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Abstract. Vortex-induced vibrations (VIV) present significant challenges in understanding and mod-
eling the cross-wind behavior of structures subjected to fluid flow. This presentation has provided a
review and comparison of some existing models, classified under the families A, B, and C as defined in
[1]. After recalling the rationale behind the well-known spectral method, which falls within the B-family,
some limitations of the wake-oscillator model from family C were highlighted. In particular, although
several additional models have been developed since the seminal works of Hartlen and Currie [2], and
Tamura [3], models from this family are seldom used today in the wind engineering community. One
reason that could explain this reluctance to use such models is that, in their current form, they still
usually operate in a deterministic setting.

The talk addressed stochasticity from two main sources within fluid-structure interaction. The first
source is the oncoming wind flow, which characterizes turbulence in the atmospheric boundary layer and
affects the vibration response of structures, relevant to tower and chimney design. The second source
arises from turbulence in the near wake, creating randomness as vortices are shed, observable in a fixed
cylinder in uniform flow with a slowly changing lift force envelope.

This short summary of the presentation gives a glimpse of the main messages and highlights some
comments that were made during the discussions after the presentation.

1. Multiple Timescale Analysis of a Wake-Oscillator Model

A simple example of wake-oscillator model is the governed by the following equations

Y ′′ + 2ξY ′ + Y = 2εM0Ω
2Q,

Q′′ + εΩ
(
Q2 − 1

)
Q′ +Ω2Q = 2εA0Y ′′.

It is the dimensionless version of the model proposed by Facchinetti et al. [4], where Y = y/D is
the dimensionless cylinder motion, D is the transverse dimension of the cross-section, ξ is the total
(structural + aerodynamic) damping, and Q represents the lift coordinate. The first equation represents
the dynamics of a spring-mounted cylinder, with the lift force in the right hand side. It is written with
a dimensionless time defined as τ = ω0t, with ω0 being the natural frequency of the mass-spring system
in still air. The second equation is a nonlinear van der Pol equation governing the dynamics of the lift
force. The dimensionless vortex shedding frequency Ω = 2πStU

ω0D
is directly related to the ratio of the wind

velocity to the critical wind velocity. Parameter ε is a small parameter of the model, responsible for the
slow buildup of vibrations when observing the transient from initial conditions. The two dimensionless
parameters M0 = µ

8π3ε2
C0

L

St2 and A0 can be seen as gain parameters quantifying the importance of the
coupling between the fluid and the structure equations.

By recognizing the smallness of ε it is possible to develop asymptotic solutions to this nonlinear problem
using multiple scales techniques. At leading order, this results in slowly modulated responses,

(1.1) Y ∼ Ry(T ) cos [τ + φ(T )] ; Q ∼ Rq(T ) cos [τ + φ(T ) + ψ(T )]

where the slow amplitudes and the slow phase are given by [5]

R′
q = A0Ry sinψ − 1

8
R3

q +
1

2
Rq

R′
y = M0Rq sinψ − ξ0Ry

ψ′ =

(
A0

Ry

Rq
+M0

Rq

Ry

)
cosψ + ξ0δ.(1.2)

It is easier to solve these three equations as they just depend on the slow timescale. Also, by solving
these equations, the effort in the numerical approach is put on the actual essence of the problem (the
slowly varying envelope and the phase) instead of engaging numerical technique with small time step to
capture the fast dynamics. Solving these equations for various values of δ, defined as Ω = 1+εδ, provides
the VIV response curve.
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2. Turbulence in the Oncoming Wind

Turbulence of the oncoming wind can be modeled by replacing U with U+u(t) in the original equations.
By doing so, it turns out that the slow equations are exactly the same, except for the last equation, which
now reads

(2.1) ψ′ =

(
A0

Ry

Rq
+M0

Rq

Ry

)
cosψ + ξ0δ + IuU

where Iu is the turbulence intensity and U (τ) is a zero-mean, unit-variance stochastic process de-
scribing the low-frequency turbulence. It is characterized by its Power Spectral Density (PSD), SU (ω).
Interestingly, this model dissociates two features of the turbulence: the turbulence intensity Iu and the
characteristic low frequency of turbulence, represented here by a parameter α. Together with the first
two equations of (1.2), (2.1) can be solved efficiently over very long simulation times since it involves only
the slow dynamics. As such, they are able to provide neat statistical estimates of the envelope Ry (T ).
Additionally, it is possible to further simplify the model by assuming that the dynamics of the system do
not evolve too far from the limit cycle. This further simplifies the model, as it then consists of only one
equation, the slow phase equation,

(2.2) ψ′ =
A0M0

ξ0
sinψ cosψ + ξ0 cotψ + ξ0δ + IuU .

During the discussions after the presentation, the question of having simple expressions for purposes
such as codification was highlighted. It was noted that this equation possesses a semi-analytical solution
[5]. This solution is accurate in the center of the lock-in region but tends to become less accurate further
from the center of the lock-in region. Essentially, having a semi-analytical solution for this equation aligns
with Approach 2 of the ENV1991-1-4 and could also serve as a basis for codification purposes.

The solutions of these equations express statistics of the response envelope, particularly the steady-
state Probability Density Function (PDF) of the response envelope. Whether vortex detachment is locked
or not, and whether large amplitudes are reached or not, are expressed in a probabilistic manner. This
also aligns with the message of the presentation given by S. O. Hansen during another talk later at this
VIV Symposium [6].
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Figure 2.1. PDF of the response amplitude simulated for various turbulence intensities
Iu and characteristic turbulence frequency α. Perfect lock-in conditions (Ω = 1, U =
Ucr).

Figure 2.1 shows examples of results from this model. These selected results highlight that the tur-
bulence intensity and the frequency content of turbulence affect the synchronization capabilities in two
independent ways. This feature of the model was pointed out by R. Höffer during the discussion of the
presentation. Additionally, this aligns well with the field observations reported in this seminar by I.
Kurniawati et al. [7] and P. Hémon [8] in two different talks on full-scale data. More precisely, the figure
shows that increasing turbulence intensity results in smaller average vibration amplitudes. Furthermore,
when the ratio α α of the characteristic frequency of turbulence to the natural frequency of the cylinder
increases, the sensitivity to turbulence intensity weakens. In other words, in this model, VIV is more
sensitive to small-scale turbulence than to large-scale turbulence

3. Turbulence in the Signature

The second type of randomness in the problem is identified as near-wake turbulence. To model this in
a two-equation model, additive noise is introduced in the fluid equation. Notably, after the presentation,
an informal discussion with A. Metrikine suggested that another (potentially more physical) way of
modeling this phenomenon would be to introduce randomness in the coefficients of the fluid equation.
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This option would be viable and similar to randomizing the kernels introduced in the model based on
frequency-dependent coupling [9].

So, instead of considering the van der Pol type equation proposed in [4], a generalized version of the
fluid equation was investigated [10, 11]. Adjustment on experimental data (in the subcritical regime)
provided very good agreement on the stationary cylinder when the model

(3.1) Q′′ − Ω
(
aQ2 + cΩ2Q′2 + d

)
Q′ +Ω2Q = η

was used with a = −0.09, c = 0.009 and d = 0.063, and where η is a zero-mean stationary random process
with a PSD given by σ2

η
2Lη

πU /
(
1 +

(
1.339Lη

ω
U

))5/6, with ση = 1 and Lη = 1.1 in the subcritical regime,
see [10] for more details.

Figure 3.1 shows that this model predicts the fluctuating lift force on a fixed cylinder with reasonable
accuracy. Notably, the non-Gaussian PDF of the lift coefficient (on the left) is remarkably well reproduced,
more so than the Gaussian description offered by the Vickery-Clark model [12] shown in green. The PDF
of the lift envelope Rq closely mimics the experimental data. Finally, the comparison of the PSD of
the lift force on the right, resulting from the solution of (3.1), exhibits a wider distribution than the
Vickery-Clark model, especially in the high-frequency range.

Experiment Proposed model, eq. (3.1) Vickery-Clark model [12]

Gaussian

Figure 3.1. Comparison of the proposed model, the Vickery-Clark model and experi-
mental data.

4. Conclusions

Two ways to randomize the wake-oscillator have been presented. They aim to model the turbulence of
the oncoming wind and the turbulence of the near wake, respectively. Future work could aim to combine
the two sources of randomness, extend these random models to the space-continuous case, and apply
them to structures with additional damping, such as tuned mass dampers.
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