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Abstract
Detecting urban mobility patterns is crucial for policymakers in urban and transport planning. Mobile phone data have been
increasingly deployed to measure the spatiotemporal variations in human mobility. This work applied non-negative Tucker
decomposition (NTD) to mobile phone-based origin–destination (O-D) matrices to explore mobility patterns’ latent spatial
and temporal relationships in the province of Liège, Belgium. Four 310 3 310 3 24 traffic tensors have been built for one reg-
ular weekday, one regular weekend day, one holiday weekday, and one holiday weekend day, respectively. The proposed
method inferred spatial clusters and temporal patterns while interpreting the correlation between spatial clusters and tem-
poral patterns through geographical visualization. As a result, we found the similarity of O-D and destination–origin (D-O)
patterns and the symmetry for the trips of the temporal patterns with evening peak and morning peaks on the weekday.
Moreover, we investigated the attraction of different spatial clusters with two temporal patterns on a regular weekday and
validated the reconstructed demand using population counts and commuting matrices. Finally, the differences in spatial and
temporal interactions have been addressed in detail.
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Mobile phone data have been increasingly applied to
measure the spatiotemporal changes in population
because of its cost effectiveness and high penetration rate
compared with conventional survey methods (1–3). Even
though the data have shortcomings, such as positioning
uncertainty and the lack of sociodemographic informa-
tion on mobile phone users, they represent a reasonable
proxy for individual mobility and show enormous poten-
tial as an alternative in urban transport modeling (4).
Mobile phone-based origin–destination (O-D) matrices
are often generated from the cell phone source data for
further strategic planning. Based on O-D matrices, it is
possible to draw up a ‘‘mobility map’’ showing the num-
ber of people moving between different locations of a
designed network over a given temporal period.
Additionally, we can find the underlying influence of
land use on human mobility by combining traffic flow
with land use conditions (5). The discovery can explain
the urban spatiotemporal structure and support policy-
makers in making decisions during emergencies related

to human mobility. Studies such as Gibbs et al. (6), Fan
et al. (7), and Awad-Núñez et al. (8) show that epidemics
or catastrophic emergencies can lead to a fluctuation in
human mobility patterns. Thus, modeling and under-
standing human mobility before, during, or after a disas-
ter is crucial. One of the challenges of learning human
mobility patterns lies in the simultaneous interpretation
of spatial and temporal interactions, especially for
dynamic and large-scale traffic networks. Many efforts
have been made with different kinds of data to model
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urban spatiotemporal structures, such as the spatiotem-
poral distribution of activity intensity (9) or the evolu-
tion of link-based traffic flow (10, 11). In addition,
Furtlehner et al. (12) applied synthetic floating car data
to cluster an urban road network with congestion prob-
lems, aiming at extracting large-scale spatial and tem-
poral features of road traffic. Sun et al. (13) used smart
card data to extract passengers’ spatiotemporal density
based on a regression model. Jiang et al. (14) employed
travel surveys to mine the spatiotemporal activity pat-
terns by combining the clusters of individuals with the
spatial dimension. These studies have expanded the tra-
ditional understanding of urban structure from the spa-
tial dimension based on static density to the dynamic
spatiotemporal dimension. However, despite the multidi-
mensional data sets, their methods mostly deal with two-
dimensional data (15) and cannot efficiently interpret
spatiotemporal dependencies.

Multidimensional tensors have recently found many
applications in machine learning for psychometrics, che-
mometrics, signal processing, and computer vision,
including clustering, dimensionality reduction, and latent
factor models (16). Moreover, tensor factorization-based
methods have been proposed for the imputation and
compression of traffic data collected from stationary and
mobile sensors (17–20). These studies focus on the spatial
dimension of link-based flow or speed and the temporal
dimensions of steps and periods. Nonetheless, they do
not address the interplay between different spatial loca-
tions. Compared with the one-dimensional spatial link,
the data complexity of O-D matrices increases with the
spatial contents. Thus, we can model collective mobility
as a three-way (origin 3 destination 3 time) tensor.
Although performing tensor decomposition (TD) in O-D
matrices is not new, this work contributes to the state of
the art with its application to high-dimensional trip data
over various periods to reveal valuable insights into spa-
tiotemporal interactions. The objective is to find spatial
clusters, temporal patterns, and the correlation of these
two aspects for mobile phone data observed in the prov-
ince of Liège, Belgium. In the experiment, we defined
mobile phone cells as traffic analysis zones and applied
the hourly mean number of trips accumulated over a reg-
ular week and a holiday week to discuss travel patterns
on weekdays and weekends. The intention is to seek the
underlying trip purpose as well.

The rest of the paper is organized as follows. We first
discuss multidimensional TD-related works in traffic
analysis. Then, in the Methods section, we describe the
mobile phone data and the TD model. In the Results sec-
tion, we present the context for the choice of the TD
model and the findings of spatial clusters and temporal
patterns. Insights into mobility structure are drawn in

the Discussion section. Finally, we summarize limitations
and future work in Section Conclusion.

Related Work

Individual trajectories can be extracted from data col-
lected by location-aware technologies (21). This pro-
motes the study of the individual-based urban mobility
model that allows scenario analysis related to human
spatiotemporal behavior (22). Kuo et al. (23) pointed out
that analyzing the immense amounts of individual-based
data sets can be challenging beyond their volume. They
proposed simplifying a data set of taxis’ GPS traces into
networks via coupled non-negative matrix factorization
formulations. The intention was to view origin and desti-
nation information separately and co-cluster locations
and times based on these views. O-D matrices and
matrices containing time variant migrations (origin 3

time and destination 3 time) were built as two-
dimensional matrices for the coupled matrix factoriza-
tion to extract latent factors. Du et al. (24) applied tensor
factorization to identify hot spots and summarize the
corresponding traffic flow among them based on the
public transit data. They simultaneously decomposed the
O-D matrix and origin 3 transfer 3 destination (OTD)
tensor into traffic flows among regions. To capture the
variability in traveling patterns over time, they sliced the
O-D and OTD data into several time slots.

Some researchers simultaneously model the spatial
and temporal data using a high-dimensional tensor to
discover the relationship between the spatial and tem-
poral aspects. Fan et al. (7) adapted the non-negative
tensor factorization and decomposed three-way (region
3 timestamp 3 day) tensors built from mobile sensing
data (mobile phone users with GPS capacity) before and
after the earthquake. To model the geographical shift of
the ‘‘home’’ pattern, they co-factorized two people-flow
tensors from different years in a unified framework.
Wang et al. (15) applied mobile phone signaling data on
the city scale for one week in morning and evening peak
hours and summarized the trip records to a three-way
tensor (origin 3 destination 3 time). They also com-
pared the revealed spatial patterns with land use and
population distribution. Sun and Axhausen (25) formu-
lated the smart card data in a probabilistic setting and
considered each record as a multivariate observation
(time 3 passenger type 3 origin 3 destination) sampled
from an underlying distribution. The model is essentially
equivalent to an NTD in which all vectors in factor
matrices are replaced with a probability vector, and the
core tensor is replaced with one that can also be regarded
as a multi-way extension to the standard two-
dimensional probabilistic latent semantic analysis. They
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calculated the conditional probability across different
modes in a small core tensor using Bayes’ theorem to
further quantify the latent interaction.

Wang et al. (26) modeled the time-evolving traffic net-
works into a three-order tensor (origin 3 destination 3

time) using a regularized NTD method. They considered
taxi trajectory data and urban contextual knowledge
together to discover the spatial clusters, temporal pat-
terns, and relations among them. Zhu et al. (27) inte-
grated Bayesian supervised learning into probabilistic
tensor factorization to identify significant location-based
socioeconomic variables and post-trip features and derive
their probabilistic relationship between dynamic on-
demand ride services (ridesharing, non-sharing, and taxi).
The research team also developed a Bayesian clustering
ensemble Gaussian process model to group stations with
similar spatiotemporal patterns and fit the traffic volume
for stations (28). Naveh and Kim (29) used non-negative
TD to extract traveler movement patterns from large-
scale smart card systems and roadside Bluetooth detec-
tors. They focused on the in-depth analyses of day-of-
week variations in three graph types and the differences
between public transport and road traffic mobility pat-
terns. Ghosal (30) predicted the travel time of a given
path using GPS trajectories from vehicles by optimizing
the TD. Since the three-dimensional tensor (segments 3

drivers 3 time) was very sparse, the author collabora-
tively decomposed the tensor with two matrices contain-
ing features of the road segment and correlation between
different time slots with regard to the coarse-grained traf-
fic conditions.

The existing works prove the efficiency of TD meth-
ods inferring spatial patterns of people’s movements
based on various emerging data sources. Meanwhile, we
observe two main challenges and problems. First, distinct
researchers find different patterns as they use diverse
data sources. For instance, clear differences exist between
mobility patterns across different days and transport
modes. Moreover, time-of-day temporal profiles of trip
demand aggregated over space are dissimilar between
weekdays and weekends (29). Sun and Axhausen (25)
found that public transit journeys demonstrate strong bi-
directional homogeneity as a result of the regular home-
based trips. However, Du et al. (24) showed that the O-D
and D-O patterns are highly similar when using all-day
passenger records to analyze movement and behaviors,
while the similarity in flows reduces substantially when
specific morning and evening peak hours are considered.
Second, the TD model requires domain knowledge for
result interpretation. The issue of selecting an appropri-
ate algorithm to determine key elements, such as the core
sensor size in TD models, is crucial, and it may further
influence the interpretability of the final results. To meet
the challenge above and fill the research gap, in this

paper, we analyzed a large-scale mobile phone-based
mobility network across urban and rural areas on differ-
ent days, in regular and holiday weeks. In addition, we
tested different algorithms for the NTD considering the
algorithm processing time and the reconstruction mean
squared error. The focus of this study is on gaining new
empirical insight using different data sources rather than
contributing to data mining technologies.

Methods

Data Sets

Aggregated mobile phone data from the province of
Liège were provided by the regional government (SPW
Mobilité et Infrastructures) in the form of 336 (7 days
3 24 h 3 2 periods) hourly mean O-D matrices. The
two periods for which the hourly means were tabulated
concern regular weeks (from January 15, 2018 to
February 8, 2018) and holiday weeks (the Carnival and
Easter holiday weeks from February 23, 2018 to March
18, 2018).

To provide the aggregate O-D matrices, the province
of Liège has been split into 310 zones (Figure 1 given by
SPW) representing the unions of polygons built from the
Voronoi diagram. The black delineations in Figure 1
show 84 municipalities in the province of Liège, and the
colored ones represent mobile phone cells.

Note that privacy legislation means we were only pro-
vided with the aggregate O-D matrices. Thus, we do not
have access to the raw mobile phone data in which indi-
viduals’ information would reveal the underlying trips.
Notwithstanding, we can compare the mobile phone-
based origins and destinations with locations described
by STATBEL (the Belgian Statistical Office). To check
how closely they match, we looked into STATBEL’s
NIS coding system, which assigns a numeric code to each
administrative unit to facilitate the production of geo-
referenced statistics. There are 270 out of 310 mobile
phone zones that have the same NSI6 codes as
STATBEL’s sub-communes, and at least 80% of the
given mobile phone cells’ locations are less than 250m
(Euclidean distance) away from the STATBEL NSI6-
zone centroids. However, when we spatially aggregated
the 310 mobile phone zones back to the municipality
level, we made a comparable visualization with 84 muni-
cipalities (NSI5) from STATBEL (Figure 2). We com-
puted the spatial intersection ratios of Figure 2. The
result shows that around 75% of zone pairs have at least
70% spatial matches. A more elaborate discussion of the
comparison can be found in Gong et al. (31).

As mentioned above, a distinction is made between
regular and holiday trips. After all, public holidays have
a significant impact on travel patterns (32, 33). Based on
the 336 (7 days 3 24h 3 2 periods) hourly O-D
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Figure 1. Delineation of floating mobile data proximus cells in the province of Liège.

Figure 2. Mobile phone cells compared with STATBEL (Belgian statistical office) zones at the municipality level.

4 Transportation Research Record 00(0)



matrices, we derived an average of 1.9 trips per day
per inhabitant in the province of Liège. According to
the last web-based national mobility survey in 2016
(MONITOR), Belgians make an average of 2.2 trips per
day, which is comparable with the average trip rate
derived from mobile phone-based O-D matrices for the
province of Liège.

To filter out repetitive patterns, we reprocessed the
336hourly O-D matrices and computed the averages for
four types of day: regular weekdays, regular weekend
days, holiday weekdays, and holiday weekend days, thus
reducing the number of hourly O-D matrices to 96 (4
types of days 3 24 h) hourly O-D matrices. Since we
focus on the province of Liège, the O-D trips whose ori-
gins or destinations are not inside the research area have
been filtered out.

Tucker Decomposition

The objective is to understand how different areas’ popu-
lations move with the changing times. Since the mobile
phone data consists of hourly mean O-D trips, we can
manage the data as a third-order tensor with three
modes: origin, destination, and time. A tensor is a multi-
dimensional array whose decomposition has been applied
to data arrays for decades to extract and explain their
properties (34). A vector is a 1-order tensor, a matrix is a
2-order tensor, a cube is a 3-order tensor, and so on (35).
According to Kolda and Bader (34), the Tucker decom-
position is a form of higher-order principal component
analysis (PCA), which decomposes a tensor into a core
tensor multiplied (or transformed) by a matrix along
each mode. The philosophy of such algorithms is to
approximate the tensor through a linear combination of
a few basic tensors (rank 1) under certain constraints (7,
35). The core tensor derived from Tucker decomposition
shows the level of interaction between the different
modes. Therefore, we chose Tucker TD to find the hid-
den patterns of traffic analysis zones and time. In this
study, the mobile phone-based O-D matrices are denoted
as a three-order tensor X 2 RI 3 J 3 K , whose (i, j, k) -th

entry xijk represents the traffic volume from origin i to
destination j in time domain k. The Tucker decomposi-
tion in (Figure 3) is:

X ’G3 1O3 2D3 3T =
XM

m= 1

XN

n= 1

XP

p= 1

gmnpom 8 dn 8 tp

ð1Þ

In Equation 1, 3 1 represents the tensor-matrix multi-
plication on mode-1. If M, N, P are smaller than I, J, K,

the core tensor G 2 RM 3 N 3 P can be thought of as a

compressed version of X , while O 2 RI 3 M , D 2 RJ 3 N ,

T 2 RK 3 P, are factor matrices and can be considered as
the principal components in each mode (34). The nota-

tion 8 describes the outer product, where o 8 d= odT , and
om, dn, tp represent the mth, nth, pth column vector of the

mode matrices O,D, T , respectively (35). Considering O-
D trips are over-dispersed count data, we proposed the
non-negative Tucker decomposition (NTD) to derive
spatial clusters and temporal patterns (26). Moreover,
the log function (Equation 2) is applied for the tensor
scaling to reduce the impact of high value.

x̂ijk =log2(1+ xijk) ð2Þ

Given the observed tensor bX , we can obtain an exact
Tucker decomposition of rank (R1, R2, R3), where
Rn = rankn( bX ), by solving the following optimization
problem:

min
G,O,D, T

k bX � G3 1O3 2D3 3T k2
F ð3Þ

In this objective error function, k � k2
F denotes the

Frobenius norm, and it numerically equals the square
root of the sum of squares for all elements. It returns the
norm of the tensor based on the Euclidean distance (7).
Numerous software libraries have been developed for
tensor computation. This work adopted the open-source
TensorLy library (36) to implement NTD. There are two
algorithms available in TensorLy to compute NTD: i)

Figure 3. Tucker decomposition of the three-order.
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multiplicative updates (MU); and ii) non-negative alter-
nating least squares (ALS) using Hierarchical ALS
(HALS).

The MU algorithms iteratively matricize tensor into
each mode. Matricizing a tensor is analogous to vectoriz-
ing a matrix. For MU in Tucker decomposition, we typi-
cally use alternating optimization, updating one factor
matrix at a time while keeping the others fixed. Assuming
the factor matrices O,D, T as An, the mode-n matriciza-
tion of X in Equation 1 can be expressed by Kronecker
products (� ) of the mode-n matricization of the core
tensor and factor matrix (35), given by:

X�n ’AnGn(A�n)
T ð4Þ

A�n = ½AN � :::�An+ 1 �An�1 � :::�A1� ð5Þ

Here, N = 3 is the number of tensor orders. If we
denote X k as the approximation to X at the kth iteration,
and X k

�n as the approximation to X at the kth iteration
with the nth factor matrix excluded, the update equation
of mode-1 (origin) for MU in NTD is as follows:

Ak + 1
1 =Ak

1 �
X 3 1(Ak

2)
T

3 2(Ak
3)

T

Gk 3 1Ak
1 3 2Ak

2 3 3Ak
3

 !
ð6Þ

where * is the Hadamard product, also known as the
element-wise product. The numerator term captures how
well the current estimate of the tensor matches the origi-
nal tensor while keeping the other factor matrices fixed.
The denominator term reconstructs the tensor using cur-
rent estimates of all factor matrices except mode-1 and
the current estimate of the core tensor to ensure normali-
zation and stability. Similarly, we can update mode-2
and mode-3 by cyclically fixing each one and updating
the rest. After updating the mode matrix, we can update
the core tensor using the following equation:

Gk + 1 =Gk � X 3 1(Ak + 1
1 )

T
3 2(Ak + 1

2 )
T

3 3(Ak + 1
3 )

T

Gk 3 1(Ak + 1
1 )

TAk + 1
1 3 2(Ak + 1

2 )
TAk + 1

2 3 3(Ak + 1
3 )

TAk + 1
3

 !
ð7Þ

In Equation 7, the numerator term represents how
well the current estimate of the tensor matches the origi-
nal tensor when the core tensor is updated, while keeping
all factor matrices fixed. The denominator term recon-
structs the tensor using the current estimates of all factor
matrices and the core tensor.

Non-negative ALS is another iterative optimization
algorithm commonly used for Tucker decomposition
(15). By alternatively improving one matrix while keeping
other matrices fixed, we can obtain the following non-
negative ALS update rule for An and G:

Ak + 1
1 =arg min

A1 ø 0
k X � (Gk 3 1A1 3 2Ak

2 3 3Ak
3) k2

F

ð8Þ

Gk + 1 =arg min
Gø 0
k X � (G3 1Ak + 1

1 3 2Ak + 1
2 3 3Ak + 1

3 ) k2
F

ð9Þ

Each update involves solving a least squares problem
with non-negativity constraints until convergence.
Within the TensorLy package, HALS can be combined
with two different algorithms to update the core and fac-
tors: active set (AS) and fast iterative shrinkage thresh-
olding algorithm (FISTA).

To seek the best choice of NTD in TensorLy for our
data, considering the algorithm processing time and recon-
struction mean squared error, we tested MU,
HALS+FISTA, and HALS+AS with one regular
weekday O-D matrices by fixing the same rank values
(45,45,24), using the default singular value decomposition
(SVD) as initialization strategies and a maximum of 100
iterations. As a result, MU is better than the HALS with

both FISTA and AS, considering the convergence error
(Figure 4). HALS+AS tends to converge faster than
MU. However, its computational time is much higher than
MU. Both MU and HALS have their strengths and weak-
nesses. The impact factors, such as the size of the data,
computational resources available, and specific characteris-
tics of the problem at hand, may affect the choice between
these two methods. We chose the method with the minimal
reconstruction error as our first priority. Therefore, we
applied MU for NTD in the following analysis. Four data
sets corresponding to the four types of days mentioned

Figure 4. Comparison of error per iteration of NTD algorithms
in TensorLy.
Note: NTD = non-negative Tucker decomposition; mu = multiplicative

updates; HALS = hierarchical alternating least squares; AS = active set;

FISTA = fast iterative shrinkage thresholding algorithm.
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above are built as four 310 3 310 3 24ð Þ input traffic ten-
sors. The original tensor has size 3102 3 24, whereas after
rank-R decomposition, the dimensionality is reduced to
R1 3 310+R2 3 310+R3 3 24 (29).

Results

The Rank of Hidden Space and Time

This experiment aims to find the spatial clusters and tem-
poral patterns, and the correlation between them based
on the time-evolving O-D trips. The outputs of NTD
include: 1) origin-decomposed factors; 2) destination-
decomposed factors; 3) time-decomposed factors; and 4)
the core tensor that contains the spatial and temporal
correlation. From 1) and 2), we can ascertain to which
cluster a traffic analysis zone belongs. Moreover, it is
possible to find temporal patterns, such as the morning
peak indicated by time-decomposed factors. Therefore,
the first step is to find rank values (m, n, p) showing
latent components for origin, destination, and time,
respectively. We conducted experiments with the poten-
tial rank values m and n ranging from 1 to 50 and p
ranging from 1 to 10 on four tensors. Each NTD with
the unique rank (m, n, p) setting runs a maximum of 40
iterations based on Figure 4. Secondly, to evaluate the
choice of rank (m, n, p), we computed the output tensor
from the decomposed factors and compared the root
mean squared error (RMSE) between the reconstructed
and the observed tensor. By changing the spatial and
temporal components’ number, we derived the recon-
struction RMSE 3-D plots for one regular weekday and
one holiday weekday Figure 5).

In the existing research (15, 25, 26), decomposed clus-
ters for origins and destinations are usually set as the
same, assuming they are balanced. We have discussed
the possible dissimilarity of origins-destinations caused
by different data inputs and temporal profiles in Section
Related Work. In this study, the evaluation of the rank
m, n, pð Þ choice shows that: 1) the O-D and D-O patterns
have high similarity using all-day mobile phone records
to analyze movements behavior; and 2) the hourly mean
temporal variability in people flow over the day does not
have a significant influence on the final determination of
the number of spatial clusters. To better depict the con-
vergence in the spatial and temporal mode, we fixed one
parameter type and tuned the other in different iterations
of NTD. As we have a maximum of 24h within a day
and 310 zones, the maximum spatial and temporal com-
ponents of NTD are 310 and 24. In addition, the origin
and destination have similarities based on Figure 5.
Therefore, we chose the same rank for m and n.

We looked into 2-D RMSE line plots for adjusting
the spatial rank with p= 3 and the temporal rank with
m and n= 40. The results are depicted in Figure 6, from
which we learned that: 1) RMSE results obtained using
four tensors are all convergent at the turn of 40 compo-
nents for spatial patterns; 2) the variance in RMSE for
temporal patterns is relatively smal compared with the
spatial one; and 3) RMSE of time does not seem to be
convergent, especially for the holiday weekday and the
regular weekend. Still, we can find the convergence for
the regular weekday, and many components leads to a
higher RMSE than the situation when p= 3. The differ-
ence in temporal patterns between days indicates that it
makes sense to differentiate people’s travel patterns

Figure 5. Reconstruction root mean squared error (RMSE) for tensors by tuning m, n,p: (a) one regular weekday; (b) one holiday
weekday.
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between weekdays and weekends. In the following dis-
cussion, we chose m and n= 40 and p= 3 as latent spa-
tial and temporal dimensions and tried to visualize the
interaction between spatial clusters and temporal pat-
terns geographically and to draw insights into human
motion in the province of Liège.

Insights of Temporal Patterns and Spatial Clusters

Temporal Patterns. Some scientists, such as Peng et al.
(37), have categorized the trip purpose into three basic
patterns, taking a typical workday as an example: home
to the workplace in the early morning; workplaces to
workplaces in the daytime; and workplaces to home or
other places at dusk. Our temporal decomposition results
on the regular weekday fits this well-known finding.
Moreover, we included the discussion on typical week-
ends and holiday weekdays to extract latent factors.
NTD belongs to the family of matrix/tensor factorization
algorithms approximating the matrix/tensor through a
linear combination of a few basic tensors (7). Therefore,
a people flow can be approximated by a linear combina-
tion of basis flows such as commuting and other working
patterns (37). The coefficients in the linear combination
indicating the strength of each basis flow are factor
matrices derived from our NTD analysis.

With regard to the temporal latent factors, each
hour’s factor represents the strength of the people flow
during this hour. We first assumed that all four O-D ten-
sors have three temporal clusters and depicted factors of
time (Figure 7). The results reveal that the temporal pat-
terns observed during regular weekdays can be categor-
ized under three distinct, purpose-based categories:
cluster C1 in Figure 7 can be interpreted as the pattern of
workplaces to workplaces during the daytime; cluster C2
with the evening peak is the workplaces-to-home pattern;
and cluster C3 with the morning peak is the home-to-

workplaces pattern. Secondly, the analysis indicates that
weekdays classified as holidays exhibit the same three-
group categorization as regular weekdays. However, for
clusters characterized by morning and evening activity
peaks, the flow intensity is diminished compared with
that observed on a typical weekday. Finally, on week-
ends, the cluster characterized by a morning peak disap-
pears, suggesting the optimal categorization into two
clusters rather than three. This observation aligns with
the findings presented in Figure 6. In the given mobile
phone-based O-D matrices, the number of trips from
0:00 to 4:00 a.m. is aggregated as one value. For instance,
the mean O-D trips of hour 5 in the morning represent
the accumulated number of trips from 5:00 to 6:00 a.m.
To make complete 24-h O-D tensors, we took an average
of the total trip value from 0:00 to 4:00 a.m. as the first
five hourly mean O-D trips. Thus, we see the same first
five-factor values in each line plot in Figure 7.

As mentioned above, analyzing the weekday’s tem-
poral patterns reveals the morning and evening peaks,
and the daytime traffic situation. The morning peak is
reached around 7:00 to 8:00 a.m. and the evening peak
around 4:00 to 5:00 p.m. during regular and holiday
weekdays. However, the patterns show that the morning
and evening peaks on regular weekdays are higher than
those on holiday weekdays, which is understandable as
some people will be away from the office for vacation
during holiday weekdays. Compared with the weekday’s
temporal patterns, the morning peak on the weekend
day disappears. In contrast, the factors drop after 4:00 to
5:00 a.m. on the regular weekend, possibly caused by the
end of night-life events. There are not many differences
in temporal patterns between the regular weekend and
holiday weekend apart from the factors of the evening
peak around 4:00 to 6:00 p.m. on the regular weekend
being much higher than on the holiday weekend, which
possibly represents a higher number of trips going home

Figure 6. Reconstruction root mean squared error (RMSE) by fixing: (a) p = 3; and (b) spatial rank (m, n) = 40.
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or joining night-event. The possible reason for this is the
increased relaxing time during holiday weekdays rather
than regular weekdays. Therefore, people tend to reduce
the demand for traveling at the weekend during the holi-
day weeks. In summary, Figure 7 can give us intuitional
guidance on the temporal management of urban mobility
patterns for regular and holiday weeks. The following
subsection will present the correlation of temporal pat-
terns with spatial characteristics.

Trip Generation and Attraction Patterns. Each mobile phone
cell represents not only an origin but also a destination.
From the mode-1 and mode-2 decomposed factors of
Tucker decomposition, we can learn the spatial clusters
based on origin and destination perspectives. As dis-
cussed above, the outputs of the mode-1 factorization
and mode-2 factorization in Equation 1 are two 310 3 40

-factor arrays. Each factor value is the coefficient of the
linear combination of spatial patterns and indicates the
strength of the basis flow. If we normalize factor values
for each traffic analysis zone (TAZ), we can show to
what extent the TAZ can be categorized as one of the 40
clusters. For simplicity and efficiency, the cluster is cho-
sen for each TAZ based on the highest factor value.

Despite choosing the same number of clusters for origin
and destination in NTD, some clusters may be empty
(without any mobile phone cell assigned) purely based on
the maximum factor value. This means the spatial cluster
number is predefined as 40, but the truly found origin- or
destination-based clusters can be less than 40. The shape
of each cluster can be different, which makes sense as the
distribution of origin-based factor values is similar to the
destination-based. Still, the values presenting the flow
strength are not exactly the same. This is also one aspect
of the imbalance between attraction and production.
However, this imbalance is not significant on the prov-
ince scale, using the 24-h O-D matrices. Figure 8 shows
the origin- and destination-based spatial clusterings on a
regular weekday. Results indicate that spatial clusters of
origins or destinations are geographically close, which is
in line with the results of Wang et al. (26). Dissimilarity
happens especially in the area (around cluster 1) with a
denser population in the north (see the population distri-
bution map in the Appendix Figure A-1).

In our study, around 80% of TAZs are categorized in
the same group, comparing results of the origin cluster-
ing with the destination clustering on the regular week-
day, and the similarity increases to more than 90% at
the weekend and on the holiday weekday. We have

Figure 7. Temporal patterns for four data sets.
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presented the reason behind this in the rank analysis
subsection. However, the dissimilarity in spatial clus-
tering between origins and destinations among differ-
ent types of day increases. For instance, the
distribution of origin clusters on the weekday is differ-
ent from the distribution of origin clusters at the week-
end (see Appendix Figure A-2), and only about 35% of
mobile phone cells are assigned to the same origin clus-
ter. The results imply the difference in human motion
between weekdays and weekends.

From Equation 1, it is noted that each column of O
interacts with every column of D and every column of T ,
and the strength of this interaction is encoded in the cor-
responding elements of G (16). Therefore, an individual
element of the core tensor serves as the weight of the
associated combination of O,D, T (35). The visualization
of this weight could help reveal the underlying ‘‘essential’’
interactions between triples of columns of O,D, T . We
took the compressed core tensor G (40 3 40 3 3) from the
regular weekday as the example to further infer the rela-
tionship between spatial and temporal patterns. Figure 9
depicts the interaction weights between 40 origin clusters
(Y-axis in the heatmap) and 40 destination clusters (X-
axis in the heatmap) for three temporal patterns
extracted from the core tensor. The figures show that the
intensity of within-cluster interactions during the daytime
(Figure 9b) is much higher than the other two temporal
patterns. As our NTD mostly combines neighboring
zones into larger clusters, the result of more within-
cluster trips than inter-cluster trips implies that there are
more short-distance trips than long-distance trips.
Furthermore, we can find the symmetry of O-D spatial
interactions between the morning peak (Figure 9a) and
the afternoon peak (Figure 9c). Apart from the symme-
try, we can see, for instance, clusters 1 and 28 attract

more trips than other clusters during the morning peak,
whereas they generate more trips than other clusters dur-
ing the afternoon peak.

Next, we evaluated the NTD results for temporal
patterns with the morning and evening peaks on a reg-
ular weekday by introducing the population distribu-
tion and the commuting matrix. The mobile phone
data were collected at the beginning of 2018; thus, we
selected the 2016 Belgium population according to the
km2 grid and the commuting matrix from the 2011
Census. In the data subsection, we have described
the difference between the delineation of mobile
phone cells and the national geo-referenced statistics.
Approximations of population and number of commu-
tes for each cell were performed and compared with the
reconstructed flow for the morning and afternoon peri-
ods separately. More details can be seen in the
Appendix Figure A-3. Based on Figure 7, we chose two
sliced tensors from 5:00 to 10:00 a.m. and 13:00 to
19:00 p.m. as inputs for NTD with rank (40 3 40 3 1).
We were interested in the inbound trips for two peaks,
so we rebuilt the arrivals and accumulated trips for
each destination and cluster. After that, the Person cor-
relation coefficients were computed, indicating a strong
positive relationship between population and inbound
trips Table 1. The number of commutes also positively
correlates with inbound trips; however, the correlation
decreases in the afternoon.

Lastly, we investigated the interaction weights between
spatial patterns in the same temporal domain. Weights
within clusters are much higher than inter-clusters and
unsuitable for spatial depictions. Therefore, we sorted
clusters based on the total inbound trips, excluding the
intra-cluster trips, to check which clusters have higher
interaction. The first two clusters found were selected as

Figure 8. Results of the spatial clustering on a regular weekday: (a) clusters of origins on a regular weekday; and (b) clusters of
destinations on a regular weekday.
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representative of each temporal pattern; their connections
were shown with the cluster where trips are generated.
From Figure 10, we can see the shift of the attraction

center within a day in the research area. Additionally, this
study provides insights into the intensity of human move-
ment in relation to specific directions, which can assist

Figure 9. Weights of interactions between spatial clusters and temporal patterns: (a) spatial interactions for temporal patterns with the
morning peak; (b) spatial interactions for temporal patterns during daytime; and (c) spatial interactions for temporal patterns with the
evening peak.

Table 1. The Pearson Correlation Coefficient Between Reconstructed Flow and Other Observations Including Commuting Matrix and
Population Distribution

Reconstruced flow Morning period coefficient 5:00 to 10:00 a.m. p-value

Number of commuting at TAZ level 0.814 � 0.0001
Number of population at TAZ level 0.805 � 0.0001
Number of population at cluster level 0.893 � 0.0001

Evening peak 13:00 to 19:00 p.m.

Number of commuting at TAZ level 0.675 � 0.0001
Number of population at TAZ level 0.858 � 0.0001
Number of population at cluster level 0.904 � 0.0001

Note: TAZ = traffic analysis zone.
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city planners in formulating policies to manage urban
environments better.

Discussion

This study shows that non-negative Tucker decomposi-
tion can infer complex human mobility patterns based
on mobile phone-based O-D matrices. The findings are
consistent with the existing literature with regard to the
origin and destination clustering and three temporal pat-
terns on a typical weekday. However, we could not draw
activity patterns for specific social groups with travel
mode information since the data lack individual informa-
tion. Still, this experiment shows the possibility of apply-
ing aggregated O-D matrices to reconstruct the travel
demand and draw valuable insights into urban mobility
patterns. First, we found the difference in mobility pat-
terns between a working weekday and a weekend day.

Second, from the interaction of spatial clusters and
the temporal pattern with the morning peak, we saw that
places such as the Liège city center, offering more job
opportunities, are attracting more trips than other places.
Even though the O-D matrices do not contain any infor-
mation about individuals or their trip purposes, the
results of temporal patterns during the weekday are
under the representation of three purpose-based cate-
gories, which can feed as activities for daily plan genera-
tion in the future.

Third, we can identify which residential areas generate
more commuting trips to the central business district
(CBD) of Liège. Comparing information on land use
and the population distribution with spatial patterns
identified by the TD, we can find that most of the central
districts of spatial clusters are the TAZs with higher
populations. The number of long-distance trips, such as

going to work or school, decreases for most places dur-
ing the weekend, whereas nearby trips increase.

The findings mentioned above can support policy-
makers in urban planning. However, we must clarify that
the O-D matrices discussed here are only for the trips
whose origins and destinations are both within the prov-
ince of Liège. Trips originating from or arriving at a
zone outside the province of Liège take around 16% of
the total mobile phone-based O-D trips. Furthermore,
given the relatively small size of Belgium and the specific
location of the Liège province, cross-border trips, for
instance, for commuting and shopping, are not captured
either. Notwithstanding, as illustrated by Christmann
et al. (38), these flows are non-negligible.

Conclusions

This work focused on interpreting spatial clusters, tem-
poral patterns, and the correlation between both by
applying non-negative Tucker decomposition to mobile
phone-based O-D matrices. The visualization proposed
in this study explains how mobile phone data can be
used to provide valuable information to citizens and
authorities. The analysis indicates that 40 spatial clusters
and three temporal patterns can be found based on the
compression of O-D tensors. In addition, we should dif-
ferentiate human motion on weekdays, weekends, regu-
lar weeks, and holidays.

NTD seems promising for analyzing mobility patterns.
Meanwhile, we validated the reconstructed demand by
introducing other comparable data sources. However,
this study has limitations, as the provider of the mobile
phone data has a limited market share, and we are not
clear to what extent this can affect results.

Figure 10. Results of the inter-clusters interaction on a regular weekday: (a) top two destination clusters in the morning; and (b) top
two destination cluster in the afternoon.
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Future research should focus on the reliability of esti-
mated tensors. Moreover, we saw differences in spatial
clustering with different data sets. Further research on
evaluating the consistency and robustness of the cluster-
ing results is needed to delineate the approach’s applic-
ability clearly. Finally, an interesting future research
direction would be to estimate the underlying trip pur-
pose over different periods derived from NTD to gener-
ate daily activity plans.
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