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1. Introduction 
One dimensional numerical simulation of free-surface and pressurized flows is a useful 
engineering tool for a wide range of practical applications in civil engineering. The method 
can be used as long as no 2D and 3D hydraulic effects are predominant and must be thus 
taken into account. For instance, large rivers networks are often managed and developed by 
means of 1D models [1, 2]. Similarly, simulation of pressurized flow in pipes networks such 
as water supply or sewer systems relies traditionally on such models [3, 4]. Finally, 1D 
models can be reliably considered in the design process of many hydraulic structures such as 
water intake, bottom outlet tailrace tunnel, flushing galleries in dams [5].  
On account of the large number of practical applications concerned, an efficient prediction of 
1D flow features is an obvious need. Developing a unified 1D model for all the situations of 
interest in civil engineering remains however challenging. Various flow patterns may indeed 
coexist in actual situations:  

1. Free surface flows, where supercritical, subcritical and transcritical conditions could 
co-exist [2], are usually modelled, including the discontinuities (hydraulic jump), on 
the basis of the conservative Saint-Venant equations [6, 7]. 

2. Pressurized flows are traditionally described by the water hammer equations [4]. 
3. Mixed flows, characterized by a simultaneous occurrence of free-surface and 

pressurized flow, are still nowadays an issue of research [8-11] for its mathematical 
description and its numerical solution. 

To achieve our purpose to develop a universal solver handling free-surface, pressurized and 
mixed flow, it is then required 

1. to establish a unified mathematical model which overcomes the dissimilarity between 
the sets of equations describing pressurized and free-surface flows; 

2. to set an efficient resolution scheme for this model. 
As previously mentioned, different mathematical approaches to describe free-surface, 
pressurized and mixed flow in a unified framework have been developed to date and are still 
subject to many research. Shock-tracking methods consists in solving separately free-surface 
and pressurized flows through different sets of equations [12, 13]. Rigid Water Column 
Approach treats each phase separately on the basis of a specific set of equations in focusing 
on the air behaviour [14]. Nevertheless, such algorithms are very complicated and case-
specific. Finally, the so-called shock-capturing approach is a family of method which 
computes pressurized and free-surface flows by using a single set of equations [8-11] . In this 
paper, such an approach is used, based on the model of the Preissmann slot [15].  
In particular, this paper focuses on steady state flows which are of great interest for engineers. 
Design guidelines for many hydraulic structures specify indeed that specific critical steady 
states have to be addressed. Practitioners should then rely on robust and efficient 1D solvers 
suitable for each flow pattern (free-surface, pressurized and mixed) in order to evaluate 
situations in rivers, pipes and all the common hydraulic structures. Traditionally, computation 
of such steady states is performed with traditional methods for solving ordinary differential 
equation [16], which require setting apart supercritical and subcritical flows and treat regime 
transitions in a particular way (see section 2.2 for further details). These two features are their 
major drawback. Another method consists in discretizing the unsteady mathematical model by 
means of a shock-capturing finite volume method [17] and in computing the scheme over a 
sufficient number of time steps in order to converge on the steady state solution. Since a 
system of Partial Differential Equations (PDE’s) is solved instead of an ordinary differential 
equation, this method requires a pointless computational effort. 
In this paper, a fast universal solver for 1D continuous and discontinuous steady flows in 
rivers and pipes is set up and assessed. Developments are initiated from an original unified 
mathematical model using the Saint-Venant equations and the Preissmann slot model. The 



model is suitable to handle unsteady free-surface, pressurized and mixed single-phase flow. 
This system of PDE’s is then simplified under the assumption of steadiness and reformulated 
into a pseudo-unsteady equation for the flow area. The derived pseudo-unsteady formulation 
aims at keeping the hyperbolic feature of the complete set of equations. The equation is 
discretised by means of a shock capturing finite volume scheme coupled with a flux vector 
splitting which exhibits robustness and simplicity. Performance of the scheme is finally 
assessed by comparison with analytical results and with experimental results gained on a scale 
model built in the Laboratory of Structures Hydraulic of the University of Liège.  
 
2. Mathematical Model 
 
2.1 Unsteady Flow Model 
The development of the universal solver is based on an original 1D mathematical model for 
mixed flow [5] which extends applicability of the Saint-Venant equations to pressurized flow. 
The Saint-Venant equations are derived from area-integrating Navier-Stokes equations [2] 
over the flow cross-section: 
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where x[m] is the longitudinal axis parallel to the predominant flow, t[s] is the time variable, 
A[m²] the flow area, Q[m³/s] the flow discharge, g[m²/s] the gravity acceleration, S0[-] the 
bed slope, Sf[-] the friction slope resulting from the resistance law, h[m] the water height, l[m] 
the free-surface width, hfs[m] the free-surface elevation and hb[m] the bottom elevation. 
Friction slope Sf is computed with the Darcy-Weisbach relation and the Colebrook-White 
correlation for the friction factor f[-]: 
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with Dh[m] the hydraulic diameter of the cross-section, k[m] the roughness height, u[m/s] the 
water velocity and Re[-] the Reynolds Number.  
Pressurized flows are commonly described through the Water Hammer equations [4] derived 
from the equations of continuity and motion in closed pipe. Using the Preissmann slot model 
[15], pressurized flow can equally be calculated by means of the Saint-Venant equations by 
adding a conceptual slot on the top of a closed pipe (Figure 1). When the water level is above 
the maximum level of the cross-section, it provides a conceptual free surface flow, for which 
the gravity wave speed is sc gA T= (Ts is the slot width). The slot width Ts is chosen in 
order that the gravity wave speed equalizes the water hammer wave speed, denoted a[m/s]:  
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where ρ[kg.m-3] is the fluid density and p[Pa] is the fluid pressure. 
The value of the water hammer wave speed depends on the properties of the fluid, the pipe, 
and its means of support. In first approximation, it can be computed on the basis of solid 
mechanics relations [4], which give that usual values are bounded by 500ms-1 and 1414ms-1 



(for an infinitely rigid pipe). Physically, the slot accounts for the water compressibility and 
the pipe dilatation under a variation of pressure. Usual width for the Preissmann slot is 
computed between by 10-4m and 10-9m. 
From a hydraulic point of view, all the relevant information is summarized in relations water 
height/flow area (H-A). A specific relation corresponds to each geometry of the cross-section 
(figure 1a). Adding the Preissmann slot leads to linearly extend the relation beyond the pipe 
crown head (figure 1b). In order to simulate pressurized flows with a piezometric head below 
the top of the pipe section, an original concept, called negative Preissmann slot, has been 
developed. It consists in extending the Preissmann straight line for water height below the 
pipe crown (figure 1c). To each water height below the pipe crown correspond two values of 
the flow area: one for the free surface flow and one corresponding to the pressurized flow. 
One of them is chosen depending on the local aeration conditions (closed pipe or presence of 
an air vent). For further details, we refer the interested reader to the following papers [5, 18] 
totally dedicated to this mathematical model. 
The study of the characteristic velocities λ1 and λ2 of the system (1) leads to the following 
values depending only on the fluid velocities u[m/s] and the gravity wave speed c[m/s] given 
above: 
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where Fr[-] is the Froude number [2]. Examining the sign of the expression (4) shows that a 
supercritical flow (|Fr| > 1) requires two upstream boundary conditions. In a similar manner, it 
is proved that subcritical flow (|Fr| < 1) requires both an upstream and downstream boundary 
conditions. 
 
2.2 Steady Flow Model 
The ordinary differential equation for steady flow may be obtained from the system of PDE’s 
given by equation (1). By assuming that each time derivative is equal to zero 
(∂A/∂t=∂Q/∂t=0), equation (1) is written as follows: 
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where integrals I1 and I2 are defined as above and the friction slope is computed on the basis 
of equation (2). First equation in (5) is trivial since the discharge is imposed by boundary 
conditions upstream the computational domain. In order to solve unique unknown A, several 
numerical techniques can be applied. As mentioned in the introduction, equation (5) is 
traditionally simplified by using standard properties of the derivatives as an ordinary 
differential equation (ODE): 
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where the celerity is given by equation (3). In principle, standard methods could solve this 
ODE but the presence of a singularity for trans-critical flow in which Q/A ≅ a make this 
methods fail. Specific methods derived for the purpose of solving equation (6) require to set 
apart supercritical and subcritical flows and to treat the singularity (regime transitions) with 
caution.  



The original method presented in this paper consists in deriving a pseudo-unsteady equation 
to solve steady flow instead of using the actual unsteady system of PDE’s (1) or the simplified 
ODE (6). A pseudo-unsteady strategy enables to keep the hyperbolic feature of the equation 
and to apply the same resolution schemes as those used traditionally for the Saint-Venant 
equations. The pseudo-unsteady strategy consists in adding a pseudo-temporal term into the 
ordinary differential equation (5), denoted τ to avoid confusion with the full unsteady model. 
The introduction of the new term provides however an additional degree of freedom 
(parameter β) that must be determined subsequently:  
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In this model, the flow discharge is now a given parameter of the problem. The characteristic 
velocity λ is given by: 
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The sign of the real characteristic velocity only depends on the value of the degree of freedom 
β and the flow regime. Table 1 shows that a supercritical flow (|Fr| > 1) requires only an 
upstream boundary condition if β is negative and only a downstream boundary condition if β 
is positive. The exact opposite conclusion holds for a subcritical flow (|Fr| < 1). 
Comparing the sign of λ with the sign of the characteristics velocities λ1 and λ2 introduced in 
equation (4) gives an insight into the value of β to select. Indeed, it has been shown that the 
system of equations (1) for unsteady flow requires two upstream boundary conditions for a 
supercritical flow. As the discharge is assumed constant, the pseudo-steady model (7) would 
require only one upstream boundary condition for a supercritical flow if β is chosen as 
negative. In conclusion, β is imposed as negative in order to keep the new model consistent 
with the full unsteady model. What is more, the value of β does not affect the rate of 
convergence of the scheme such that it can be simply set to ( )sign Qβ = − . 
 
2.3 Numerical Model 
Both the unsteady and the pseudo-unsteady models have been implemented in the modelling 
system WOLF [19, 20] which has been developed in the last ten years within the Research 
Unit  of Hydrology, Applied Hydrodynamics and Hydraulic Constructions of the University 
of Liège. Discretization of equation (7) is performed by means of a finite volume scheme over 
uniform grid cells of length 1 1
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where n is the time index and the numerical flux 1
2

n
kF +  is computed with an original flux 

vector splitting [21, 22]: 
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It results in an explicit scheme in a conservation form which is shown hereafter 
unconditionally stable.  



Von Neumann method is used for stability analysis [23]. Since we focus on the stability of the 
spatial discretization, only the spatial term is discretised. The solution of equation (9) is hence 
developed in a Fourier series that is written as: 
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where N is the number of mesh intervals, k the mesh index, 1= −i , 
n
mA  the amplitude of the 

mth harmonic, lm[rad/m] the wave number and cm[m/s] has real and imaginary parts 
: ( ) ( )m rm m im mc c l c l= + i . The real part crm is the wave velocity. Physical significance of the 
imaginary part is exposed below. In a one dimensional domain of length L, the fundamental 
frequency corresponds to the maximum wavelength of λmax=2L, associated to the minimum 
value of wave number lmin=π/L. On the other hand, the maximum value of the wave number is 
given by lmin=π/Δx associated with the shortest resolvable wavelength λmin=2Δx on the mesh 
grid chosen (Figure 2). All the harmonics represented on the finite mesh are given by: 
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The solution (11) can be rewritten as follows: 
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The amplification rate of the wave in equation (13) is identified as the imaginary part cim 
multiplied by lm. The Von Neumann stability criteria imposes then that km=lm cim(lm) ≥ 0 to 
ensure stability.  
We now aim at determining the expression of the amplification rate km for the particular flux 
vector splitting introduced in (10). The quasi-linear form of Finite Volume scheme given by 
equations (9) and (10) is written as: 
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Inserting the Fourier series given by equation (11) into this quasi-linear scheme leads to: 
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By introducing the trigonometric functions xe cos x sin x= +i i , we simply obtain: 
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The Von Neumann stability criteria established above states that the scheme is stable only if: 
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which is unconditionally assured if the parameter β is negative. 
The time discretization is achieved with a standard explicit 3-step Runge-Kutta algorithm 
[17]. The efficiency of such an explicit method is well known because of its low computation-
cost. Moreover the coefficients have been tuned to emphasize the dissipation and the stability 



properties of the scheme. Since the scheme is explicit in time, temporal step of computation is 
limited by the Courant-Friedrich-Lewy condition to a value inferior to 0.6 [23]. 
 
3. Validation: Analytical Case 
In order to demonstrate the ability of the code to correctly reproduce a critical transition, the 
universal solver is applied to an analytical validation case: 1D transcritical steady flow with 
shock over a bump without friction [24]. The spatial domain is represented by a 25×1m 
rectangular cross section channel (discretised using 0.05m length size meshes). The bottom is 
frictionless and its elevation zb(x) is described by the following function: 
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The flow discharge is imposed to 0.18m3/s and the downstream boundary condition is set 
equal to 0.33m for the water height. The initial water level is set to 0.33m. Bernoulli’s 
theorem provides an analytical solution. 
Figure 3 and Table 2 exposes the analytical solution as well as the final results for the full 
unsteady model given by equation (1) and for the pseudo-unsteady model given by equation 
(6). In table 2, comparison criteria are the upstream total head and the crest water depth. 
Computations are performed with a Courant Number of 0.5 and a three-step Runge-Kutta 
temporal scheme. Comparison with the analytical solution highlights a good agreement for 
both solvers. For a given convergence criteria, the full unsteady models requires 13850 time 
steps to reach its final solution. For the exact same convergence criteria, the pseudo-unsteady 
model requires 1156 time steps.  
 
4. Validation: Experimental Results 
This section outlines the application of the universal solver for simulating steady mixed flows 
arising in a gallery. Numerical results are compared with experimental results provided by 
measurement on a scale model build in the Laboratory of Structures Hydraulics (HACH) of 
the University of Liege. The model (figure 4) includes a plexiglas circular pipe linking two 
tanks. Topography of the upstream and downstream tanks has been built in accordance with 
realistic in-situ natural conditions. The inlet and outlet structures are also represented. 
Experimental apparatus, measurement systems and results are described in details in [25].  
 
4.1 Experimental Investigations 
Investigations focus mainly on stationary flows and aims at determining the flow discharge 
through the gallery as a function of the upstream pressure head. The flow discharge varies 
between 5l/s and 55l/s and the upstream pressure head between 10cm and 80cm. Various two-
phase flow patterns are observed according to the flow discharge through the gallery. For 
discharge rates below 30l/s, a free-surface flow is observed all along the gallery. 
Pressurization of the gallery is clearly established for water discharge above 40l/s. In between, 
strong air-water interactions alter thoroughly the flow behavior. Such a flow pattern is beyond 
the scope of this paper and we refer interested readers to literature specific to two-phase flows 
as [26, 27].  
 
4.2 Numerical Simulations 
As a result, simulations focus here on mixed flow with no air-water interactions in steady 
state conditions. A spatial discretization step of Δx=3.33cm, a CFL number limited to 0.5 and 
a roughness height k = 2.10-5m are used.  



Experimental and numerical data for the distribution of the total head and the pressure head 
(water level for free surface flow) along the gallery length are given in figure 5 for a free-
surface flow (discharge of 9.5l/s) and a fully pressurized flow (discharge of 48.4l/s). In the 
latter case, results are in full agreement. The chart clearly shows the head loss at the gallery 
inlet is correctly simulated. In particular, a great variation in pressure at the entrance is 
accurately simulated with the numerical model. For the free-surface flow, a slight discrepancy 
is observed in the total head curve. It results from the effect of the air phase flowing above the 
free surface that is not taken into account in this computation. 
A comparison of the results given by the computation for a flow of 38.4l/s discharge is shown 
in figure 6. Pressure distribution along the gallery is computed in figure 6b under the 
assumption of a free surface flow appears if the pressure head is below the pipe crown. Large 
discrepancies of the results are observed. The upstream pressure head is overestimated. In 
figure 6a, activation of the negative Preissmann slot gives the curve corresponding to a 
pressurized flow. We consequently identify a large area of sub-atmospheric pressure in the 
upstream part of the pipe. Results are now in better accordance and lead to conclude that the 
aeration rate of the pipe is not sufficient to induce the apparition of a free surface flow. The 
necessity of the negative Preissmann is in this case obvious. 
 
5. Conclusions 
In this paper, a single pseudo-unsteady equation is derived to describe in a unified framework 
all kinds of steady flow relevant in civil engineering. This pseudo unsteady model is 
simplified from a full unsteady model in a way that enables the new model to keep the 
hyperbolic feature of the full model. The mathematical model used as a basis for the original 
development is a system of PDE’s handling free-surface, pressurized and mixed flow in a 
unified framework. For this purpose, applicability of the Saint-Venant equations is extended 
to pressurized flow by means of the Preissmann slot model. The original point in this 
mathematical model is the concept of Negative Preissmann slot which enables to deal with 
sub-atmospheric pressurized flow. 
From a practical point of view, the pseudo-unsteady equation is implemented by means of a 
Finite-Volume scheme coupled with an original Flux-Vector Splitting (shock-capturing 
method), whose stability is demonstrated on the basis of the Von Neumann method. The 
pseudo-temporal path to evolve towards the final steady state proves to be efficient and 
robust. In particular, performance of the model is assessed by comparison with analytical and 
experimental results.  
The iterative method saves much computational time. The global performance can be 
improved further by means of a “local time stepping” strategy when the calculation domain 
involves pressurized meshes and free-surface meshes characterized by wide variations of the 
characteristic velocity. In addition, simulation of air-water interactions by means of a drift-
flux model would widen the applicability of the solver to new applications. 
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Table 1: Sign of the celerity of the pseudo-steady hydrodynamic model. 
 Fr < 1 Fr > 1 

β < 0 λ < 0 λ > 0 
β > 0 λ > 0 λ < 0 

 
 
Table 2: 1D transcritical steady flow with shock over a bump without friction: Comparison of the numerical 
results with the analytical solution 

 
Analytical 

[m] 
Full Unsteady 

[m] 
Error 
[%] 

Pseudo Unsteady 
[m] 

Error 
[%] 

Upstream Total Head 0.4233 0.4241 1.57 0.4235 0.04 
Crest Water Height 0.1491 0.1482 0.64 0.1482 0.64 

 

 

 
 


