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Abstract: Microbial exopolysaccharides (EPSs) are receiving growing interest today, owing to their
diversity in chemical structure and source, multiple functions, and immense potential applications in
many food and non-food industries. Their health-promoting benefits for humans deserve particular
attention because of their various biological activities and physiological functions. The aim of this
paper is to provide a comprehensive review of microbial EPSs, covering (1) their chemical and
biochemical diversity, including composition, biosynthesis, and bacterial sources belonging mainly to
lactic acid bacteria (LAB) or probiotics; (2) their technological and analytical aspects, especially their
production mode and characterization; (3) their biological and physiological aspects based on their
activities and functions; and (4) their current and future uses in medical and pharmaceutical fields,
particularly for their prebiotic, anticancer, and immunobiotic properties, as well as their applications
in other industrial and agricultural sectors.

Keywords: exopolysaccharides; probiotics; lactic acid bacteria; immunobiotics; pharmaceutical
applications

1. Introduction

Microbial exopolysaccharides (EPSs) are extracellular carbohydrate-based biopolymers
produced by various kinds of microorganisms such as bacteria, fungi, yeasts, and microal-
gae [1–4]. Bacterial EPSs are synthesized through different pathways and then secreted, either
in bound form around the cell surface (capsular EPSs) or in free form into the medium of
cell growth (slime EPSs). Once released in the surrounding medium, EPSs associate with
other biomolecules like proteins, lipids, and uronic acid derivatives to form an extracellular
matrix [5]. Consequently, the term EPS has been used to characterize polysaccharides that
represent approximately 40 to 95% of the extracellular polymeric substances secreted by
microorganism into the surrounding environment [6]. According to their monosaccharide
content, EPSs are mainly classified as homopolysaccharides (HoPSs), that is, polysaccharides
with one kind of sugar unit (e.g., glucose or fructose), or heteropolysaccharides (HePSs),
those containing different types of monomer residues (e.g., D-glucose, D-galactose, and L-
rhamnose), and may include non-carbohydrate groups (e.g., phosphate, acetyl, or amine
groups). EPSs also vary in molecular mass (~0.5–2.0 × 106 mol/g), size, sugar linkage pattern,
branching degree, and neutral or ionic functional groups [7].
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Owing to the diversity in chemical structure, various microbial sources, and multiple
properties and functions, as well as the environmental compatibility and non-toxicity, EPSs
find a wide range of applications in many areas of food, including dairy products and
beverages [7–9], and non-food areas such as cosmetics, textiles, environmental, agricultural,
medical, and pharmaceutical industries [10–12].

Among EPS-producing microorganisms that have recently received special attention
from scientific and industrial communities are LABs [7,8,12]. In fact, more than 40 species
of LAB, i.e., microorganisms being generally recognized as safe (GRAS), or having the
Qualified Presumption of Safety (QPS), have been reported to produce a wide range of EPSs
without health risk [7]. While currently used for their hydrocolloid techno-functionalities
as thickeners, stabilizers, emulsifiers, and gelling and water-binding agents in fermented
food (e.g., yoghurt and cheese), and pharmaceutical product formulations (e.g., excipi-
ents, drug delivery agents), microbial EPSs have also been reported to provide numerous
health-promoting benefits for humans, owing to their various biological activities and
physiological functions [5,10–12]. Antioxidant, antihypertension, hypocholesterolemic,
antiviral, antitumor, and immunomodulating activities are some examples currently re-
ported in the literature [7,10,12]. More emergent and relevant functions of EPSs from LABs
are their potential use as immunobiotic adjuvants and smart drug delivery systems in
vaccine preparation and theranostic design, respectively, which should deserve much more
particular attention now and in the future [11,13].

The goal of the present paper is to review the diversity of microbial EPSs regarding
(1) chemical and biochemical aspects, including composition, biosynthesis, and bacterial
sources belonging mainly to LABs or probiotics; (2) technological and analytical aspects,
especially their production mode and characterization; (3) biological and physiological
aspects based on their activities and functions; and (4) the present and future medical and
pharmaceutical applications in connection to their prebiotic, antioxidant, anticancer, and
immunomodulation activities against intestinal infections, by particularly emphasizing
their role as immunobiotics.

2. Microbial EPS
2.1. Chemical Structure, Composition, and Types of EPS

EPS composition and chemical structure have been widely investigated by different
analytical techniques in terms of monosaccharide units, molecular mass and size, link-
age between monomers (glycoside bounds), functional groups (ionic or non-ionic EPSs),
branching structure, and microstructure [14–16]. Table 1 summarizes different variants
and classification criteria in the microbial EPS molecular structure, with some examples of
producing microorganisms.

Their classification and name are attributed as a function of these chemical structure
criteria. Based on the EPS primary structure, i.e., the monosaccharide composition, it is
possible first to distinguish HoPSs from HePSs, that is, EPSs having only one or more type
of sugar units. Second, the linkages between units and the position of the carbon involved
in the bond C1, C3-α/β, C1, C4- α/β, or C1, C6- α/β, named glycosidic linkages, allow the
sub-classification of EPSs. Third, the neutral or ionic nature of functional groups and the
degree of chain branching are other sub-criteria of EPS categories within HoPSs and HePSs.
Furthermore, uncommon variants such as the oligomeric repeating with the same units
(e.g., pentameric of galactose), with three to eight monosaccharide derivative different units
(HePSs), or with an approximately equal proportion of glucose and galactose subunits (e.g.,
kefiran), are among the structural criteria of bacterial EPSs [17]. Some examples of EPS
chemical structure are shown in Figure 1.
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Table 1. Classification and examples of microbial EPS.

Monomers Substituents Linkage Branching Charge HoPS HePS

Bacterial EPS
LAB EPS

Glc

β(1→3) Linear

Neutral

β-D-glucan
α(1→3) Linear Mutan
α(1→3) Linear Neutran
α(1→6); α(1→4) Branched Reuteran
α(1→6); α(1→3) Branched Dextran
α(1→6); α(1→3) Linear Alternan

Fru β(2→1) Linear Fructan
Gal Linear Polygalactan
Fru β(2→6); β(2→1) Branched Levan
Glc; Gal Branched Kefiran

Non-LAB EPS

Glc Neutral Curdulan
Glc; Man; GlcA Ace; Pyr β(1→4) Branched Anionic Xanthan
GulA; ManA Ace Branched Alginate
Glc; Rha; GlcA Ace; Gly Linear Anionic Gellan

GlcN β(1→4); β(1→3) Linear Anionic Hyaluronic acid
Man Neutral Xylinan
Glc β(1→4) Branched Neutral Cellulose

Fungi EPS
Glc α(1→4); α(1→6) Linear Neutral Pullulan
Amino sugar Ace; Gal-N, R-COOH Anionic Emulsan

Glucose (Glc); fructose (Fru); galactose (Gal); mannose (Man); glucuronic acid (GlcA); guluronic acid (GulA); mannuronic acid (ManA); rhamnose (Rha); glucosamine (GlcN);
acetate (Ace); pyruvate (Pyr); glycerate (Gly); galactosamine (Gal-N).
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Figure 1. EPS chemical structure examples.

2.2. Biosynthesis and Producing Microorganisms
2.2.1. Biosynthesis of EPS

Despite the wide variety of EPS chemical structures, microorganisms produce EPSs
via four different pathways: the Wzx/Wzy-dependent pathway, the ATP-binding cassette
(ABC) transporter pathway, the synthase-dependent pathway, and extracellular synthesis
using a single glycosyltransferase (Figure 2). In the same species of microorganisms, two or
more pathways can coexist to produce different macromolecules [18].

HoPSs are biosynthesized by specific glycosyltransferase or fructosyltransferase through
two reactions [19].These are the sucrose hydrolysis and the transfer glucosyl (or fructosyl) to the
glucan (fructan) polymer chain or oligosaccharide synthesis before creating the final EPS. While
the glycosyltransferase catalyzes the biosynthesis of glucans (e.g., dextran, mutan, alternane, or
reuteran), the fructosyltransferase synthesizes fructans (e.g., levan and inulin) [20].

The so-called Wzx/Wzy-dependent pathway relates to Gram-positive bacteria [18].
Here, individual repeating units are linked to an undecaprenol diphosphate anchor (C55)
at the inner membrane, which is assembled by several glycosyltransferases and translo-
cated across the cytoplasmic membrane by flippase, a Wzx protein. In the next step, their
polymerization by the Wzy protein occurs in the periplasmic space before they are released
to the cell surface. The transport of polymerized repeat units to the cell surface depends on
the polysaccharide co-polymerase (PCP) and the outer membrane polysaccharide export
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(Outer Polysaccharide Export (OPX) or Outer Membrane Auxiliary (OMA)) families. All
polysaccharides synthesized by the Wzx/Wzy path display diverse monosaccharide com-
position, including in their chemical structure up to four or five sugars. They are therefore
classified as HePSs (e.g., xanthan) [16].
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Figure 2. Biosynthesis of polysaccharides in microorganisms. Wzx/Wzy-dependent pathway: Re-
sponsible for synthesizing lipopolysaccharide O-antigen polysaccharides in Gram-negative bacteria,
as well as capsular polysaccharides (CPSs) and EPSs in both Gram-negative and Gram-positive
bacteria. ATP-binding ABC transporter pathway: Facilitates the synthesis of CPS specifically in Gram-
negative bacteria. Synthase-dependent pathway: Involved in the synthesis of both CPSs and EPSs in
Gram-negative and Gram-positive bacteria. Extracellular synthesis via a single glycosyltransferase:
Responsible for the synthesis of EPSs that fall under the category of HoPS.

The ABC transporter pathway mainly occurs in Gram-negative bacteria for CPS
production [18]. Such polysaccharides do not really represent EPSs since they are still
attached to the cell surface. CPS, synthesized through ABC transport-dependent pathway, is
assembled by a single glycosyltransferase on the cytoplasmic surface of the inner membrane.
This process yields HoPS or HePS when multiple glycosyltransferases are involved for
the assembly process [16]. The synthesized polysaccharides are exported through an
efflux pump complex, which includes ABC transporters that span the inner membrane,
periplasmatic proteins of the PCP and OPX families, and the outer membrane [18].

The synthase-dependent pathway is involved in the synthesis of both CPS and EPS.
This pathway utilizes a single synthase complex to perform both polymerization and trans-
port, secreting complete polymer chains directly onto the membrane and cell walls [18].
In the absence of membrane anchors, a receptor protein for signaling molecules, such as
bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP), may help initiate polysac-
charide assembly. In Gram-negative bacteria, polysaccharides are often transported across
the outer membrane [21]. The synthase-dependent pathway is commonly used to assemble
HoPSs that require only one type of sugar precursor, as seen in biosynthesis of curdlan,
cellulose, alginates, and hyaluronic acid [16].

In the biosynthesis of EPSs through the Wzx/Wzy-dependent, ABC transporter-dependent,
or synthase-dependent pathways, polysaccharides are synthesized from nucleotide diphosphate
sugars [21]. These sugar nucleotides are produced through a multistep process starting with
glycolytic intermediates such as glucose-6-phosphate or fructose-6-phosphate.
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Initially, glucose-6-phosphate is converted into glucose-1-phosphate (Glc-1-P) by
phosphoglucomutase. Glc-1-P is then utilized to form sugar nucleotides like uridine
diphosphate-glucose (UDP-Glc) and thymidine diphosphate-glucose (TDP-Glc) through
the action of UDP-Glc pyrophosphorylase and TDP-Glc pyrophosphorylase, respectively.
These sugar nucleotides further transform into other forms: UDP-Glc is converted to uridine
diphosphate-galactose (UDP-Gal) by UDP-Gal-4-epimerase, or to uridine diphosphate-
glucuronic acid (UDP-GlcA) by UDP-Glc dehydrogenase. TDP-Glc is converted into
thymidine diphosphate-rhamnose (TDP-Rha) via the action of TDP-Glc dehydratase. Addi-
tionally, Glc-1-P can be converted into guanosine diphosphatefructose (GDP-Fruc) through
a series of three intermediates—mannose-6-phosphate, mannose-1-phosphate, and GDP-
mannose—by the sequential action of phosphomannomutase (PMM), Man-1-P guanylyl-
transferase, GDP-mannose pyrophosphorylase, and GDP-mannose dehydratase (Figure 3).
The formation of these sugar nucleotides (TDP-Rha, UDP-Gal, UDP-GlcA, and GDP-Fruc)
is crucial for EPS biosynthesis, as they serve as precursors for the repeating units that
contribute to the diversity of EPS structures [15].

Biomolecules 2024, 14, x  6 of 33 
 

guanylyltransferase, GDP-mannose pyrophosphorylase, and GDP-mannose dehydratase 

(Figure 3). The formation of these sugar nucleotides (TDP-Rha, UDP-Gal, UDP-GlcA, and 

GDP-Fruc) is crucial for EPS biosynthesis, as they serve as precursors for the repeating 

units that contribute to the diversity of EPS structures [15]. 

 

Figure 3. Outline of biosynthesis of HePS. The abbreviations are TDP: thymidine diphosphate; UDP: 

uridine diphosphate; GDP: guanosine diphosphate; Man-1-P: mannose-1-phosphate; Glc: glucose; 

Gal: galactose; Man: mannose. 

2.2.2. Producing Microorganisms  

EPSs can be generated by a diverse range of microorganisms. These compounds are 

found outside the cell wall, where they may either adhere to cells, forming capsules, or be 

secreted into the extracellular environment, forming a slime layer [22]. EPSs are produced 

by various genera of archaea, bacteria, fungi, and algae, with these microorganisms pre-

dominantly falling into mesophilic, thermophilic, and halophilic categories [23]. Among 

these, bacteria, fungi, yeasts, and microalgae are the most common producers [24], as 

listed in Table 2.  

Table 2. Microbial EPS producers: bacteria, fungi, and microalgae. 

Microorganism Polymer Sugar Monomers 
Non-Sugar 

Residues 
Mw (Da) Reference 

BACTERIA  

Agrobacterium sp. Curdlan Glc --- 5.3 × 104–2.0 × 106 [25] 

Azotobacter vinelandii; 

Pseudomonas aeruginosa  
Alginate GulA, ManA Ace (0.3–1.3) × 106 [26–28] 

Bacillus subtilis; Halomo-

nas sp.; Zymomonas sp. 
Levan Fru --- 2 × 106 [29,30] 

Enterobacter A47 FucoPol Fuc, Gal, Glc, GlcA Ace, Pyr, Succ (1.7–5.8) × 106 [31] 

Klebsiella pneumoniae Fucogel GalA, Fuc, Gal Ace 4 × 104 [29] 

Figure 3. Outline of biosynthesis of HePS. The abbreviations are TDP: thymidine diphosphate; UDP:
uridine diphosphate; GDP: guanosine diphosphate; Man-1-P: mannose-1-phosphate; Glc: glucose;
Gal: galactose; Man: mannose.

2.2.2. Producing Microorganisms

EPSs can be generated by a diverse range of microorganisms. These compounds are found
outside the cell wall, where they may either adhere to cells, forming capsules, or be secreted into
the extracellular environment, forming a slime layer [22]. EPSs are produced by various genera
of archaea, bacteria, fungi, and algae, with these microorganisms predominantly falling into
mesophilic, thermophilic, and halophilic categories [23]. Among these, bacteria, fungi, yeasts,
and microalgae are the most common producers [24], as listed in Table 2.
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Table 2. Microbial EPS producers: bacteria, fungi, and microalgae.

Microorganism Polymer Sugar Monomers Non-Sugar
Residues Mw (Da) Reference

BACTERIA

Agrobacterium sp. Curdlan Glc --- 5.3 × 104–2.0 ×
106 [25]

Azotobacter vinelandii;
Pseudomonas aeruginosa Alginate GulA, ManA Ace (0.3–1.3) × 106 [26–28]

Bacillus subtilis; Halomonas
sp.; Zymomonas sp. Levan Fru --- 2 × 106 [29,30]

Enterobacter A47 FucoPol Fuc, Gal, Glc, GlcA Ace, Pyr, Succ (1.7–5.8) × 106 [31]

Klebsiella pneumoniae Fucogel GalA, Fuc, Gal Ace 4 × 104 [29]

Acetobacter sp.;
Glucanoacetobacter sp.;
Rhizobium sp.; Sarcina sp.

Bacterial cellulose Glc --- ~106 [29,32,33]

Lactobacillus sp.; Leuconostoc
sp.; Streptococcus sp. Dextran Glc --- 103–107 [34]

Pseudomonas oleovorans GalactoPol Gal, Glc, Man, Rha Ace, Pyr, Succ (1.0–5.0) × 106 [35,36]

Sphingomonas paucimobilis Gellan Glc, Rha, GlcA Gly, Ace 5.2 × 105 [37]

Streptococcus zooepidemicus Hyaluronic acid GlcNAc, GlcA --- (2.0–3.0) × 103 [38]

Xanthomonas sp. Xanthan Glc, Man, GlcA Pyr, Ace 2.0 × 106–5.0 ×
107 [27]

FUNGI

Tuber borchii --- Glc --- 92 × 103 [39]

Colletotrichum alatae LCS1 --- Man, Gal, Rha,
Ara, Glc, Fuc --- --- [40]

Aureobasidium pullulans Pullulan Glc --- 4.8 × 104–2.2 ×
106 [2,41]

Penicillium janthinellumN29 --- Gal, Man --- 10.24 × 103 [42]

Monascus purpureus --- Fuc, Gal, Glc, Man,
GalA, GlcA --- 3.2 × 105

[43]

Penicillium citrinum --- Ara, Gal, Glc, Man,
GalA, GlcA --- 1.58 × 105

Aspergillus versicolor --- Ara, Gal, Glc, Man,
Xyl, GalA, GlcA --- 1.14 × 105

Fusarium merismoides A6 --- Man, Glc, Gal, Rib --- (5.14–6.50) ×
104 [44]

Ganoderma lucidum --- Gal, Man, Glc, Ara,
Rha --- 2.08 × 104 [45]

Sclerotium sp. Scleroglucan Glc --- 1.3 × 105–6.0 ×
106 [46]

Schizophyllum commune
227E.32 Schizophyllan Glc --- 1.1 × 106 [47]

MICROALGAE

Anabaena augstmalis ---
Glc, Gal, Man, Xyl,

Fuc, Rha, Gal-N,
GlcN, GalA, GlcA

Sulf n.a. [48]

Dunaliella tertiolecta --- Glc --- n.a. [49]
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Table 2. Cont.

Microorganism Polymer Sugar Monomers Non-Sugar
Residues Mw (Da) Reference

Scenedesmus acuminatus --- Gal, GlcN, Man ---

High (>50 ×
103) and low

molecular
weight (<3 ×

103)

[50]

Phormidium autumnale ---
Rha, Rib, Man, Glc,

Fuc, Gal, Ara,
GalA, GlcA

Sulf n.a. [48,51]

Porphyridium sordidum --- Fuc, Rha, Ara, Gal,
Glc, Xyl, GlcA Sulf 14 × 105 [52]

Rhodella sp. --- Xyl, Gal, Glc, Rha,
Ara, GlcA Sulf n.a. [53]

Synechocystis aquatilis ---
Fuc, Glc, Rha, Xyl,
Man, GlcN, GalA,

GlcA
Sulf n.a. [48]

CYANOBACTERIA

Spirulina platensis --- Fru, Rha, Rib, Man,
Gal, GalA, Glc, Xyl Sulf, Ca [54]

Nostoc sp. --- Ara, Glc, Man, Xyl,
GlcA lactyl 214 × 103 [55]

Anabaena sp. CCC 745 --- Glc, Rha, GlcA 19.57 × 103

30.29 × 103 [56]

Nostoc cf. linckia --- Glc, Gal, Xyl, Man,
GlcA lactyl 1.31 × 105 [57]

Gloeocapsa gelatinosa ---
Glc, Gal, Ara, Fuc,

Xyl, Rha, Man,
GlcA, GalA

67.2 × 103

598.3 × 103 [58]

Fucose (Fuc); arabinose (Ara); xylose (Xyl); ribose (Rib); galacturonic acid (GalA); succinate (Succ); phosphate
(Phosp); sulfate (Sulf); n.a (not available).

Bacteria

The ability to produce polysaccharides is common among various bacteria, including
species from the Lactobacillus, Streptococcus, Xanthomonas, and Acetobacter families. Bacteria
can produce both HoPSs and HePSs.

Dextran, a polymer of D-glucose, is primarily produced by several genera of LAB
such as Leuconostoc, Streptococcus, Weisella, Pediococcus, and Lactobacillus [59]. Commercial
dextran is biosynthesized by the non-pathogenic bacterium Leuconostoc mesenteroides NRRL
B-512 [60]. The Food and Drug Administration (FDA) approves dextran for use in food,
cosmetic, and medical applications [59]. Another important glucan is curdlan, which is
produced by a variety of bacteria such as Agrobacterium spp., Pseudomonas spp., and Bacillus
spp. [61]. Curdlan is a linear, insoluble HoPS composed of 400–500 D-glucose residues
linked by β-(1–3)-glucosidic linkages [62]. Water-soluble derivatives of curdlan are utilized
in various applications, including as immune recognition sites of dectin-1, and in anti-HIV
agents to inhibit Human Immunodeficiency Virus (HIV) infection [63].

Levan is a natural fructan found in various plants and microorganism species. This
HoPS is made up of D-fructofuranosyl residues linked together by β -(2–6) bonds. Levan is
synthesized outside the cell and can be produced by fermentation of sucrose by bacteria such as
Zymomonas mobilis or B. subtilis [62,64]. Alternatively, it can be synthesized enzymatically using
levansucrase with sucrose as the substrate. Both Gram-positive bacteria, like Bacillus species,
and Gram-negative bacteria, such as Z. mobilis, are known to produce levansucrase [19].
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Xanthan is among the most studied HePS. It is synthesized by Xanthomonas campestris.
Xanthan features a backbone of glucose with side chains made up of a trisaccharide unit
consisting of two mannose residues alternating with glucuronic acid [65]. This EPS typically
has repeating units of 2–8 monomers, and exhibits a high molecular weight, ranging from
500 to 2000 kDa, depending on the bacterial genus and species [19]. Xanthan is available in
various purity grades for use in food, pharmaceutical, and oil recovery industries [24].

Fungi and Yeasts

EPS production is widely distributed among fungi such as the members of the genera
Aureobasidium, Candida, and Cryptococcus. The most studied fungal origin polysaccharides
are pullulan, scleroglucan, and yeast-glucans. In addition, mushroom polysaccharides
such as lentinan, ganoderan, and schizophyllan also have high biological and medicinal
properties, which have been gaining increasing attention in recent decades.

Pullulan is produced through the fermentation of black yeast, such as Aureobasidium
pullulans. It is currently utilized in the food and pharmaceutical industries due to its unique
properties [66]. Structurally, pullulan is a (α-1,4)→(α-1,6)-glucan composed of maltotriose
units. In each maltotriose unit, three glucose molecules are linked by α-1,4 glycosidic bonds,
while consecutive maltotriose units are connected by α-1,6 glycosidic bonds. Pullulan plays
a significant role in protecting the fungal cell from desiccation, and aids in the transport of
molecules within the cell [67].

Scleroglucan, the largest β-glucan, is a high-molecular-weight, nonionic polysac-
charide produced by fungi like Botrytis cinerea, Schizophyllum commune, Sclerotium rolf-
sii, Sclerotium glucanicum, and Epicoccum nigrum. Its structure consists of a (1,3)-β-D-
glucopyranosyl backbone with (1,6)-β-D-glucopyranosyl branching residues [68]. Scle-
roglucan and some derivatives are used in pharmaceutical applications, and in particular
for the formulation of modified-release dosage forms [69].

Mushroom polysaccharides include a large group of fungal polysaccharides. Lentinan,
a β-(1,3) glucan with β-(1,6)-D-glucose side chains (branching at every third main chain
unit), is one of the most important mushroom polysaccharides produced by Lentinus edo-
des [70]. Another example is schizophyllan, an extracellular β-(1,3), β-(1,6) glucan from the
filamentous fungus Schizophyllum commune. Schizophyllan shares a similar structure with
lentinan regarding the side chains and the branching frequency. They also exhibit com-
parable immunomodulatory and anticancer properties [71]. Ganoderan from Ganoderma
lucidum, along with grifolan from Grifola frondosa and pleuran from Pleurotus ostreatus, are
other β-(1,3), β-(1,6)-branched mushroom glucans known for their immunomodulatory
properties [72]. Additionally, Ganoderma lucidum produces a similar immunostimulating en-
dopolysaccharide in submerged cultures [73]. Other medicinal mushroom polysaccharides
include krestin (PSK), a HePS proteoglucan from Trametes versicolor [74]. Agaricus blazei and
Agaricus brasiliensis produce various EPSs such as glucans and proteoglycans which are
safe as functional foods in managing obesity and diabetes [75]. Proteoglycans derived from
Cordyceps species (C. militaris and C. sinensis), which contain glucose, galactose, arabinose,
and several amino acid residues, have been investigated for their immunomostimulating
and hypolipidemic properties [61,76]. Additionally, research is ongoing into the biological
activities of other mushroom polysaccharides [77].

Cell-wall β-glucans from S. cerevisiae (Y-BG), commercially known as ZymoSan or
Zymocel, feature a main chain of β-(1,3)-glucose with β-(1,6)-glucose branches. This im-
munomodulating and prophylactic β-glucan (proteoglucan) may also include mannans and
amino acids. It has been approved for use in the EU by the European Food Safety Authority
(EFSA) and in the USA by the FDA [72]. The commercial yeast β-glucan Betafectin (Poly-[1-
6]-D-glucopyranosyl-[1-3]-D-glucopyranose) modulates the gut microbiota, promoting the
growth of beneficial probiotic bacteria, which in turn produce immunostimulating agents
such as short-chain fatty acids (SCFAs) [78].
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Microalgae and Cyanobacteria

EPSs produced by microalgae exhibit complex chemical structures, ranging from
HoPSs, which contain glucose or galactose, to HePSs, which include a variety of different
sugar monomers. EPSs from microalgae present a high diversity of sugar monomers. The
presence of rare sugars (such as fucose, rhamnose, and ribose), along with uronic acids and
sulfates, is common in microalgal EPSs, contributing to their unique properties.

Porphyridium sp. is one of the microalgae exploited for commercial EPS production.
Common microalgae species known for producing EPS include Arthrospira platensis, Aph-
anizomenon, Chlorella vulgaris, Dunaliella salina, and Porphyridium cruentum [24]. Spirulina
platensis produces sulfated polysaccharides, such as Calcium spinilan, which inhibit tumor
invasion and metastasis [79].

EPSs produced by cyanobacteria are primarily composed of high-molecular-weight HePSs.
Cyanobacterial EPSs can be classified into two main types: those associated with the cell surface
(e.g., slime, sheath, and capsules) and those released into the surrounding medium, referred
to as released polysaccharides (RPSs) [80]. It is widely acknowledged that the majority of the
cyanobacterial EPSs are composed of CPSs, with very few identified as RPSs [81].

Cyanobacterial EPSs have unique characteristics due to the presence of uronic acids
and sulfate groups, which confer a negative charge, classifying them as anionic polysac-
charides. Compared to bacterial EPSs, cyanobacterial EPSs exhibit a higher degree of
monosaccharide diversity, typically containing six or more different monosaccharides.
Glucose, xylose, arabinose, galactose, and fucose are the most commonly monosaccharides
constituting cyanobacterial EPSs [82]. Methyl sugars and amino sugars have also been
reported in the chemical structure of cyanobacterial EPSs [83]. In addition to sulfate groups,
which are unique to archaea and eukaryotes, other possible groups include succinyl, pyru-
vyl, and methyl residues [84]. Common cyanobacteria species that produce EPSs include
Nostoc spp., Anabaena spp., Phormidium spp., and Microcystis spp. [48].

There is growing interest in the large-scale production of cyanobacterial EPSs due to
their potential industrial applications such as their use as gums, bio-flocculants, soil condi-
tioners, and biosorbents. Spirulan, Immulan, Nostoflan, and Emulcyan are some examples
of commercially available cyanobacterial EPS produced by Arthrospira platensis, Aphan-
otece halophytica, Nostoc flagelliforme, and Phormidium, respectively [84]. Compared to other
Gram-negative bacteria, cyanobacteria possess a more significant, thicker peptidoglycan
layer, with a greater degree of crosslinking between polysaccharide chains. These unique
features of cyanobacterial cell walls make them particularly effective in removing heavy
metal from wastewater and outperforming other Gram-negative bacteria. For instance,
significant heavy metal removal has been observed with EPSs from Nostoc muscorum and
Cyanothece sp. CCY 0110 [85,86].

2.3. Production and Analytical Characterization
2.3.1. Production

The process of producing microbial EPSs varies, depending on the species and growth
conditions. Environmental changes influence microorganisms, thereby affecting enzyme
activity (inhibition or stimulation), protein synthesis (induction and repression), and cell
shape. For example, bacteria can produce EPSs in concentrations ranging from 0.29 to
100 g/L in a short time (0.5–7 days), compared to fungi, which have longer cultivation
durations (2–32 days) [24]. Controlling cultivation factors such as pH, temperature, dis-
solved oxygen concentration, aeration, and mixing and stirrer speed is crucial for achieving
reproductible bioprocess performance [24].

At the lab scale, the cultivation mode is determined by whether EPS production
is linked to microbial growth, as with gellan, or occurs independently of growth, as
seen with curdlan [87,88]. Most microbial EPS production processes utilize either simple
batch cultures or single-pulse fed-batch cultures, typically after the nitrogen source in
the medium has been depleted [81]. Other cultivation methods, such as fed batch and
continuous culture, have also been proposed. Continuous culture systems are generally
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more productive; however, there is a greater risk of contamination and they may lead to
the development of genetic variants with lower yields [89].

At both lab and industrial scales, the synthesis of EPSs is often conducted in stirred
tank bioreactors (STRs) or air lift bioreactors (ALRs) [90,91]. The packed bed bioreactor
is another type of fermenter configuration [92]. The advantages of STRs are good mixing
properties and volumetric productivities, whereas ALRs have the advantage of reduced
energy input with efficient heat transfer [93].

The method chosen for recovering EPSs from the cultivation broth depends on the
characteristics of the producing organisms, the type of polysaccharide involved, and the
desired level of purity [24]. The downstream processing involves multiple steps: first, cell
removal through centrifugation or filtration, followed by the recovery of the polymer from the
cell-free supernatant. The polymer is then precipitated by adding a water-miscible non-polar
solvent such as acetone, ethanol, or isopropanol. The resulting precipitate can be separated
from the solvent–water mixture and dried. Additional procedures such as re-precipitation
with diluted aqueous solutions, deproteinization by chemical or enzymatic methods, and
membrane processes can be employed to further remove contaminants [24,94,95]. The general
scheme of EPS downstream processing is shown in Figure 4.
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Notably, microbial EPSs were never able to find a suitable place in the polymer market
due to their very high production costs. The cost-effectiveness of manufacturing microbial
EPSs is influenced by various factors, including production volume, the final product’s
value, and the availability of affordable raw materials. EPSs have been evaluated for
numerous applications, with their feasibility often dependent on whether fermentation
offers a more cost-effective solution than chemical synthesis. For small-scale or waste-
utilizing processes, solid-state fermentation can be economical, though it faces scalability
challenges. In contrast, submerged and continuous fermentation methods, while offering
higher yields, require more energy and investment. Additionally, the required downstream
processing, especially to obtain high-purity EPSs, can be expensive and labor-intensive
when conducted concurrently.

To improve the industrial-scale production of microbial biopolymers, it is recom-
mended to optimize fermentation conditions, leverage biotechnological tools like genetic
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and metabolic engineering, and investigate cost-effective fermentation substrates [96]. Fur-
thermore, using complex media for growth is economically impractical due to the high
cost of ingredients such as yeast extract, peptone, and salts, which are needed in large
amounts. An alternative is to use agricultural waste as a raw material for EPS production,
which can lower manufacturing costs. This method is also environmentally beneficial, as
it helps manage waste that would otherwise incur disposal costs and potentially cause
environmental issues if sent to landfills or soil. By utilizing agro-industrial wastes as
substrates, the process becomes more cost-effective and reduces reliance on nonrenewable
resources while minimizing the environmental impact of industrial activities.

2.3.2. Purification and Structural Identification

A series of analytical tools have been used for the purification, structural identification,
and quantification of bacterial EPS [5]. In summary, the first step begins by its recovery
or extraction from the culture media, generally by precipitation. Once more concentrated
substrate is available, the following step is to further purify the EPS-based compounds
to precisely determine its composition and chemical structure. A quantitative analysis is
also performed to determine the yield of the microorganism in producing EPSs. Further
qualitative analyses such as the microstructure and surface property determination may
complete its structural characterization. Table 3 summarizes the different techniques
frequently used, as well as their functions in the purification and structural characterization
of bacterial EPS.

Table 3. Different techniques frequently used and their functions in qualitative and quantitative EPS
analyses.

Recovery/Purification Functions Reference

Heating—Sonication Recovery of CPS [97]
Precipitation
Dialysis Removing simple carbohydrates
Ion-exchange chromatography

Final purification before quantificationSize Exclusion Chromatography (SEC)
Preparative Sodium Dodecyl Sulfate—Polyacrylamide
Gel (SDS-PAGE)
Qualitative analysis
Ultraviolet (UV) spectroscopy Detection of nucleic acids and proteins [7]

Fourier Transform—Infrared (FT-IR) spectroscopy Detection of functional group;
configuration α or β; fingerprints [5]

Gel permeation chromatography or SEC-Multi-Angle
Light Scattering (MALS) Molecular mass detection

Gas chromatography coupled to mass spectrometry Monosaccharide composition
High performance Anion exchange chromatography
(HPAEC) Linkage and composition [5]

Near Magnetic Resonance (NMR) spectroscopy linkage pattern
Confocal laser scanning microscopy

Microstructure analysis

[97]
Scanning electron microscopy
Transmission electron microscopy
Atomic force microscopy [7]
Differential scanning calorimetry (DSC)

Structural analysisThermogravimetric analysis (TGA) [5]
X-Ray diffraction (XRD)
Laser light scattering/electrophoretic analysis Physico-chemical properties [98]
Quantitative analysis
Gravimetrics

[97]
Colorimetrics
SEC-Refractive Index (RI)
Near Infrared (NIR) spectroscopy
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3. Properties and Functions
3.1. Physiological Functions

In bacterial cells, EPSs play an important role in the formation and maintenance of
complex microbial communities, such as flocs and biofilms [99]. They participate in the
composition of the biofilm layer surrounding microorganism cells. For instance, glycocalyx
is a component of EPSs that is essential for the formation of biofilms. EPSs influence the
stability of biofilms by mediating interactions between polysaccharide chains [99]. EPSs
also enhance cell adhesion to solid surfaces, including the intestinal mucosa [100].

In addition to its role in adhesion, biofilm formation plays a crucial role in the adapta-
tion of bacteria to various physical and chemical conditions in their environment. Microor-
ganisms produce EPSs in response to both biotic stress (e.g., competition) and abiotic stress
factors (e.g., changes temperature, light intensity, pH, and salinity). This production is also
a strategy of adaptation to an extreme environment, as seen in acidophilic or thermophilic
species. EPSs form a protective polymer layer around microbial cells, particularly in harsh
conditions. Extreme environmental conditions have stimulated microorganisms to de-
velop various adaptive strategies to counteract the adverse effects of extreme temperatures,
high salt concentrations, high and low pH, and radiation. Among these strategies, EPS
biosynthesis is one of the most protective mechanisms [101]. The high-water content of
the polysaccharide layer enhances resistance to osmotic stress, while its anionic properties
help capture essential minerals and nutrients. EPSs can assist in metal degradation due to
their chelating properties [19]. The polysaccharide envelope also regulates the diffusion of
molecules between extracellular and intracellular media. This diffusion activity can help
some bacteria resist surfactants and antibiotics [102,103].

The physiological functions of microbial polysaccharides are extremely diverse and
depend on their monosaccharide component and structure. EPSs may contribute to hu-
man health (Figure 5) via their prebiotic, anticancer, anti-ulcer, immunomodulatory, or
cholesterol-lowering effects [104].
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On the other hand, EPSs represent a category of potential bioactive polymers with
health-promoting functions such as anticancer, antioxidant, antimicrobial, antibiofilm, an-
tihypertensive, antiulcer, hypocholesterolemia, and immunomodulatory activities [7,8,10].
Another category of application is the potential use of EPSs as therapeutic agent carriers (drug,
probiotic, etc.) and delivery nano- and microsystems [11]. They play roles as both a protectant
and a controlled release system, owing to their various physicochemical and functional prop-
erties, such as their adhesion and water-binding capacities, and hydrogel-forming properties,
while being biodegradable and safe. One promising application of EPSs is their use mainly
under derivative forms as antigen-carriers or adjuvant systems in vaccine preparations [105],
gene delivery vectors in gene therapy [106,107], and encapsulation agents for improving cell
stability and viability, for instance, in the case of alginate beads for encapsulating fibroblast
cells [108] and probiotic bacterium strains [109].

EPSs have a positive impact on gut microbiota. The most well-known mechanisms
by which EPSs interact with the gut microbiota are linked to their prebiotic effects and
their ability to inhibit microbial pathogens, thus helping to regulate the microbiota. Gut
microbiota ferment EPSs, producing SCFAs, which lower pH levels and promote the
growth and diversity of gut microbial taxa [110,111]. The monosaccharides released from
the degradation of EPSs influence the composition of the microbiota through cross-feeding
interactions. For instance, EPSs from Bifidobacterium longum E44 and Bifidobacterium animalis
subsp. lactis R1 can alter the metabolism of Bacteroides fragilis when it grows in their
presence [112]. Additionally, EPSs from Bifidobacterium breve UCC2003 exhibit antagonistic
effects by protecting the host against pathogens, indicating a role for EPSs in providing
the health benefits typically linked to probiotic strains and in modulating the immune
system [113]. Moreover, EPSs can inhibit pathogenic bacteria, promote probiotics (good
bacteria), and maintain the balance of intestinal microflora, due to their viscosity and
rheological properties [114,115].

EPS exhibit antimicrobial properties with resistance to both Gram-positive and Gram-
negative pathogens. EPS-Ca6 produced by Lactobacillus sp. Ca6 indicates significant an-
tibacterial activity against pathogenic bacteria such as Salmonella enterica ATCC 43972 and
Micrococcus luteus [116]. EPS-DN1 from L. kefiranofaciens DN1 has an inhibitory effect on
Listeria monocytogenes and Salmonella enteritidis. Such inhibition increases with increasing
EPS concentration [117]. EPSs can inhibit the growth of pathogens by (a) increasing their
competition inhibition against pathogenic bacteria in hosts; (b) combining with signaling
molecules related to biofilms or glycocalyx receptors in the pathogen surface that hinder the
formation of biofilms; or (c) disrupting membrane integrity and loss of soluble proteins [118].

EPSs are also directly or indirectly related to lowering cholesterol [118]. Those produced
by Enterococcus faecium K1 and Lactoplantibacillus plantarum BR2 have been shown to lower the
cholesterol level (48.81%) compared to a negative control [119]. Similarly, in in vitro tests, a 45%
reduction in cholesterol was achieved by EPS from L. plantarum BR2 [120]. Several hypotheses
about the cholesterol-lowering mechanism via EPSs have been proposed based on in vitro
and animal experiments. These include bile removal, cholesterol assimilation and conversion,
co-precipitation effects (between hydrolyzed bile salts and cholesterol), and the promotion of
short-chain fatty acid production to lower cholesterol [121,122].

The strong anticoagulant activity of EPS–sulfate derivatives has been demonstrated [123,124].
Heparin Cofactor II (HC II) is a strong inhibitor of thrombin in blood clotting pathways, and these
EPS derivatives may interact with HC II to express anticoagulant activity. The sulfated EPS pro-
vides an acidic environment and facilitates the inhibitory effects of HC II on thrombin. The sulfated
regions and stereochemistry of EPSs can activate HC II through an allosteric mechanism [118].

Microbial EPSs are also capable of performing very good antioxidant activity. The
EPS from Lactobacillus gasseri FR4 shows good free radical activity and hydroxyl and su-
peroxide radical capture activities, depending on EPS concentration [125]. The antioxidant
mechanism of EPSs is due to the hydrolysis of these biological molecules when exposed
to acid, due to active hydroxyl hemiacetates. These active substances provide electrons to
free radicals, which turn into stable forms, and eventually reduce the concentration of free
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radicals [118]. In addition, EPS increases the activity of superoxide effutase, serum catalase,
and hepatic glutathione S-transferase in vivo, and reduces the serum malondialdehyde
concentration and the activity of monoamine oxidase, showing excellent antioxidant and
antiaging effect evidences [126,127].

Some EPSs also exhibit a strong immune response and show great potential for fight-
ing inflammation and tumors. Dextran may increase the expression of interferon-1 and
interferon-γ in salmon kidneys [128]. A high dose of EPS333 (a HePS) isolated from Strep-
tococcus thermophilus was shown to stimulate macrophages to release nitric oxide (NO)
and increase cellular immune response [129]. The antitumor activity of EPSs is based
on immunomodulation, not only in indirect ways, but also by a direct killing effect on
tumor cells. Some EPSs may indirectly activate macrophages to enhance their phagocytic
capabilities by (a) facilitating the secretion of pro-inflammatory factors (e.g., IL-1 IL-6, and
IL-12), as well as interferon (INF-λ), (b) inhibiting the production of anti-inflammatory
factors (e.g., IL-10), and (c) ultimately stimulating interaction between immune and tumor
cells [129]. For direct killing effects, it has been shown that EPSs can significantly inhibit
the proliferation of HepG-2 and BGC-823 tumor cells, especially HT-29 tumor cells [130].

Different antiviral properties of EPSs, including high antiretroviral activity (anti-
acquired immunodeficiency syndrome), have been reported in the literature [12,131]. For
instance, EPSs extracted from L. plantarum LRCC5310 can effectively control rotavirus
infection [132]. The antiviral activity of sulfated EPSs is related to the structure, which
interacts with the signaling system, receptors, or enzymes, and to the negatively charged
properties of these polymers [118]. Heparan Sulfate (HS), a receptor involved in viral
infection, exists on the surface of cells. Meanwhile, sulfated polysaccharide shows a
structural similarity with HS, and for this reason, it can inhibit competitive combination
between HS and viruses, contributing to protection against other pathogens [133].

The principal biological and health-promoting properties of EPSs are listed in Table 4.

Table 4. Biological properties and health-promoting effects of EPS.

Biological Properties and Health
Benefits EPS Source Reference

Anticancer activity and Anticancer
adjuvant

Antitumor activity by the activation of
defender cells against cancer cells β-glucans-based EPS Aureobasidium pullulans [134]

Anticancer activity against human
colon, liver, embryonic kidney, breast
cancer cell lines

Levans Lactobacili, Bifidobacteria [135]

Antiproliferative effect Lactobacillus pantheris TCP102 [136]

Antitumor activity on HepG-2,
BGC-823, HT-29 cancerous cells L. plantarum 70810 [137]

Induced cytotoxicity in colon cancer
cell lines

Limosilactobacillus fermentum
YL-11 [138]

Apoptotic, antiangiogenic effects, and
autophagy

Bacillus sonorensis, Rhodococcus
pyridinivorans ZZ47 [139,140]

Immunomodulatory activity

Immunomodulation effects through
interaction with macrophage receptors β-glucans-based EPS [141]

Immunomodulation by human
macrophage activation (cytokine
production)

β-glucans P. parvulus [142]

Modulate the immune system (innate
and adaptive response) LAB [143]
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Table 4. Cont.

Biological Properties and Health
Benefits EPS Source Reference

Suppressors of the immune response Lactobacillus confusus TISTR
1498 [144,145]

Stimulation of antigen presenting cells
(e.g., dendritic cells)

Limosilactobacillus reuteri L26,
L. reuteri DSM17938 [146]

Stimulate production of cytokines by
macrophages Nostoc sp. [55]

Maintaining the immune balance in
states of inflammation and/or infection Lactobacilli [147]

Improving allergic responses and
suppressing allergen specific IgE
synthesis

Leuconostoc citreum L3C1E7 [148]

Suppression the pro-inflammation and
promotion of regulatory cytokine

S. thermophilus, Bacillus
licheniformis, Leu.mesenteroides [149]

Activation of T lymphocytes and
monocytes

S. thermophilus, Bifidobacterium
breve [150,151]

Evasion of potentially damaging
immune responses Bifidobacterium breve [151]

Restoration of the mucosal barrier Lactobacillus helveticus KLDS1.
8701 [152]

Immunostimulator Levan (β-2, 6-fructan) B. subtilis natto [153,154]

Antiviral effects

Antiviral activity on avian influenza
and adenovirus Levans B. subtilis (honey) [155]

Anti-AIDS Curdlan Agrobacterium sp. [156]

Antiviral against human hepatitis B Curdulan sulfate [157]

Effects against enveloped viruses Dextran sulfate Leu. mesenteroides B512F [158]

Antiviral and antibacterial activities β-glucans-based EPS Fungi [159]

Cholesterol lowering and anti-hypertensive
properties

Hypoglycemic and hypolipidemic
activities Cordyceps militaris. [160]

Lowering blood cholesterol Lactiplantibacillus
paraplantarum NCCP 962 [161]

Modulation of lipid metabolism Lactobacilli [162]

Cholesterol-lowering properties and
inhibit α-amylase L. plantarum RJF4 [137]

Antihypertensive effects S. thermophilus and
Lactobacillus bulgaricus [163]

Anti-diabetes type 2 and
hypocholesterolemia

Anti-diabetes Pseudomonas sp. strain AHG22 [164]

Antibiofilm agents

Ability to repress biofilm Lactobacillus helveticus MB2-1 [165]

Limiting the biofilm formation on
medical devices

L. fermentum, Leu. citreum,
Leu.Mesenteroides, Leu.

Pseudomesenteroides, Ped.
pentosaceus

[166]
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Table 4. Cont.

Biological Properties and Health
Benefits EPS Source Reference

Antiadhesive and antibiofilm activities
against oral S. Aureus strains Lactobacilli [167]

Antibiofilm activity L. plantarum-12 [168]

Anti-ulcer effects

Gastro-protective effect L. plantarum E1K2R2 [169]

Inhibition of the adhesion of H. pylori Lacticaseibacillus paracasei [170]

Antioxidant activities

Antioxidant and antiproliferative
activities against human gastric Levan Pantoea agglomerans ZMR7 [171]

Removal of free radicals scavenging
activities Halomonas elongata [172]

Scavenging of reactive oxygen species
(ROS) and reduction in lipid
peroxidation

Bacillus velezensis SN-1 [173]

Inhibition of H2O2 induced apoptosis L. plantarum C88 [137]

Ferrous ion chelation Gloeocapsa gelatinosa [58]

Prebiotic activities

Prebiotic effect HePS L. paracasei [174]

Bifidogenic effect Dextran Leu. mesenteroides [175]

Pathogen Antagonism

Prevent binding of pathogenic bacteria
to mucus HePS Probiotic LAB [176]

Reduce the adherence of pathogen to
Caco-2 cells surfaces L. casei NA-2 [177]

Inhibit the biofilm formation of a
number of pathogens

B. licheniformis, Leu.
mesenteroides [175,178,179]

Modulate microbial biofilms Man-Glu Lactobacillus [180]

Enhancing intestinal barrier function Man-Glu-Rib L. plantarum [181]

Anti-obesity effects

Improved human gut microbiota Glucan Weissella cibaria [182]

Anti-skin irritation

Anti-inflammation Dextran Leuconostocaceae [183]

Anti-Alzheimer’s disease

Treating Alzheimer’s illness to obviate
side effects of synthetic drugs ManA-Glc-Man-Rha Streptomyces [184]

Neuroprotective agent against amyloid
beta1–42-induced apoptosis in
SH-SY5Y cells

Man-Glc-Fru-Ace-Glc-N Lactobacillus delbrueckii ssp.
bulgaricus B3 [185]

3.2. Physico-Chemical Properties and Functionalities

EPSs are natural metabolites produced by bacteria when their environmental conditions
become unfavorable or extreme, due to different existing stress conditions. These compounds
play essentially protective and adaptation roles with regards to high variations in temperature,
osmotic pressure, pH, and radiation, but also against pathogen microorganisms. EPS confer
to their producing bacteria various fundamental properties such as the aggregation and
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adhesion capacity to the surface by the capsule form [7,186], biofilm formation or destruction
on the solid substrates [187], the ability to colonize in host tissues [188], uptake of nutriments
through emulsifying properties [189], and protection from external system by chelating action
(binding activities) of toxic elements such as heavy metals [190]. These properties enable
the bacteria producing EPSs to compete with pathogens when the energy and nutritional
starvation conditions occur since most microorganisms are unable to grow, and even survive,
under extreme environment conditions [5]. In nature, EPSs are biodegradable and harmful
while being unusable as a carbon source by their own bacterial producers [5].

Their natural and fundamental properties are dependent on their chemical structure,
but also on their state after bacterial secretion, either cell surface-bound (capsular EPSs) or
cell-free biopolymer (slime EPSs), in the liquid medium. The diversity in chemical structure
(composition, branched degree, linkage pattern, charge, etc.), molecular weight (MW), and
physical state generates a wide range of EPS techno-functionalities, such as solubility and
rheology, which can be exploitable in many industrial applications. With different MWs,
the same type of EPS can generate various product viscoelasticity, owing to the change in
macromolecular conformation in solution, and therefore the volume occupied by a polymer
chain. For instance, dextran having a high MW and stronger viscoelastic properties affects
the bread characteristics more positively than that having a low MW [191].

The bacterial capacity to aggregate, adhere, emulsify, and form biofilm on the solid
surface is affected by the functional groups of EPSs (e.g., amphiphilic EPSs) surrounding
the cell membrane, whereas their thickening, viscosifying, gelling, stabilizing, water-
binding, and heavy metal absorbent (chelating) powers arise rather from their hydrocolloid
and bulk-related properties, such as the molecular weight, water solubility, ionized state,
and branching degree. Such techno-functionalities are valuable in both food and non-
food product formulations. Table 5 illustrates some examples of bacterial EPS and their
fundamental properties and techno-functionalities.

Table 5. Bacterial EPS and their properties and techno-functionalities.

EPS Activities Producers Reference

α-D-glucan Viscosifier Levilactobacillus brevis HDE-9 [192]

Water holding capacity Enterococcus hirae OL616073 [193]

Levan Enhancer of Bifidobacteria growth Lactobacillus sanfranciscensis [194]

Dextran Enhancer of probiotic growth W. cibaria [195]

Promote colonization of strains Leuconostoc lactis [196]

Kefiran Enhancer of Bifidobacteria growth Lactobacillus kefiranofaciens [197]

Emulsifying and flocculating activities L. kefiranofaciens [197]

Galactan Emulsifying capacity and stability;
flocculating activity at a wide range of
pH

Weissella confusa [198,199]

Anionic EPS Heavy metal absorption activity
(binding agents, bioabsorbents)

Lactobacilli [200]

[Man:Glc]-EPS Antibiofilm against pathogens L. fermentum LB-69 [201]

[Gal:Glc:Man]-EPS Probiofilm L. plantarum KF5 [202]

[Glc:Man 1:7.01]
[Man:Glc:Rha 7.45: 1.00: 2.34]

a protector against oxidative stresses or
reducing power or agent against free
radicals

L. lactis subsp. lactis IMAU11823 [203]

[Glu:Rib:Man:Xyl
1.0:16.4:6.6:6.5]
[Rib:Man:Xyl:GA:Ara
7.1:1.6:4.8:1.0:9.0]

Inhibitor of lipid peroxidation Lactobacillus sp. [204]
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Table 5. Cont.

EPS Activities Producers Reference

[Uronic acid]-EPS Protector of cell membrane
against lipid peroxidation

L. plantarum LP6 [137]

[Gal-Glc-Man]-EPS Inhibition of H2O2 Bacillus sp. S-1 [205]

[Se]-EPS Antioxidant activity L. lactis [206]

[Glc-Man-Gal-Fuc-Glc-NH2]-
EPS

Antioxidant effects B. coagulans RK-02 [207]

Gellan Gelling (flexible elastic gel)
and emulsifying activities

Sphingomonas elodea [208]

Pullulan Coating protector effect
against mold

Aureobasidium pullulans [209]

4. Current and Future Applications of EPSs
4.1. Applications in Pharmaceutical and Medical Fields

Microbial EPSs and their derivatives have a wide range and numerous potential and com-
mercial applications as biomaterial components, bioingredients, and bioactive agents in medical
and pharmaceutical areas [11]. Their health-promoting values in humans have generated partic-
ular attention within scientists and industries because of their various biological activities and
physiological functions, besides their biocompatibility, biodegradability, and non-toxicity [5].
Dextran as a blood plasma volume expander for controlling wounds [210], an alginate for
tissue-engineering of bio-artificial organs [211] and its sodium derivative as an antacid protec-
tor [212], and pullulan as a drug carrier or coating agent [213] are among a few examples of
commercialized EPS applications as medical devices and biopharmaceuticals. Moreover, some
bacterial and fungal EPSs, particularly those from LABs, are largely used as universal “health
bioingredients” for supplements or functional foods, and excipients for biopharmaceutical
formulations of tablets, capsules, creams, gels, and suspensions, owing not only to their various
techno-functionalities (water binding, viscosifying, thickening, emulsifying, stabilizing, and
gelling capacities) but also to their GRAS status [9]. Xanthan, cellulose and derivatives, gellan,
and levan are some examples of bio-excipients and health ingredients, among others, which are
used as thickeners, suspension stabilizers in pharmaceutical creams, and disintegrating agents
in tablets for oral, ophthalmic, and nasal drug formulations [7,11,12]. Illustrative examples of
commercialized EPS are provided in Table 6.

Table 6. Examples of bacterial EPSs manufactured at the industrial scale.

EPS Microorganism Producer Manufacturer Brand Name Reference

Xanthan Xanthomonas campestris CPKelco, San Diego, CA, USA Keldent

[214]
Xantural

Gellan Pseudomonas elodea CPKelco, San Diego, CA, USA Gelzan
Kelcogel

Hyaluronic acid Streptococcus zooepidemicus
Equi

Contipro Biotech, Dolni Dobrouc,
Czech Republic Sodium hyaluronate [215]

Pullulan Aureabasidium pullulans Nagase Viita (Hayashibara Co., Ltd.,
Okayama, Japan) Pullulan [216]

Cellulose Gluconacetobacter xylinum

fzmb GmbH, Research Centre of
Medical Technology and

Biotechnology
Nanomasque [217]

Axcelon Demacare Inc, North York,
ON, Canada Nanoderm

Dextran Leu. mesenteroides Meito Sangyo, Nagoya, Japan Dextran sulfate Na [218]
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Table 7 summarizes the main current commercial applications in medical and pharma-
ceutical applications of EPSs and their derivatives reported in the literature to date.

Table 7. Examples of current medical and pharmaceutical applications of EPSs and their derivatives.

Medical and Pharmaceutical
Applications EPS Source Reference

Blood plasma volume expander, blood
plasma substitute Dextran Leu.

mesenteroides [219]

Excipients, thickener and suspension
stabilizer, drug-controlled release carrier Xanthan Xanthomonas

campestris [220]

Tablets disintegrant, thickener, emulsion
stabilizing agents Alginate

Pseudomonas
aeruginosa
Azotobacter
vinelandii

[221,222]

Antiacid protector in capsules Na-alginate

Disintegrating agent, drug-controlled
release, gelling agent, wound dressing Gellan

Sphingomonas
elodea

Sphingomonas
paucimobilis

[223,224]

Binding and film-forming properties,
coating agent for oxygen impermeability Pullulan Aurebasidium

pullulans [225]

Vitreous substitution during eye surgery,
intraarticular injections in osteoarthritis Hyaluronic acid Streptococcus

equi [226,227]

Two main future pharmaceutical applications of microbial EPSs, especially those from
LAB, emerge through the recent literature overview.

4.1.1. EPSs as Immunobiotic Agents

EPSs can act as immunobiotic agents by playing some roles in tolerogenic activities of
the producing LAB or probiotics. The immune-modulatory capacity of these immunobiotics
is highlighted by our recent knowledge of the regulatory arm of immunity [228–230].
Indeed, many LAB strains activate the tolerogenic arm of immune reaction, as opposed
to the inflammatory one, induced by pathogenic microbes. These pathogens include
Escherichia coli O157: H7 (EHEC), Salmonella, Listeria monocytogenes, Campylobacter, and
HIV-1 or Hepatitis B Virus (HBV). It has been shown in vivo that acidic EPSs and neutral
EPSs are involved in the modulation of innate antiviral immune response in intestinal
epithelium cells [231]. Different mechanisms have been reported in the literature for
explaining EPS immunomodulation activities (Table 8).

Table 8. Examples of EPS immunomodulation activity mechanisms.

Mechanism EPS Producing LAB References

Interaction with dendritic cells and
macrophages Lactobacillus bulgaricus [232]
Enhancing the proliferation of lymphocytes

Induction of nitric oxide secretion in vitro

L. plantarum JLK0142 [233]
Enhancing the phagocytic potential of
macrophages
Increasing IgA concentrations in the
intestinal mucosa
Stimulating lymphocyte proliferation
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Thanks to their tolerogenic activities, some EPSs from LABs find a new potential
application for the preparation of antiviral and antibacterial vaccines. It has already been
announced in the past that EPSs could be used as novel adjuvant systems by enhancing
vaccine-induced protection to target challenging pathogens, such as new pandemic viruses
and resistant bacteria [11]. To date, immunobiotic agents including LAB strains and their
metabolites like EPSs are used through their biological activities, either as preventive
or curative treatments, to control inflammatory pathologies [234–237], or as an adjuvant
for vaccine Human Immunodeficiency Virus type 1 (HIV-1) vaccine [238]. Indeed, it has
been shown that a vaccine preparation containing inactivated Simian Immunodeficiency
Virus (SIV) as the active principle, and L. plantarum (ATCC8014) as the adjuvant, when
administered orally in Rhesus macaques, protected all these animals from SIV infection [238].
Recently, EPS from L. casei has been shown to increase the effectiveness of the foot-and-
mouth disease vaccine [239]. Moreover, owing to their intrinsic innocuousness, long-term
viability in host organisms, and their immune-modulatory capacity, some strains of EPS-
producing LABs have been used as vectors to elicit immune responses against bacterial (e.g.,
E. coli and H. pylori) or viral (e.g., Influenza virus, SARS-CoV, and HIV) pathogens [240–245].

Considering the ongoing knowledge of the tolerogenic arm of immune reaction, and
the ongoing discovery of new LAB strains and new genus commensal microbes, these data
anticipate that immunobiotic agents, including both producing LABS and their metabolites
such as EPSs, will constitute new bioactive agents of the preventive and/or therapeutic
arsenal to use in medicine.

4.1.2. EPSs as Smart Delivery Systems

Another future promising application of bacterial EPSs in pharmaceutics is in the field
of smart drug delivery systems, particularly when both diagnostic and therapy strategies
(theranostics) can be combined [246]. For instance, EPS-coated magnetic material nanopar-
ticles have a potential use in theranostics, such as in the case of the super paramagnetic
iron oxide nanoparticles with crosslinked dextran coating (CLIO). These nanosystems can
be used in photodynamic therapy by irradiating atheroma cells in carotid arteries [247].

4.2. Other Industrial and Agricultural Applications

In addition to their pharmaceutical and medical applications, EPSs have other in-
dustrial interests, driven by their unique physicochemical properties and potential as
eco-friendly, sustainable alternatives to chemical-based polymers. These applications in-
clude textiles [248], bioplastics [249], and petroleum [250]. Welan gum shows particularly
great promise in petroleum engineering, especially in polymer flooding for enhanced oil
recovery (EOR) in high-salinity and high-temperature reservoirs. This potential stems
from its ability to thicken aqueous solutions and its strong viscosifying properties [251].
Additionally, chemical modifications to this biopolymer can further improve its thermovis-
cosifying performance, solubility, and resistant to bacterial degradation, making it highly
suitable for EOR applications in harsh environments [252].

In sustainable agricultural, EPSs are essential for effectively managing both farming
practices and environmental health. They improve soil properties, helping to create a
moist environment, aggregate soil particles, and protect plant cells from environmental
stress and predators [50,253]. EPS has been examined for its capacity to bind soil particles
together, functioning like a glue thanks to its ionic charges and viscous texture [254]. In
wastewater treatment, EPSs are employed for their biofilm-forming, emulsifying, flocculat-
ing, and coagulating properties, which facilitate the decolorization of pollutants and the
bioremediation of heavy metals [255]. Table 9 provides a summary of recent studies on EPS
applications in various areas.
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Table 9. Recent studies of EPS applications.

Uses EPS Properties Reference

Textiles Xanthan Improve adhesive
properties of textile [256]

Oil Recovery Xanthan Reduce oil spreading [257]

Modified xanthan Enhance oil recovery [258]

Bioremediation KO-EPS Chelate iron [259]

Agricultural Xanthan
Improve water

absorption and water
retention capacity

[260]

EPS Antifungal activity [261]

Packaging Pullulan Antifungal activity [262]

Microbial exopolysaccharides (EPSs) have a wide range of applications, but for human
use, they must either meet the GRAS standard or have an affordable method to neutralize
any toxic components, particularly in environmental applications such as municipal and
water treatment. The regulatory approval process for EPS-based products varies as a
function of their intended use. Key regulatory organizations that ensure the safety, efficacy,
and quality of these products include the FDA in the USA, and EFSA and European Medical
Agency (EMA) in the EU [4,263].

Industries in the food, pharmaceutical, and cosmetic sectors must adhere to strict reg-
ulatory frameworks that include safety, labeling, and Good Manufacturing Practice (GMP)
standards to gain market approval. For instance, when dealing with biomass derived from
microalgae, there may be concerns about toxicity due to potential contaminants like toxins,
heavy metals, or pathogens. It is crucial to assess the potential for harmful substances when
choosing microalgae for food products. To comply with legal and regulatory requirements,
microalgae biomass and related products must undergo thorough safety evaluations before
they can be marketed [264].

5. Conclusions

Overviewing the advances in microbial EPSs appears today to be relevant owing to
their high diversity in sources and chemical structures, as well as the wide range and
multiple functions of such biopolymers for health benefits. Bacterial, fungi, yeast, and
microalgae EPSs find numerous applications in pharmaceutical and biomedical areas as
biomaterials (e.g., tissue engineering of bio-artificial organs), bio-therapeutic agents (e.g.,
antiviral, antioxidant, and anticancer activities), and bio-excipients or “bio-ingredients”
(e.g., thickeners, emulsifiers, and stabilizers) for drug formulations. Some EPSs are already
produced and commercialized at the industrial scale (e.g., xanthan, dextran, and gellan),
whereas others (e.g., kefiran and levan) are still in research and development stages, while
having a lot of potential future applications. Those from lactic bacterial species (Lactobacilli,
Bifidobacteria, etc.), or probiotics in general terms, are gaining particular attention because
of their GRAS and QPS status, which allow them to be easily used in many sectors from
a juridical viewpoint. Moreover, the current trends to use natural, biocompatible, non-
toxic, and biodegradable active compounds for health prevention (e.g., strengthening our
immune system) and therapy (e.g., fighting cancers and viral epidemics) are favorable
in research and development advances, as well as for the commercialization of existing
and new bioactive polymers from bacterial EPSs. While the present review indicates the
significant knowledge and use of bacterial EPSs in biomedical and pharmaceutical areas to
date, efforts should be continued to improve their production strategies. In fact, their high
production cost is the main limiting factor in the advance of microbial EPS use. However,
some compensation may come from the high interest and added values of their promising
biological activities, such as immunobiotic adjuvants for preparing anti-microbial vaccines
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and anti-AIDS drugs in pharmaceutical and biomedical areas. Another future promising
application of bacterial EPSs is in the field of smart drug delivery systems, particularly
when both diagnostic and therapy strategies (theranostics) can be combined. Microbial
EPSs, and particularly LAB EPSs, could have diverse and growing applications for our
modern society in the near future.

Despite their potential, ongoing challenges in production and purification processes
may hinder their scalability and commercial viability due to high costs and low yields.
Thus, numerous studies aim to address these challenges and develop practical solutions.
Among these are the utilization of affordable substrates and the isolation of novel strains. To
enhance microbial productivity and optimize the use of extracellular polymeric substances
(EPSs) in industrial and medical biotechnology, it is crucial to clarify the relationships be-
tween metabolic pathways and biosynthetic mechanisms. To uncover new EPS biosynthesis
routes and understand the fundamentals of EPS production, advanced omics technologies—
such as genome sequencing, functional genomics, protein structure analysis, and emerging
bioinformatics tools—are being utilized. Additionally, ongoing research aims to maximize
EPS production by investigating how various process variables influence biosynthesis and
by identifying the most effective extraction and purification methods.
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