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• At short terms: reproduce a basic pure gas-phase code – 
include simple freezing out and desorption processes 

• At medium terms: fully include the solid-phase 
treatment with the proper inclusion of nanoscale 
details (e.g. BE distribution) – simplified Kinetic MC? 

• At longer terms – gold objective: couple solid-phase 
treatment to a neural network & dynamically link it to 
the gas-phase modelling

What can be explored within this sub-field? 
Smallest scales investigations

Focus in this work

• Both computationnal chemistry and empirical studies 

• Desorption and diffusion parameters poorly 
constrained → theoretical focus

• Interior of dense molecular clouds – icy mantle 
surrounding dust grains (grains ~ 1% in mass of the 
gas phase) →  rich chemistry, interesting for the 
molecular complexity (surface acting as third body)

• Allows for the generation of reference data both for 
spectroscopic & kinetic purpose 

& Amorphous water-rich ices dominate – no unique 
binding sites/configurations
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Perspectives
Continuing to focus on the solid phase fundamental parameters
• Inferring BE distributions for a growing set of relevant interstellar species 

• From the thermochemistry computations, computing desorption/diffusion pre-exponential factor 
(Statistical Thermodynamics & Transition State Theory)

• What about such parameters on CO-ices?
• To longer terms – problematic of universal binding-to-diffusion (energy barriers) ratio

Processes parameterized as
Arrhenius-like functions in
kinetic codes
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a 

Work in 
progress …

Binding,Desorption & 
Diffusion Parameters on 

Amorphous Solid Water(ASW)

Current 
Focus

1  Equilibration to 300 K – 10 ps 

2000 H2O molecules in a box (Packmol)
• a - 40 Å for Low Density (~	0.94 g/cm3) ASW (LDA) ; 

37.5 Å for High Density (~ 1.13 g/cm3) ASW (HDA)
• NVT ensemble – TIP4P/2005 Force Field - Full 

Periodic Boundary Conditions (PBC)
  

 ASW models building through Molecular 
     Dynamics (NAMD 2.14)I.   

Bulk modelling

2 Quenched to 40 (LDA) & 10 K (HDA) - T  
     ramp of 10 K/ps + equilibration – 10 ps 

Check of the structure reliability 

 Binding energy (BE) inference through ONIOM-2 computations (Gaussian16) II.   
ONIOM-2 (DFT:xtb) scheme design

Surface modelling

4  Re-heating to 100 K & New 
   quench to 40 K (LDA) & 10 
   K (HDA) in “2D” PDC - T 

ramp of 2 K/ps  
   + equilibration – 10 ps 

3 Towards surface modelling
        From 2 → “2D” PBC – slab 
   of 100 Å of vacuum(b)

aa

a 

b 

Theoretical Multi-scale Molecular Investigations  

5 Hemispheric cuts

6 Low level size benchmark & xtb 
  performance checking

Binding sites sampling
9 Sampling of both modelled surfaces –

replication of 4 in xy plane & grid 
of 100 hemispheres centers  

10 Adsorbate orientation randomization

11 BE distribution - BE corrected for 
   BSSE & ∆ZPE 

8    Retro-checking of the ONIOM zones  
   setup (size) – Rhem 25 Å, RHigh 12 Å, ∆RLow 13 Å 

7 High Level Basis Set Checking
  6-311+G** VS Def2TZVPP - ∆BE < 1.4 kJ/mol 
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Functions (g(r))/Running Coordination number (n(r))

– good match

→ ∆R 8 Å (Rhem 16 Å - ~ 225 H2O) seems to be the best compromise 
→ ONIOM(B3LYP-D3/6-311+G**: xtb) convergent with (B3LYP-D3/6-311+G**: 
B3LYP-D3/6-31G(d,p)) within < 1 kJ/mol from ∆R 8 Å and higher
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Dense molecular 
clouds – dark cores
 103-106 part./cm3
Birthplace of
stars

• First detected molecule – CH (UV-vis, 1937) ; now detections mostly in radio + recently IR (JWST)   
• In this work – theoretical study of the chemistry of dense clouds, no observationnal studies 

Still, necessary source of data for the development & improvement of the two other sub-fields 

Interstellar matter – mix of   
gas (99%) - ~ 74 wt.% H; 24 wt.% He 

  dust grains (1%)- solid particles 
Molecules? In cold molecular clouds

Filling the scale gap 
Astrochemical models -
time evolution over 

billions years of the 
abundances of species 

in astrophysical 
stuctures from kinetic 
parameters (molecular 

properties) 

Multi-Phase 
Astrochemical 
Modelling

II.
Future 
Focus

I. Generalities

Different types of 
models built so far in the literature … 
• Purely gas-phase VS gas-grain (2 or 3 phases)
• Dynamical (astrochemical timescale %$%&'()*+,  > 

dynamical timescale %-./$,0)  of the simulated 
object) VS non-dynamical ( %$%&'()*+, <  %-./$,0) )  
models in terms of physical parameters 
describing the source 

• 0, 1, or 2 Dimensionnal models 
  Here focus on Multi-Phase models under non-
dynamical, time- and space-independant (0D) physical
conditions – targetted astrophysical object:
interior of dense molecular clouds (extinct
external radiation field – dust & self-shielding)
  Main challenges?

  
• An astrochemical system – hundreds of species,

thousands of reactions & very different
evolution behaviors/timescales ↔  cumbersome 
treatment, set of stiff Ordinary Differential 
Equations (ODE) to be solved 

• The treatment of solid-phase astrochemistry 
differs among current codes (based on 
different assumptions with diverse extents) & 
is highly challenging (high number of required 
input kinetic parameters with intrinsic 
current strong uncertainties)

  

Full coupling

  

Gas-phase 
treatment  

  

Solid-phase –
grain chemistry 

  
Deterministic
appoach – rate 
eq. method
(ODE solver)  

  

Physical 
param.target
astro object

Chemical 
network      

Code

Illustrative eq. 
–2 bodies system
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Deterministic
VS stochasic
approach (Monte

  Inclusion of BE
Distributions -
branching ratio

  

Carlo)– Which?
  

∆Penetration 
depth CR VS UV
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Benchmarked low level zone size ∆R (High level zone = 8 Å,~ 20 H2O)
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