Linking cognitive load with mental fatigue: a resting-state functionnal connectivity approach

Read, J.^{1,2}, Guillemin, C.^{1,2}, Charonitis, M.^{1,2}, Beliy, N.¹, Requier, F.^{1,2}, Bahri, M.A.¹, Lamalle, L.¹, Zubkov, M.¹, Maquet, P.^{1,3}, Phillips, C.^{1,4},

Vandewalle, G.¹, & Collette, F.^{1,2}

¹GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium

²Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium

³Department of Neurology, CHU of Liège, Liège, Belgium

⁴GIGA In Silico Medicine, University of Liège, Liège, Belgium

Introduction

- Effortful activities involving high mental load can eventually lead to a state of mental fatigue (MF)¹.
- MF effects on the brain are twofold²:
 - \rightarrow decreased activity in cognitive control areas;

 \rightarrow Changes in connectivity between domain-general regions monitoring our state of fatigue.

Persisting changes in the resting-brain has been observed during periods of rest following effortful tasks inducing MF³.

Aim of the study:

Characterize domain-general areas patterns of functional connectivity after MF induction.

Method

Participants: 17 healthy subjects (31.4 \pm 5.8 y.o.; 12 women).

Experimental protocol: MF was induced by varying the cognitive load (i.e., slow vs. fast stimuli duration) during a working memory task¹. Even

Fig. 3 Behavioral results. Linear-mixed models showed: (A) a significant effect of time for the state fatigue score (F = 4.81; p < .05); (B) a significant Condition*Time interaction for the effort perception (F = 8.46; p < .01).

Fig. 4 | Insulas connectivity changes. Higher connectivity in LCL compared to HCL between the right insula and voxels in bilateral mPFC (95 voxels in a cluster of total size [CS] = 252voxels). The same pattern of results is observed for the left insula (*not shown*; 71 mPFC voxels in CS = 205).

Fig. 1 | Fatigue induction protocol. Fast fatiguing (HCL) and slow control (LCL) tasks were counterbalanced between subjects. 16-minutes nBack tasks were performed before the rs-fMRI (*not shown*). Subjective measures of MF and perception of effort were acquired before and after each sessions.

<u>rs-fMRI acquisition</u>: Eyes open while staring at a white cross for 7 minutes (TR = 1170 ms; voxel size = 3x3x3.75 mm³).

1st level analyses: Connectivity maps were estimated for six domain-general regions known to be associated with MF⁴:

 \rightarrow Insula, medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), & dorsolateral prefrontal cortex (DLPFC).

2nd level analyses: Group-level seed-based connectivity (gSBC)⁵ analyses were performed to compare HCL over LCL.

 \rightarrow Thresholds: *p* < .001 (voxel) & *p*-FDR < .05 (cluster)

Fig. 5 | mPFC connectivity changes. (A) Higher connectivity in LCL compared to HCL between the mPFC and voxels in the right anterior supramarginal gyrus (65 voxels from CS = 110). (B) Lower connectivity in LCL compared to HCL between the mPFC and a cluster located in left middle frontal gyrus (CS = 82 voxels).

Conclusion

In line with previous studies on MF⁴, our results showed:

- changes in functional connectivity between mPFC and frontoparietal regions impacted by MF during executive tasks⁶;
- lower connectivity between both insulas and a bilateral mPFC

Preprocessing (SPM12) Spatial Processing **Biais-Field Correction** Coregistration & Normalization (MNI) Smoothing (8 mm)

Denoising (CONN22.a) CompCor (WM, CSF) Motion Parameters Physiological Regressors High-Pass Filtering (0.008 Hz)

First level (CONN22.a) Harvard-Oxford atlas *Bivariate correlation (Z-Fisher)*

SBC analyses

(CONN22.a)

DLPFC left & right

Insula left & right

mPFC

ACC

Fig. 2 | Connectivity analyses pipeline.

cluster in the fatigue condition compared to control.

Interestingly both insulas and mPFC are considered to take part to cost-benefit computation⁷. Even if no association with effort perception was found in the present study, it emphasizes the link between MF and effort-based decision-making.

 \rightarrow These findings need a proper replication with an appropriate design and sample size.

¹G. Borragán et al., Cortex 89, (2017); ²T. Müller & M. Apps, Neuropsy. 123, (2019); ³M. Gergelyfi et al., NeuroImage 243, (2021); ⁴G. Wylie et al., Sci. Rep. 10, (2020); ⁵A. Nieto-Castanon, Hilbert Press, (2020); ⁶A. Owen et al., *Hum. Brain Mapp.* **25**, (2005); ⁷M. Pessiglione et al., *Brain* **141**, (2018)

john.read@uliege.be