patenting (e.g. hiring patent specialists to prepare
the application, paying the filing administrative costs and the renewal fees).

Information on the number of forward citations made to a given patent also suffers
from some biases. Companies might have strategic reasons not to cite a patent. For in-
stance, fewer citations would be made by firms aiming to gather patents for defensive
or cross-licensing purposes (Abrams, Akcigit, and Grennan 2013; Jaffe, Trajtenberg, and
R. Henderson 1993; Lampe 2012). This should not be a problem in our analysis as we do
not only consider citations made by the applicant, but also those added by the examiner.
Citations data might also be noisy (Gambardella, Harhoff, and Verspagen 2008) due to
differences between applicants (Rysman and Simcoe 2008; B. N. Sampat 2010) and across
industries (Lerner, Sorensen, and Strömberg 2011; Rysman and Simcoe 2008). For our
analysis, we focus on the digital sector, so cross-industry heterogeneity should not affect
our results. Our study of the evolution of citations made by Big Tech is also little affected,
since we consider the same five applicants over time. Another potential source of bias is
that the citations count might include irrelevant references as patent applicants have an
incentive to cite as many references as possible; if a reference the applicant knew about is
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forgotten, a court may rule the patent to be unenforceable in infringement proceedings
(Allison and Lemley 1998; Kuhn, Younge, and Marco 2020). But the resulting measure-
ment error has been shown to be mainly problematic for the study of citation patterns
over time (Kuhn, Younge, and Marco 2020; Marco 2007), so this can be accounted for
in our analysis by controlling for the date at which a given citation is observed. Finally,
front page citations, based on which the USPTO forward citations that we are using are
constructed, include some, but not all, of the citations contained in the patent text. It
has been shown that in-text citations might be a better measure of the development of
the invention (Bryan, Ozcan, and B. Sampat 2020). However, these in-text citations are
seldom used by innovation researchers.1 This is because there is no standardized format
for in-text citations, so they are difficult to extract (Narin and Noma 1985).2

1The only study of in-text references that we are aware of, carried out by Bryan and Ozcan (2021), uses a
matching method to search the text of all patent applications for references to articles in medical journals.

2We are not aware of any large-scale database on in-text patent citations.
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A.4 Observational cut in the citations database

Figure A.2: Distribution of filing dates for all citing patents (Density)

Notes: For clarity, the filing dates before 1970m1 (2% of the sample) are not represented.

We observe a drop in citations after January 2018 because citing patents have not been
granted yet. For this reason, we end up our sample in June 2017.



90 APPENDIX A.

A.5 Negative Binomial distribution of the citations count

Figure A.3: Distribution of the count of Big Tech citations (Percent)

Notes: This figure shows an histogram of the number of citations received by a given patent in a given month,
overlaid with a negative binomial density with the same parameters.

A.6 Inverse probability weighting

In order to make acquired and non-acquired patents comparable in all respects except
for their acquisition status, as if acquisition had been fully randomized, we use propensity
scores. Propensity scores can be seen as the channel through which a patent’s characteris-
tics affect its acquisition status and hence create endogeneity in the relation between the
treatment (the acquisition status) and the outcome (forward citations). Because most de-
terminants of both a patent’s acquisition status and the citations it receives are unobserved,
they will be controlled for by using the pre-treatement outcomes (i.e. pre-acquisition
patent citations).
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We first estimate a discrete choice Probit model of the probability for a patent 𝑝
to have been acquired 𝑃 (𝐴𝑝 = 1) with, as regressors, the citations this patent receives
pre-acquisition, both in levels (𝐶𝑖𝑡𝑝,𝑃𝑟𝑒 ) and in growth rates (𝐶𝑖𝑡𝐺𝑅𝑝,𝑃𝑟𝑒 ):3

𝑃

(
𝐴𝑝 = 1|𝐶𝑖𝑡𝐺𝑅𝑝,𝑃𝑟𝑒 ,𝐶𝑖𝑡𝑝,𝑃𝑟𝑒

)
= Φ(𝛼 + 𝛽1𝐶𝑖𝑡𝐺𝑅𝑝,𝑃𝑟𝑒 + 𝛽2𝐶𝑖𝑡𝑝,𝑃𝑟𝑒 ) (A.1)

where 𝐶𝑖𝑡𝐺𝑅𝑝,𝑃𝑟𝑒 captures the growth rate in the number of citations between the
first and the last periods pre-acquisition (𝑡 = −1 and 𝑡 = −3),𝐶𝑖𝑡𝑝,𝑃𝑟𝑒 captures the number
of citations in 𝑡 = −2, and Φ is the cumulative density function of the standard normal
distribution.

We then use the predicted values from the function to generate, for each observa-
tion, the propensity scores (𝑃𝑝 ), which ensure that patents with the same pre-acquisition
citations have a positive probability of being both acquired and non-acquired.

Next, to disentangle the effect of acquisition from the effect of potential confounding
factors, we need to close the propensity scores channel through which these confounding
factors affect a patent’s acquisition status. This can be done by using the propensity
scores to conduct inverse probability weighting (King and Nielsen 2019). The first step
of this procedure consists in "trimming" non-acquired patents outside of the acquired
patents’ propensity score range. This limits the data to the range of "common support",
i.e. to non-acquired patents that are sufficiently comparable to acquired patents. Second,
we need to weight each acquired patent by the inverse of the probability that it was
acquired (1/𝑃𝑝 ), and each non-acquired patent by the inverse of the probability that it
was not acquired (1/(1− 𝑃𝑝 )). By weighting patents by the inverse of the probability of
what they actually are, we make the treated and control groups more similar. Acquired
patents that get the biggest weights are the ones that are most like non-acquired patents;
acquired patents who were least likely to have been acquired. Inversely, non-acquired
patents with the biggest weights are the ones most like acquired patents; non-acquired
patents who were most likely to have been acquired (Huntington-Klein 2021). In turn,
we obtain a sample of patents in which individual heterogeneity has been averaged across
the treatment and control groups.

3While the large sample sizes would allow to use additional regressors, like the IPC technology class, doing so
would not lead to pre-acquisition parallel trends of acquired and non-acquired patents’ citations in the estimation
of model 1.2.
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To ensure that this re-weighting will properly take out the effect of endogenous co-
variates on the acquisition status, we must test for "balance". In our case, balance means
that, after weighting, there are no more meaningful differences between acquired and
non-acquired patents in pre-acquisition citations. This ensures that the inverse probabil-
ity weighting is appropriate to close the propensity scores channel through which con-
founding factors affect a patent’s acquisition status, i.e. that acquired and non-acquired
patents become similar in all aspects except for their acquisition status. A common way
of checking for balance is to test for the difference of means between the control and the
treated groups. Table A.1 presents the results of this test before and after applying the
inverse probability weighting. We observe that the differences in citations means before
(simulated) acquisition between acquired and non-acquired patents are reduced (.062 in
the raw sample, .059 in the new trimmed and weighted sample). This exercise illustrates
how dropping observations outside the range of common support and weighing obser-
vations based on their inverse probabilities allows a better comparison of the two patent
groups post-acquisition. However, since we are interested in the evolution of citations
around acquisition time, the most important condition for a meaningful comparison of
the two groups is the pre-acquisition parallel trends in the estimated DIS (see Figure 1.3).
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Table A.1: Balance tables

Raw sample (before trimming and weighting)
(1) (2) (3)

Variable Not acquired Acquired Acquired vs Not

𝐶𝑖𝑡𝑃𝑟𝑒 0.232 0.294 0.062
(0.869) (0.806) (0.037)

Observations 77,522 541 78,063

Working sample (after trimming and weighting)
(1) (2) (3)

Variable Not acquired Acquired Acquired vs Not

𝐶𝑖𝑡𝑃𝑟𝑒 0.217 0.276 0.059
(0.758) (0.735) (0.004)

Observations 77,359 541 77,900

These tables present the results of the balancing test for the inverse probability weight-
ing. In the first and second columns, we show the means and the standard deviations of
the pre-acquisition citations, for control observations (non-acquired patents) and treated
observations (acquired patents) respectively. In the third column, we regress those pre-
acquisition citations on the observation’s treatment value (acquired or not) to compute the
differences of means and the associated standard errors.
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A.7 Sharp event study - Identification

In a paper studying the impact of having children on the gender wage gap, Kleven,
Landais, and Søgaard (2019) exploit the sharp breaks in career trajectories occurring just
after the birth of a child. We present below the conceptual framework set out by these
authors, adapted to our research question.

The number of citations made at time 𝑡 by an acquirer to some acquired patent 𝑝 is
defined as a function of variables in 𝑥𝑝,𝑡 responding to an acquisition event (such as the
type of portfolio in which the newly acquired patent is integrated), and variables in 𝑧𝑝,𝑡
that do not depend on acquisition (such as the age of the patent, its quality, characteristics
of the publishing company, etc.):

𝐶𝑖𝑡𝑝,𝑡 = 𝑓 (𝐽 ′𝜏 𝑗 , 𝑥 (𝐽 ′, 𝑧𝑝,𝑡 )𝜏𝑥 , 𝑧𝑝,𝑡𝜏𝑧) + 𝜀𝑝,𝑡 (A.2)

where 𝐽 ′ =
∑

𝑗≠0 𝐼 𝑗 = 𝑡 is a vector indicating the time at which the citation is ob-
served with respect to the time of acquisition. In this framework, citations may respond
directly to acquisition conditional on 𝑥𝑝,𝑡 , and indirectly through 𝑥𝑝,𝑡 (e.g. the impact
of complementarities/substitutions with other patents from the new portfolio).

For changes in the number of citations to correctly identify the post-acquisition im-
pacts, the first condition is that “the event” should not determined by the outcome vari-
able. In our case, this implies that, conditional on the set of underlying determinants
𝑧𝑝,𝑡 , acquisition is exogenous to the outcome variable 𝐶𝑖𝑡𝑝,𝑡 . To set up the additional
necessary conditions under which we can identify the effect of acquisition, we must dis-
tinguish between the short-run and the long-run.

Our identification strategy of the short-run effect of acquisition relies on one addi-
tional assumption: the event should generate sharp changes in the outcomes that are or-
thogonal to unobserved outcome determinants. This ‘smoothness assumption’ is needed
because, when we shock 𝐽 , we get a response in the number of citations that is captured
by both 𝜏 𝑗 and 𝜏𝑥 . But 𝜏𝑥 does not only respond to the event time; it also captures the
effect of changes in the variables in 𝑧𝑝,𝑡 , which could happen at the same time as acqui-
sition. However, if we assume that citations would evolve smoothly absent acquisition,
the short-run effect of acquisition conditional on 𝑧𝑝,𝑡+ can be identified from the change
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in the number of citations when going from the acquisition time (𝑡0) to an event time
just after (𝑡+):

𝐸
[
𝐶𝑖𝑡𝑝,𝑡+ −𝐶𝑖𝑡𝑝,𝑡0

]
= 𝐸 [𝑓 (1, 𝑥 (1, 𝑧𝑝,𝑡+), 𝑧𝑝,𝑡+] − 𝐸 [𝑓 (0, 𝑥 (0, 𝑧𝑝,𝑡0), 𝑧𝑝,𝑡0] (A.3)

where the smoothness of the average citations path absent acquisition would imply
that 𝐸 [𝐹 (0, 𝑥 (0, 𝑧𝑝,𝑡+), 𝑧𝑝,𝑡+] ≈ 𝐸 [𝐹 (0, 𝑥 (0, 𝑧𝑝,𝑡0), 𝑧𝑝,𝑡0]. The short-run impact of acqui-
sition is therefore identified from the sharp changes in citations immediately following
acquisition rather than from the smooth trends in citations. The graphical evidence pre-
sented on Figure 1.1 lends support to the suitability of this conceptual framework for our
analysis, as the sharp breaks in citations trajectories occurs just after acquisition.

The long-run impact is obtained by considering an event time 𝑡++ long after the
acquisition time:

𝐸
[
𝐶𝑖𝑡𝑝,𝑡++ −𝐶𝑖𝑡𝑝,𝑡0

]
= 𝐸 [𝑓 (𝑇, 𝑥 (𝑇, 𝑧𝑝,𝑡++), 𝑧𝑝,𝑡++] − 𝐸 [𝑓 (0, 𝑥 (0, 𝑧𝑝, 𝑡0), 𝑧𝑝, 𝑡0] (A.4)

The differences between this impact measure and equation A.3 is that the smoothness
assumption is no longer sufficient for identification as we can still have large changes in
citations determinants (other than acquisition) over a long event time window. Indirectly
controlling for 𝑧𝑝,𝑡 with age and date dummies, as we do in model 1.1, may partially solve
this problem. But we cannot claim that we have controlled for all elements of 𝑧𝑝,𝑡 , so the
event study estimates representing the change in the number of citations compared to
the time of acquisition (𝜃1 in model 1.1) might not properly capture the long-run impact
of acquisition. We therefore propose with model 1.2 a second solution to capture long-
term effects of acquisition, by using a control group to account for the citations trend
absent acquisition.
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A.8 Robustness checks

Additional regressors

We rewrite model 1.1 to control for additional determinants of the number of citations
received by a patent:

𝐶𝑖𝑡𝑝,𝑗,𝑡,𝑑 = 𝑓 (𝐽 ′𝜃6, 𝑎𝑔𝑒𝑝,𝑑𝛽
6, 𝑀′𝛾6, 𝑓 𝑖𝑟𝑚 𝑗 𝜉

4, 𝑍𝑝𝜈
1) + 𝜀4

𝑝,𝑗,𝑡,𝑑
(A.5)

where 𝑍𝑝 contains the additional regressor(s).

Microsoft First, we would like to control for the potential effect specific to those
patents acquired by Microsoft. While GAFA platforms assume similar roles in online
activities, Microsoft is sometimes considered separately (Galloway 2018, Simon and Joel
2011). Furthermore, Microsoft is the biggest acquirer in our sample (see Table 1.2). In this
case, 𝑍𝑝 takes the value 1 if patent 𝑝 was acquired by Microsoft, 0 if it was acquired by
Google, Apple, Facebook or Amazon. The estimated incident rate ratios are presented
on Figure A.4 (a).

More citations determinants Second, 𝑍𝑝 is defined such as to contain two addi-
tional citations determinants: the technology field to which patent 𝑝 belongs, and the
origin of its publishing company. Of all the patents published by Big Tech, 57% and
32% contain at least one reference to a technology field classified in the CPC sections
"Physics" and "Electricity", respectively. The other CPC fields are barely represented in
Big Tech patent portfolios, with frequencies going from 0% to 2%. We include in 𝑍𝑝
two dummy variables, one for "Physics" and one for "Electricity", indicating whether
patent 𝑝 is associated with that technology field. In addition, we include an indicator
variable capturing whether the company that published the patent was located in the
US (77% of our working sample), in the EU (13%) or in the Middle East (10%). The
estimated incident rate ratios are presented on Figure A.4 (b).
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Figure A.4: Big Tech citations to acquired patents relative to acquisition, more controls

(a) Allowing for a Microsoft-effect (b) Controlling for CPC fields and publisher’s origin

Notes: The graph shows the incident rate ratios for acquired patents: 𝑒𝜃
6
𝑡 from model A.5. These coefficients are

estimated on a balanced sample of patents in a 4 year-window around acquisition.

The inclusion of these additional regressors seem to have little impact on our results,
as the estimates presented on Figure A.4 appear to be very similar to our baseline results
presented on Figure 1.2.

Alternative study periods

Extending the pre-treatment period On Figures A.5 and A.6, we replicate the results
from Models 1.1 and 1.2 for a pre-treatment period of 15 months (instead of 9 months).
The coefficients estimates follow very similar trajectories to those in our baseline results.

We note significant incident rate ratios in the earliest quarters before acquisition
(𝑡 = −5 and 𝑡 = −4). We argue that anything happening one year or more before ac-
quisition is unlikely to be relevant to the acquisition event, and that the ‘no-acquisition’
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counterfactual can thus be specified based on the last portion of the pre-intervention
period (𝑡 = −3 to 𝑡 = −1).

Figure A.5: Big Tech citations to acquired patents relative to acquisition, longer pre-treat

Notes: The graph shows the incident rate ratios for acquired patents: 𝑒𝜃
1
𝑡 from model 1.1. These coefficients are

estimated on a balanced sample of patents in a 4.5 year-window around acquisition.
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Figure A.6: Big Tech citations to acquired patents w.r.t. non-acquired patents, relative to the
(simulated) acquisition announcement, longer pre-treat

Notes: The graph shows the DIS between acquired and non-acquired patents: 𝑒 (𝜃
2
𝑡 +𝛼

1
𝑡 ) − 𝑒 (𝜃

2
𝑡 ) from model

1.2. These coefficients are estimated on a balanced sample of patents in a 4.5 year-window around (simulated)
acquisition.

Reducing the study period Next, we reduce our study period to 2 (instead of 4) years
around acquisition; 1 quarter before acquisition, 6 quarters after. This allows to consider
some Big Tech-acquired firms that were not included in our baseline sample: i. those
that only started patenting shortly before being acquired, ii. those acquired between
May 2014 and January 2016.4 On Figure A.7, we observe that the evolution of citations
just after acquisition follows a very similar trend to the baseline sample: citations increase
significantly after acquisition. Since the observation period is reduced, we do not capture
the slow down in citations after 1.5 year.

4Because we end our study period in June 2017 to avoid biases in the citations count, restricting our baseline
sample to patents observed up to 3 years after acquisition meant that we could only use acquisitions undertaken
until May 2014 (58% of all 855 Big Tech acquisitions from Table 1.1). By including patents observed up to 1.5
year (instead of 3 years) after acquisition, we capture acquisitions until December 2015 (72% of all 855 Big Tech
acquisitions).
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Figure A.7: Big Tech citations to acquired patents relative to acquisition, reduced period

Notes: The graph shows the incident rate ratios for acquired patents: 𝑒𝜃
1
𝑡 from model 1.1. These coefficients are

estimated on a balanced sample of patents in a 2 year-window around acquisition.

Including Motorola As an additional check, we include Motorola Mobility, acquired
by Google in August 2011 and later (January 2014) sold to Lenovo. Motorola was not
included in our baseline sample because its acquisition status changes during the study
period. Its patents belong to Google for only 29 months after acquisition, while our
study period covers three years after acquisition. However, since Motorola has a very
large patent portfolio, owning 1, 080 patents at acquisition among which 125 are cited
by Google by June 2017, we propose an alternative study period that allows to include
it. We can see from Figure A.8 that our baseline results are robust to this alternative
specification.
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Figure A.8: Big Tech citations to acquired patents relative to acquisition, with Motorola

Notes: The graph shows the incident rate ratios for acquired patents: 𝑒𝜃
1
𝑡 from model 1.1. These coefficients are

estimated on a balanced sample of patents in a 3 year-window around acquisition.

Heterogeneity-robust treatment effects

To allow for variations in the effect of acquisition across acquisition dates, we adopt the
approach developed by Wooldridge (2023).5 This method consists in grouping observa-
tions in ‘cohorts’ for which the treatment occurs at the same time, and then estimating
the treatment effects for each cohort separately.

We first define ‘acquisition-cohorts’, i.e. patents acquired at the same time. For the
parameter estimates of the model to converge, we need enough variability (and hence a
sufficient number of patents) in each cohort. On this basis, the smallest cohort size that
can be used is 7 months, with a study period starting in February 2006. So we group all
patents acquired within the same 7 months. We obtain 16 cohorts (𝐶 = 16), and each

5The estimation method and the underlying assumptions are presented on pages C46 to C49 of Wooldridge
(2023).
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cohort contains on average 41 patents.

We then estimate the treatment effects for each cohort separately:

𝐶𝑖𝑡𝑖,𝑐 = 𝑓 (𝐼 ′𝜃7,𝐶𝑜ℎ𝑜𝑟𝑡 ′𝜁 4, 𝐼 ′𝐶𝑜ℎ𝑜𝑟𝑡 ′𝜂4, 𝑁 ′𝛾7) + 𝜀𝑖,𝑐 (A.6)

where 𝐼 ′ is a vector containing the time dummies at the 7 months-level,𝐶𝑜ℎ𝑜𝑟𝑡 ′ con-
tains cohort dummies for patents acquired within the same 7 months, and 𝑁 ′ contains
the calendar date dummies grouped over 7 months.

Finally, we take the weighted average of the cohort-specific treatment effects, where
the weights (𝑤𝑐 ) indicate the number of patents in each cohort 𝑐. This defines the average
treatment effect in each event time 𝑖:

𝐴𝑇𝑇𝑖 =
1
𝐶

∑︁
𝑐

𝑤𝑐 (𝑒𝜃
7
𝑖
+𝜂4

𝑖,𝑐 ) (A.7)
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Figure A.9: Big Tech citations to acquired patents relative to acquisition, by cohort

Notes: The graph shows the incident rate ratios for acquired patents aggregated across all acquisition-cohorts:
𝐴𝑇𝑇𝑖 from equation A.7. These coefficients are estimated on a balanced sample of patents in a 3 year-window
around acquisition.

From Figure A.9, and despite much larger confidence intervals due to smaller (co-
hort) sample sizes, we can see that our findings are robust to allowing for heterogeneous
treatment effects; we observe a non-lasting boost in citations after acquisition.
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B.1 Distribution of Orbis firm-level data

Figure B.1: Number of employees at acquisition (boxplot)

Note: The three outlier observations are LINKEDIN (9, 372 employees), MOTOROLA MOBILITY
(19, 000 employees) and WHOLE FOODS MARKET (87, 000 employees).

Figure B.2: Funding amount at acquisition (boxplot)

Note: The three outlier observations are FITBIT ($4.17 billion), LINKEDIN ($12.18 billion) and
WHOLE FOODS MARKET ($35.86 billion).
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B.2 Descriptive statistics on USPTO patent-level data

Table B.1: Statistics over all the patents filed by Big Tech-acquired inventors

US patents Core patents Patents market value Co-authored patents Filing dates

obs. count (%) obs. count (%) obs. mean (SD) obs. count (%) obs. [min,max]

AMZN 588 498 (85%) 527 341 (65%) 460 -.01 (.03) 596 499 (84%) 596 1995m6, 2020m6
APPL 700 510 (73%) 724 280 (39%) 714 -.01 (.03) 730 613 (84%) 739 1988m6, 2019m11
FCBK 55 44 (80%) 133 108 (81%) 132 -.02 (.03) 136 114 (84%) 136 1998m11, 2019m1
GOOG 2057 1859 (90%) 1950 465 (24%) 1932 -.02 (.04) 2076 1783 (86%) 2082 1995m6, 2020m9
MSFT 1439 1027 (71%) 1430 1151 (80%) 1407 -.01 (.04) 1452 1022 (70%) 1454 1987m5, 2020m4

TOTAL 4839 3938 (81%) 4764 2345 (49%) 4645 -.02 (.04) 4990 4031 (81%) 5007 1987m5, 2020m9

This table presents statistics at the patent-level.

B.3 Core variable aggregated at the target level

We can assess whether a target 𝑇 is active in its acquirer’s core technology fields:

𝐶𝑜𝑟𝑒𝑇 =𝑚𝑎𝑥 𝐼𝑡,𝑇

where 𝐼𝑡,𝑇 = 1 if a given patent 𝑡 of the target’s portfolio is associated with at least
one of its acquirer’s core fields in the year this patent was acquired.

Table B.2: Big Tech acquired patents portfolios

Count Core𝑇 = 1

AMZN 27 19 (70%)
APPL 52 27 (52%)
FCBK 17 10 (59%)
GOOG 67 40 (60%)
MSFT 88 81 (92%)
TOTAL 251 177 (71%)

From Table B.2, we see that 71% of Big Tech targets own at least one patent belong-
ing to their acquirer’s core business.
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B.4 Components of the market value index

We construct a market value index using indicators of a patent’s economic value: family
size, grant lag and number of claims. For each of these variables, we explain here, based
on the OECD note accompanying the related data (Squicciarini, Dernis, and Criscuolo
2013), why they are good measures of a patent’s economic value.

Family size

A patent family is a set of patents filed in several countries but with a common priority
filing. The size of patent families is proxied by the number of patent offices at which a
given invention has been protected. Because extending a patent protection to other
countries implies additional costs and delays, applicants are more likely to go through
that procedure for more valuable patents.

Grant lag

The grant lag variable is constructed based on the number of days elapsing between
the patent application and granting date. In line with the argument that applicants try to
accelerate the grant procedure for their most valuable patents, the length of the grant lag
period has been shown to be negatively correlated with the value of a patent (Harhoff
and Wagner 2009; Régibeau and Rockett 2010).

Adjusted number of claims

A patent is composed of claims, which relate to the technologies that are legally pro-
tected by the patent. Therefore, the more claims a patent contains, the broader the rights
conferred by this patent. It has been shown that patents containing more claims have,
on average, a higher market value (Tong and Frame 1994; Lanjouw and Schankerman
2001, 2004). Because technology fields seem to vary in the average number of claims per
patent, this variable is further adjusted. The number of citations to prior art by a patent
is used to account for the development level of the technology area to which this patent
belongs, and the adjusted variable is defined as the number of claims over the number of
citations.
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B.5 Market Value Index

As a measure of innovation market value, we propose to define one vector that approxi-
mates the information contained in three (or, in an alternative specification, four) distinct
indicators: family size, grant lag, adjusted number of claims (and forward citations). To
do so, we follow a Principal Component Analysis. First, all these variables are normalized
such as to be centered in 0:

𝑋 = [(𝑋 −𝑚𝑖𝑛(𝑋 )) /(𝑚𝑎𝑥 (𝑋 ) −𝑚𝑖𝑛(𝑋 ))] −𝑚𝑒𝑎𝑛(𝑋 )

Next, we center our observations around a point that has as coordinates the average
values of all three (normalized) indicators. The vector that maximises the variation in the
data along the three market value indicators is calculated as the line that best fits the data
while going through this center.

Table B.3: Market value indicators

Weights (𝑒𝑣𝑥 )

Family size 0.49 0.52
Grant lag -0.64 -0.49
Adjusted claims # 0.59 0.43
Forward citations # 0.55

Eigenvalue Proportion 37% 29%

Patents # 7,031,531 5,962,352
Note: This table presents the eigenvectors from the Principal
Component Analysis eigen decomposition.

The obtained vector is defined by three values, each of which capturing the impor-
tance of the associated market value indicator in positioning the vector in space (see Table
B.3). We obtain the values of the principal components in our sample by projecting our
data onto this vector. Because changing the signs of the components does not change
the variance that they contain (we are just projecting on a vector that is pointing in one
direction or 180° away in the other direction), we can define the signs of the indicators
based on the relation the associated metric is expected to have with market value: positive
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for family size, number of claims and forward citations, negative for grant lag. Patents
associated with higher values of this projection can thus be considered as more valuable.

The proportion of the variation in the data that the market value index accounts for
can be computed as the distance between the data projections and the center of the data.
This distance is called the eigenvalue of a component. As we can see from Table B.3,
the projection of the three market value indicators account for 37% of the variation in
the data. Including forward citations does not seem to improve the performance of the
index, since only 29% of the variation in the data would then be captured.

B.6 Descriptive statistics on the Talent variable

Table B.4: Big Tech acquired patents portfolios

Count
∑
𝑖 𝑇𝑎𝑙𝑒𝑛𝑡𝑖 > 1

∑
𝑖 𝑇𝑎𝑙𝑒𝑛𝑡

∗
𝑖 > 1

AMZN 27 21 (78%) 15 (56%)
APPL 52 40 (77%) 30 (58%)
FCBK 18 11 (61%) 8 (44%)
GOOG 67 50 (75%) 28 (42%)
MSFT 88 64 (73%) 43 (49%)
TOTAL 252 186 (74%) 124 (49%)

On Figure B.3, we compare the talent indices normalized by the total number of
inventors working at the target 𝑇 and at the acquirer 𝐴:

𝑇𝑎𝑙𝑒𝑛𝑡𝐴,𝑇 =
𝑙𝑜𝑔(∑𝑖 {𝑇𝑎𝑙𝑒𝑛𝑡𝑖 } + 𝑒1)

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑠𝑁𝑏𝑟𝑇 + 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑠𝑁𝑏𝑟𝐴

where the numerator is log-transformed such as to reduce the influence of outliers.
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Figure B.3: Normalized Talent indices, by acquirer - Distribution



111

B.7 Model 2.1 - Estimation results for 𝑇𝑎𝑙𝑒𝑛𝑡∗

Table B.5: Inventors innovating for their acquirer with some acquirer’s employees

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent*
Core 0.371∗∗∗ 0.335∗∗ 0.379∗∗∗ 0.344∗∗ 0.340∗∗ 0.433∗∗ 0.392∗ 0.536∗∗ 0.461∗

(2.62) (2.35) (2.59) (2.34) (2.31) (2.12) (1.91) (2.13) (1.74)

MSinceAcqui 0.009∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.008∗∗∗ 0.009∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.022∗∗∗ 0.024∗∗∗
(10.13) (8.31) (7.68) (3.07) (3.54) (5.03) (4.98) (5.79) (5.65)

PatentsCount 0.030∗∗∗ 0.037∗∗∗ 0.034∗∗∗ 0.020∗∗∗ 0.018∗∗ 0.016∗ 0.016∗ 0.016∗ 0.017∗
(4.38) (4.88) (4.66) (2.93) (2.50) (1.85) (1.91) (1.67) (1.83)

FirstFiling 0.080∗∗∗ 0.078∗∗∗ -0.026 -0.008 0.014 0.013 0.044 0.046
(4.02) (3.66) (-0.94) (-0.27) (0.42) (0.39) (1.15) (1.17)

US 0.255∗ 0.281∗ 0.285∗ 0.250 1.387∗∗∗ 1.277∗∗ -0.396
(1.70) (1.86) (1.88) (1.28) (2.67) (2.27) (-0.37)

MSinceLastFil -0.015∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.015∗∗∗ -0.016∗∗∗
(-5.09) (-4.48) (-3.75) (-3.76) (-3.80) (-3.78)

FirstAuthor 0.411∗∗∗ 0.393∗∗∗ 0.396∗∗∗ 0.373∗∗ 0.360∗∗
(3.56) (2.97) (2.99) (2.52) (2.36)

Incorp𝑇 0.017 0.015 -0.011 0.003
(0.98) (0.86) (-0.57) (0.15)

US𝑇 -1.157∗∗ -1.112∗∗ 0.126
(-2.35) (-2.13) (0.12)

FirmSize𝑇 -0.509∗∗∗ -0.761∗∗∗
(-4.26) (-4.42)

Funding𝑇 0.427∗∗
(1.98)

Constant -3.530∗∗∗ -166.007∗∗∗ -160.365∗∗∗ 48.670 11.906 -65.652 -59.635 -71.341 -102.684
(-17.53) (-4.11) (-3.75) (0.88) (0.21) (-0.94) (-0.85) (-0.90) (-1.22)

Observations 4966 4966 4806 4806 4806 4051 4051 3593 3519
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

B.8 Model 2.1 - Robustness checks
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Table B.6: Innovating for acquirer, fixed period

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent
Core 0.455∗∗∗ 0.413∗∗∗ 0.331∗∗∗ 0.343∗∗∗ 0.345∗∗∗ 0.642∗∗∗ 0.664∗∗∗ 0.779∗∗∗ 0.958∗∗∗

(4.47) (3.87) (3.00) (3.09) (3.10) (4.36) (4.46) (3.91) (4.46)

MSinceAcqui 0.001 0.021∗∗∗ 0.022∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.007∗∗ 0.007∗
(1.07) (12.71) (12.73) (3.40) (3.44) (3.36) (3.33) (2.11) (1.84)

PatentsCount 0.251∗∗∗ 0.339∗∗∗ 0.340∗∗∗ 0.214∗∗∗ 0.198∗∗∗ 0.156∗∗∗ 0.154∗∗∗ 0.139∗∗∗ 0.141∗∗∗
(13.72) (16.24) (16.04) (9.15) (8.49) (6.82) (6.79) (6.04) (6.00)

FirstFiling 0.218∗∗∗ 0.222∗∗∗ 0.053∗∗ 0.057∗∗ 0.030 0.029 -0.002 -0.002
(14.18) (13.97) (2.14) (2.29) (1.15) (1.13) (-0.07) (-0.08)

US -0.325∗∗∗ -0.317∗∗∗ -0.312∗∗∗ -0.317∗∗ -0.783∗ -0.091 -0.221
(-3.12) (-3.00) (-2.94) (-2.23) (-1.73) (-0.17) (-0.34)

MSinceLastFil -0.021∗∗∗ -0.021∗∗∗ -0.024∗∗∗ -0.024∗∗∗ -0.030∗∗∗ -0.031∗∗∗
(-8.37) (-8.32) (-8.72) (-8.76) (-9.66) (-9.93)

FirstAuthor 0.293∗∗∗ 0.331∗∗∗ 0.332∗∗∗ 0.268∗∗∗ 0.252∗∗∗
(3.81) (3.91) (3.92) (2.91) (2.68)

Incorp𝑇 0.035∗∗ 0.037∗∗ 0.009 -0.003
(2.39) (2.52) (0.44) (-0.12)

US𝑇 0.476 -0.310 -0.183
(1.09) (-0.58) (-0.28)

FirmSize𝑇 -0.428∗∗∗ -0.353∗∗
(-4.33) (-2.41)

Funding𝑇 -0.029
(-0.17)

Constant -0.578∗∗∗ -440.761∗∗∗ -449.468∗∗∗ -107.060∗∗ -114.695∗∗ -129.441∗∗ -133.155∗∗ -13.223 10.247
(-3.56) (-14.20) (-13.98) (-2.14) (-2.29) (-2.23) (-2.29) (-0.19) (0.14)

Observations 3946 3946 3852 3852 3852 3240 3240 2861 2787
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table B.7: Innovating for acquirer with some acquirer’s employees, fixed period
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent*
Core 0.342∗∗ 0.301∗ 0.362∗∗ 0.345∗∗ 0.338∗∗ 0.426∗ 0.420∗ 0.590∗∗ 0.512∗

(2.13) (1.87) (2.19) (2.09) (2.04) (1.88) (1.83) (2.05) (1.66)

MSinceAcqui 0.004∗∗∗ 0.010∗∗∗ 0.011∗∗∗ 0.003 0.004 0.008∗∗ 0.008∗∗ 0.015∗∗∗ 0.023∗∗∗
(3.53) (4.48) (4.56) (1.05) (1.31) (2.04) (2.04) (3.35) (4.32)

PatentsCount 0.072∗∗∗ 0.079∗∗∗ 0.075∗∗∗ 0.051∗∗∗ 0.045∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.036∗∗ 0.040∗∗∗
(6.94) (7.33) (6.86) (4.41) (3.87) (2.88) (2.88) (2.37) (2.60)

FirstFiling 0.067∗∗∗ 0.074∗∗∗ -0.021 -0.009 0.015 0.015 0.064 0.072
(3.07) (3.29) (-0.72) (-0.30) (0.41) (0.41) (1.50) (1.62)

US 0.503∗∗∗ 0.545∗∗∗ 0.556∗∗∗ 0.435∗ 0.555 0.400 0.004
(2.94) (3.16) (3.22) (1.94) (0.91) (0.59) (0.00)

MSinceLastFil -0.014∗∗∗ -0.013∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.013∗∗∗ -0.013∗∗∗
(-4.27) (-3.91) (-3.24) (-3.24) (-2.86) (-2.78)

FirstAuthor 0.357∗∗∗ 0.383∗∗∗ 0.383∗∗∗ 0.389∗∗ 0.383∗∗
(2.85) (2.64) (2.64) (2.47) (2.36)

Incorp𝑇 0.036 0.035 0.021 0.050
(1.62) (1.55) (0.71) (1.47)

US𝑇 -0.124 -0.159 -0.567
(-0.21) (-0.24) (-0.51)

FirmSize𝑇 -0.337∗∗ -0.960∗∗∗
(-2.23) (-4.13)

Funding𝑇 1.052∗∗∗
(3.72)

Constant -2.614∗∗∗ -136.997∗∗∗ -153.097∗∗∗ 40.563 15.686 -104.822 -102.801 -172.135∗ -248.347∗∗
(-11.12) (-3.13) (-3.35) (0.67) (0.26) (-1.30) (-1.27) (-1.77) (-2.36)

Observations 3946 3946 3852 3852 3852 3240 3240 2861 2787
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01
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Table B.8: Innovating for acquirer, with buffer

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent
Core 0.411∗∗∗ 0.364∗∗∗ 0.324∗∗∗ 0.297∗∗∗ 0.297∗∗∗ 0.525∗∗∗ 0.512∗∗∗ 0.718∗∗∗ 0.770∗∗∗

(4.80) (4.05) (3.54) (3.18) (3.16) (4.25) (4.12) (4.53) (4.52)

MSinceAcqui 0.013∗∗∗ 0.031∗∗∗ 0.030∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.018∗∗∗ 0.018∗∗∗ 0.023∗∗∗ 0.024∗∗∗
(16.75) (20.36) (19.45) (7.38) (7.81) (8.44) (8.43) (8.85) (9.05)

PatentsCount 0.055∗∗∗ 0.089∗∗∗ 0.089∗∗∗ 0.028∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.022∗∗∗ 0.021∗∗∗
(7.71) (10.58) (10.49) (3.65) (3.18) (2.89) (2.91) (2.72) (2.64)

FirstFiling 0.197∗∗∗ 0.191∗∗∗ -0.021 -0.010 -0.025 -0.025 -0.050∗∗ -0.057∗∗
(14.62) (13.61) (-1.12) (-0.51) (-1.16) (-1.16) (-2.11) (-2.31)

US -0.280∗∗∗ -0.245∗∗∗ -0.246∗∗∗ -0.246∗ 0.151 0.268 -0.263
(-3.21) (-2.73) (-2.73) (-1.89) (0.38) (0.59) (-0.46)

MSinceLastFil -0.031∗∗∗ -0.030∗∗∗ -0.031∗∗∗ -0.031∗∗∗ -0.035∗∗∗ -0.037∗∗∗
(-14.62) (-14.17) (-13.28) (-13.26) (-13.32) (-13.47)

FirstAuthor 0.292∗∗∗ 0.331∗∗∗ 0.332∗∗∗ 0.274∗∗∗ 0.279∗∗∗
(4.13) (4.21) (4.22) (3.20) (3.19)

Incorp𝑇 0.021∗∗ 0.021∗∗ -0.001 -0.001
(2.15) (2.12) (-0.07) (-0.08)

US𝑇 -0.404 -0.272 0.016
(-1.06) (-0.64) (0.03)

FirmSize𝑇 -0.541∗∗∗ -0.689∗∗∗
(-6.76) (-5.74)

Funding𝑇 0.237∗
(1.78)

Constant -1.907∗∗∗ -399.599∗∗∗ -387.719∗∗∗ 42.031 18.405 5.990 6.610 101.278∗∗ 114.766∗∗
(-15.40) (-14.69) (-13.67) (1.09) (0.47) (0.13) (0.14) (1.99) (2.17)

Observations 4966 4966 4806 4806 4806 4051 4051 3593 3519
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table B.9: Innovating for acquirer with some acquirer’s employees, with buffer
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent*
Core 0.366∗∗ 0.329∗∗ 0.368∗∗ 0.331∗∗ 0.328∗∗ 0.450∗∗ 0.406∗ 0.614∗∗ 0.553∗∗

(2.56) (2.28) (2.49) (2.23) (2.20) (2.17) (1.94) (2.40) (2.04)

MSinceAcqui 0.010∗∗∗ 0.017∗∗∗ 0.016∗∗∗ 0.008∗∗∗ 0.009∗∗∗ 0.017∗∗∗ 0.017∗∗∗ 0.022∗∗∗ 0.024∗∗∗
(10.28) (8.33) (7.76) (3.07) (3.54) (5.09) (5.04) (5.89) (5.75)

PatentsCount 0.031∗∗∗ 0.037∗∗∗ 0.035∗∗∗ 0.021∗∗∗ 0.018∗∗ 0.016∗ 0.017∗ 0.016 0.017∗
(4.41) (4.90) (4.70) (2.94) (2.52) (1.88) (1.95) (1.63) (1.80)

FirstFiling 0.080∗∗∗ 0.078∗∗∗ -0.028 -0.010 0.013 0.012 0.043 0.045
(3.97) (3.67) (-1.02) (-0.35) (0.40) (0.37) (1.13) (1.16)

US 0.214 0.241 0.246 0.235 1.508∗∗∗ 1.347∗∗ -0.274
(1.42) (1.59) (1.62) (1.19) (2.88) (2.37) (-0.25)

MSinceLastFil -0.016∗∗∗ -0.014∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.016∗∗∗ -0.016∗∗∗
(-5.23) (-4.63) (-3.92) (-3.92) (-3.90) (-3.90)

FirstAuthor 0.411∗∗∗ 0.405∗∗∗ 0.408∗∗∗ 0.389∗∗∗ 0.379∗∗
(3.53) (3.02) (3.04) (2.60) (2.46)

Incorp𝑇 0.013 0.011 -0.013 0.003
(0.78) (0.64) (-0.68) (0.12)

US𝑇 -1.296∗∗∗ -1.185∗∗ -0.020
(-2.61) (-2.24) (-0.02)

FirmSize𝑇 -0.493∗∗∗ -0.757∗∗∗
(-4.06) (-4.34)

Funding𝑇 0.454∗∗
(2.06)

Constant -3.622∗∗∗ -165.770∗∗∗ -162.083∗∗∗ 53.131 16.497 -57.509 -50.621 -65.914 -101.421
(-17.56) (-4.06) (-3.76) (0.96) (0.29) (-0.82) (-0.72) (-0.83) (-1.19)

Observations 4966 4966 4806 4806 4806 4051 4051 3593 3519
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01
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Table B.10: Innovating under acquirer’s name

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent
Core 0.493∗∗∗ 0.458∗∗∗ 0.473∗∗∗ 0.441∗∗∗ 0.441∗∗∗ 0.855∗∗∗ 0.828∗∗∗ 1.003∗∗∗ 1.076∗∗∗

(5.56) (4.99) (5.03) (4.60) (4.59) (6.64) (6.40) (5.91) (5.77)

MSinceAcqui 0.011∗∗∗ 0.025∗∗∗ 0.025∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.017∗∗∗ 0.019∗∗∗
(14.92) (17.28) (16.66) (5.52) (5.87) (6.55) (6.53) (6.65) (7.14)

PatentsCount 0.046∗∗∗ 0.069∗∗∗ 0.067∗∗∗ 0.018∗∗∗ 0.015∗∗ 0.011 0.011∗ 0.010 0.009
(6.83) (9.09) (8.71) (2.66) (2.30) (1.61) (1.67) (1.43) (1.28)

FirstFiling 0.154∗∗∗ 0.157∗∗∗ -0.038∗∗ -0.028 -0.037∗ -0.037∗ -0.056∗∗ -0.064∗∗∗
(11.67) (11.14) (-2.01) (-1.48) (-1.73) (-1.74) (-2.38) (-2.60)

US -0.089 -0.051 -0.050 0.161 1.068∗∗∗ 1.905∗∗∗ 0.891
(-0.99) (-0.56) (-0.54) (1.21) (2.63) (3.88) (1.45)

MSinceLastFil -0.029∗∗∗ -0.028∗∗∗ -0.028∗∗∗ -0.028∗∗∗ -0.033∗∗∗ -0.035∗∗∗
(-13.78) (-13.34) (-12.29) (-12.27) (-12.56) (-12.77)

FirstAuthor 0.230∗∗∗ 0.302∗∗∗ 0.304∗∗∗ 0.245∗∗∗ 0.266∗∗∗
(3.18) (3.74) (3.75) (2.74) (2.91)

Incorp𝑇 0.018∗ 0.017 -0.005 0.009
(1.75) (1.64) (-0.38) (0.59)

US𝑇 -0.920∗∗ -1.478∗∗∗ -0.999∗
(-2.36) (-3.17) (-1.70)

FirmSize𝑇 -0.556∗∗∗ -0.880∗∗∗
(-6.71) (-6.93)

Funding𝑇 0.524∗∗∗
(3.62)

Constant -2.370∗∗∗ -313.216∗∗∗ -318.900∗∗∗ 74.151∗ 54.792 33.702 36.144 118.828∗∗ 106.533∗
(-17.86) (-11.76) (-11.22) (1.96) (1.43) (0.74) (0.79) (2.33) (1.95)

Observations 4966 4966 4806 4806 4806 4051 4051 3593 3519
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table B.11: Innovating under acquirer’s name with some acquirer’s employees
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent*
Core 0.404∗∗∗ 0.365∗∗ 0.411∗∗∗ 0.377∗∗ 0.374∗∗ 0.463∗∗ 0.421∗∗ 0.553∗∗ 0.476∗

(2.82) (2.53) (2.77) (2.54) (2.50) (2.24) (2.02) (2.18) (1.78)

MSinceAcqui 0.009∗∗∗ 0.017∗∗∗ 0.016∗∗∗ 0.008∗∗∗ 0.010∗∗∗ 0.017∗∗∗ 0.017∗∗∗ 0.022∗∗∗ 0.024∗∗∗
(9.90) (8.34) (7.72) (3.25) (3.75) (5.07) (5.02) (5.74) (5.55)

PatentsCount 0.031∗∗∗ 0.038∗∗∗ 0.035∗∗∗ 0.022∗∗∗ 0.019∗∗∗ 0.017∗∗ 0.018∗∗ 0.017∗ 0.018∗∗
(4.39) (4.92) (4.70) (3.06) (2.63) (2.02) (2.08) (1.83) (1.97)

FirstFiling 0.086∗∗∗ 0.084∗∗∗ -0.017 0.003 0.023 0.022 0.052 0.054
(4.21) (3.87) (-0.60) (0.10) (0.67) (0.64) (1.33) (1.36)

US 0.262∗ 0.287∗ 0.292∗ 0.265 1.458∗∗∗ 1.365∗∗ -0.331
(1.72) (1.87) (1.90) (1.33) (2.80) (2.41) (-0.31)

MSinceLastFil -0.015∗∗∗ -0.013∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.015∗∗∗ -0.016∗∗∗
(-4.85) (-4.21) (-3.52) (-3.53) (-3.70) (-3.71)

FirstAuthor 0.444∗∗∗ 0.445∗∗∗ 0.448∗∗∗ 0.443∗∗∗ 0.429∗∗∗
(3.79) (3.30) (3.32) (2.93) (2.75)

Incorp𝑇 0.022 0.019 -0.008 0.004
(1.24) (1.12) (-0.43) (0.18)

US𝑇 -1.214∗∗ -1.201∗∗ 0.096
(-2.46) (-2.29) (0.09)

FirmSize𝑇 -0.532∗∗∗ -0.761∗∗∗
(-4.39) (-4.35)

Funding𝑇 0.389∗
(1.79)

Constant -3.618∗∗∗ -177.646∗∗∗ -173.335∗∗∗ 30.316 -9.735 -93.429 -86.997 -92.224 -122.266
(-17.50) (-4.30) (-3.96) (0.54) (-0.17) (-1.30) (-1.21) (-1.13) (-1.42)

Observations 4966 4966 4806 4806 4806 4051 4051 3593 3519
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01
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Table B.12: Innovating for acquirer, core w/i 1y

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent
Core 0.897∗∗∗ 0.526∗∗∗ 0.485∗∗∗ 0.123 0.129 0.093 0.093 0.219∗ 0.212

(10.34) (5.72) (5.20) (1.26) (1.31) (0.82) (0.82) (1.72) (1.62)

MSinceAcqui 0.012∗∗∗ 0.027∗∗∗ 0.027∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.018∗∗∗ 0.019∗∗∗
(16.29) (18.51) (17.76) (6.44) (6.84) (7.46) (7.47) (7.58) (7.64)

PatentsCount 0.065∗∗∗ 0.100∗∗∗ 0.099∗∗∗ 0.042∗∗∗ 0.037∗∗∗ 0.039∗∗∗ 0.039∗∗∗ 0.035∗∗∗ 0.035∗∗∗
(8.41) (11.16) (10.94) (4.89) (4.30) (4.05) (4.07) (3.66) (3.62)

FirstFiling 0.168∗∗∗ 0.168∗∗∗ -0.021 -0.010 -0.020 -0.020 -0.031 -0.037
(12.58) (11.90) (-1.10) (-0.52) (-0.91) (-0.91) (-1.30) (-1.52)

US -0.296∗∗∗ -0.256∗∗∗ -0.256∗∗∗ -0.346∗∗∗ 0.051 -0.106 -0.806
(-3.43) (-2.91) (-2.89) (-2.76) (0.13) (-0.24) (-1.44)

MSinceLastFil -0.029∗∗∗ -0.028∗∗∗ -0.029∗∗∗ -0.029∗∗∗ -0.033∗∗∗ -0.035∗∗∗
(-13.32) (-12.88) (-12.12) (-12.10) (-12.28) (-12.38)

FirstAuthor 0.295∗∗∗ 0.328∗∗∗ 0.329∗∗∗ 0.270∗∗∗ 0.267∗∗∗
(4.23) (4.25) (4.26) (3.21) (3.11)

Incorp𝑇 0.018∗∗ 0.018∗∗ -0.007 -0.009
(2.08) (2.03) (-0.75) (-0.87)

US𝑇 -0.401 -0.175 0.321
(-1.06) (-0.42) (0.60)

FirmSize𝑇 -0.629∗∗∗ -0.731∗∗∗
(-8.29) (-6.63)

Funding𝑇 0.170
(1.42)

Constant -1.783∗∗∗ -341.909∗∗∗ -341.571∗∗∗ 41.696 19.245 2.407 2.990 76.934 92.799∗
(-16.15) (-12.64) (-11.95) (1.07) (0.49) (0.05) (0.07) (1.55) (1.82)

Observations 4966 4966 4806 4806 4806 4051 4051 3593 3519
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table B.13: Innovating for acquirer with some acquirer’s employees, core w/i 1y
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent*
Core 0.712∗∗∗ 0.576∗∗∗ 0.539∗∗∗ 0.333∗∗ 0.331∗∗ 0.417∗∗ 0.422∗∗ 0.633∗∗∗ 0.668∗∗∗

(5.23) (4.01) (3.69) (2.19) (2.17) (2.28) (2.31) (3.03) (3.11)

MSinceAcqui 0.010∗∗∗ 0.015∗∗∗ 0.014∗∗∗ 0.007∗∗∗ 0.009∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.021∗∗∗ 0.023∗∗∗
(10.40) (7.39) (6.90) (3.00) (3.47) (4.93) (4.92) (5.66) (5.56)

PatentsCount 0.028∗∗∗ 0.033∗∗∗ 0.032∗∗∗ 0.022∗∗∗ 0.019∗∗∗ 0.017∗ 0.018∗∗ 0.017 0.018∗
(4.37) (4.73) (4.59) (3.11) (2.65) (1.94) (2.00) (1.63) (1.79)

FirstFiling 0.058∗∗∗ 0.059∗∗∗ -0.025 -0.006 0.014 0.014 0.045 0.046
(2.86) (2.73) (-0.90) (-0.23) (0.43) (0.41) (1.18) (1.17)

US 0.238 0.263∗ 0.269∗ 0.212 1.483∗∗∗ 1.357∗∗ -0.455
(1.59) (1.74) (1.78) (1.10) (2.86) (2.40) (-0.42)

MSinceLastFil -0.013∗∗∗ -0.012∗∗∗ -0.010∗∗∗ -0.010∗∗∗ -0.012∗∗∗ -0.012∗∗∗
(-4.28) (-3.72) (-2.88) (-2.87) (-2.98) (-2.87)

FirstAuthor 0.412∗∗∗ 0.393∗∗∗ 0.397∗∗∗ 0.375∗∗ 0.362∗∗
(3.57) (2.97) (2.99) (2.53) (2.37)

Incorp𝑇 0.023 0.019 -0.009 0.005
(1.36) (1.16) (-0.51) (0.22)

US𝑇 -1.283∗∗∗ -1.270∗∗ 0.120
(-2.63) (-2.43) (0.11)

FirmSize𝑇 -0.589∗∗∗ -0.822∗∗∗
(-5.31) (-5.02)

Funding𝑇 0.430∗∗
(1.98)

Constant -3.552∗∗∗ -121.456∗∗∗ -122.038∗∗∗ 46.306 9.548 -77.997 -70.419 -76.396 -106.287
(-18.96) (-2.94) (-2.81) (0.84) (0.17) (-1.11) (-1.00) (-0.96) (-1.26)

Observations 4966 4966 4806 4806 4806 4051 4051 3593 3519
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01
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Table B.14: Innovating for acquirer, 3-digit core

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent
Core 0.392∗∗∗ 0.360∗∗∗ 0.320∗∗∗ 0.276∗∗∗ 0.272∗∗∗ 0.480∗∗∗ 0.474∗∗∗ 0.507∗∗∗ 0.484∗∗∗

(4.43) (3.95) (3.43) (2.90) (2.85) (4.17) (4.10) (3.66) (3.37)

MSinceAcqui 0.012∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.012∗∗∗ 0.013∗∗∗ 0.017∗∗∗ 0.017∗∗∗ 0.020∗∗∗ 0.021∗∗∗
(15.78) (20.00) (19.12) (6.80) (7.18) (8.03) (8.03) (8.12) (8.14)

PatentsCount 0.070∗∗∗ 0.107∗∗∗ 0.105∗∗∗ 0.040∗∗∗ 0.035∗∗∗ 0.036∗∗∗ 0.036∗∗∗ 0.033∗∗∗ 0.033∗∗∗
(9.16) (11.91) (11.62) (4.72) (4.16) (3.79) (3.81) (3.50) (3.47)

FirstFiling 0.190∗∗∗ 0.188∗∗∗ -0.020 -0.009 -0.018 -0.018 -0.035 -0.040
(14.60) (13.69) (-1.06) (-0.49) (-0.84) (-0.83) (-1.44) (-1.61)

US -0.266∗∗∗ -0.234∗∗∗ -0.234∗∗∗ -0.283∗∗ -0.019 -0.111 -0.683
(-3.11) (-2.65) (-2.65) (-2.25) (-0.05) (-0.25) (-1.22)

MSinceLastFil -0.030∗∗∗ -0.029∗∗∗ -0.029∗∗∗ -0.029∗∗∗ -0.034∗∗∗ -0.036∗∗∗
(-14.14) (-13.70) (-12.71) (-12.70) (-12.89) (-13.06)

FirstAuthor 0.292∗∗∗ 0.332∗∗∗ 0.332∗∗∗ 0.269∗∗∗ 0.265∗∗∗
(4.18) (4.28) (4.29) (3.20) (3.08)

Incorp𝑇 0.014∗ 0.014 -0.008 -0.010
(1.65) (1.62) (-0.76) (-0.94)

US𝑇 -0.268 -0.070 0.336
(-0.71) (-0.17) (0.63)

FirmSize𝑇 -0.560∗∗∗ -0.646∗∗∗
(-7.21) (-5.70)

Funding𝑇 0.137
(1.14)

Constant -1.805∗∗∗ -385.519∗∗∗ -381.985∗∗∗ 40.299 17.974 5.870 6.196 83.754∗ 98.801∗
(-14.23) (-14.67) (-13.74) (1.04) (0.46) (0.13) (0.14) (1.68) (1.93)

Observations 4966 4966 4806 4806 4806 4051 4051 3593 3519
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table B.15: Innovating for acquirer with some acquirer’s employees, 3-digit core
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent*
Core 0.475∗∗∗ 0.447∗∗∗ 0.472∗∗∗ 0.420∗∗∗ 0.411∗∗∗ 0.519∗∗∗ 0.490∗∗ 0.350 0.294

(3.26) (3.06) (3.17) (2.82) (2.74) (2.74) (2.56) (1.55) (1.24)

MSinceAcqui 0.010∗∗∗ 0.017∗∗∗ 0.016∗∗∗ 0.008∗∗∗ 0.009∗∗∗ 0.017∗∗∗ 0.017∗∗∗ 0.022∗∗∗ 0.023∗∗∗
(10.35) (8.49) (7.88) (3.26) (3.72) (5.25) (5.20) (5.75) (5.62)

PatentsCount 0.030∗∗∗ 0.037∗∗∗ 0.034∗∗∗ 0.021∗∗∗ 0.018∗∗ 0.016∗ 0.017∗ 0.017∗ 0.018∗
(4.36) (4.86) (4.67) (2.94) (2.53) (1.90) (1.95) (1.80) (1.94)

FirstFiling 0.081∗∗∗ 0.079∗∗∗ -0.023 -0.005 0.017 0.016 0.046 0.047
(4.04) (3.72) (-0.84) (-0.17) (0.52) (0.49) (1.21) (1.21)

US 0.244 0.269∗ 0.273∗ 0.224 1.362∗∗∗ 1.228∗∗ -0.474
(1.63) (1.79) (1.81) (1.16) (2.62) (2.19) (-0.44)

MSinceLastFil -0.015∗∗∗ -0.013∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.015∗∗∗ -0.016∗∗∗
(-5.00) (-4.39) (-3.62) (-3.63) (-3.80) (-3.79)

FirstAuthor 0.407∗∗∗ 0.389∗∗∗ 0.393∗∗∗ 0.369∗∗ 0.357∗∗
(3.52) (2.94) (2.96) (2.49) (2.34)

Incorp𝑇 0.019 0.017 -0.006 0.007
(1.17) (1.03) (-0.32) (0.31)

US𝑇 -1.153∗∗ -1.132∗∗ 0.122
(-2.35) (-2.17) (0.11)

FirmSize𝑇 -0.543∗∗∗ -0.801∗∗∗
(-4.64) (-4.73)

Funding𝑇 0.441∗∗
(2.09)

Constant -3.639∗∗∗ -166.450∗∗∗ -162.413∗∗∗ 42.629 5.852 -77.458 -70.980 -85.315 -112.618
(-17.39) (-4.13) (-3.81) (0.77) (0.10) (-1.11) (-1.02) (-1.08) (-1.35)

Observations 4966 4966 4806 4806 4806 4051 4051 3593 3519
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01
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B.9 Observational cut in the patents database

Figure B.4: Talent dummy over acquisition year
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B.10 Model 2.2 - Alternative Market Value Indices

Table B.16: Inventors innovating for their acquirer, MarketValue definition (a)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent
Core=1 0.044 -0.077 -0.126 -0.421∗ -0.406 -0.340 -0.343 -0.174 -0.180

(0.19) (-0.33) (-0.52) (-1.66) (-1.60) (-1.17) (-1.18) (-0.52) (-0.53)

MarketVal_bar 0.046 -0.820 -1.032∗ -1.905∗∗∗ -1.848∗∗∗ -1.107 -1.109∗ -2.023∗∗∗ -2.208∗∗∗
(0.09) (-1.54) (-1.92) (-3.28) (-3.17) (-1.64) (-1.65) (-2.77) (-2.94)

Core=1 × MarketVal_bar 1.192∗ 1.446∗ 1.478∗ 2.414∗∗∗ 2.359∗∗∗ 2.669∗∗∗ 2.661∗∗∗ 2.319∗∗ 2.577∗∗
(1.65) (1.94) (1.95) (3.02) (2.94) (2.91) (2.90) (2.26) (2.46)

MSinceAcqui 0.012∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.012∗∗∗ 0.013∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.019∗∗∗ 0.020∗∗∗
(15.50) (19.80) (18.94) (6.74) (7.11) (7.69) (7.68) (7.82) (7.89)

PatentsCount 0.068∗∗∗ 0.105∗∗∗ 0.104∗∗∗ 0.038∗∗∗ 0.033∗∗∗ 0.033∗∗∗ 0.033∗∗∗ 0.032∗∗∗ 0.032∗∗∗
(8.82) (11.69) (11.41) (4.53) (3.99) (3.56) (3.57) (3.37) (3.35)

FirstFiling 0.193∗∗∗ 0.193∗∗∗ -0.019 -0.008 -0.019 -0.019 -0.030 -0.034
(14.62) (13.72) (-0.98) (-0.44) (-0.87) (-0.87) (-1.25) (-1.35)

US -0.239∗∗∗ -0.212∗∗ -0.212∗∗ -0.258∗∗ -0.098 -0.179 -0.661
(-2.74) (-2.36) (-2.36) (-2.01) (-0.25) (-0.40) (-1.17)

MSinceLastFil -0.030∗∗∗ -0.030∗∗∗ -0.031∗∗∗ -0.031∗∗∗ -0.036∗∗∗ -0.037∗∗∗
(-14.47) (-14.04) (-13.04) (-13.03) (-13.25) (-13.41)

FirstAuthor 0.278∗∗∗ 0.320∗∗∗ 0.320∗∗∗ 0.256∗∗∗ 0.248∗∗∗
(3.96) (4.10) (4.11) (3.02) (2.87)

Incorp𝑇 0.012 0.012 -0.011 -0.017
(1.25) (1.24) (-1.08) (-1.52)

US𝑇 -0.163 -0.006 0.442
(-0.43) (-0.01) (0.83)

FirmSize𝑇 -0.583∗∗∗ -0.598∗∗∗
(-7.36) (-5.07)

Funding𝑇 0.044
(0.35)

Constant -1.717∗∗∗ -392.295∗∗∗ -390.551∗∗∗ 37.879 16.627 13.516 13.611 83.648∗ 102.000∗∗
(-8.86) (-14.68) (-13.77) (0.97) (0.42) (0.29) (0.30) (1.65) (1.96)

Observations 4880 4880 4720 4720 4720 3967 3967 3509 3435
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01
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Table B.17: Inventors innovating for their acquirer, MarketValue definition (b.2)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent
Core=1 0.456∗∗∗ 0.433∗∗∗ 0.403∗∗∗ 0.448∗∗∗ 0.442∗∗∗ 0.653∗∗∗ 0.648∗∗∗ 0.655∗∗∗ 0.748∗∗∗

(4.87) (4.44) (4.08) (4.42) (4.36) (4.97) (4.91) (4.18) (4.46)

MarketVal_bis 3.466∗∗ -1.137 -1.878 -6.184∗∗∗ -5.854∗∗∗ -5.638∗∗∗ -5.647∗∗∗ -9.002∗∗∗ -9.602∗∗∗
(2.48) (-0.76) (-1.23) (-3.74) (-3.53) (-3.12) (-3.12) (-4.47) (-4.64)

Core=1 × MarketVal_bis 4.009∗ 5.086∗∗ 5.927∗∗∗ 9.919∗∗∗ 9.657∗∗∗ 12.571∗∗∗ 12.543∗∗∗ 9.299∗∗∗ 10.707∗∗∗
(1.86) (2.30) (2.60) (4.14) (4.03) (4.60) (4.59) (3.09) (3.51)

MSinceAcqui 0.012∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.013∗∗∗ 0.013∗∗∗ 0.017∗∗∗ 0.017∗∗∗ 0.019∗∗∗ 0.020∗∗∗
(15.81) (19.58) (18.71) (6.79) (7.15) (7.89) (7.89) (7.85) (7.90)

PatentsCount 0.062∗∗∗ 0.102∗∗∗ 0.101∗∗∗ 0.037∗∗∗ 0.032∗∗∗ 0.032∗∗∗ 0.032∗∗∗ 0.033∗∗∗ 0.033∗∗∗
(8.14) (11.20) (10.95) (4.37) (3.85) (3.45) (3.46) (3.45) (3.42)

FirstFiling 0.190∗∗∗ 0.191∗∗∗ -0.018 -0.008 -0.018 -0.018 -0.023 -0.026
(14.05) (13.21) (-0.93) (-0.41) (-0.83) (-0.83) (-0.93) (-1.02)

US -0.262∗∗∗ -0.251∗∗∗ -0.250∗∗∗ -0.299∗∗ -0.149 -0.223 -0.730
(-2.98) (-2.76) (-2.74) (-2.30) (-0.37) (-0.50) (-1.28)

MSinceLastFil -0.031∗∗∗ -0.030∗∗∗ -0.031∗∗∗ -0.031∗∗∗ -0.038∗∗∗ -0.039∗∗∗
(-14.56) (-14.10) (-13.13) (-13.12) (-13.54) (-13.71)

FirstAuthor 0.272∗∗∗ 0.314∗∗∗ 0.314∗∗∗ 0.244∗∗∗ 0.235∗∗∗
(3.87) (4.02) (4.02) (2.87) (2.70)

Incorp𝑇 0.013 0.013 -0.012 -0.018
(1.36) (1.35) (-1.15) (-1.60)

US𝑇 -0.152 -0.004 0.476
(-0.40) (-0.01) (0.89)

FirmSize𝑇 -0.604∗∗∗ -0.601∗∗∗
(-7.45) (-5.02)

Funding𝑇 0.029
(0.23)

Constant -1.668∗∗∗ -386.253∗∗∗ -386.660∗∗∗ 35.282 14.925 9.500 9.573 69.737 86.885∗
(-13.02) (-14.11) (-13.25) (0.90) (0.38) (0.21) (0.21) (1.37) (1.66)

Observations 4880 4880 4720 4720 4720 3967 3967 3509 3435
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01
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Table B.18: Inventors innovating for their acquirer, MarketValue definition (b.3)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Talent
Core=1 0.447∗∗∗ 0.413∗∗∗ 0.380∗∗∗ 0.342∗∗∗ 0.338∗∗∗ 0.553∗∗∗ 0.553∗∗∗ 0.529∗∗∗ 0.715∗∗∗

(4.79) (4.17) (3.74) (3.28) (3.24) (3.95) (3.94) (2.91) (3.68)

MarketVal_ter -0.662 -1.786∗∗∗ -1.898∗∗∗ -1.124∗∗ -0.937∗ -1.900∗∗∗ -1.900∗∗∗ -2.609∗∗∗ -2.733∗∗∗
(-1.36) (-3.48) (-3.68) (-2.19) (-1.81) (-3.13) (-3.13) (-4.05) (-4.19)

Core=1 × MarketVal_ter 0.524 0.922 1.137∗ 0.953∗ 0.852 1.967∗∗∗ 1.967∗∗∗ 2.446∗∗∗ 2.618∗∗∗
(0.94) (1.53) (1.87) (1.66) (1.48) (2.97) (2.97) (3.48) (3.69)

MSinceAcqui 0.009∗∗∗ 0.027∗∗∗ 0.026∗∗∗ 0.009∗∗∗ 0.010∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.017∗∗∗ 0.018∗∗∗
(11.29) (18.08) (17.18) (4.87) (5.18) (6.38) (6.38) (6.44) (6.45)

PatentsCount 0.063∗∗∗ 0.109∗∗∗ 0.106∗∗∗ 0.029∗∗∗ 0.023∗∗ 0.020∗∗ 0.020∗∗ 0.021∗∗ 0.020∗∗
(7.38) (10.76) (10.21) (3.05) (2.48) (2.02) (2.02) (2.18) (2.07)

FirstFiling 0.210∗∗∗ 0.205∗∗∗ -0.008 0.001 -0.007 -0.007 -0.008 -0.008
(15.11) (14.01) (-0.40) (0.04) (-0.32) (-0.32) (-0.31) (-0.30)

US -0.207∗∗ -0.164 -0.157 -0.273∗∗ -0.273 -0.086 0.092
(-2.13) (-1.64) (-1.56) (-2.06) (-0.57) (-0.15) (0.13)

MSinceLastFil -0.029∗∗∗ -0.028∗∗∗ -0.030∗∗∗ -0.030∗∗∗ -0.033∗∗∗ -0.035∗∗∗
(-13.75) (-13.40) (-12.74) (-12.73) (-12.38) (-12.51)

FirstAuthor 0.303∗∗∗ 0.318∗∗∗ 0.318∗∗∗ 0.245∗∗∗ 0.228∗∗
(4.03) (3.82) (3.82) (2.69) (2.45)

Incorp𝑇 0.022∗∗ 0.022∗∗ 0.011 -0.001
(2.02) (2.01) (0.85) (-0.04)

US𝑇 0.000 -0.150 -0.169
(0.00) (-0.27) (-0.25)

FirmSize𝑇 -0.565∗∗∗ -0.441∗∗∗
(-6.15) (-3.31)

Funding𝑇 -0.115
(-0.84)

Constant -1.125∗∗∗ -425.164∗∗∗ -415.995∗∗∗ 16.344 -2.058 -30.108 -30.108 -6.191 17.849
(-7.14) (-15.15) (-14.04) (0.40) (-0.05) (-0.61) (-0.61) (-0.11) (0.31)

Observations 4158 4158 4009 4009 4009 3383 3383 2955 2881
BT dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01
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B.11 Probit estimates of the selection equation

Table B.19: Heckman selection equation (2.4)

Talent

MarketVal -1.413***
(0.349)

Core_Before = 1 0.305***
(0.071)

Core_Before=1 × MarketVal 2.241***
(0.416)

MSinceAcqui 0.004***
(0.001)

FirstFiling -0.037***
(0.013)

US 0.036
(0.068)

FirstAuthorSh 0.026
(0.067)

MSinceLastFiling -0.011***
(0.002)

Constant 73.462***
(25.565)

Observations 2,515
BT dummies Yes

Prob > 𝜒2 0,00
Pseudo R2 0,10

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

The z-test for the significance of the coefficient of
𝑀𝑆𝑖𝑛𝑐𝑒𝐿𝑎𝑠𝑡𝐹𝑖𝑙𝑖𝑛𝑔 is associated with a p-value <

0.01; we conclude that this is a relevant instrument.
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B.12 Selection model - Alternative Market Value Indices

Table B.20: Heckman two-step parameters, MarketValue definition (a)

(1) (2) (3)
first select /mills

MarketVal_bar 0.056 -1.514***
(0.173) (0.498)

Core_Before = 1 0.760*** -1.046***
(0.073) (0.219)

Core_Before=1 × MarketVal -0.345 4.269***
(0.246) (0.686)

MSinceAcqui -0.000 0.004***
(0.000) (0.001)

FirstFiling 0.004 -0.045***
(0.003) (0.012)

US -0.085*** 0.038
(0.019) (0.068)

FirstAuthorSh 0.041** 0.022
(0.019) (0.067)

MSinceLastFiling -0.011***
(0.002)

lambda -0.036
(0.064)

Constant -8.025 90.070***
(5.829) (24.611)

Observations 2,515 2,515 2,515
BT dummies Yes Yes Yes

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table B.21: Heckman two-step parameters, MarketValue definition (b.2)

(1) (2) (3)
first select /mills

MarketVal_bis 0.248 -3.262**
(0.453) (1.587)

Core_Before = 1 0.634*** 0.412***
(0.023) (0.075)

Core_Before=1 × MarketVal -2.003*** 16.110***
(0.696) (2.283)

MSinceAcqui -0.000 0.004***
(0.000) (0.001)

FirstFiling 0.005* -0.046***
(0.003) (0.012)

US -0.077*** -0.010
(0.019) (0.069)

FirstAuthorSh 0.039** 0.025
(0.019) (0.068)

MSinceLastFiling -0.011***
(0.002)

lambda -0.087
(0.061)

Constant -10.668* 91.533***
(5.981) (24.807)

Observations 2,515 2,515 2,515
BT dummies Yes Yes Yes

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table B.22: Heckman two-step parameters, MarketValue definition (b.3)

(1) (2) (3)
first select /mills

MarketVal_ter 0.032 -0.570*
(0.075) (0.334)

Core_Before = 1 0.647*** 0.238***
(0.022) (0.082)

Core_Before=1 × MarketVal -0.188** 0.908**
(0.089) (0.362)

MSinceAcqui 0.000 0.001
(0.000) (0.001)

FirstFiling 0.003 -0.033***
(0.003) (0.013)

US -0.121*** 0.092
(0.019) (0.079)

FirstAuthorSh 0.041** 0.063
(0.019) (0.074)

MSinceLastFiling -0.008***
(0.002)

lambda 0.017
(0.085)

Constant -6.623 66.042***
(5.596) (25.558)

Observations 1,965 1,965 1,965
BT dummies Yes Yes Yes

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table C.1: Bureau Van Dijk’s peer groups to which Big Tech targets belong
Peer Group Name PeerGroupSize TargetCount TargetShare
Computer programming activities 76511 117 .002
Other software publishing 41458 54 .001
Other information technology and computer service activities 84145 36 0
Other professional, scientific and technical activities nec 259502 19 0
Retail sale via mail order houses or via Internet 18977 15 .001
Other telecommunications activities 36156 11 0
Computer consultancy activities 21166 11 .001
Service activities incidental to water transportation 15484 10 .001
Manufacture of electronic components 50222 9 0
Manufacture of computers and peripheral equipment 13044 9 .001
Engineering activities and related technical consultancy 175964 5 0
Data processing, hosting and related activities 29887 5 0
Advertising agencies 82905 5 0
Wholesale of computers, computer peripheral equipment and software 47547 4 0
Other research and experimental development on natural sciences and engineering 32895 4 0
Other financial service activities, except insurance and pension funding nec 45773 4 0
Other business support service activities nec 209099 4 0
Motion picture, video and television programme post-production activities 5040 4 .001
Retail sale of computers, peripheral units and software in specialised stores 53034 3 0
Non-specialised wholesale trade 298724 3 0
Manufacture of instruments and appliances for measuring, testing and navigation 21472 3 0
Manufacture of communication equipment 13254 3 0
Wired telecommunications activities 11370 2 0
Specialised design activities 16708 2 0
Retail sale of games and toys in specialised stores 3725 2 .001
Restaurants and mobile food service activities 212558 2 0
Other retail sale not in stores, stalls or markets 48526 2 0
Manufacture of optical instruments and photographic equipment 5171 2 0
Industrial companies 642 2 .003
Business and other management consultancy activities 184239 2 0
Artistic creation 7885 2 0
Wireless telecommunications activities 5056 1 0
Wholesale of electrical household appliances 70351 1 0
Wholesale of beverages 46863 1 0
Web portals 10299 1 0
Travel agency activities 41417 1 0
Sound recording and music publishing activities 4685 1 0
Security systems service activities 11329 1 0
Retail sale via stalls and markets of food, beverages and tobacco products 11557 1 0
Retail sale of newspapers and stationery in specialised stores 5530 1 0
Retail sale of cosmetic and toilet articles in specialised stores 13644 1 0
Retail sale of clothing in specialised stores 170841 1 0
Retail sale of books in specialised stores 42470 1 0
Retail sale of audio and video equipment in specialised stores 43391 1 0
Retail sale in non-specialised stores with food, beverages or tobacco predominating 234929 1 0
Reproduction of recorded media 1668 1 .001
Repair of electrical equipment 7091 1 0
Radio broadcasting 13141 1 0
Publishing of computer games 397 1 .003
Primary education 58746 1 0
Photographic activities 14387 1 0
Other retail sale of new goods in specialised stores 290929 1 0
Other reservation service and related activities 38460 1 0
Other publishing activities 4686 1 0
Other information service activities nec 22071 1 0
Other human health activities 119835 1 0
Other education nec 43212 1 0
Motion picture, video and television programme production activities 27004 1 0
Motion picture, video and television programme distribution activities 3629 1 0
Manufacture of other general-purpose machinery nec 38938 1 0
Manufacture of other electrical equipment 24688 1 0
Manufacture of motor vehicles 4280 1 0
Manufacture of consumer electronics 4173 1 0
Manufacture of air and spacecraft and related machinery 4875 1 0
Legal activities 83934 1 0
Hotels and similar accommodation 91661 1 0
Fitness facilities 21586 1 0
Dispensing chemist in specialised stores 131204 1 0
Agents specialised in the sale of other particular products 71698 1 0
Activities of holding companies 213986 1 0
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C.1 Big Tech-acquired patents portfolios

The tables below compare the descriptive statistics of all Big Tech-acquired patents (see
Table C.2) with those matched with Arts, Hou, and Gomez (2021)’s database (see Ta-
ble C.3).

Table C.2: Big Tech-acquired patents portfolios

Portfolio size
(patents #)

Patent age at
acquisition (y)

Filing date Grant date

Count Mean SD Mean SD [min,max] [min,max]

AMZN 27 22.07 64.62 3.31 2.59 1995m6, 2020m6 1998m8, 2022m6
APPL 52 14.21 19.72 4.00 2.59 1988m6, 2019m11 1990m5, 2022m5
FCBK 18 7.56 17.68 4.31 4.37 1998m11, 2019m1 2001m1, 2020m6
GOOG 67 30.98 143.16 3.90 2.14 1995m6, 2020m9 1996m12, 2022m6
MSFT 88 16.52 51.88 3.86 2.79 1987m5, 2020m4 1989m2, 2022m6

TOTAL 252 19.84 83.12 3.87 2.71 1987m5, 2020m9 1989m2, 2022m6

Table C.3: Big Tech-acquired patents portfolios with textual data

Portfolio size
(patents #)

Patent age at
acquisition (y)

Share of patents with
new keywords pairs

Filing date Grant date

Count Mean SD Mean SD Mean SD [min,max] [min,max]

AMZN 27 22.07 64.62 3.60 2.61 .83 .26 1995m6 , 2017m9 1998m8 , 2018m5
APPL 47 15.28 20.44 4.43 2.68 .87 .21 1988m6 , 2017m6 1990m5 , 2018m5
FCBK 14 8.79 19.95 4.88 4.87 .93 .14 1998m11 , 2015m5 2001m1 , 2018m3
GOOG 65 31.88 145.28 4.11 2.27 .90 .22 1995m6 , 2017m5 1996m12 , 2018m5
MSFT 80 17.9 54.24 4.36 3.11 .86 .26 1987m5 , 2017m7 1989m2 , 2018m5

TOTAL 233 21.21 86.31 4.25 2.89 .87 .23 1987m5, 2017m9 1989m2, 2018m5

C.2 Disruption metric - Extension

In order to directly integrate the notion of future impact in the disruption metric, we
propose to weight the number of new keywords combinations in a patent 𝑝 by an index
comprised between 0 and 1 capturing the number of forward citations received by this
patent:

𝐷𝑖𝑠𝑟𝑢𝑝𝑡∗𝑝 = �𝐹𝑤𝑑𝐶𝑖𝑡𝑝 ∗ 𝑁𝑒𝑤𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝑠𝑝
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where the citations-based weights have been normalized such as to be comprised
between 0 and 1 by min/max scaling:�𝐹𝑤𝑑𝐶𝑖𝑡 = (𝐹𝑤𝑑𝐶𝑖𝑡 −𝑚𝑖𝑛(𝐹𝑤𝑑𝐶𝑖𝑡)) /(𝑚𝑎𝑥 (𝐹𝑤𝑑𝐶𝑖𝑡) −𝑚𝑖𝑛(𝐹𝑤𝑑𝐶𝑖𝑡)).

The number of citations received by a patent (𝐹𝑤𝑑𝐶𝑖𝑡𝑝 ) is a stock that builds over
time, so patents published at different times cannot be compared. To overcome this
problem, we propose to consider the number of forward citations received by a patent
over a period of five years after its publication date. This means that this variable can
only be used for patents published at least five years before the end of our study period
(in July 2022), so in July 2017. Because publication typically occurs around 18 months
after the filing date (Squicciarini, Dernis, and Criscuolo 2013), we restrict this alternative
specification of our disruption metric to patents filed before January 2016.

C.3 Big Tech targets’ product markets

CATEGORY STATISTA MARKET CRUNCHBASE MARKET

Entertainment Digital Video Digital Video, Video, Video Streaming

ePublishing ePublishing, Publishing, Audiobooks

Digital Music Digital Music, Music, Music Stream-
ing

Extended Reality Extended Reality, Augmented Reality,
3D Technology, Virtual Reality

Game Development Game Development, Video Games,
Console Games, PC Games
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Connected Devices Smart Home Smart Home

Internet of Things Internet of Things

Apps Digital Health Digital Health, Fitness, Wellness, Per-
sonal Health

Education Education Apps, Education

Hardware Hardware Hardware, Mobile Devices

Semiconductor Semiconductor

Social Interactions Mobile Messaging Mobile Messaging, Messaging

Social Network Social Network, Photo Sharing, Social
Media

Imaging Mapping Mapping, Navigation

Digital Imaging Technology Digital Imaging Technology

Artificial Intelligence Robotics Robotics, Autonomous Vehicles, Neu-
roscience

Image Recognition Image Recognition, Computer Vision,
Facial Recognition
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Speech-Based NLP Speech-Based NLP, Speech Recogni-
tion

Generative AI Generative AI, Text-to-Speech

Business Intelligence Business Intelligence, Data Mining,
Marketing Analytics

Language Translation NLP Language Translation NLP

Text-based NLP Text-based NLP, Text Analytics

Predictive Analytics Predictive Analytics, Virtual Agent

Consumers eCommerce E-Commerce, Shopping, Retail,
Comparison Shopping Engine

In App Advertising In App Advertising

CRM CRM, Mobile Payment, Consumer,
Advertising

Enterprise Softwares ERP ERP, eCommerce Software

SCM SCM, Logistics

Collaboration Software Collaboration Software, Video Chat,
Video Conferencing, Collaboration,
File Sharing

Content Management Software Content Management Software

Creative Software Creative Software
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Construction and Design Software Construction and Design Software,
Product Design

Development Application Development Software Application Development Software,
Developer APIs, Web Development,
Developer Tools

Application Outsourcing Application Outsourcing

PaaS PaaS, Productivity Tools, Developer
Platform

Network Systems Virtualization Virtualization

Cloud Storage Cloud Storage, Data Storage, Cloud
Computing, Data Recovery

Cyber Security Cyber Security, Network Security,
Cloud Security

System Infrastructure Software System Infrastructure Software

Others Lighting Lighting

Energy Energy

Medical Device Medical Device

This table was constructed by webscraping from the Crunchbase website the products in which Big Tech
targets are active, and matching them with Statista’s market data.
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C.4 Distribution of the dependent variable

Figure C.1: New keywords combinations

Figure C.2: New keywords combinations, excluding outliers



132 APPENDIX C.

C.5 Average disruption levels - Comparing Big Tech and its targets

Table C.5: New keywords combinations

(1) (2) (3)
Big Tech Targets Mean Difference

AMZN 23.61 84.55 -60.94
(.) (149.91)

APPL 28.90 98.91 -70.01
(.) (184.94)

FCBK 18.94 63.71 -44.77
(.) (76.98)

GOOG 21.06 94.65 -73.59
(.) (189.36)

MSFT 56.82 84.87 -28.05
(.) (218.83)

Total 29.86 89.12 -59.26
(15.52) (189.49)

𝑁 5 233 238

Table C.6: New keywords combinations, citations-weighted

(1) (2) (3)
Big Tech Targets Mean Difference

AMZN 0.18 0.37 -0.19
(.) (0.70)

APPL 0.29 1.04 -0.75
(.) (2.28)

FCBK 0.18 0.34 -0.16
(.) (0.50)

GOOG 0.19 1.22 -1.02
(.) (3.51)

MSFT 0.37 0.57 -0.19
(.) (1.00)

Total 0.24 0.81 -0.57
(0.09) (2.23)

𝑁 5 229 234
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Table C.7: New keywords combinations, excl. 0

(1) (2) (3)
Big Tech Targets Mean Difference

AMZN 32.35 93.48 -61.13
(.) (150.47)

APPL 40.36 107.85 -67.49
(.) (187.42)

FCBK 28.86 65.95 -37.10
(.) (77.83)

GOOG 31.11 100.88 -69.76
(.) (190.89)

MSFT 67.56 92.60 -25.04
(.) (223.07)

Total 40.05 96.48 -56.43
(15.98) (191.78)

𝑁 5 225 230

Table C.8: New keywords combinations, citations-weighted and excl. 0

(1) (2) (3)
Big Tech Targets Mean Difference

AMZN 0.26 0.43 -0.17
(.) (0.72)

APPL 0.42 1.16 -0.74
(.) (2.43)

FCBK 0.28 0.36 -0.08
(.) (0.50)

GOOG 0.30 1.29 -0.99
(.) (3.56)

MSFT 0.46 0.62 -0.16
(.) (1.01)

Total 0.34 0.89 -0.54
(0.09) (2.30)

𝑁 5 221 226
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C.6 Model 3.1 - Robustness checks

Table C.9: Disruption of Internally developed vs Acquired top patents, citations-weighted

(1) (2) (3) (4) (5)

Disrupt∗ (𝑖𝑛𝑑𝑒𝑥)
Acquired=1 1.021∗∗∗ 0.822∗∗∗ 0.923∗∗∗ 0.979∗∗∗ 0.790∗∗∗

(23.63) (18.80) (21.45) (23.02) (17.40)

MSFT=1 -0.119∗∗∗ -0.117∗∗∗ -0.045∗∗ 0.124∗∗∗ 0.141∗∗∗
(-5.71) (-5.59) (-2.11) (5.78) (6.47)

Acquired=1 × MSFT=1 -0.600∗∗∗ -0.442∗∗∗ -0.612∗∗∗ -0.803∗∗∗ -0.616∗∗∗
(-7.11) (-5.18) (-7.06) (-9.44) (-7.13)

Patent Scope 0.302∗∗∗ 0.209∗∗∗ 0.201∗∗∗ 0.141∗∗∗
(37.72) (25.91) (25.21) (15.34)

Family Size 0.133∗∗∗ 0.119∗∗∗ 0.118∗∗∗
(50.52) (45.35) (44.58)

Number of Claims 0.035∗∗∗ 0.035∗∗∗
(44.19) (44.32)

Constant -3.641 -3.943 -3.983 -4.348 -4.617
(-0.57) (-0.62) (-0.63) (-0.69) (-0.73)

Observations 73482 73482 73482 73480 73476
Pseudo 𝑅2 0.056 0.071 0.098 0.120 0.130
Year dummies Yes Yes Yes Yes Yes
CPC dummies No No No No Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

Table C.10: Disruption of Internally developed vs Acquired top patents, excl. 0

(1) (2) (3) (4) (5)

Disrupt (excl. 0)
Acquired=1 0.491∗∗∗ 0.478∗∗∗ 0.476∗∗∗ 0.512∗∗∗ 0.486∗∗∗

(16.29) (15.74) (15.67) (17.05) (16.04)

MSFT=1 0.382∗∗∗ 0.382∗∗∗ 0.384∗∗∗ 0.483∗∗∗ 0.485∗∗∗
(32.52) (32.51) (32.62) (40.55) (40.13)

Acquired=1 × MSFT=1 -0.410∗∗∗ -0.400∗∗∗ -0.407∗∗∗ -0.504∗∗∗ -0.467∗∗∗
(-7.53) (-7.33) (-7.46) (-9.32) (-8.60)

Patent Scope 0.025∗∗∗ 0.020∗∗∗ 0.016∗∗∗ 0.013∗∗
(5.03) (4.00) (3.17) (2.43)

Family Size 0.011∗∗∗ 0.003∗ 0.004∗∗
(6.37) (1.83) (2.16)

Number of Claims 0.023∗∗∗ 0.023∗∗∗
(41.71) (41.55)

Constant 3.367∗∗∗ 3.342∗∗∗ 3.336∗∗∗ 3.092∗∗ 3.165∗∗
(2.64) (2.62) (2.61) (2.45) (2.52)

Observations 61642 61420 61420 61418 61414
Pseudo 𝑅2 0.014 0.014 0.014 0.017 0.018
Year dummies Yes Yes Yes Yes Yes
CPC dummies No No No No Yes
t statistics in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01
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