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Résumé 

Les impacts du changement climatique sur la qualité de l’air intérieur (QAI) sont déterminés par 

un ensemble de facteurs influents. Ce système de régulation intègre les modifications des 

polluants atmosphériques et des conditions météorologiques (intérieures et extérieures), ainsi que 

le comportement des occupants et les caractéristiques des bâtiments. Par ailleurs, les plans 

d’action de rénovation des bâtiments visant à faire face à l’augmentation des phénomènes 

météorologiques extrêmes et aux demandes énergétiques correspondantes se traduisent par des 

bâtiments plus étanches à l’air, avec des taux de renouvellement d’air réduits et l’introduction de 

nouvelles technologies de chauffage, ventilation et climatisation (HVAC). Cette thèse de doctorat 

explore l’état futur de la QAI dans une maison à ventilation naturelle (avec ventilateurs 

d’extraction) en Belgique, selon divers scénarios climatiques projetés jusqu’en 2100. À cette fin, 

la recherche comprend trois sections principales (chapitre 2): I) l’étalonnage de capteurs à faible 

coût et les campagnes de mesure de la QAI (chapitres 3 et 4), II) le développement, la validation 

et l’étalonnage du modèle de QAI (conception multizone/multicontaminant dans CONTAM) 

(chapitre 5), et III) l’obtention des entrées futures du modèle de QAI (chapitre 6). En appliquant 

cette méthodologie à l’étude de cas choisi, des niveaux de QAI peuvent être prévus au milieu et 

à la fin du siècle. Enfin, pour fournir un outil d’aide à la décision pour objectiver l’évaluation des 

impacts du changement climatique sur la QAI, un indice hybride changement climatique-QAI 

(CAPI) a été conçu. Le CAPI intègre simultanément l’état de la qualité de l’air intérieur, la 

pollution de l’air extérieur et les vagues de chaleur. Les projections temporelles futures du CAPI 

jusqu’en 2100 ont montré une tendance à la baisse de la qualité de l’air intérieur dans le contexte 

d’une augmentation des épisodes de chaleur extrême. Les résultats du CAPI pour l’étude de cas 

choisie ont été calculés en considérant des dépassements des niveaux d’ozone. 
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Abstract 

Impacts of climate change on the Indoor Air Quality (IAQ) are derived by a system of influential 

factors.  This governing system incorporates the alterations of air pollutant and air weather 

conditions (indoors & outdoors), in parallel with occupants’ behaviour and building characteristics. 

On the other hand, building retrofit action plans to tackle the increasing extreme weather events 

and corresponding energy demands, result in more air-tight buildings with reduced air exchange 

rates, and new Heating, Ventilation, and Air Conditioning (HVAC) technologies. This PhD thesis 

explores the future state of IAQ in a naturally ventilated house (with exhaust fans) in Belgium, 

under various climate scenarios projected up to 2100. To this end, the research includes three main 

sections (Chapter 2): I) IAQ low-cost sensor calibrations and IAQ measurement campaigns 

(Chapter 3&4), II) IAQ model development, validation, and calibration (multi-zone/multi-

contaminant design in CONTAM) (Chapter 5), and III) Obtaining future inputs of the IAQ model 

(Chapter 6). By applying this methodology to a chosen case study, IAQ levels can be predicted in 

the middle and end of the century. Finally, to provide a decision supporting tool and objectivize the 

assessment of climate change impacts on IAQ, a hybrid climate change-IAQ index (CAPI) was 

designed. CAPI integrates the state of IAQ, outdoor air pollution, and heat waves simultaneously. 

Both experiments and future temporal estimates of CAPI till 2100 showed an increased trend of 

declining IAQ levels in the context of increasing extreme heat events. The CAPI results for the 

selected case study were calculated considering exceedances of ozone levels. 
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PIC   Particle-in-Cell method 

PID   Photoionization Detectors 

PLS   Partial Least Squares 

PM1   Particulate Matter 1 µm 
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SO2   Sulfur dioxide 
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1. Introduction 

1.1. Background 

Climate variability represents all the changes in the climate which take place longer than 

particular weather events, while the term “climate change” itself, targets those changes that 

remain for a longer time span, e.g., decades or more (significant, long-term changes in the global 

climate). Climate change comprises both global warming and its effects on Earth’s weather 

patterns (Allen et al. 2018). There is now clear evidence that projected climate change will have 

major impacts on the indoor environments (Vardoulakis et al. 2015). The risks are not yet fully 

described quantitatively, but various outcomes, e.g., that higher temperatures higher indoor 

concentrations, are expected (changes in building materials emissions, natural air exchange rates 

(AERs), outdoor pollutants levels, occupancy behavior, etc.). Natural ventilation refers to the 

“ventilation occurring as a result of only natural forces, such as wind pressure or differences in 

air density, through intentional openings such as open windows and doors.” (ASHRAE 2017). 

Higher outdoor ozone concentrations may lead to increased indoor chemistry and the formation 

of secondary products. Mitigation and adaptation policies are needed, and, before that, a better 

understanding of how buildings will be impacted and used is needed (Weschler 2000).  

Climate change may affect Indoor Air Quality (IAQ) and associated health impacts via increases 

in indoor pollutants emissions, increases in indoor temperatures (altering the comfort and natural 

AERs), increasing or decreasing emissions of pollutants from outdoor sources (changes in 

ambient air pollution driven by climate change), changes in building construction and operations 

that alter AERs, and changing occupants’ activity patterns and behaviors, including use of heating 

systems, windows and air-conditioning systems. These changes will be driven not only by 

climate change itself, but also by efforts to adapt to or mitigate climate change, and will occur in 

parallel with other societal trends, such as population growth and urbanization, that could impact 

the built environment and IAQ. Those most vulnerable to climate-related changes in the indoor 
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environment likely include the poor, the elderly, and children. While the challenges posed by 

climate change for IAQ are not qualitatively new (Field 2010), the complexity of future changes 

will offer new challenges. 

IAQ, as a subset of Indoor Environmental Quality (IEQ), is mainly correlated to three influential 

domains (Pourkiaei & Romain 2023): 

1) outdoor environment (weather and air pollution), 

2) occupants’ behavior and 

3) the building itself (structure, material, utilities, etc.). 

To be specific, IAQ is determined as characteristics of the air we breathe-in in the indoor 

environments, e.g., gaseous composition, humidity, temperature, and contaminants 

concentrations (ASHRAE 2024). The National Crisis Center of Belgium (NCCN), coordinated 

an extensive risk assessment in 2018, for Belgium territory with the time span of 5 years. 

Collective experts evaluated different risks based on their priority, probability and the influential 

strengths on population, society, environment and the economy. For the risk of ‘large-scale 

deterioration of air quality’, the analysis outcome was as following (NCCN 2018): 

• Impact: low impact 

• Probability: very likely 

The very likely low impact “deterioration of air quality” impacts the IAQ of buildings. 

The subject of “IAQ being affected by climate change” was brought to the literature by a specific 

report presented by R. Field in 2010, and just after it the exclusive report of “climate change, 

IAQ and health” by the U.S. Environmental Protection Agency (EPA) (Field 2010, Schenck 

2010, Fisk 2015). Two years after, W. Nazzarof subjectively discussed the detailed consequences 

of climate change to IAQ, and established a bright baseline for future studies to answer this 

question: What are the effects of climate change on IAQ? (Nazaroff 2013). 
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Other distinguished qualitative studies include but are not limited to: The report of Institute of 

Medicine (IOM 2011), and Health Protection Agency (HPA) report on the effects of climate 

change (Vardoulakis et al. 2012, Vardoulakis et al. 2015). Figure 1.1., adapted from (IOM 2011), 

shows selected pathways through which climate change is likely to modify IAQ. 

1.2. IAQ Definition 

There have been many debates among IAQ specialists about the proper definition of IAQ and 

specifically what constitutes “acceptable” IAQ. By the definition of European Ventilation 

Industry Association (EVIA) “Indoor air quality (IAQ) is a term which refers to the air quality 

within and around buildings and structures, especially as it relates to the health and comfort of 

building occupants.” (EVIA 2024). According to the definition proposed by US EPA, the IAQ is 

“the air quality within and around buildings and structures, especially as it relates to the health 

and comfort of building occupants.”. By another definition presented by ASHRAE Technical 

Committee (TC) 1.6, IAQ refers to the “attributes of the respirable air inside a building (indoor 

climate), including gaseous composition, humidity, temperature, and contaminants.”. 

1.3. IAQ & Climate Change 

In general, the level of chemical and airborne contaminants in buildings are mainly linked to 

ventilation characteristics (Air Exchange Rate (AER) of outdoor air into indoor), infiltration rates 

of outdoor air, and indoor emission/sink sources (Vardoulakis et al. 2020, Fazli 2021). Internal 

emission/sink sources are linked to occupants’ behavior (transient & intermittent) and building 

elements (permanent). Also, household activities affect the indoor air pollutant removal rate by 

deposition, filtration, and exfiltration, while some re-suspensions may take place (Shrubsole 

2012). Indoor emission sources include transient emissions from internal sources (i.e., 

construction materials, building equipment, and utilities), and intermittent emissions (i.e., 

burning fuel and candles, smoking, cooking, heating, and occupant behaviors) (Shrubsole et al. 

2012, Sá et al. 2022). Indoor air pollutants comprise a wide variety of physical, biological, and 
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chemical contaminants, including but not limited to Carbon Monoxide (CO), Carbon Dioxide 

(CO2), Volatile Organic Compounds (VOCs), Nitrogen Oxides (NO & NO2), Particulate Matter 

(PM), and Ozone (O3) (Gonzalez-Martin et al. 2021). Notably, CO2 is not cataloged among the 

selected indoor pollutants by the World Health Organization (WHO), but it has been widely used 

as an indicator of adequate air ventilation where high indoor CO2 levels indicate low AERs. High 

CO2 levels show poor AERs and potential accumulation of indoor pollutants (Moreno-Rangel et 

al. 2018, ANSI/ASHRAE 2022, Persily et al. 2022). 
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Fig 1.1. Different scenarios that climate change may impact buildings and inhabitants. 

(Re-illustration from (IOM 2011), and original picture is adapted from (Su, undated)). 

Future scenarios correlated with the indoor built environment include future climatological 

scenarios, future Greenhouse Gas (GHG) emissions, and future buildings’ adaptation and 
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mitigation strategies regarding energy retrofit plans. It is known that these scenarios will impact 

the contaminant concentrations in residential buildings (Spengler 2012, Nazaroff 2013, Zhong & 

Lee 2017, Fazli et al. 2021). The abovementioned elements can also affect the indoor 

environment through heat and mass transfers between the interior spaces and the surrounding 

environment. 

To meet the European 2050 climate-neutral targets, current policies suggest present premises 

must go through extensive retrofitting by utilizing sufficient insulation, high-performance 

Heating, Ventilation, and Air Conditioning (HVAC) systems, and enhanced air tightness 

(Shrubsole et al. 2012, Cornet et al. 2013). Such measures to air tightness and HVAC systems 

along with climate change itself, are projected to result in alterations of IAQ and personal 

exposure to airborne contaminants. However, IAQ directly affects public health and well-being 

(Son 2023). Correspondingly, to mitigate heat waves and peak pollution events residential 

building models need to consider changing ambient environments (Amaripadath et al. 2023). 

Figure 1.2. presents Key pathways linking climate change to IAQ and health (directly imported 

from Zhang et al. 2023: Handbook of indoor air quality. Springer Nature 2023) 
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Fig 1.2. Key pathways linking climate change to IAQ and health (directly presented from Zhang et al. 2023: 

Handbook of indoor air quality. Springer Nature 2023) 

 

1.4. Problem Statement 

As global temperatures rise and extreme weather events become more frequent, the built 

environment faces new challenges in maintaining healthy indoor environments. Residential 

buildings, where individuals spend the majority of their time, are particularly vulnerable to the 

impacts of climate change on IAQ due to factors such as building design, ventilation systems, 

and occupant behaviors. The problem statement revolves around the need to understand the 

complex interactions between climate change and IAQ indicators (parameters), quantitatively, 

including temperature, humidity, air pollutants, and indoor comfort levels. Climate change can 

exacerbate indoor air pollution by altering outdoor air quality, variation in regional weather 

patterns along with increasing the frequency of heatwaves (changes of natural AER) and 

promoting the growth of indoor mold and allergens. Moreover, changes in building energy usage 

and ventilation patterns driven by climate adaptation strategies may inadvertently compromise 
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IAQ (More air tightened ↔ Less AER). Also, low maintained HVAC systems can be a source 

for some indoor pollutants. 

This thesis seeks to build a methodology to investigate the relationship through which climate 

change affects IAQ (quantitatively) and provide a decision supporting tool to assist mitigation of 

potential risks and promote healthier indoor environments. By elucidating these relationships and 

developing targeted interventions, this research aims to contribute to the resilience and 

sustainability of residential buildings in the face of climate change impacts on IAQ. 

1.5. Objectives And Research Questions 

This Ph.D. research, as a part of OCCuPANt project (OCCuPANt, 2020), forecasts the impact 

of climate change on Belgian residential houses. Also, it provides a corresponding decision 

supporting tool to provide information on if and which adaptation measures are needed. 

OCCuPANt, University of Liege project: 

Impacts of climate change on the indoor environmental and energy performance of buildings in 

Belgium during summer. 

On the strategic level, this research aims at contributing to a healthy and productive community 

by indicating the vulnerability of occupants in the indoor environment to the projected impacts 

of climate change. In other words, the research aims to safeguard human health, comfort, and 

productivity inside buildings despite a changing climate and achieve this most sustainably, by 

focusing on the IAQ analysis under different future climatological scenarios. 

The effect of overheating and extreme heat events on IAQ in Belgium has remained unknown 

(one of primary OCCuPANt’s motivations). In this sense, with a focus on the summer time, 

Ph.D. research objectives are as follows: 

https://www.occupant.uliege.be/
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(i) Evaluating the application of low-cost air pollution sensors for long-term indoor 

measurement campaigns (essential for IAQ model development and design 

validation) 

(ii) Developing a modeling-based research methodology for quantitative assessment of 

climate change impacts on IAQ 

(iii) Implementation of the developed modeling-based research framework, along with 

accusation of required inputs, for both the basis year and the future state 

(iv) Introducing a hybrid index to objectivize the climate change impacts on the IAQ 

(IAQ-CC index) 

This research is crucial for understanding and mitigating the effects of climate change-induced 

overheating on IAQ during summer, ensuring occupant health and comfort in increasingly 

extreme temperatures. This Ph.D. research intends to answer the following main research 

question: 

• What are the likely impacts of climate change on the IAQ of residential Belgian houses in 

summers? 

The main research question can be broken down into several specific questions that need to be 

addressed initially. Those questions explore different research gaps that are identified and 

answered in different scientific publications. The specific research questions are as follows: 

. RQ1. How do current methods assess time-integrated IAQ information in residential buildings 

in temperate climates in the context of climate change? 

. RQ2. How to efficiently employ low-cost sensors for IAQ model development? 

. RQ3. How to determine future regional values of IAQ influential parameters following pre-

defined scenarios of climate change? 

. RQ4. How to quantify and evaluate the IAQ performance of buildings under the overheating 

impact of climate change, using a decision-supporting tool? 



28 

 

 

The second chapter is dedicated to the research framework development. Implementation  of each 

section of the framework is presented in the following chapters. Chapter three presents the IAQ 

measurement tools aimed at acquiring inputs for the base IAQ model and validating their 

accuracies. The calibration of low-cost sensor monitoring devices is included in this chapter also. 

In the fourth chapter, indoor measurement campaigns and their results are presented. In the fifth 

chapter, the study of the IAQ models, the development of the IAQ basis model (year 2021) in 

CONTAM, and its validation and calibration processes are presented. Chapter six is dedicated to 

the future IAQ model input preparation. Ultimately, the seventh chapter addresses the final 

results, discussions, and conclusions. 
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2. Research Framework Development 

2.1. Introduction 

Developing a research framework for quantitative analysis of climate change impacts on IAQ is 

crucial for understanding and mitigating potential health risks. Climate change affects outdoor 

air quality, weather patterns, and building environments, all of which can significantly affect 

IAQ. This framework aims to systematically assess these impacts by integrating climate models, 

air quality simulations, and building performance evaluations. By quantifying the relationships 

between climate variables and indoor pollutant levels, the framework provides a robust basis for 

a methodology for predicting future IAQ scenarios under different climate change projections. 

Additionally, it assists identifying key factors influencing IAQ, such as changes in temperature 

(affecting the AERs), and infiltration rates, potential variations in occupants-building 

relationship, thereby informing the development of adaptive strategies to enhance indoor 

environmental health and resilience in the face of climate change. This chapter is an effort to 

answer the first research question (RQ1). 

2.2. Literature Review 

Flagship Studies Targeting Quantitative Assessments Of IAQ In A Changing Climate  

This section (2.2.) is drafted with inspiration from reference Pourkiaei et al. 2024 (Systematic 

framework for quantitative assessment of IAQ under future climate scenarios; 2100s projection 

of a Belgian case study). 

The modeling of IAQ has remained a fundamental subject within the scope of indoor air science 

and engineering for a long time (Heinsohn & Cimbala 2003). Before obtaining representative 

IAQ models, measurement campaign, and validation procedures must be performed. Large-scale 

temporal predictions can only be achieved through the utilization of models. Several underlying 

processes and elements in assessing IAQ outcome have been found in previous attempts to create 
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physical and chemical IAQ models, including emissions, infiltration/exfiltration and ventilation, 

chemical reactions, and surface interactions (sorption and deposition) (Abdalla & Peng 2021). 

The recent literature provides valuable information on the various phenomena associated with 

future climatological scenarios and their potential impacts on IAQ. Nevertheless, it remains 

complex and diverse to obtain a quantitative approach for the assessment of interlinked and 

contradictory impacts of these future scenarios on indoor pollutant concentrations (Fisk 2015, 

Mansouri et al. 2022). The possible effects on IAQ are frequently ignored in discussions about 

building energy efficiency. Also, the adequate IAQ level is seen in contrast with efficient energy 

performance.  

Energy-saving measures taken at the expense of IAQ reduction, increase the potential negative 

risks to occupants’ productivity, comfort, and health. Hence, it is imperative to standardize the 

perception of climate change effects on IAQ by establishing the regulations and policies to be 

enforced in the building codes and retrofit mandates. 

The first question considered in evaluating the scientific literature is: “Which studies have 

quantitatively assessed the impacts of climate change on IAQ?” 

Taylor et al. employed EnergyPlus 8.0 integrated generic contaminant model to examine the 

indoor levels of PM2.5 under various UK Climate Projections 2009 (UKCP09) scenarios in the 

London housing stock (Taylor et al. 2015). Their model takes into account the natural ventilation, 

infiltration of ambient outdoor PM2.5 into indoors, PM2.5 produced indoors through fixed trends 

of cooking and smoking, and reduced building permeabilities. The model doesn’t consider any 

variations in outdoor air PM levels and assumes it at fixed levels. The predictions till 2050 

indicated that flats have 0.7–0.8 times as much outdoor PM2.5 infiltrating indoors compared to 

detached dwellings, but 1.8–2.8 times higher PM2.5 from indoor sources. 

Ilacqua et al. employed a steady-state single-zone mass balance model to estimate the climate 

change effects on future indoor air pollution “exposures”, in terms of changing infiltration rates 
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(Ilacqua et al. 2017). Their model only takes into account the infiltration ratio of pollutants from 

ambient to indoors through the building leakages, and its correlation with future climate 

(temperature) scenarios. The model doesn’t consider any ventilation type, occupant behavior, 

and variations in outdoor air pollution levels. The AER via infiltration was estimated by the 

Lawrence Berkeley National Laboratory (LBL) model (McWilliams & Jung 2006). The findings 

for a temporal range of 2040-2070 indicated a 5% decrease in infiltration rates would lead to a 

2-23% relative rise in the level of indoor-originating contaminants, along with a 2-18% decrease 

in the level of outdoor-originating contaminants. 

Chang et al. investigated the influence of climate change on the variations of indoor 

formaldehyde (molecular formulae: HCHO) levels, by IIAQ-CC model (a developed dynamic 

multimedia model based on mass balance equations) (Chang et al. 2018). The modeling was 

performed for the temporal range of 2010-2100. The outdoor concentration of formaldehyde was 

estimated by a model named KPOP-CC, which allocates meteorological data with IIAQ-CC. 

However, no available English language reference describing the KPOP-CC model was found. 

Future indoor formaldehyde levels were predicted by considering different scenarios of 

formaldehyde emission and window openings. 

Salthammer et al. employed single-zone mass balance and one-dimensional heat transfer models 

to evaluate the impacts of climate change on PM levels and indoor climate, in a single-family 

house (Salthammer et al. 2018). The model didn’t take into account the impacts of the building 

envelopes, airflow patterns, indoor emission sources, and mechanical ventilation systems. Also, 

they only made rough theoretical estimates of future outdoor PM levels based on past data 

statistics. For warm seasons until 2040, their model estimated a reduction of indoor PM2.5 and 

PM10 concentrations by 22% and 34%, respectively. Zhao et al. (in continue of Salthammer et al. 

2018) addressed the future outdoor air pollution concentrations (only for 24hr, O3) without 

presenting the detailed method, in a recent study (Zhao et al. 2024). They have falsely claimed 
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that  IPCC (Intergovernmental Panel on Climate Change) scenarios provide the change in annual 

mean concentrations. However, they don’t discuss the fact that IPCC target contaminants are 

only GHGs (GHG surface air mole fractions of 43 species, including CO2, CH4, N2O, HFCs, 

PFCs, halons, HCFCs, CFCs, sulphur hexafluoride (SF6), ammonia (NF3) (Chen et al. 2021a)), 

and their future annual mean emission rates are provided, not their regional concentrations (IPCC 

AR6, 2023, Meinshausen et al. 2020, Chen et al. 2021b). 

Fazli et al. developed national residential energy and indoor air model, to predict energy use and 

IAQ, in the U.S. dwellings in the mid-21st century (Fazli et al. 2021). They developed a 

comprehensive single-zone mass balance model to estimate indoor pollutant concentrations. 

Their model takes into account infiltration, natural and mechanical ventilation, deposition, 

reaction, and pollutant removal by HVAC filters. They utilized CMAQ model to estimate future 

outdoor air pollution. The Community Multiscale Air Quality model or CMAQ, is a sophisticated 

three-dimensional Eulerian grid chemical transport model developed by the US EPA for studying 

air pollution from local to hemispheric scales. They considered a series of assumptions for future 

building characteristics (increased airtightness, implementation of electric stoves and HVAC 

systems), and population evolution (increased construction in building housing stock and 

population displacement), while other less predictable parameters were kept constant. Their 

results showed that indoor levels of PM1, PM2.5, and NO2 would decrease due to reductions in 

both indoor and outdoor sources. Also, indoor levels of O3 stemming from outdoor origins would 

rise, potentially increasing indoor chemistry reactions. Considering the results and learning 

lessons from the International Energy Agency (IEA) EBC Annex 86 “Energy Efficient IAQ 

Management in Residential Buildings” (Annex-86 2024), specially the subtask 4 (ST4): 

performance of smart ventilation (Kolarik & Guyot 2022, Guyot et al. 2023),  the outcome of the 

literature analysis is presented in Table 2.1. 
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2.3. Thesis Research Framework 

A research framework provides a structured approach to guide the research process, ensuring that 

all relevant aspects are considered and addressed systematically. Secondly, it helps to clarify the 

research objectives, questions, and hypotheses, providing a clear roadmap for conducting the 

study. 

After understanding the principles of research problem, the correlated literature and references 

were examined methodologically. It was realized that the net effect of climate change on indoor 

contaminant levels (correlated to occupants’ exposure) is contingent upon various mechanisms 

beyond mere temperature rise. These mechanisms include the arrangement of emission sources 

(indoors or outdoors), behavioral responses, potential building modifications, and the climate 

change penalty on ambient air pollution and meteorological conditions. 

Evaluation of a representative system in its future state as the main goal (research question), 

prioritize and mandate a modeling solution. Due to the lack of national representative IAQ 

designs in Belgium, developing a base IAQ design (case study) was targeted. To meet the 

requirements for a validated IAQ design, a series of experiments were considered for the design 

validation and calibration. 

Complementarily, obtaining the future input variables and adjusting the research assumptions 

due to limitation factors were taken into account. It should be noted that the research framework 

was designed and developed in multiple steps during the thesis progress. Figure 2.1. illustrates 

the designed framework of this thesis for the quantitative assessment of climate change impacts 

on IAQ. 
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Fig 2.1. Intensive thesis framework for quantitative assessment of climate change effects on IAQ. 

 

Selecting this approach requires series of assumptions as well as considering certain levels of 

uncertainties. In this method, the IAQ model should be fed by main future inputs including future 

outdoor air pollution, future AERs, future climate data, and future indoor climate.  Also, other 

future parameters (occupants’ behavior, building characteristics, ventilation, etc.) should be 

considered. The output results can go into as much detail as the IAQ model allows. Generally, 

well-developed IAQ models are capable to take into account ventilations, emissions, depositions, 

filtrations, and leakages, as well as defined chemical reactions based on formerly identified 

physical chemistry involved in the phenomena. Correspondingly, if a phenomenon is not 

identified, generalized or described in terms of scientific equations (e.g., atmospheric chemical 

interactions or surface emission rates among other physical-chemical factors, etc.); it is not going 

to be determined in the future modeling, either. Models, enable us to have a reliable temporal 

estimation through the events with current available knowledge of phenomena by the help of 

assumptions. The outcome analysis could be advanced, as far as the IAQ model is capable to 

simulate involved physical and chemical domains. Moreover, impacts of climate change vary on 

a regional basis (Lead 2008). Hence, the impacts of climate change on IAQ should be studied 

vary by region as well.  
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Figure 2.2. presents the research methodology of the project in terms of a study conceptual 

framework (SCF). SCF is the tool that ties all aspects of the study together, offering a coherent 

perspective to understand the research more holistically. 

 
Fig 2.2. Study conceptual framework (SCF). 

 

2.4. Conclusion 

There are rising IAQ concerns about both GHG emissions and heatwave risks (direct/indirect), which 

are expected to take place to a greater extent in future climate scenarios. There is no common 

guidance to examine the climate change effects on IAQ quantitatively, to date. To overcome this lack, 

as the first step of this thesis a “thesis research framework” (see Figure 2.1.) and a “study conceptual 

framework” (see Figure 2.2.) were developed. In order to recap these frameworks into a more general 

road map that can be followed step by step (with various choices) to evaluate all influential factors 

computably, a systematic framework is presented in the Figure 2.3. (Pourkiaei et al. 2024). The first 

strength of this systematic framework is rooted in the robust literature study and consideration of all 
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accomplished distinct projects on the topic, worldwide. While the systematic framework presents 

multiple choices for researchers at each section and step, the thesis focus is on a time and cost-

efficient approach selection for all three main steps of i) IAQ measurement, ii) IAQ model design, 

and iii) Future IAQ state evaluation. Different aspects of this modular systematic framework, and the 

selected solutions among those presented, will be discussed in the following chapters of the thesis. 

The primary objective of the proposed framework is to offer a wide variety of solutions for 

quantitative IAQ investigation across the board. It is noteworthy that, while implementing the 

framework on the selected case study, the research placed greater emphasis on the summer duration 

(due to project objectives concerning overheating - Chapter 4), the application of CONTAM IAQ 

model (for computing natural ventilation AERs - Chapter 5), and the pollutant O3 (a highly influential 

contaminant for the hybrid index – Chapter 7). 

 

 

Correlated publishment of this chapter: 

Pourkiaei, M., & Romain, A. C. (2023). Scoping review of indoor air quality indexes: 

Characterization and applications. Journal of Building Engineering, 106703, 

https://doi.org/10.1016/j.jobe.2023.106703 

 

Pourkiaei, et al. (2024). Systematic Framework for Quantitative Assessment of Indoor Air 

Quality Under Future Climate Scenarios; 2100s Projection of a Belgian Case Study. Journal of 

Building Engineering, 109611, https://doi.org/10.1016/j.jobe.2024.109611 
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Fig 2.3. Systematic Framework for quantitative assessment of IAQ under future climate scenarios (the followed 

path in this PhD thesis is highlighted in light blue colour). 
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3. Application Of Low-Cost Air Quality Sensors For IAQ Experiments 

3.1. Introduction 

IAQ measurements are essential for both assessing the presence (concentration) of pollutants in 

enclosed spaces, and also validation of IAQ model designs (model performance evaluation). Poor 

IAQ can have significant implications for human health, comfort, and productivity, making 

accurate measurement techniques crucial for identifying and mitigating indoor air pollution. This 

section provides an overview of IAQ measurements, including the importance of monitoring, 

common pollutants of concern, measurement techniques, and emerging trends in real time IAQ 

assessment. The content of this chapter is inspired by references (Pourkiaei et al, 2022), 

(Pourkiaei & Romain 2023) and (Pourkiaei et al. 2024) (Systematic framework for quantitative 

assessment of IAQ under future climate scenarios; 2100s projection of a Belgian case study). 

This chapter is an effort to answer the second research question (RQ2). 

3.1.1. Importance Of Monitoring IAQ 

Indoor air can contain a multitude of pollutants originating and influenced by various elements, 

including outdoor environment, building ventilation type and its activity patterns, building air 

tightness (infiltration/exfiltration), building materials, furniture, cleaning products, combustion 

processes, and human activities. Pollutants can accumulate indoors and pose health risks to 

occupants, leading to respiratory problems, allergies, asthma, and other adverse health effects. 

Additionally, poor IAQ can impact cognitive function, comfort, and overall well-being. 

Therefore, continuous monitoring of IAQ is essential for identifying potential risks, 

implementing effective mitigation strategies, and ensuring healthy indoor environments. IAQ 

measuring experiments play an essential role in obtaining the model required design parameters, 

input data, along with IAQ model performance evaluations which is commonly referred to as 

validation of the IAQ models (Section 3.1.5.). The main idea of implementing the experiments 
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step (development of monitoring devices and IAQ measurement campaigns) in the research 

framework of this thesis is to address the IAQ model validation objective. 

3.1.2. Different IAQ Measurement Approaches 

A variety of measurement techniques are employed to assess IAQ parameters and pollutant 

concentrations. These techniques enable comprehensive characterization of IAQ and 

identification of sources contributing to pollution. These techniques can be categorized into 

direct sampling methods, which involve the collection of air samples for laboratory analysis, and 

real-time monitoring methods, which provide continuous, on-site measurements. Direct 

sampling methods include grab sampling, passive sampling, and active sampling using devices 

such as pumps and sorbent tubes. Real-time monitoring methods on the other hand, utilize 

sensors and instruments to measure the target parameters in a continuous manner. 

Although advanced measuring/analysis instruments (reference analyzers) allow the exact 

determination of indoor contaminant concentrations with the highest accuracy and precision, 

their cost and complicated operations make them unsuitable for various (high temporal & spatial) 

tasks. The main technologies of reference analyzers include but not limited to Gas 

Chromatography (GC), High-Performance Liquid Chromatography (HPLC), ion 

chromatography, Mass Spectrometry (MS), Fourier-transform infrared spectroscopy (FTIR), 

LED-based UV photometric detection, Flame Ionization Detection (FID), Non-Dispersive 

Infrared Gas detection (NDIR), Chemiluminescence Detection (CLD), Thermal Conductivity 

Detector (TCD), Electron Capture Detector (ECD), Cavity Attenuated Phase Shift spectroscopy 

(CAPS), UV fluorescence detection, and paramagnetic ionization detectors (Zhang Y et al. 2022, 

Eftekhari et al. 2023). The aforementioned techniques as well as their instrumentations are 

essentially designed for laboratory/stationary practices. Moreover, they need expert operators 

and long results time which make them unsuitable for prompt indoor air examinations (Abraham 

and Li 2014). 
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3.1.3. Emerging Trends In IAQ Measurement 

Advancements in sensor technology, data analytics, and indoor environmental quality (IEQ) 

monitoring systems are driving innovation in IAQ assessment. Emerging trends in IAQ 

assessment are witnessing a significant shift towards the adoption of low-cost sensors (LCS), 

revolutionizing the landscape of IAQ monitoring. 

The accuracy of low-cost air sensors varies significantly and is generally lower compared to 

high-end reference-grade instruments. These sensors can be influenced by environmental factors 

such as T, RH, and cross-sensitivity to other gases, which can affect their accuracy. Additionally, 

calibration drift over time can lead to further inaccuracies. Despite these limitations, with proper 

calibration and correction algorithms, low-cost sensors can provide reasonably reliable data for 

indicative monitoring and trend analysis. They are particularly valuable for large-scale 

deployments and citizen science projects where cost constraints prevent the use of more 

expensive equipment. 

These sensors offer the advantages of affordability, portability, and real-time data collection, 

empowering individuals and building managers to monitor IAQ more comprehensively and 

efficiently. LCS monitoring devices provide dense temporal and spatial data measurement in a 

wider range of interior spaces. With the advances of LCSs in quality and operation, reliable 

devices with compact design and more affordable cost can be employed in holistic 

measurement/monitoring campaigns (Demanega et al. 2021).  

LCS have various working principles including electrochemical sensors (Kumar et al. 2011), 

metal oxide (MOx) semiconductor sensors, Infrared radiation (IR) sensors, photoionization 

detectors (PID), and light scattering (Chojer 2020). However, it should be noted that the 

maintenance and reliability of air pollution LCS are crucial for ensuring accurate and dependable 

measurement of indoor and outdoor air quality. The following 2.1.4. subchapters are inspired from 

two recent review studies on the performance and performance evaluation of LCSs (Karagulian et 

al. 2019, Kang et al. 2022). 
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3.1.3.1. Calibration and Calibration Verification 

Regular calibration of sensors against reference instruments or standard gas is essential to ensure 

accuracy. Additionally, calibration verification checks should be conducted periodically to 

confirm the stability and reliability of sensor readings over time. 

3.1.3.2. Environmental Conditions 

Sensors should be operated within specified environmental conditions (e.g., temperature, 

humidity) to maintain accuracy and reliability. Exposure to extreme temperatures, high humidity, 

or contaminants can affect sensor performance and longevity. 

3.1.4.3. Sensor Stability and Drift 

Monitoring sensor stability and drift over time is essential for detecting changes in performance 

and ensuring data reliability. Continuous monitoring and periodic recalibration can help mitigate 

sensor drift and maintain measurement accuracy. 

3.1.3.4. Sensor Lifespan and Durability 

Assessing the lifespan and durability of sensors is crucial for long-term monitoring applications. 

Factors such as sensor material, design, and manufacturing quality can influence lifespan and 

reliability. Regular maintenance, cleaning, and sensor replacement may be necessary to ensure 

continuous operation and reliable data collection. 

3.1.4. Common Indoor Pollutants Of Interest 

Several pollutants commonly found in indoor environments are of particular concern due to their 

adverse health effects. These include particulate matter (PM), volatile organic compounds (VOCs), 

carbon monoxide (CO), nitrogen dioxide (NO2), formaldehyde (HCHO), ozone (O3), radon (Rn), 

and biological contaminants such as mold, bacteria, and allergens. The sources of these pollutants 

vary, ranging from outdoor sources (e.g., vehicle emissions, industrial activities) to indoor sources 

(e.g., cooking, cleaning, smoking, etc.) and building materials (e.g., off-gassing of chemicals from 

furniture and flooring). With respect to the listed pollutants by the WHO guidelines for indoor air 
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pollutants (WHO 2010), and considering the project interests, and the availability and limitation 

factors (using the measurement tools available in the lab and that there were no extra budget for 

reference analyzers), seven target contaminants were chosen for this project as follows: PM2.5, 

PM10, NO, NO2, O3, CO, VOC. 

Volatile organic compounds (VOCs) are organic compounds that have a high vapor pressure at 

room temperature. High vapor pressure correlates with a low boiling point, which relates to the 

number of the sample’s molecules in the surrounding air, a trait known as volatility (Wikipedia 

2024). On the other hand, Total Volatile Organic Compounds, or TVOCs, is a term used to 

describe a group of VOCs that are present in emissions or ambient air. The VOC sensor used in 

this research is actually a TVOC sensor for the group of Naphthalene, Benzene, Acetone, and 

Ethylene. 

3.2. Material & Methods 

3.2.1. LCS Monitoring Devices (OCT) 

To provide measurement tools for this thesis project, there were two options of purchasing 

commercialized instruments (devices) from companies in which there are LCS made by other 

companies, or developing the instruments by our lab (SAM-ULiège) with commercial LCS (the 

same as those used in commercialized instruments). Following the second option, four IAQ 

monitoring devices based on commercial LCSs, were designed by SAM-ULiège for 

measurement of CO, NO, NO2, O3, PM2.5, PM10., VOCs, as well as Temperature (T), Pressure 

(P), and relative humidity (RH). Figure 3.1. shows the IAQ monitoring devices employing low-

cost electrochemical, light scattering, and photoionization detector sensors. Since the 

development of these devices has been part of the OCCuPANt project they are named and 

referred as OCT in this study. Table 3.1. presents the OCT device sensors specifications. Further 

detailed specification and corresponding datasheets of sensors are hyperlinked in the Table 3.1. 
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Fig 3.1. Schematic of OCT IAQ measuring devices. 

Table 3.1. LCSs in OCT devices. 

Contaminant Sensor Concentration Range Sensor names & the providers 

CO 2-1000 ppm (±2) Alphasense Electrochemical B4 

NO 2-20 ppm (±2) Alphasense Electrochemical B4 

NO2 2-20 ppm (±2) Alphasense Electrochemical B43F 

O3 1-20 ppm (±2) Alphasense Electrochemical OX-B431 

PM2.5 0-1000 μg/m3(±10) Light scattering Sensirion SPS30 

PM10 0-1000 μg/m3(±25) Light scattering Sensirion SPS30 

VOC 0.5 ppb - 2 ppm Photoionization detector AMETEK MOCON (Blue) 

T -40 to 85 °C Bosch BME280 

RH 0 - 100% Bosch BME280 

P 300 – 1100 hPa Bosch BME280 

 

The Table 3.2. is presenting the principles, performances and limitations of each technology 

(category) used in OCT devices (Narayana 2022, Yatkin et al. 2022). 

 

 

 

 

 

https://ametekcdn.azureedge.net/mediafiles/project/oneweb/oneweb/alphasense/products/datasheets/alphasense_co-b4_datasheet_en_2.pdf?revision:87f7d42e-02c4-4b00-b888-bd9c8d07ed3f
https://ametekcdn.azureedge.net/mediafiles/project/oneweb/oneweb/alphasense/products/datasheets/alphasense_no-b4_datasheet_en_2.pdf?revision:8ded78ec-0ca0-4792-abbc-cb51c310993a
https://ametekcdn.azureedge.net/mediafiles/project/oneweb/oneweb/alphasense/products/datasheets/alphasense_no2-b43f_datasheet_en_3.pdf?revision:d508b1b6-68fe-4a43-b758-8c4d8c17084a
https://ametekcdn.azureedge.net/mediafiles/project/oneweb/oneweb/alphasense/products/datasheets/alphasense_ox-b431_datasheet_en_3.pdf?revision:776999ed-3bdf-4a62-b324-df9668f24d43
https://sensirion.com/media/documents/8600FF88/64A3B8D6/Sensirion_PM_Sensors_Datasheet_SPS30.pdf
https://sensirion.com/media/documents/8600FF88/64A3B8D6/Sensirion_PM_Sensors_Datasheet_SPS30.pdf
https://www.ametekmocon.com/-/media/ametekmocon/mediapreview/brochures/baseline-product-brochures/evx--baseline-oem-photoionization-sensor-family--product-brochure/pb-d045-1_baseline-pid-tech-evx-brochure_web.pdf?la=en&revision=b762ed1c-991d-43ce-9dd2-f9a240a7c99f?download=1
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
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Table 3.2. Principles, performances and limitations of each technology (category) used in OCT devices. 
Sensor Types Principles, performances and limitations 

Electrochemical 

Principle: 

• Electrochemical sensors detect gases through a chemical reaction that occurs when 

the target gas interacts with an electrolyte solution inside the sensor. This reaction 

generates an electrical current that is proportional to the concentration of the gas. 

Performance: 

• Accuracy: Generally good, with precise measurements for specific gases. 

• Response Time: Fast response, typically within seconds. 

• Selectivity: High selectivity for specific gases. 

• Sensitivity: Can detect low concentrations of gases, often in (ppm) or even (ppb). 

Limitations: 

• Lifetime: Limited lifespan, typically ranging from 1 to 2 years, as the electrolyte can 

deplete over time. 

• Environmental Sensitivity: Performance can be affected by temperature and 

humidity variations. 

• Cross-Sensitivity: Potential interference from other gases, although usually designed 

to minimize this. 

• Calibration: Requires frequent calibration and maintenance to ensure accurate readings. 

Light Scattering 

Principle: 

• Light scattering sensors measure PM concentrations by detecting the scattering of light 

caused by particles suspended in the air. A light source (usually a laser or LED) 

illuminates the particles, and a photodetector measures the intensity of scattered light. 

Performance: 

• Accuracy: Varies depending on particle size and sensor calibration; generally good 

for relative concentration measurements. 

• Response Time: Rapid response, often within seconds. 

• Selectivity: Measures PM without distinguishing between different types of particles. 

• Sensitivity: Capable of detecting fine particles (PM2.5 and PM10), with some models 

able to measure ultrafine particles (PM1). 

Limitations: 

• Calibration: Requires calibration to ensure accuracy, as scattering intensity depends 

on particle size and composition. 

• Environmental Sensitivity: Performance can be affected by high humidity and other 

environmental factors (Temperature, Acoustics, etc.) that influence light scattering. 

• Particle Overloading: High particle concentrations can lead to multiple scattering 

events, reducing measurement accuracy. 

PID 

Principle: 

• Photoionization detectors use ultraviolet (UV) light to ionize volatile organic 

compounds (VOCs) and other gases. The ions produced are collected by electrodes, 

generating a current proportional to the concentration of the ionized gases. 

Performance: 

• Accuracy: High accuracy for detecting a broad range of VOCs and some inorganic gases. 

• Response Time: Very fast response, typically within seconds. 

• Selectivity: Less selective, as it can ionize any gas with an ionization energy lower 

than the UV lamp’s photon energy. 

• Sensitivity: High sensitivity, capable of detecting low concentrations of VOCs, often 

in ppb levels. 

Limitations: 

• Calibration: Requires frequent calibration and maintenance to ensure accurate readings. 

• Environmental Sensitivity: Performance can be affected by humidity, temperature, 

and the presence of other ionizable gases. 

• Lamp Life: The UV lamp has a limited operational life and may need periodic 

replacement. 

• Cross-Sensitivity: Can detect multiple compounds simultaneously, which may 

complicate the interpretation of results. 
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3.2.2 Calibration Of Lab Devices (OCTs For OCCuPANt) 

Calibration of a sensor involves establishing a relationship between the electrical signal 

generated by the sensor and the quantity being measured, such as the concentration of a specific 

chemical in the air. In the context of air pollution sensors, calibration typically involves 

measuring a standard gas of known concentration and composition and correlating the resulting 

electrical signal from the sensor to the concentration of the target pollutant in the gas. This 

process is often achieved through a calibration curve, which is a mathematical model, often of 

the linear regression type, that relates the sensor’s output signal to the concentration of the target 

pollutant. By comparing the sensor’s response to known concentrations of the pollutant, a 

calibration curve can be generated, allowing for the conversion of electrical signals from the 

sensor into accurate measurements of pollutant concentrations in the air. Regular calibration 

ensures the accuracy and reliability of sensor measurements over time, accounting for factors 

such as sensor drift and environmental variations. One other approach for sensor calibration is 

using reference analyzers. Figure 3.2. illustrates mandates criteria of LCS calibrations. the The 

Table 3.3. summarizes processes, advantages, and disadvantages of these two approaches. 

Considering all, the approach of calibration with reference analyzers was chosen for this study. 

 

 

 

 

 

 

 

 

 

Fig 3.2. LCS calibration mandates. 
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Table 3.3. Processes, advantages, and disadvantages of sensor calibration with reference analyzers & gas. 

Method Processes, advantages, and disadvantages 

Sensor 

Calibration 

with 

Reference 

Analyzers 

Process: 

1. Co-Location: Place the low-cost sensor and the reference analyzer in the same location to ensure 

they are exposed to the same environmental conditions and pollutant concentrations. 

2. Data Collection: Collect data simultaneously from both the sensor and the reference analyzer 

over a defined period. 

3. Comparison and Adjustment: Compare the sensor readings with the reference analyzer 

readings. Use statistical methods to develop calibration equations or correction factors to adjust 

the sensor data to match the reference analyzer data. 

Advantages: 

✓ High accuracy: Ensures that the sensor readings are closely aligned with the established standard 

of the reference analyzer. 

✓ Comprehensive: Takes into account real-world environmental conditions and potential 

interferences. 

Disadvantages: 

 Time-consuming: Requires extended periods of data collection for accurate calibration. 

 Costly: Involves the use of expensive reference analyzers and potentially additional personnel 

for data collection and analysis. 

Sensor 

Calibration 

with 

Reference 

Gas 

Process: 

1. Controlled Exposure: Place the sensor in a chamber where it can be exposed to a reference gas 

at known concentrations. 

2. Data Collection: Measure the sensor response to various concentrations of the reference gas. 

3. Calibration Curve: Develop a calibration curve by plotting the sensor response against the 

known concentrations of the reference gas. Use this curve to adjust the sensor readings. 

Advantages: 

✓ Precision: Provides a highly controlled and precise method for calibration. 

✓ Efficiency: Can be quicker than co-location with reference analyzers, as it does not require 

extended field deployments. 

Disadvantages: 

 Limited Scope: Does not account for real-world environmental variables such as temperature, 

humidity, or interference from other pollutants. 

 Specificity: Calibration with one type of reference gas may not generalize well to other types 

of pollutants or different environmental conditions. 

Summary 

of 

Differences 

Real-World Conditions vs. Controlled Environment: 

❖ Reference Analyzers: Calibration reflects real-world conditions, including environmental 

variables and potential interferences. 

❖ Reference Gas: Calibration is conducted in a controlled environment, focusing solely on the 

target gas. 

Accuracy and Comprehensive Calibration: 

❖ Reference Analyzers: Provides a more comprehensive calibration by considering the effects 

of environmental factors. 

❖ Reference Gas: Offers precise calibration for the specific gas used but may not account for 

other environmental influences. 

Time and Cost: 

❖ Reference Analyzers: Typically more time-consuming and costly due to the need for co-

location and extended data collection periods. 

❖ Reference Gas: Generally quicker and potentially less expensive, but may require access to 

certified reference gases and appropriate calibration chambers. 

Application Suitability: 

❖ Reference Analyzers: Suitable for comprehensive calibration needed for regulatory or high-

accuracy applications. 

❖ Reference Gas: Suitable for initial calibration or when specific gas concentration responses are 

needed without environmental complexities. 
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Instruments and some commercial LCS often come with the calibration curve (implemented into 

the processor) as they already provide the concentration values (calibration by the sensor 

manufacturer). However, it is necessary to check (verify) if these calibration models are still 

sufficient by doing additional calibrations. Because sensors and instruments drift in time and 

have different performances in different environments. 

The measurement accuracy of LCSs is highly correlated with factors such as Air Temperature and 

RH fluctuations, cross-sensitivity, interferences from other compounds, and electronic component 

tolerances (Pereira & Ramos 2022, Zhang & Srinivasan 2020). In this regard, uncertainties may stem 

from sensor calibration and synchronization errors. Uncertainties can also be among sensor data 

description and sampling, co-location experiments, sensor placement, aerosol concentration 

determination, and result interpretation (Zhang & Srinivasan 2020). 

The idea of this verification is to compare the response given by the LCS instruments with the 

response of a reference instrument. The associations between the raw output of LCSs and 

measurements from the reference analyzers are then characterized by a calibration equation (Liang 

2021, deSouza et. al 2022). 

A sensor calibration measurement campaign had to be performed for the (re)calibration purpose of 

OCT devices. This was conducted from 2nd Oct 2020 at 8:30 local time, to 31st Oct 2020 at 23:30 at 

ISSeP (Institut Scientifique De Service Public) in Val-Benoît, Liège, Belgium (see Figures 3.3.a & 

3.3.b) (ISSeP 2021). The sensors were located at the same place as the reference analyzers (both 

indoor and outdoor experiments) at the height of 2m. The meteorological data including the 

temperature, relative humidity, wind speed, and direction were recorded and employed to 

contextualize the data, to confirm that different conditions were characterized. The specification of 

ISSeP instruments are available at their website (ISSeP 2024). The key assumptions considered 

during this LCS calibration stage of the study are presented in the Table 3.4. 
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Table 3.4. Key assumptions for LCS calibration (with reference analyzers) 

Assumptions Description of assumptions versus the possibly in the reality 

Calibration 

Consistency 

✓ Sensors are calibrated correctly and consistently over time. 

 Calibration may drift, requiring regular maintenance and recalibration to ensure 

accuracy. 

Environmental 

Stability 

✓ Environmental factors such as temperature, humidity, and pressure have minimal impact 

on sensor performance. 

 These factors can significantly affect sensor readings, necessitating compensation 

algorithms or correction factors. 

Specificity & 

Selectivity 

✓ Sensors can specifically and selectively measure target pollutants without interference 

from other substances. 

 Cross-sensitivity to other gases and particles can lead to inaccurate readings. 

Response 

Linearity  

✓ The sensor’s response to varying concentrations of pollutants is linear across the range 

of interest. 

 Sensor response may be non-linear, especially at high or low concentrations, requiring 

complex calibration curves. 

Data Quality 

& Reliability 

✓ The data generated by low-cost sensors are of high quality and reliable for analysis and 

decision-making. 

 Data quality may be compromised by sensor noise, drift, or malfunction, necessitating 

rigorous data validation and quality control procedures. 

Lifetime & 

Durability 

✓ Sensors will maintain their performance over an extended period. 

 Sensor lifespan can be limited, and performance may degrade over time due to 

environmental exposure and wear & tear. 

Comparability 

to Reference 

Instruments 

✓ Low-cost sensors provide results comparable to high-precision, regulatory-grade 

instruments. 

 While low-cost sensors offer valuable insights, their accuracy and precision typically do 

not match those of reference instruments, requiring careful comparison and validation. 

Power Supply 

& Connectivity 

✓ Sensors will operate continuously and transmit data reliably. 

 Power supply issues and connectivity problems can disrupt data collection, necessitating 

backup systems and robust network solutions. 
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Fig 3.3.a OCT devices raw output vs. ISSeP reference analyzers results: CO,  NO2, PM2.5. 
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Fig 3.3.b OCT devices raw output vs. ISSeP reference analyzers results: NO, O3, PM10 
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3.2.2.1. Sensor Calibration (Model Correction) 

A final dataset of 1423 paired/concurrent measurements (LCS against analyzers concentration 

values) was recorded per sensors, for each of four devices, with the time acquisition of 30 

minutes. The whole dataset included 48 382 datapoints (excluding VOC values by analyzers). 

The dataset population was divided with the ratio of 80 and 20% for calibration and validation 

datasets, respectively. 

Data treatment is performed in MATLAB software. The K–S test (Kolmogorov–Smirnov 

examination) disapproved the hypothesis of normal distribution. Due to the synchronized real-

time measurement process, a monotonic relationship is observed. Since Spearman’s correlation 

(𝑟𝑠) measures the strength and direction of monotonic association between variables, it was used 

to define the correlation between variables of paired dataset (OCT vs ISSeP).  

Additionally, to compare the differences between each of the measurements among four different 

OCTs, the Kruskal–Wallis test, a nonparametric test, was applied to determine if there were 

statistically significant differences between them. 

In the next step, corrections of the OCT outputs are applied after determination of calibration 

equations among analyzers concentration and OCT concentration (Y = analyzers concentrations 

and X = OCT sensors concentrations, 1138 paired data points for each sensor) by the orthogonal 

regression method (Späth 2014). Following, validation datasets (285 paired data) are used to 

evaluate the correctness of the sensors’ outputs after applying calibration equations.  

Derived values are then compared with those of the reference analyzers by the Bland–Altman 

method (Gerke 2020). The Bland-Altman (mean-difference and limits of agreement (LOA) plot) 

is applied to evaluate the difference between two measurements within 95% LOA (or 1.96 of the 

standard deviation Falzone et al. 2020; Moreno-Rangel et al. 2018. 

https://doi.org/10.3390/diagnostics10050334
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3.3. Results 

3.3.1 Low-Cost Sensors Calibration 

Table 3.5. represents statistical analysis over primary OCTs’ and reference ISSeP datasets. The 

analysis includes the correlation ranges of 4 OCT devices among each other (OCT Inter-

variability), correlation ranges of 4 OCT devices and ISSeP results, the mean (average) and 

ranges of “average difference” between OCTs and ISSeP results, and the mean (average) and 

ranges of OCTs variances. 
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Table 3.6. presents the calibration equations (OCT vs ISSeP) and coefficient of determinations 

(R2) for the best fit of each sensor among field and indoor experiments, using validation datasets.  

Table 3.6. Calibration equations for the best fit using validation datasets, and R2. 

Contaminant Best calibration equations 
Best fit of validation datasets after applying 

regression equations to OCTs’ values, (R2) 

CO(Field) 0.033 + 0.96 COOCT 0.79 

NO(Indoor) 3.92 + 0.63 NOOCT 0.80 

NO2(Indoor) –48.39 + 0.81 NO2OCT
 0.78 

O3(Indoor) 8.31 + 0.51 O3OCT
 0.84 

PM2.5(Field) –1.57 + 3.08 PM2.5OCT
 0.92 

PM10(Field) –2.12 + 4.77 PM10OCT
 0.57 

 

3.3.3.1. OCT Inter-Variability Analysis 

CO.  

Information of variability between OCTs is essential for the practical reliability of devices. 

Examination of the CO data from the four OCT devices presented a very high uniformity (𝑟𝑠 =

0.96 𝑡𝑜 0.98, 𝑝 < 0.001) and low variability (avg = 0.004 mg/m³, from 0.003 to 0.005 

mg/m³) among the CO measurements. 

NO. 

Investigation of the four OCTs revealed a very high uniformity (𝑟𝑠 = 0.96 𝑡𝑜 0.98, 𝑝 < 0.001) 

and high difference regarding (avg = 195.51 µg/m³ , from 157.16 to 229.55 µg/m³) of the NO 

reference data. 

NO2. Study of four OCT devices presented a very high uniformity (𝑟𝑠 = 0.9 𝑡𝑜 0.96, 𝑝 <

0.001) and high variance (avg =  138.21µg/m³ , from 88.67 to 247.28 µg/m³) between the 

different NO2 sensors. 

O3. Investigation of the four OCT datasets presented a low but notable uniformity (𝑟𝑠 =

−0.18 𝑡𝑜 0.9, 𝑝 < 001) and a moderate variance (avg =  27.41 µg/m³, from 21.39 to 31.28 

µg/m³) between the O3 measurements. 
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PM2.5. The examination of the four OCT monitors revealed a very high uniformity (𝑟𝑠 = 0.99,

𝑝 < 0.001) and a small variance (avg = 8.19µg/m³, from 8.43 to 9.64 µg/m³) among PM2.5 

measurements. 

PM10. The study of four OCT datasets presented that there was a very high uniformity (𝑟𝑠 =

0.99, 𝑝 < 001) and a small variance (avg = 2.87 µg/m³, from 2.33 to 3.12 µg/m³) between the 

different PM10 sensors. 

3.3.1.2. ISSeP-OCT Comparison (OCT Calibration ) 

Figure 3.4. depicts the correlation between pollutant levels measured by ISSeP reference 

analyzers and calibrated OCT measurements. The calibrated OCT measurements are obtained 

after applying corrections using the corresponding best orthogonal regression models. The data 

of the four OCT devices were compared to those from the ISSeP: 

CO. 

The data analysis presented that the CO measurements were highly correlated (𝑟𝑠 = 0.73 𝑡𝑜 0.8,

𝑝 < 0.001 ). As it is shown in Figure 3.3. (a), it was revealed that OCTs averagely 

underestimated CO concentration (avgerage (avg) =  −0.016, 95% confidence interval from 

0.05 to − 0.01 mg/m³).  

The best fit results in an 𝑅2 of 0.79 and the CO equation generated by regression is: 

CO(ISSeP) = 0.033 + 0.963 CO(OCT)       (1) 
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Figure 3.5. (a) presents the Bland–Altman analysis for the comparison of four calibrated sensor 

devices with the reference analyzer. It presents the mean difference between the ISSeP and the 

OCT CO calculated measurements (-2.34E-10 mg/m3 with the LOA of –0.055 to 0.055 mg/m3 

at a 95% confidence interval). The number of 48 points (3.5 %) of the dataset were beyond of 

the LOA (42 higher than the upper LOA and 6 less than the lower LOA). This range is 

meaningfully far below the European Commission (EC) Exposure Limit Values (ELVs) for 

indoor CO which is about 10 mg/m3 (Maximum daily, 8-hour mean, 2005). 

NO. The data analysis presented that the NO measurements were weakly correlated (𝑟𝑠 =

0.3 𝑡𝑜 0.39, 𝑝 < 0.001) by the four OCT and the ISSeP monitors. As it is shown Figure 3.3. (b) 

a shift of the values was detected between OCT and ISSeP measurements, as long as the OCT 

overestimated the NO levels by an average of 185.47 µg/m³, from 171.17 to 199.42 µg/m³. Figure 

3.4. (b) illustrates the relationship between the ISSeP and OCT calibrated NO levels determined 

by the Orthogonal regression model. The best fit results in an 𝑅2 of 0.75 and the NO regression 

output modeled is: 

NO(ISSeP) = 0.033 + 0.963 NO(OCT)       (2) 

Figure 3.5. (b) depicts the Bland–Altman analysis for the ISSeP NO measurements by the 

corresponding best fit determined by the Orthogonal regression for the validation dataset from 

the four OCT measurement devices. It presents the mean difference between the ISSeP and the 

OCT NO calculated measurements (-2.19 µg/m³ with the LOA of -12.14 to 8.03 µg/m³ at a 95% 

confidence interval). The number of 28 points (2.8 %) of the dataset were beyond of the LOA 

(28 higher than the upper LOA). 
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Fig 3.5. Bland–Altman plot for validation datasets: (a) CO (b) NO (c) NO2 (d) O3 (e) PM2.5 (f) PM10 

NO2. The statistical analysis showed that the NO2 measurements from the four OCT devices and 

the ISSeP NO2 showed a good correlation (𝑟𝑠 = −0.706 𝑡𝑜 − 0.824, 𝑝 < 0.001). As it is 

depicted in Figure 3.3. (a) very high variability was detected between OCT and ISSeP 

measurements, as long as the OCT overestimated the NO2 levels by average of 134.66 µg/m³, from 



68 

 

114.57 to 149.21 µg/m³. Study of four OCT devices presented a very high uniformity (𝑟𝑠 =

0.9 𝑡𝑜 0.96, 𝑝 < 0.001) and high variance (avg =  138.21µg/m³ , from 88.67 to 247.28 µg/m³) 

between the different NO2 sensors. Figure 3.4. (c) illustrates the relationship between the ISSeP 

and OCT calibrated NO2 levels by the Orthogonal regression model. The best fit results in an 𝑅2 

of 0.78 and the NO2 regression equation is: 

NO2(ISSeP) = -172.41 + 1.14 NO2(OCT)       (3) 

Where NO2 is the concentration (µg/m3). Figure 3.5. (c) depicts the Bland–Altman analysis for 

the ISSeP NO2 measurements by the corresponding best fit determined by the Orthogonal 

regression for the validation dataset from the four OCT measurement devices. It presents the 

mean difference between the ISSeP and the OCT NO2 calculated measurements (-1.39 µg/m³ 

with the LOA of -11.64 to 8.85 µg/m³ at a 95% confidence interval). The number of 75 points 

(5.7 %) of the dataset were beyond the LOA (40 higher than the upper LOA and 35 less than the 

lower LOA). This range is much less than the EC defined indoor ELV for NO2 equal to 200 

µg/m3 (1-hour mean, 2010). 

O3. Investigation of the O3 measurement by the OCT devices and the ISSeP reference data 

revealed that the OCT O3 concentrations varied from those of ISSeP. Figure 3.3. (b) presents a 

low correlation (𝑟𝑠 = 0.22 𝑡𝑜 0.67, 𝑝 < 0.001) was identified. The OCTs overrated the O3 

levels (avg = 1.9µg/m³ , from -3.2 to 7.8 µg/m³). Investigation of the four OCT datasets 

presented a low but notable uniformity (𝑟𝑠 = −0.18 𝑡𝑜 0.9, 𝑝 < 001) and a moderate variance 

(avg =  27.41 µg/m³, from 21.39 to 31.28 µg/m³) between the O3 measurements. Figure 3.4. 

(d) illustrates the relationship between the ISSeP and OCT calibrated O3 levels from the 

Orthogonal regression model. The best fit results in an 𝑅2 of 0.16 and the regression formulation 

of O3 is: 

O3(ISSeP) = 30.0328 + 0.23866 O3(OCT)      (4) 

Where O3 is the concentration (µg/m3). Figure 3.5. (d) depicts the Bland–Altman analysis for the 
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ISSeP O3 measurements by the corresponding best fit determined by the Orthogonal regression 

for the validation dataset from the four OCT measurement devices. It presents the mean 

difference between the ISSeP and the OCT O3 calculated measurements (-0.188 µg/m³ with the 

LOA of -27.78 to 27.4 µg/m³ at a 95% confidence interval). The number of 65 points (5.2 %) of 

the dataset were beyond of the LOA (65 less than the lower LOA). This range is remarkably less 

than the defined EC indoor ELV for O3 equal to 120 µg/m3 (Maximum daily, 8-hour mean, 2010). 

PM2.5. PM2.5 measurements from the four OCT devices and the ISSeP were very highly 

correlated (𝑟𝑠 = 0.93 𝑡𝑜 0.95, 𝑝 < 0.001) to each other. As it is shown by Figure 3.3. (a) the 

OCT underestimate PM2.5 values (avg = −3.2 µg/m³, from -2.76 to -2.47 µg/m³). The 

examination of the four OCT monitors revealed a very high uniformity (𝑟𝑠 = 0.99, 𝑝 < 001) 

and a small variance (avg = 8.19µg/m³, from 8.43 to 9.64 µg/m³) among PM2.5 measurements. 

Figure 3.4. (e) illustrates the relationship between the ISSeP and OCT calibrated PM2.5 levels 

from the Orthogonal regression model. The best fit results in an 𝑅2 of 0.91 and the PM2.5 

regression equation is: 

PM2.5(ISSeP) = -1.57 + 3.08 PM2.5(OCT)      (5) 

Where PM2.5 is the concentration (µg/m3). Figure 3.5. (e) depicts the Bland–Altman analysis for 

the ISSeP PM2.5 measurements by the corresponding best fit determined by the Orthogonal 

regression for the validation dataset from the four OCT measurement devices. It presents the 

mean difference between the ISSeP and the OCT PM2.5 calculated measurements (-0.017 µg/m³ 

with the LOA of -4.1 to 4.07 µg/m³ at a 95% confidence interval). The number of 69 points (5.3 

%) of the dataset was beyond of the LOA (40 higher than the upper LOA 29 less than the lower 

LOA). This range is much less than the defined EC indoor ELV for PM2.5 which is 25 µg/m3 

(yearly, 2010). 

PM10. It should be mentioned that the sensor does not measure PM10 but a correction factor is 

applied by the producer on the PM2.5 measurements. 
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The statistical analysis showed that the PM10 measurements from the four OCT monitors and the 

ISSeP were highly correlated (𝑟𝑠 = 0.86 𝑡𝑜 0.88, 𝑝 < 0.001) to each other. As it is depicted by 

Figure 3.3. (b) the analysis of the measurements showed that the OCT underestimated PM10 

concentrations (avg = −8.63 µg/m³ , from -9.09 to -8.33 µg/m³). The study of four OCT 

datasets presented that there was a very high uniformity (𝑟𝑠 = 0.99, 𝑝 < 001) and a small 

variance (avg = 2.87 µg/m³, from 2.33 to 3.12 µg/m³) between the different PM10 sensors. 

Figure 3.4. (f) illustrates the relationship between the ISSeP and OCT calibrated PM10 levels by 

the Orthogonal regression model. The best fit results in an 𝑅2 of 0.57 and the regression model 

of PM10 is: 

PM10(ISSeP) = -2.12 + 4.77 PM10(OCT)      (6) 

Where PM10 is the concentration (µg/m3). Figure 3.5. (f) depicts the Bland–Altman analysis for 

the ISSeP PM10 measurements by the corresponding best fit determined by the Orthogonal 

regression for the validation dataset from the four OCT measurement devices. It presents the 

mean difference between the ISSeP and the OCT PM2.5 calculated measurements (-0.06 µg/m³ 

with the LOA of -19.63 to 19.5 µg/m³ at a 95% confidence interval). The number of 69 points 

(5.3 %) of the dataset were out of the LOA (51 higher than the upper LOA 18 less than the lower 

LOA). 

This range is almost equal to the EC indoor ELV for PM10 which is 50 µg/m3 (24 hours, 2005). 

The number of data points on which the PM10 levels surpassed 50 µg/m3 is about an average of 

0.38%. At last, the correlation between the calibration and validation datasets were favorably 

accredited. Both presented a sufficient agreement on the PM10 levels higher than 50 µg/m3. 

3.4. Discussions 

In this very first step, the accuracy of lab-made devices for measurement of pollutants (CO, NO, 

NO2, O3, PM2.5, PM10) during a campaign of one-month is evaluated. Calibration was not 

performed in the lab by using synthetic gases but by comparison with reference analyzers (from 
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Scientific Institute of Public Service of Wallonia, environmental institute of Wallonia, ISSeP). 

To achieve best results, specific calibration equations should be derived for each device. The 

validation outcomes presented that there was correct agreement between the reference analyzer 

data and those of the OCT devices for some pollutants, when using the regression equations. 

However, regarding the O3 (Alphasense OX-B431) sensor it should be noted that O3 values are 

derived by the following Equation: 

O3 = OX - NO2 

Considering the fact that the calibration of NO2 is not sufficient and the performance of OX 

sensor still remains uncalibrated, a secondary (auxiliary) calibration between O3 values of 

reference analyzer and the O3 values obtained from ((OX) – (Calibrated NO2)) was performed. 

The Figure 3.6. illustrates the post-calibration improvement of O3 (auxiliary) calibration against 

reference values (also see Fig 3.2.b for comparison the improvement). 

 

Fig 3.6. Improvement of O3 auxiliary calibration (O3: OX-NO2). 

The OCT devices presented a very good agreement with the ISSeP analyzers, for CO (𝑟𝑠 =

0.73 𝑡𝑜 0.8), NO2 (rs = -0.70 to-0.82), PM2.5 (𝑟𝑠 = 0.93 𝑡𝑜 0.95) and PM10 (𝑟𝑠 =

0.86 𝑡𝑜 0.88) data. The NO concentration was overestimated by an average of 185.47 µg/m³. 

The generated regression fits for CO, NO, NO2 and PM2.5 decreased the variance among the 

measurements sufficiently and enhanced their performances in comparison with ISSeP which led 

to 𝑅2 values equal to 0.79, 0.75, 0.78 and 0.91, respectively. The absence of an exact O3 detector 
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resulted in two calibration stage for the O3. Nevertheless, outcomes indicated that it has not 

influenced the performance of the other detectors. 

The results revealed that OCT devices based on LCSs, can detect ELV exceedance by high 

contaminant picks. It is noteworthy to be mentioned that Wi-Fi communication with a physical as 

well as a cloud storage, make the OCT a user-friendly device to assess the IAQ in wider temporal 

and spatial dimension, in comparison with typical methods. Implementation of several devices in a 

measurement campaign and applying calibration modifications increase the accuracy and precision 

of the measurements. According to the OCT calibration results, it was revealed that less than 5% of 

the CO, NO, NO2, O3, PM2.5, and PM10 values were beyond the LOA range when the range was set 

to ±1.96 SD of the difference. Variability of the fraction of concentrations higher than ELVs was 

mostly insignificant and was considered to be improbable to make drastic alteration in the IAQ 

evaluation. 

With the use of calibrated LCS monitoring devices, an IAQ measurement campaign was carried out to 

obtain IAQ experimental datasets. The naturally ventilated residential case-study house was located in 

the Wallonia region, Arlon, Belgium. The measurements were carried out in the summer 2021, 

concurrently. The recorded parameters included 7 contaminates, T, P, and RH (both indoors and 

outdoors), as well as the outdoor weather data. The experimental datasets provided during this campaign 

are being used for the IAQ model validation and development in the next chapter (Chapter 3). 

3.5. Conclusion 

The results indicates that the OCTs can satisfy the minimum requirements for the IAQ case study 

experiments. It is important to evaluate the accuracy of LCS to study their reliability and 

correctness. The OCT monitoring devices based on LCSs, will provide essential data for IAQ 

model design, validation, and development (Chapter 5). In the next chapter (Chapter 4), the 

results of the IAQ experiments conducted with calibrated OCTs will be presented. 
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Correlated publishment of this chapter: 

Pourkiaei, et al. (2022). Exploring the Indoor Air Quality in the Context of Changing Climate in 

Residential Buildings-Part A: Developed Measurement Devices of Low-Cost Sensors. 

In ASHRAE Topical Conference Proceedings (pp. 1-9). American Society of Heating, 

Refrigeration and Air Conditioning Engineers, Inc. https://www.aivc.org/resource/exploring-

indoor-air-quality-context-changing-climate-residential-buildings-part-developed 

 

Pourkiaei, et al. (2024). Systematic Framework for Quantitative Assessment of Indoor Air 

Quality Under Future Climate Scenarios; 2100s Projection of a Belgian Case Study. Journal of 
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4. Indoor Air Quality Measurements For IAQ Model Design & Calibration 

4.1. IAQ Measurement Campaign 

This chapter is an continued effort (of chapter 3) to answer the second research question (RQ2).After 

calibrating Lab devices in the previous section, an IAQ measurement campaign was conducted. 

Detailed results of sensors performance validation (post-calibration) are presented in the section 

3.3.1. of the previous chapter. The aim of  the IAQ measuring campaign is to obtain the IAQ model 

required design inputs, and performing the IAQ model validation and calibration procedures. 

With the aim of performing an IAQ measurement for basis year IAQ model development, a case-

study house was chosen in the Wallonia region, Arlon, Belgium. Considering the focus of the project 

on the summer times, measurements were carried out from 20th June to 31st August 2021, both 

indoors and outdoors, concurrently. The sensors were located in the kitchen (shared area) at the height 

of 1.5m, in the optimum distance from the doors and the stove/cooktop. No recalibration of 

monitoring devices was considered during the campaign (over 73 days). The case-study house was 

located at the first floor of a naturally ventilated residential building of 4 floors. 

Also, a comprehensive questionnaire (hourly checklist) was designed to log the occupancy pattern 

(3 adult inhabitants), indoor activities incidences (sleeping, cooking, cleaning, showering, smoking), 

natural ventilation behavior (opening of windows), and 2 exhaust fans operations. Table 4.1. presents 

the questionnaire table developed for the IAQ measurement campaign. The recorded parameters by 

OCTs were CO, NO, NO2, O3, PM2.5, PM10, VOCs, as well as the T, P, and RH. The data logging 

interval was set to 10 seconds. Additional outdoor weather data (wind speed, wind direction, and 

solar radiation) were collected from the IRM’s website (Royal Meteorological Institute of Belgium). 

Additional to the performed measurements in 2021 (Arlon case study - Basis year & case study 

selected for the IAQ model development in the next chapter), there have been other IAQ 

measurements conducted in another naturally ventilated house in the city of Habay (without a 

completed questionnaire). 

https://www.meteo.be/en/brussels
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Table 4.1. The questionnaire table developed for the IAQ measurement campaign. 

 

These measurements were also repeated for the next summer (2022) without questionnaire. 

4.2. Results And Discussions 

The findings presented in this section mainly stem from a comprehensive IAQ measurement 

campaign conducted at the case-study house in Arlon, over 73 days (1752 hours) of summer 2021. 

This campaign sought to assess the quality of indoor air within various real life settings, as a base-

line for IAQ model development. The measurement campaign employed LCS and monitoring 

equipment to collect real-time data on key air quality parameters such as CO, NO, NO2, O3, PM2.5, 

PM10, VOCs, as well as the T, P, and RH. By measuring indoor air across zones and occupancy 

conditions, this measurement aims to provide a base-line perspective into IAQ trends (of a single 

case-study), identify potential sources of indoor pollutants (obtaining the affordable emissions 

information), and evaluate the long-term average indoor pollutants levels. Figure 4.1. shows 

examples of indoor air concentration level variation in accordance to logged occupant’s 

questionnaire. Additionally, indoor and outdoor measurements (without questionnaires) for 

another naturally ventilated case study house in Habay (summers of 2021 and 2022), as well as 

the Arlon case study in the summer 2022, are presented. The results of Arlon-2021 presented 

herein serve as a foundation for validation and development of an IAQ model which is the main 

focus of the next chapter (Chapter 5). Figure 4.2. presents the Box & Whisker plot of indoor and 

outdoor recorded T, in Arlon and Habay naturally ventilated houses, during the summers of 2021 

and 2022 (73 days: 17 June – 31 August). Figures 4.3. and 4.4. illustrate the hourly comparative 

presentations of indoor and outdoor recorded T during the summers of 2021 and 2022 (73 days: 

17 June – 31 August), for Arlon and Habay case studies, respectively. 
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Figure 4.1. Presentation of indoor concentration levels in accordance with sample cooking activities and natural 

ventilation performance. 

Although there may have been instances of missing data in the raw dataset (recorded at 10-second 

intervals), any interruptions were brief, not exceeding one hour. This is confirmed by the fact 

that no hourly averages were missing. Figure 4.5. presents the Box & Whisker plot of indoor and 

outdoor recorded pollutant concentrations, in Arlon and Habay naturally ventilated houses, 

during the summers of 2021 and 2022 (73 days: 17 June – 31 August). Figures 4.6. and 4.7. 

illustrate the hourly presentations of indoor and outdoor recorded pollutant concentrations in the 

Arlon naturally ventilated case study house during the summers (73 days: 17 June – 31 August) 

of 2021 and 2022, respectively. Figures 4.8. and 4.9. illustrate the hourly indoor and outdoor 

recorded pollutant concentrations in the Habay naturally ventilated case study house during the 

summers (73 days: 17 June – 31 August) of 2021 and 2022, respectively. Outdoor VOCs were 

not measured during the measurements. 
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Fig 4.2. Indoor and outdoor Temperatures in Arlon and Habay case study houses, summers (73 days) 

2021&22. 
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Fig 4.3. Hourly indoor and outdoor Temperatures in summer 2021&22 – Case study house in Arlon. 
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Fig 4.4. Hourly indoor and outdoor Temperatures in summer 2021&22 – Case study house in Habay. 
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*The corresponding ELVs are presented in the Table 7.1. 
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Fig 4.6. Hourly indoor & outdoor pollutant concentrations - summer 2021 - Case study house in Arlon. 
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Fig 4.7. Hourly indoor & outdoor pollutant concentrations - summer 2022 - Case study house in Arlon. 
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Fig 4.8. Hourly indoor & outdoor pollutant concentrations - summer 2021 - Case study house in Habay. 
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Fig 4.9. Hourly indoor & outdoor pollutant concentrations - summer 2022 - Case study house in Habay. 
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4.2.1. Straightforward Indoor and Outdoor Pollutant Concentration Analysis (Arlon 2021&22) 

The quality of indoor air is linked (but not limited) to the indoor emission sources, outdoor 

weather, and outdoor air quality, particularly in naturally ventilated buildings where the exchange 

of air is largely uncontrolled. This analysis presents an investigation of pollutant concentration 

peaks for O3, PM2.5, PM10, CO, NO, and NO2, focusing on the interaction between indoor and 

outdoor environments with a macroscopic point of view. The objective is to understand the 

dynamics of pollutant peaks and their correlation between indoor and outdoor settings. 

This analysis examines indoor and outdoor pollutant concentrations in the naturally ventilated 

case study house in Arlon during the summers of 2021 and 2022. The aim is to understand the 

pollutant dynamics between indoor and outdoor environments and assess the correlation of their 

levels over two consecutive years. All the hourly data spans a period of 73 days for each year, 

from June 17th to August 31st. (The time range in 2022 is considered identical to that of 2021 for 

a synchronized comparison.) 
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4.2.1.1. O3 Data Overview 

Observations Year 2021 

Outdoor Ozone Levels: 

✓ Range: The outdoor O3 levels varied from approximately 20 µg/m³ to 100 µg/m³. 

✓ Peaks: Several significant peaks were observed, typically during the daytime. 

✓ Trends: The diurnal pattern is prominent, with peaks occurring in the afternoon and 

lower concentrations at night. 

Indoor O3 Levels: 

✓ Range: Indoor O3 levels ranged from about 40 µg/m³ to 80 µg/m³. 

✓ Peaks: Indoor peaks generally followed the outdoor peaks but were less pronounced. 

✓ Trends: Indoor O3 showed a similar diurnal trend but with reduced amplitude compared 

to outdoor levels. 

Observations Year 2022 

Outdoor O3 Levels: 

✓ Range: The outdoor O3 levels ranged from around 20 µg/m³ to 150 µg/m³. 

✓ Peaks: Peaks were frequent, especially in the afternoons. 

✓ Trends: The diurnal pattern remained consistent, with higher concentrations during daylight 

hours. 

Indoor O3 Levels: 

✓ Range: Indoor O3 levels were between 40 µg/m³ and 100 µg/m³. 

✓ Peaks: Indoor peaks were less intense than outdoor peaks but followed a similar pattern. 

✓ Trends: Indoor levels exhibited a dampened diurnal pattern similar to the outdoor levels. 
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Correlation Analysis 

Indoor vs. Outdoor (2021): 

➢ Correlation Coefficient: 0.65 

➢ Interpretation: Moderate positive correlation indicates that while outdoor O3 levels 

influence indoor levels, the indoors consistently has a lower range due to the building’s 

inactive natural ventilation performance periods. 

Indoor vs. Outdoor (2022): 

➢ Correlation Coefficient: 0.70 

➢ Interpretation: A slightly higher correlation than in 2021, suggesting a stronger 

influence of outdoor O3 on indoor levels in 2022 by penetration and active natural 

ventilation performances. 

Year-on-Year Analysis (2021 vs. 2022) 

Outdoor O3 Comparison: 

❖ Average Concentration:  

2021: ~55 µg/m³ 

2022: ~80 µg/m³ 

❖ Interpretation: Higher average outdoor O3 levels in 2022 is highly linked to varying 

meteorological conditions (Temperature increase) or changes in local pollution sources. 

Indoor O3 Comparison: 

❖ Average Concentration: 

2021: ~55 µg/m³ 

2022: ~70 µg/m³ 

❖ Interpretation: Lower average indoor O3 levels in 2022 despite higher outdoor levels 

suggest improved filtering efficiency (promoted by less active natural ventilation 



91 

 

performance for protection against high outdoor temperatures), or possibly increased 

indoor activities contributing to O3 decay. 

4.2.1.2. PM2.5 Data Overview 

Observations Year 2021 

Outdoor PM2.5 Levels: 

✓ Range: Outdoor PM2.5 levels remained relatively low, generally under 10 µg/m³. 

✓ Peaks: Few peaks were observed, with levels occasionally between 10-20 µg/m³. 

✓ Trends: The outdoor PM2.5 levels were relatively stable with minor fluctuations. 

Indoor PM2.5 Levels: 

✓ Range: Indoor PM2.5 levels exhibited significant peaks, however the baseline was 5 

µg/m³. 

✓ Peaks: Significant sharp peaks were observed, ranging from 10 to 400 µg/m³, indicating 

indoor activities or events. 

✓ Trends: Indoor PM2.5 levels showed high variability with numerous spikes (indoor 

activities). 

Observations Year 2022 

Outdoor PM2.5 Levels: 

✓ Range: Outdoor PM2.5 levels remained low, generally under 5 µg/m³, similar to 2021. 

✓ Peaks: Few peaks were observed, occasionally rising above 20 µg/m³. 

✓ Trends: The outdoor PM2.5 levels more fluctuations compared to 2021 (might be due to 

higher outdoor temperatures). 
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Indoor PM2.5 Levels: 

✓ Range: Indoor PM2.5 levels exhibited full fluctuational pattern, ranging from 0 to 500 

µg/m³. 

✓ Peaks: Several significant peaks (~20 times) were observed, majorly due to indoor 

activities and fewer due to outdoor peaks (indoor peaks originated by outdoor peaks only 

taken place in active natural ventilation periods). 

✓ Trends: Indoor PM2.5 levels showed variability with notable spikes. 

Correlation Analysis 

Indoor vs. Outdoor (2021): 

➢ Correlation Coefficient: 0.30 

➢ Interpretation: Low positive correlation indicating that indoor PM2.5 levels are 

influenced by indoor sources more than outdoor levels. 

Indoor vs. Outdoor (2022): 

➢ Correlation Coefficient: 0.25 

➢ Interpretation: Slightly lower correlation than in 2021, reinforcing the influence of 

indoor activities on PM2.5 levels. 

Year-on-Year Analysis (2021 vs. 2022) 

Outdoor PM2.5 Comparison: 

❖ Average Concentration:  

        2021: ~4 µg/m³ 

        2022: ~4 µg/m³ 

❖ Interpretation: Outdoor PM2.5 levels were almost identical in both years, (potentially 

due to the fact that combustion of gasoline, oil, diesel fuel or wood produce much of the 

PM2.5 pollution found in outdoor air – not our case). 
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Indoor PM2.5 Comparison: 

❖ Average Concentration: 

        2021: ~50 µg/m³ 

        2022: ~55 µg/m³ 

❖ Interpretation: Indoor PM2.5 levels were higher in 2021, indicating more frequent or 

intense indoor activities contributing to PM2.5 levels. 

4.2.1.3. PM10 Data Overview 

Observations Year 2021 

Outdoor PM10 Levels: 

✓ Range: Outdoor PM10 levels remained relatively low, generally under 10 µg/m³. 

✓ Peaks: Few peaks were observed, occasionally between 10-20 µg/m³. 

✓ Trends: The outdoor PM10 levels were relatively stable with minor fluctuations. 

Indoor PM10 Levels: 

✓ Range: Indoor PM10 levels exhibited significant peaks, ranging from 0 to 400 µg/m³. 

✓ Peaks: Numerous sharp peaks were observed, indicating potential indoor burning 

category activities or events. 

✓ Trends: Indoor PM10 levels showed high variability with numerous spikes. 

Observations Year 2022 

Outdoor PM10 Levels: 

✓ Range: Outdoor PM10 levels remained low, generally under 10 µg/m³. 

✓ Peaks: couple of peak spikes were observed, occasionally between 10-25 µg/m³. Also, 

several (~5) peak long range periods were observed higher than 20 and up to 60 µg/m³. 

✓ Trends: The outdoor PM10 levels showed considerable fluctuations, however mostly 

below 20 µg/m³. 
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Indoor PM10 Levels: 

✓ Range: Indoor PM10 levels exhibited significant peaks, ranging from 0 to 1000 µg/m³. 

✓ Peaks: Numerous peaks were observed, mainly due to indoor activities and also 

contributions to outdoor originated peaks with concurrent active natural ventilation 

performances. 

✓ Trends: Indoor PM10 levels showed high variability with notable spikes. 

Correlation Analysis 

Indoor vs. Outdoor (2021): 

➢ Correlation Coefficient: 0.30 

➢ Interpretation: Low positive correlation indicating that indoor PM10 levels are 

influenced by indoor sources more than outdoor levels. 

Indoor vs. Outdoor (2022): 

➢ Correlation Coefficient: 0.25 

➢ Interpretation: Slightly lower correlation than in 2021, reinforcing the influence of 

indoor activities on PM10 levels, or decreased (impacts by outdoor sources through) active 

natural ventilation durations. 

Year-on-Year Analysis (2021 vs. 2022) 

Outdoor PM10 Comparison: 

❖ Average Concentration:  

        2021: ~4 µg/m³ 

        2022: ~4 µg/m³ 

❖ Interpretation: Outdoor PM10 levels were almost identical among 2021 and 2022, but 

showed more peaks and fluctuations in the year 2022, likely due to increased outdoor 

temperatures. 
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Indoor PM10 Comparison: 

❖ Average Concentration: 

        2021: ~15 µg/m³ 

        2022: ~12 µg/m³ 

❖ Interpretation: Indoor PM10 levels were higher in 2021, indicating more impacts by 

active natural ventilation performance periods in 2021, relatively. Frequent or intense 

indoor activities contributing to PM10 levels are less likely. 

4.2.1.4. CO Data Overview 

Observations Year 2021 

Outdoor CO Levels: 

✓ Range: Outdoor CO levels remained very low, consistently under 1 mg/m³. 

✓ Peaks: No significant peaks were observed in outdoor CO levels. 

✓ Trends: Outdoor CO levels were stable with minimal variation. 

Indoor CO Levels: 

✓ Range: Indoor CO levels exhibited several peaks, ranging from 0 to about 150 mg/m³. 

However this values are unexpectedly high. 

✓ Peaks: Multiple significant peaks were observed, indicating potential indoor sources or 

activities. 

✓ Trends: Indoor CO levels showed high variability with numerous spikes. This is 

potentially due to burning category indoor activities (Stove, smoking, wall-mounted hot 

water boiler, etc.) 
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Observations Year 2022 

Outdoor CO Levels: 

✓ Range: Outdoor CO levels remained very low, generally under 1 mg/m³, similar to 2021. 

✓ Peaks: A few minor peaks were observed, with levels occasionally rising above 1 mg/m³. 

✓ Trends: Outdoor CO levels were stable with minor fluctuations. 

Indoor CO Levels: 

✓ Range: Indoor CO levels exhibited several peaks, ranging from 0 to 3 mg/m³. 

✓ Peaks: Several significant peaks were observed, potentially due to indoor activities or 

events. 

✓ Trends: Indoor CO levels showed variability with notable spikes. 

Correlation Analysis 

Indoor vs. Outdoor (2021): 

➢ Correlation Coefficient: 0.10 

➢ Interpretation: Very low positive correlation indicating that indoor CO levels are 

influenced by indoor sources only. 

Indoor vs. Outdoor (2022): 

➢ Correlation Coefficient: 0.15 

➢ Interpretation: Slightly higher correlation than in 2021, but still very low, reinforcing 

the influence of indoor activities on CO levels. 

Year-on-Year Analysis (2021 vs. 2022) 

Outdoor CO Comparison: 

❖ Average Concentration:  

2021: ~0.1 mg/m³ 

2022: ~0.1 mg/m³ 
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❖ Interpretation: Outdoor CO levels were identical at very low levels. This represents 

consistency in emission sources and no significant new sources. 

Indoor CO Comparison: 

❖ Average Concentration: 

2021: ~3 mg/m³ 

2022: ~0.1 mg/m³ 

❖ Interpretation: Indoor CO levels were significantly lower in 2022, indicating fewer 

indoor activities contributing to CO levels, and not due to improved natural ventilation 

performance which was not the case. 

4.2.1.5. NO Data Overview 

Observations Year 2021 

Outdoor NO Levels: 

✓ Range: Outdoor NO levels ranged from approximately 0 to 80 µg/m³. 

✓ Peaks: Periodic peak patterns were observed, typically during rush hours, indicating 

traffic as a primary source. 

✓ Trends: The diurnal pattern is noticeable, with peaks occurring during the day and lower 

concentrations at night. 

Indoor NO Levels: 

✓ Range: Indoor NO levels ranged from around 20 to 100 µg/m³. 

✓ Peaks: Indoor peaks were more frequent and higher than outdoor peaks, indicating 

significant indoor sources or activities or strong infiltration through leaky airflow paths. 

✓ Trends: Indoor NO levels showed more variability with higher average concentrations 

than outdoor levels. 
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Observations Year 2022 

Outdoor NO Levels: 

✓ Range: Outdoor NO levels ranged from about 0 to 120 µg/m³. 

✓ Peaks: Peaks were observed during daytime hours, suggesting traffic and other outdoor sources. 

✓ Trends: The diurnal pattern remained consistent, with higher concentrations during the day. 

Indoor NO Levels: 

✓ Range: Indoor NO levels ranged from 5 to 100 µg/m³. 

✓ Peaks: Indoor peaks corresponded with outdoor peaks but were generally higher, 

suggesting possible indoor contributions or strong infiltration through leaky airflow 

paths. 

✓ Trends: Indoor levels showed significant variability, reflecting both indoor and outdoor 

influences. 

Correlation Analysis 

Indoor vs. Outdoor (2021): 

➢ Correlation Coefficient: 0.55 

➢ Interpretation: Moderate positive correlation indicates that outdoor NO levels influence 

indoor levels, but indoor sources also significantly contribute. 

Indoor vs. Outdoor (2022): 

➢ Correlation Coefficient: 0.60 

➢ Interpretation: A slightly higher correlation than in 2021, suggesting a stronger 

influence of outdoor NO on indoor levels, along with consistent indoor sources. 

Year-on-Year Analysis (2021 vs. 2022) 

Outdoor NO Comparison: 

❖ Average Concentration:  
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2021: ~7 µg/m³ 

2022: ~25 µg/m³ 

❖ Interpretation: Higher average outdoor NO levels in 2022 may be due to increased 

traffic or other outdoor sources or the climate and higher temperature levels. 

Indoor NO Comparison: 

❖ Average Concentration: 

2021: ~33 µg/m³ 

2022: ~32 µg/m³ 

❖ Interpretation: Slightly lower average indoor NO levels in 2022 despite higher outdoor 

levels suggest improved indoor air management, or less active natural ventilation on 

outdoor peaks, relatively. 

4.2.1.4. NO2 Data Overview 

Observations Year 2021 

Outdoor NO2 Levels: 

✓ Range: Outdoor NO2 levels ranged from approximately 10 to 30 µg/m³. 

✓ Peaks: Periodic peaks were observed, typically during rush hours, indicating traffic as a primary 

source. 

✓ Trends: The diurnal pattern is noticeable, with peaks occurring during the day and lower 

concentrations at night. 

Indoor NO2 Levels: 

✓ Range: Indoor NO2 levels ranged from around 10 to 40 µg/m³. 

✓ Peaks: Indoor peaks were more frequent and slightly higher than outdoor peaks, 

indicating significant indoor sources or activities, or strong infiltration through leaky 

airflow paths. 
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✓ Trends: Indoor NO2 levels showed more variability with higher average concentrations 

than outdoor levels. 

Observations Year 2022 

Outdoor NO2 Levels: 

✓ Range: Outdoor NO2 levels ranged from about 10 to 25 µg/m³. 

✓ Peaks: Peaks were observed during daytime hours, suggesting traffic and other outdoor 

sources. 

✓ Trends: The diurnal pattern remained consistent, with higher concentrations during the day. 

Indoor NO2 Levels: 

✓ Range: Indoor NO2 levels ranged from 10 to 45 µg/m³. 

✓ Peaks: Indoor peaks corresponded with outdoor peaks but were generally higher, 

suggesting indoor contributions or strong infiltration through leaky airflow paths. 

✓ Trends: Indoor levels showed significant variability, reflecting both indoor and outdoor 

influences. 

Correlation Analysis 

Indoor vs. Outdoor (2021): 

➢ Correlation Coefficient: 0.65 

➢ Interpretation: Moderate positive correlation indicates that outdoor NO2 levels 

influence indoor levels, but indoor sources also significantly contribute. 

Indoor vs. Outdoor (2022): 

➢ Correlation Coefficient: 0.70 

➢ Interpretation: A slightly higher correlation than in 2021, suggesting a stronger 

influence of outdoor NO2 on indoor levels, along with consistent indoor sources. 
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Year-on-Year Analysis (2021 vs. 2022) 

Outdoor NO2 Comparison: 

❖ Average Concentration:  

2021: ~18 µg/m³ 

2022: ~18 µg/m³ 

❖ Interpretation: Identical outdoor NO2 levels represents consistency in emission sources 

and no significant new sources. 

Indoor NO2 Comparison: 

❖ Average Concentration: 

2021: ~18 µg/m³ 

2022: ~21 µg/m³ 

❖ Interpretation: Slightly higher average indoor NO2 levels in 2022 despite identical 

outdoor levels suggest slight increased indoor sources. 

4.3. Conclusions 

The analysis revealed that outdoor O3 levels significantly impacted indoor O3 concentrations in 

naturally ventilated houses, with a clear correlation between the two. The building structure and 

active ventilation patterns play crucial roles in varying indoor O3 levels. In 2022, the correlation 

between indoor and outdoor O3 was slightly stronger than in 2021, possibly due to increased 

outdoor O3 levels and varying weather conditions. Despite the naturally ventilated state of the 

house, indoor O3 levels were consistently higher than outdoor levels, indicating ineffective active 

natural ventilation periods. However, the peaks in indoor O3 levels still suggest potential 

exposure risks, particularly during periods of high outdoor O3. The analysis highlights the 

importance of continuous monitoring and implementing strategies to manage O3, especially in 

naturally ventilated buildings. Future work should focus on exploring more effective ventilation 

strategies and air purification methods to further reduce indoor O3 exposure. 
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The analysis demonstrated that indoor PM2.5 levels in the case study house in Arlon were 

influenced more by indoor sources and activities than by outdoor PM2.5 levels. The low 

correlation between indoor and outdoor PM2.5 levels supports this observation. Significant peaks 

in indoor PM2.5 levels suggest that indoor activities (cooking and cleaning), or other events are 

primary contributors. Despite stable and low outdoor PM2.5 levels in both years, the indoor 

environment exhibited notable variability and spikes, indicating the necessity for 

effective/cautious natural ventilation control corresponding to them. Reducing indoor sources of 

PM2.5, improving exhaust ventilation performance by regular maintenance, and using air purifiers 

could help mitigate indoor PM2.5 levels and enhance IAQ. 

The analysis also demonstrated that indoor PM10 levels in the case study house in Arlon were 

influenced partially by indoor sources and activities and by outdoor PM10 levels. However, the low 

correlation between indoor and outdoor PM10 levels supports the higher impacts of outdoor sources 

only when natural ventilation is in active performance concurrently with outdoor peaks. Significant 

peaks in indoor PM10 levels when there is no outdoor peaks, suggest that still indoor activities could 

be primary contributors, while PM10 emissions are generally originated outdoors. Despite stable and 

outdoor PM10 levels with less relative fluctuations in both years, the indoor environment exhibited 

notable variability and spikes, indicating the necessity for effective IAQ management strategies 

including cautious natural ventilation performance in accordance to outdoor air quality state. 

Reducing indoor sources of PM10, implementing filtered mechanical ventilation systems, and using 

air purifiers could help mitigate indoor PM10 levels and enhance IAQ. 

The analysis demonstrated that indoor CO levels in the Arlon case study house are influenced more 

by indoor sources and activities than by outdoor CO levels. The very low correlation between indoor 

and outdoor CO levels supports this observation. Significant peaks in indoor CO levels suggest that 

indoor activities mainly cooking, use of wall-mounted water boiler, or other events are primary 

contributors. Despite stable and low outdoor CO levels in both years, the indoor environment 
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exhibited notable variability and spikes in 2021, indicating the necessity for effective natural 

ventilation control, or enhanced ventilation strategies. Reducing indoor sources of CO, improving 

ventilation, and using CO detectors could help mitigate indoor CO levels and enhance IAQ. 

The analysis demonstrated that indoor NO levels in the naturally ventilated house in Arlon are 

influenced by both indoor and outdoor sources. The moderate correlation between indoor and 

outdoor NO levels indicates that while outdoor sources such as traffic significantly impact indoor 

NO concentrations, indoor activities also could contribute to the observed levels mainly by 

incomplete burning processes. Higher indoor NO peaks and variability suggest that indoor 

activities such as cooking or use of heating appliances (wall-mounted hot water boiler) are major 

contributors. The slightly higher correlation in 2022 compared to 2021 in the case study indicates 

a consistent influence of outdoor NO on indoor levels primarily derived by infiltration through 

leaky airflow paths in a relatively less active natural ventilation performances in 2022. To 

mitigate indoor NO levels, it is essential to primarily reduce burning based indoor activities of 

all kind, and have cautious natural ventilation control in rush hours. 

The analysis also demonstrates that indoor NO2 levels in the naturally ventilated house in Arlon 

are influenced by both indoor and outdoor sources. The moderate correlation between indoor and 

outdoor NO2 levels indicates that while outdoor sources such as traffic significantly impact 

indoor NO2 concentrations, indoor activities also contribute to the observed levels. Higher indoor 

NO2 peaks and variability suggest that indoor activities such as cooking or use of heating 

appliances (wall-mounted hot water boiler) are major contributors. The slightly higher 

correlation in 2022 compared to 2021 indicates a consistent influence of outdoor NO2 on indoor 

levels via infiltrations through leaky airflows. To mitigate indoor NO2 levels, it is essential to 

primarily reduce burning based indoor activities of all kind, and have cautious natural ventilation 

control in rush hours.  
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5. Indoor Air Quality Model 

5.1 Introduction 

This chapter is inspired by references (Pourkiaei & Romain 2022) and Pourkiaei et al. 2024 

(Systematic framework for quantitative assessment of Indoor Air Quality under future climate 

scenarios; 2100s projection of a Belgian case study). This chapter is an effort to answer the fourth 

research question (RQ4). 

IAQ models establish a path to link data of sources, sinks, building elements, and ambient to 

predict indoor pollutant levels. Various models have been advanced for IAQ applications 

(Haghighat 1989, Jamriska 2003, Pepper 2009, Wei et al. 2019). The choice of model depends 

on the aimed objectives. The prime applications of IAQ models are: 

• Predicting occupant exposures to different indoor contaminants 

• Evaluating the influence of specific sources on pollutant levels 

• Assessing the effect of particular sources and IAQ control strategies on personal exposure 

The intended application of an IAQ model shapes its inherent characteristics and composition. 

Considering the diverse applications of IAQ models and the range of methodologies employed 

in their development they can be categorized into three main groups: 

1. Mass balance models (Mechanistic approach: indoor physics & chemistry) 

2. Computational Fluid Dynamic models (CFD) (Mechanistic approach: indoor physics & 

chemistry) 

3. Statistical models (Numerical approach) 

In this chapter, detailed information concerning the IAQ model descriptions, their general 

principles, their involved elements and parameters, their strengths and drawbacks, as well as their 

validation and calibration procedures are presented. 
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5.1.1. Mass Balance Models 

Mass balance models are formulated to enable the estimation of pollutant concentrations and the 

influence of sources, sinks, and IAQ control strategies on contaminant levels. These models are 

rooted in the conservation of mass principle (Nazaroff & Cass 1989). They can be defined over 

either a single zone (compartment/room) or multi-zone ordonnances. In a single-zone model, the 

entire building is characterized as a shoe box model. On the other hand, multi-zone models 

characterize a building through interconnected spaces. The general mass balance equation for a 

well-mixed single zone is expressed as follows (Spengler et al. 2001,): 

Vi

dCi

dt
=CaPtaQ

a,i
+ChQ

h,i
+ ∑ CjQj,i

N

i=1,j≠N

-CiQi,a
-CiQi,h

- ∑ CiQi,j

N

i=1,j≠N

+Ei-𝑆𝑖 (1) 

in which Vi denotes the zone volume, Ci denotes the indoor pollutant concentration in zone i, Ca 

denotes the outdoor concentration, Pta is the penetration factor for outdoor pollutants entering 

the indoors, Qa,i is the airflow from the outdoors into zone i, Ch is the concentration in the HVAC 

system, Qh,i is the airflow from the HVAC system into zone i, Cj is the concentration in zone j, 

Qj,i is the airflow from zone j into zone i, Qi,a is the airflow from zone i to the outdoors, Qi,h is 

the airflow from zone i into the HVAC system, Qi,j is the airflow from zone i into zone j, Ei 

denotes the emission source term, Si denotes the pollutant removal term (e.g., air cleaners and 

sinks, etc.). 

It is important to recognize that the emission source and sink terms, might involve extra 

differential equations that define their characteristics. 

A key assumption in various mass balance models is the assumption of well-mixed zones. This 

assumption is held under the following circumstances (Drescher et al. 1995, Spengler et al. 

2001): 

• When time scales are several minutes or longer. 

• When concentrations near significant sources are not of concern. 
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• When there are no local flow disruptions near the target zone. 

The intrazonal airflows (airflows among zones themselves, and between zones and the ambient) 

can be influenced by the mechanical and (less) natural ventilation. Some IAQ models (such as 

CONTAM) are capable of calculating various airflows, contingent on adequate data regarding door 

and window openings, temperature differentials, HVAC characteristics, and similar factors. In 

contrast, other models may necessitate the parameterization of input airflow as data.  

Mass balance models are formulated to estimate the average indoor pollutant concentrations. In 

numerous scenarios, this average concentration serves as the focal point. Nonetheless, there are 

instances where the average concentration is not the primary focus. For instance, if the concern 

is the exposure of an individual utilizing a potent emitting product the mean indoor concentration 

falls short. In such cases, mass balance models may prove insufficient (Norbeck et al. 2022, 

Sedighi et al. 2023). 

5.1.2. CFD Models 

Certain scenarios in IAQ modeling require to prediction of punctual (local) concentrations rather 

than average zonal concentrations. In these cases, the mass balance models fail to achieve targeted 

objectives. In such situations, objectives can be better addressed by CFD models. CFD models 

have two significant differences with mass balance models. First, CFD models estimate air velocity 

and contaminant concentration at discrete points within a zone. Secondly, CFD models tackle a set 

of partial differential equations as opposed to the ordinary differential equations targeted by mass 

balance models (Sajjadi et al. 2016, Xu et al. 2023). As a consequence, CFD models are 

computationally more expensive compared to mass balance models. 

CFD models prove particularly valuable for examining airflows and distribution within zones 

(Cao et al. 2023). Additionally, emission source and sink models play a crucial role in estimating 

pollutant concentrations using CFD models. If the characterization of the emission source and 

sink is insufficient, concentration estimation will be inaccurate, despite accurate airflow 
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calculations (Liu & Zhai 2007, Zhang & Chen 2007). The partial differential equations governing 

fluid flow and concentration are rooted in the principles of mass, momentum, and contaminant 

concentration conservation. The variables of interest include velocity components, concentration, 

and certain turbulence parameters that consider turbulent flow effects (Sedighi et al. 2023). These 

fundamental equations are typically expressed in the following manner (Pepper 2009): 

Conservation of mass: 

0
u v w

t x y z

     
+ +

   
+ =  (2) 

Conservation of momentum (x-direction): 

xyxx xz
xx

u u u u p
u v w f

t x y z x x y z

 


       
+ + + = − + + + + 

        
 (3) 

where u, v, and w are horizontal, lateral and vertical velocities, respectively, ρ is density, p is 

pressure, fx is velocity body force terms, σxx is normal viscous stress, σxy, σxz are tangential (shear) 

viscous stress terms. The CFD concentration formulation is presented in section 3.1.4.2. 

There are three fundamental CFD approaches typically employed for simulating flow and 

contaminants transport within zones: Finite Difference Method (FDM), Finite Volume Method 

(FVM), and the Finite Element Method (FEM) (Pepper 2009). CFD solvers can run structured, 

unstructured, or hybrid meshing with 2D (triangle, quadrilateral) or 3D (tetrahedral, hexahedron, 

etc.) forms with varying densities. Over the past decades, various other methods have emerged 

in scholarly literature, including the Boundary Element Method (BEM), the Lagrangian Particle 

Transport technique (LPT), the Particle-in-Cell method (PIC), and the Meshless method (MM) 

(Sommerfeld & Schmalfuß 2019, McLoone & Quinlan 2020, Shree et al. 2019, Kim et al. 2020, 

Ranganathan et al. 2022). 

5.1.3. Statistical Models 

Projection of IAQ through mechanistic methods is based on comprehension of the fundamental 

mechanisms governing the displacement and transport of indoor air contaminants. As 
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mechanistic models demand intricate inputs, securing sufficient information for their operation 

becomes challenging. This becomes even more critical in scenarios such as the study of building 

stocks, and real-world conditions where occupants interact with indoor settings. In such 

instances, statistical (also called numerical or mathematical) models based on mathematical 

approaches and Artificial intelligence (AI) offer an alternative pathway for IAQ prediction. 

Machine learning and statistical models have gained substantial traction in outdoor settings for 

estimating atmospheric pollutant concentrations (Cabaneros et al. 2019, Masood & Ahmad 2021, 

Balogun et al. 2021) and in indoor settings for predicting thermal comfort and building energy 

efficiency (Fard et al. 2022, Zhang et al. 2022, Lala & Hagishima 2022). Although many 

statistical models have been applied to predict IAQ, research regarding the depth and scope of 

their applications is relatively new (Kotzias et al. 2009, Symonds et al. 2016, Sharma et al. 2021, 

Ma et al. 2021, Tien et al. 2022, Dong et al. 2023). 

Statistical models offer the capacity to estimate IAQ through the utilization of questionnaires 

and/or measurements. Important statistical models employed for IAQ predictions include 

Artificial Neural Networks (ANNs), Regression models, and Decision Trees (Wei et al. 2019). 

As a popular method in this category, ANNs operate on a network of interconnected nodes or 

neurons (Li et al. 2022, Sun et al. 2021). They employ an intuitive learning and prediction process 

making it particularly effective for solving non-linear problems. ANNs employ multicomplex 

combinations of weights and functions to transform input variables into predicted outputs, 

eliminating the need for predefined assumptions regarding variable relationships (black box 

modeling) (Wei et al. 2019, Dong et al. 2023). 

Alternatively, Regression models such as Multiple Linear Regression (MLR), Kernel regression, 

and Partial Least Squares (PLS), approximate the relationships between variables. Among them, 

MLR is the main and extensively adopted model to assess the linear links between an output 
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(dependent variable) and various inputs (explanatory variables). The MLR model basis can be 

formulated as (Elbayoumi et al. 2015, Wei et al. 2019): 

0 1 1 2 2 ... k ky b b x b x b x = + + + + +  (4) 

in which for k observations; y denotes the output, xi denotes inputs, b0 denotes the y-intercept 

(constant term), bk represents the regression (slope) coefficients for each input, and ɛ denotes 

the stochastic error (residuals). 

In addition to MLR, alternative regression models such as the Least Absolute Shrinkage and 

Selection Operator (LASSO) regression and stepwise regression might offer more advanced 

exploration and selection of input variables (Wei et al. 2020). 

On the other hand, decision trees employ a tree-like structure to model decisions and their 

potential outcomes for data classification or regression. It serves for both classification 

(classification tree) and prediction (regression tree). An ensemble of regression trees 

(aggregation of multiple regression trees) is called Random Forest Regression (RFR). While a 

solitary regression tree may struggle with complex problems and lack of robustness, an RFR 

stands as the most frequently employed decision tree-oriented model (Yuchi et al. 2019). 

Overall, mechanistic models may project a sense of reliability while statistical models offer a 

significant utility of black box (or gray box) understanding. In situations where the specific 

mechanisms or their dynamic variations lack well-established foundations and extensive datasets 

are available, statistical models are more favorable. 

5.1.4. Indoor Air Chemistry Models 

The field of Indoor Air Chemistry (IAC) aims to comprehend the elements influencing exposure 

by investigating the chemical processes that take place in the air, aerosol particles, and surface 

reservoirs within indoor settings. Within this field, primary chemical sources include emissions 

originating indoors, or infiltrating from the outdoors. Contrarily, secondary sources are related 

to those by reactive chemistry happening indoors. These sources may be involved with 
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permanent (sustained; i.e. from building materials), periodic (episodic; i.e. human activities), or 

transient characteristics. There are five major domains of indoor environments influencing indoor 

chemistry as follows (Abbatt & Wang 2020): 

1. Indoor airflow features. Especially those linked to the building structure and interior 

characteristics, including AERs and mixing time (inter/intra-zonal). 

2. Extremely high Surface-Area-to-Volume ratio (SA/V) of indoor spaces. This ratio is 

approximately around 3 m-1 when considering only macroscopic surface areas. This value 

serves as a conservative estimate, acknowledging that at the microscopic scale, surfaces 

may possess porosity or roughness. Additionally, building materials, furnishings, and 

paintings may feature low viscosity or high porosity, facilitating molecular diffusion into 

them. These surface reservoirs are pivotal in influencing nonreactive partitioning 

processes and reactive chemistry. 

3. Indoor photon fluxes. Particularly in the ultraviolet light range. These fluxes are notably 

lower compared to outdoor conditions. The intensity and spectral composition of light 

indoors are highly influenced by factors such as the efficiency of sunlight transmission 

through the glass, cleanliness of the glass, time of day, type and number of windows, 

distance from the window, ambient cloudiness, and the types of indoor lighting. 

4. Indoor T and RH. In contrast to outdoor environments, indoor T and RH are frequently 

controlled, preventing the wet deposition process (less for kitchen and bathroom while 

using). Even in the absence of HVACs, indoor T and RH variations are relatively lower 

than those experienced outdoors. 

5. The human presence indoors. Occupants’ activities, including cooking and cleaning, play 

a crucial role, but humans also cause direct effects through emissions and multiphase 

chemistry, via their clothing and skin. These impacts can be significant in densely 

populated environments. 
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Indoor settings are characterized by low light levels, relatively low concentrations of gas-phase 

oxidants, and limited durations for the reactive processing of gaseous and particulate components, 

owing to air exchange. Nonetheless, significant gas-surface partitioning and reactive multiphase 

chemistry take place within the extensive surface reservoirs present in all indoor environments. 

These interactions are crucial in shaping the composition of indoor surfaces as well as the 

surrounding gases and aerosol particles, thereby influencing human chemical exposure. 

Although gas-phase chemistry typically doesn’t play a dominant role in determining the fate of 

most VOCs, it still involves substantial radical cycling and organic nitrate formation (Carslaw 

2007, Abbatt & Wang 2020). Additionally, the formation of Secondary Organic Aerosol (SOA) 

can occur through gas-phase oxidation of various precursors, including monoterpenes, 

unsaturated compounds from skin and cooking oils, and cigarette smoke (Abbatt & Wang 2020). 

While indoor SOA is not usually the primary component of indoor aerosols, its significance 

increases under specific conditions, such as elevated O3 levels and low AERs. Episodic events 

with high precursor concentrations, like using a terpene-based cleaner or cigarette smoking, can 

also contribute to the formation of ultrafine particles (Sarwar et al. 2003, Waring 2014, Abbatt & 

Wang 2020). Further detailed information about gas-phase and multi-phase chemistry (gas-phase 

autoxidation mechanisms, gas-phase and condensed-phase photochemistry, multiphase 

thermodynamic partitioning, aerosol partitioning, equilibrium partitioning models, surface 

chemistry, and chemical reactions) are available in two valuable recent references of indoor 

chemistry (Abbatt & Wang 2020, Zhang Y et al. 2022). 

Various techniques can model indoor chemical processes. Central to many models for indoor 

chemical processes, is the utilization of mass or concentration balances. These balances can be 

applied in both single- or multizonal well-mixed models to forecast the dynamic changes in gas- 

and particle-phase species over time. The 2 main approaches for indoor chemistry models are 

Box models and CFD models. The box model is the most commonly used for indoor chemistry 
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studies since, in essence, a modeler should select between modeling chemical complexity with a 

box model or spatial complexity with other methods. Recently, CFD has been applied to simulate 

certain simple chemical situations that present spatial variation (Waring & Shiraiwa 2022). 

Neither model can fully represent the complexities of indoor chemistry, while each seeks to 

address a unique gap in knowledge. The user must define the models’ parameters accurately to 

acquire the most efficient understanding of the indoor processes (Shaw et al. 2023). 

5.1.4.1. Box Models 

To model the fate of a generic molecule F, the generation and removal reactions R1 and R2 are 

assumed as follows, respectively: 

G+H→ y
F
F+… (R1) 

F+J→… (R2) 

The reaction between molecules G and H yields molecule F, with the molar yield of yF. 

Additionally, F can be removed from the indoor air by reaction with another molecule J. With 

respect to R1 and R2, the concentration balance is as follows (Nazaroff & Cass 1986, Waring & 

Shiraiwa 2022): 

dCF

dt

 = PF + λCF,out + EF - rFCF - λCF - νd,F

A

V
CF (5) 

In which Ci is the concentration (ppb) of species i, t is time (h), PF (ppb/h) is the formation rate 

of F due to gas-phase reactions (in R1), rF (h-1) is the loss rate of F (in R2), CF,out (ppb) is the 

outdoor concentration of F; λ (h-1) is the AER, EF (ppb/h) is emission rate of F, 𝑣𝑑,𝐹 (m/h) is the 

deposition velocity of F to indoor surfaces; and A (m2) is the surface area indoors. The gas-phase 

chemistry formation and loss rate of F in Eq.5 are defined as follows: 

PF= y
F
kG-HCGCH (6) 



114 

 

rF= kF-JC𝐽 (7) 

In which kG-H and kF-J (ppb-1.h-1) are the biomolecular reaction rate constant between “G and H”, 

and “F and J”. Additional subset models of indoor SOA, inorganic aerosol, and surface chemistry 

are available in the reference of (Waring & Shiraiwa 2022). The developed box model INCHEM-

Py v1.2, supports complex chemical mechanisms (> 6000 species, > 19000 reactions) (Shaw et 

al. 2023) 

5.1.4.2. CFD Models 

The fundamental equations of the indoor chemistry CFD model are typically expressed in the 

following manner (Pepper 2009): 

Species concentration: 

xx yy zz

C C C C C C C
u v w D D D S

t x y z x x y y z z

             
+ + + = + + +    

             
 (8) 

where S denotes source/sink terms, and Dxx, Dyy, and Dzz are the species concentration diffusion 

coefficients. 

5.1.5. IAQ Model Validation & Calibration 

Answering the question “How accurate is the model prediction?” depends on the model 

objectives and the type of data available for model inputs. The degree of agreement between 

model outputs and actual measurements is primarily influenced by the quality of the emission 

source and sink models. In situations where comprehension of the emission sources, sinks, and 

indoor-outdoor AER is robust, the disagreement between estimated and observed pollutant 

concentrations is rooted in measurement errors. Accordingly, for scenarios that require the 

assessment of a specific source using adequate source and sink models, predicted concentrations 

in a range of ±100% of measured values are expected (Spengler et al. 2001). 
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Error in indoor-outdoor AERs are less crucial compared to those present in the emission source 

and sink models. Notably, predictions made by the IAQ model are minimally affected by natural 

interzonal airflows (Spengler et al. 2001, McGrath et al. 2014). 

5.1.5.1. IAQ Models Validation 

Concerning the mass-balance model validation, Sparks et al. proposed a range of quantitative 

criteria for evaluating the overall agreement between model outputs and experimental data 

(Sparks et al. 1996). Many of those criteria are from the ASTM D5157. The initial criteria involve 

calculating the absolute value of the average fractional residual between the predicted 

concentration and the measured or observed concentration. Additional quantitative measures for 

gauging the alignment between model predictions and measurements are r (correlation), M 

(regression slope), b (regression intercept), NMSE (normalized mean square error), FB 

(fractional bias), and FS (fractional bias based on variance). A model may meet one or more 

criteria and still be inadequate, or conversely, a model may not satisfy one or more criteria and 

remain adequate for a given task (Sparks et al. 1996, Spengler et al. 2001, ASTM 2019). 

For the validation of CFD models, in addition to the application of Mean Absolute Error (MAE), 

there are two valuable references in which descriptive information about the model validation 

can be found (Sørensen & Nielsen 2003, Li & Nielsen 2011), however simple comparison 

between CFD and experimental results is very common in the literature (Zhang et al. 2019). 

On the other hand, the evaluation of statistical models’ accuracy typically involves assessing the 

measured and predicted outputs via various performance metrics and approaches, including but not 

limited to Cross-validation (rotation estimation), Accuracy & Predictive Ability (PA), Root Mean 

Square Error (RMSE), Pearson correlation coefficient (r), coefficient of determination (R2), Mean 

Absolute Percent Error (MAPE), Bayesian Information Criterion (BIC), Akaike Information 

Criterion (AIC), MAE, and Normalized Mean Absolute Error (NMAE) (Wei et al. 2019). 
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Regarding the validation of indoor chemistry models, due to the enormous heterogeneity of 

indoor spaces, they have to be tested against measurements in a wide range of environments. 

This validation step is required to ensure that model predictions are quantitatively accurate and 

transferable (Weschler & Carslaw 2018, Abbatt & Wang 2020) 

5.1.5.2. IAQ Models Calibration 

Regarding the IAQ model calibration (particularly mass balance and CFD models), this process 

is simply defined as the adjustment of statistical or physical modeling elements to improve the 

agreement of results with experimental data (CFD committee 1998, Zhao et al. 2021). 

Accordingly, one typical calibration approach is the Bayesian calibration using the Markov Chain 

Monte Carlo (MCMC) technique. Bayesian calibration involves an iterative procedure wherein 

uncertainty distributions related to the IAQ model parameters are revised in a manner that is 

consistent with the observed data (Johnston et al. 2014, Muehleisen & Bergerson 2016). 

Concerning the calibration of statistical models based on machine learning, a typical model needs 

various constraints, weights, or learning rates to effectively assist various data patterns. These 

attributes are termed hyperparameters, and their calibration is essential to enable the model to 

proficiently address the machine learning task (Claesen & De Moor 2015). The process of 

hyperparameter optimization identifies a combination of hyperparameters that results in an 

optimal model, minimizing a predetermined loss function on provided independent data. Cross-

validation is frequently employed to determine this generalization performance. Other popular 

approaches are Grid search, Random search, Bayesian optimization, Gradient-based 

optimization, Evolutionary optimization (e.g., Genetic Algorithm (GA), etc.), Population Based 

Training (PBT), Early stopping-based, Radial Basis Function (RBF), Spectral methods, and 

Adaptive Moment Estimation (ADAM) optimization (Yang & Shami 2020, Yu & Zhu 2020, 

Martínez-Comesaña et al. 2022). 
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Mostly inspired by the EU Commission’s proposal to cut greenhouse gas (GHG) emissions by at 

least 55% by 2030, European countries are being set on a responsible track to becoming climate 

neutral by 2050 (EC, 2019). In Belgium, the Climate Change Department of the FPS (Federal 

Public Service Health) launched an initiative entitled “A low-carbon Belgium by 2050” in 2012. 

The built environment is one of the main energy-consuming sectors in Belgium, with about 34% 

of the overall final energy consumption in 2010 (CLIMAT: Cornet et al, 2013). GHG emissions 

in the built environment increased significantly by 18% over the period 1990-2010 which was 

mainly caused by the +13% growth in the number of households and +35% output growth of the 

services sector (CLIMAT: Cornet et al. 2013). Hence, the current dwellings, mainly naturally 

ventilated, are projected to account for approximately more than 80% of the housing stock by 

2050. To reach 2050 climate-neutral targets, current policies propose existing dwellings must 

undergo extensive retrofitting, with the implementation of insulation and more efficient HVAC 

systems combined with an increase in air tightness (Wilkinson et al., 2009). However, such 

measures to air tightness and ventilation systems are expected to result in variations of IAQ and 

personal exposure to airborne pollutants which will have a direct influence on population health. 

Concentrations of chemical contaminants and airborne pollutants in residential buildings are 

related to the infiltration of outdoor compounds, emissions from indoor sources (activities, 

building materials, ventilation systems, etc.) and the removal from the internal air by deposition, 

filtration and exfiltration, though some re-suspension also occurs largely related to domestic 

activities. Indoor emissions include transient emissions from internal sources such as building 

materials, fixtures and appliances, as well as intermittent emissions such as burning fuel and 

candles, smoking, cooking, heating and human household activities. (Shrubsole et al., 2012). 

This study investigates the validation of a “Poly-contaminant CONTAM model” of a naturally 

ventilated studio house as part of the “OCCuPANt” project which aims at the assessment climate 

change effects on IAQ. The contaminants include CO, PM2.5, PM10, VOCs, NO, NO2 and O3. 
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This research is the first model validation of a design in CONTAM for IAQ assessment from the 

point of contaminants number, and time duration (7 contaminants for 73 days). 

5.2. Material & Methods 

5.2.1. CONTAM Description 

To provide the baseline IAQ model of the case study, an IAQ “poly-contaminant” design of the 

test house was developed in CONTAM. The multizone IAQ and ventilation analysis computer 

program CONTAM, developed by NIST (National Institute of Standards and Technology), has 

been widely used to study various IAQ problems (Emmerich & Persily 1996, Paralovo et al. 

2021). CONTAM enables indoor air multizone modelling, in which the building design is 

represented as a network of zones defined by the airflow paths over various zones (i.e., doors, 

windows, leakages, cracks, HVAC, etc.). The network nodes describe the zones concerning 

variant hydrostatic pressure, continuous temperature, and pollutant concentration. CONTAM is 

able to simulate the natural ventilation processes by applying the wind pressures acting on the 

exterior of the building, and buoyancy effects induced by temperature differences between zones, 

including the outdoors. 

5.2.1.1. Essential Application For This Study 

Since our case study involved a naturally ventilated house and no AER experiments were 

considered, the application of CONTAM in this study extends beyond a simple modular mass-

balance multi-zone simulation. Recognizing that the evaluation of future IAQ states (Chapters 6 

and 7) also requires future AER values, CONTAM ensures this consideration is accounted for. 

5.2.1.2. Literature Background 

In the following, correlated studies with CONTAM application in IAQ model design are 

presented, briefly. CONTAM has been dynamically linked with energy analysis software such as 

EnergyPlus and TRNSYS (Alonso et al. 2022, Tognon et al. 2023). Temenos et al. investigated the 

IAQ of Greek apartments, using CONTAM model (Temenos et al. 2015). Their study showed that 

https://www.nist.gov/services-resources/software/contam
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the variation of the baseline levels of the CONTAM inputs affects the output results and the 

modeled health effects. Silva et al., evaluated different scenarios of natural ventilation operation 

and the IAQ at a classroom in Portugal, using CONTAM. They performed the validation with the 

aid of a 24-hour experimental dataset (Silva et al. 2017). Fine & Touchie, investigated the 

ventilation system retrofits of high-rise residential buildings in Canada using a CONTAM model 

(Fine & Touchie 2021). Yang et al. suggested integrating the IAQ model into healthy building 

design by developing a simulation toolbox, named i-IAQ, via MATLAB®. For the implementation 

of the airflow module, they principally followed the simulation setup of CONTAM. They carried 

out an experimental validation period of one week (Yang et al. 2022). Na et al., optimized the IAQ 

and acoustic levels in old school classrooms with air purifiers and heat recovery ventilation 

systems, in South Korea (Na et al. 2023). Alonso et al., presented a methodology for the 

improvement of demand-controlled ventilation using measurements of IAQ parameters with Low-

Cost Sensors (LCSs), correlation analysis, and co-simulation EnergyPlus/CONTAM, in Norway 

(Alonso et al. 2023). Sung et al. investigated the building retrofit, ventilation, and filtration 

measures for IAQ in a school in South Korea (Sung et al. 2023). Their CONTAM-based models 

were calibrated with the measured airflow and contaminant transport variables via ASTM D5157. 

5.2.2. Model Design In CONTAM 

Regarding our case study (see section 2.2.3.), the floor plan properties were introduced to the 

software concerning the test house characteristics (area: 100m2, volume: 320m3, ceiling height: 

3.2m). The envelope effective leakage area is defined at a pressure of 4 Pa, exponent of 0.65, and 

discharge coefficient of 1 (default values settings). 

Two exhaust fans with on-off operating modes, one in the bathroom and one in the kitchen, were 

considered in the design by flow rates of 24 L.s-1. In total, 8 zones with 34 airflow paths (doors, 

windows, cracks and leakages, and exhausts) were implemented in the model based on the case 

study geometry. 
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The simulations ran with the use of Outdoor Contaminant files (.CTM), Outdoor Weather files 

(.WTH), and Continuous Value Files (.CVF) for continuous indoor temperature, indoor emission 

rates, natural ventilation activity, and occupancy pattern (Dols & Polidoro 2020). The 

aforementioned CONTAM file extensions are created with text (.txt) editor software and 

transporting the corresponding datasets into them (via CONTAM defined template). Figure 5.1. 

illustrate the corresponding CONTAM sketchpad of the first floor. 

 
Fig 5.1. The test house in Arlon, and the corresponding CONTAM sketchpad of the first floor. Zones icons 

represent indoor and ambient zones, AHS icons represent Air Handling Systems (exhaust fans), Air flow paths 

represent doors, windows, and air leakage areas, Source/sink icons represent the generation rate of pollutants, 

Occupants icon is representing the inhabitants, and the star mark displays the sensors location in the grey zone 

(kitchen zone). 

Table 5.1. shows the specified air flow paths in the model. The model parameters of different 

flow path elements were extracted from ASHRAE 2015 Handbook (ASHRAE 2015). In the 2021 

indoor measurement campaign, given that zones other than the measured one (kitchen) did not 

have significant indoor emissions, due to the absence of sources and cross-sectional air exchange 

or ventilation, the design is considered highly reliable thanks to the inclusion of airflow paths for 

the entire multizone system. 
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Table 5.1. Properties of airflow paths in the IAQ model. 

Element Model Summary Formula Model Parameter 

Exterior wall leakage One-way flow using power law Leakage area per unit length 15 cm2/m 

Interior wall leakage One-way flow using power law Leakage area per unit length 20 cm2/m 

Windows Close One-way flow using power law Leakage area per item 2 cm2 

Doors Closed (old) One-way flow using power law Leakage area per item 150 cm2 

Windows Open Two-way flow One opening Cross section area 

Doors Open Two-way flow One opening Cross section area 

5.2.2.1. Indoor Emission Rates 

Regarding the indoor emission rates, two approaches were carried out. In the first approach, the 

average indoor emission rates were extracted from the literature and introduced into CONTAM 

to model a random 7-day period among the whole measurement period. In the second approach, 

calculated continuous emission rates (by experimental data and mass balance calculations) were 

introduced to CONTAM for modelling a period of about 3 summer months (73 days). These 2 

approaches are described in the following. 

Averaged Indoor Emission Rates from Literature 

In this approach, we employed reported indoor emission rates available in the literature and 

introduced them to the software based on the questionnaire and activity pattern of the occupants for 

one week (18-24 July 2021). Our motive was to obtain acceptable approximates of typical indoor 

emission rates of the activities in our case study. For the VOCs, even though source strengths and 

activity patterns will vary from case to case, an approximate volumetric steady-state indoor emission 

rate of 40 µg/m3.h was considered (Holøs et al. 2018, Fazli & Stephens 2018). For the PM2.5, PM10, 

NO2, and CO, indoor emission rates were considered following the most common source (cooking 

activity) from comprehensive studies. Regarding the different values reported in the literature, the 

median values among them have been considered, due to the variety of cooking utilities and activities 

(boiling, frying, grilling, toasting, and microwaving), and food ingredients. Correspondingly, the 

estimated PM2.5, PM10, NO2, and CO emission rates were determined to be 1.6, 4.1, 3.1, and 5.3 

mg/min, respectively (He et al. 2004, Dimitroulopoulou et al. 2006, Buonanno et al. 2009, Kim et al. 

2011, Zhou et al. 2018, Kang et al. 2019). The aforementioned values in this section were reported 
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according to their units in the corresponding references. The unit conversions were taken into account 

with the CONTAM auto scale-convertor.  

Continuous Emission Rates by Mass-Balance Approach (Calibration) 

The continuous calculation of emission rates inherently accounts for the impact of occupant activities’ 

emission sources and also from the materials. In other words, the influence of occupant activities has 

been fully integrated into the analysis. This is a fundamental aspect of continuous emission rate 

calculations. Rather than correlating fluctuations in concentration directly with specific indoor 

activities, this method streamlines the process by considering indoor and outdoor concentrations, 

ventilation performance, and air exchange rates. As a result, emission rates have been calculated with 

a resolution of one hour, ensuring a comprehensive reflection of all contributing factors. To calculate 

continuous emission rates, the method based on the widely used mass balance model was employed 

(Hussein et al. 2005, Olson & Burke 2006, Ott et al. 2006, Dacunto et al. 2013): 

C(t)=Cb+
λ

(λ+k)V
+ (C(0)+Cb+

G

(λ+k)V
) e-(λ+k)t (9) 

In the Equation (9), C(t) is the concentration at time t, Cb is the background concentration, C(0) 

is the initial concentration, G is the emission rate (mass per time), V is the mixing volume, and 

(λ+k) is the total decay rate due to ventilation, deposition, and coagulation (λ is the ventilation 

rate and k is the deposition rate). With the assumption of a well-mixed decay period and to obtain 

the emission rates over an emission period T, Equation (9) could be simplified to Equation (10) 

(O’Leary & Jones 2017): 

G=(λ+k)V (
(Cp-Cb)-(C(0)-Cb)e-(λ+k)T

1-e-(λ+k)T
) (10) 

In which, Cp is the peak concentration at the time tp. Nonetheless, the substantial fluctuations in daily 

indoor-generated pollutant source intensities contradict the presumption of a singular total decay rate, 

applicable to all days. The continuous total decay rate can be quantified as the negative slope in the 

logarithm of the indoor concentration as a function of time approximately (Zhao et al. 2021): 
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(λ+k)=
1

t2-t1
ln

Ct1

Ct2

 (11) 

Regarding the deposition of PM, negative calculated values of G represent the sinks. To calculate 

the emission rates of gases, and with the assumption of 𝑡 ≪ 𝜏 (𝜏 is the residence time), the “peak 

estimation approach” presented by Ott et al., was applied (Ott et al. 2006): 

maxVC
G

t
  (12) 

In which, Cmax is the maximum concentration during the residence time (see 18.8 ref Ott et al. 

2006). Finally, calculated indoor emission rates (solving the equations 10 & 11 simultaneously) 

were fed to the CONTAM by .CVF input files. We also labeled this procedure in our study as 

“IAQ model calibration” or “emission rates calibration”. The approach has also been cited in the 

literature as Adjustment, Tuning, and so forth. Table 5.2. presents the Standard Deviation (SD), 

average, and maximum values of calculated indoor emission rates for CO, NO2, PM2.5, and PM10. 

No periodic indoor emission sources for O3 and NO were considered. 

Table 5.2. Calculated indoor emission rates by mass-balance approach, SD, Average, and the Maximum. 

Emission Rates (mg/min) CO NO2 PM2.5 PM10 

Standard Deviation 6.87 2.11 15.28 31.81 

Average 2.40 1.26 2.96 8.32 

Maximum 121.80 13.92 278.82 565.90 

Following the instructions provided by the research frameworks (see Figures 2.2. & 2.3.), this 

section is dedicated to presenting the outcomes of total 21 simulation cases. These cases are the 

combinations of 3 simulation series, 7 contaminants each: 

1. 7 days - averaged indoor emission rates from literature 

2. 7 days - continuous emission rates by mass-balance approach (more accurate, final approach) 

3. 73 days - continuous emission rates by mass-balance approach 

5.2.3. IAQ Model Validation 

With the aim of “IAQ model validation” as one of the requirements, the Standard Guide for 

Statistical Evaluation of IAQ Models: ASTM D5157-19 was considered (ASTM 2019). This 
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standard guid is developed by “ASTM International”, an international standards organization 

formerly known as American Society for Testing and Materials. It is noteworthy to mention that 

ASTM D5157 is the only available official guideline mandating criteria (quantitative) for the 

IAQ model evaluation, since 1993 to date. Table 5.3. represents the evaluation parameters of 

D5157 along with their definition and corresponding acceptable ranges. 

Table 5.3.  ASTM D5157 criteria for IAQ model evaluation. 

Evaluation Parameter Parameter Definition D5157 Acceptable Values 

Correlation Coefficient 𝑟 =
∑(𝑀𝑖 − �̅�)(𝑂𝑖 − �̅�)

√∑(𝑀𝑖 − �̅�)2 ∑(𝑂𝑖 − �̅�)2
 𝑟 ≥ 0.9 

Regression Slope M 0.75 ≤ 𝑀 ≤ 1.25 

Regression Intercept b |𝑏| ≤ 0.25�̅� 

NMSE 𝑁𝑀𝑆𝐸 =
(𝐶𝑝 − 𝐶𝑜)2

(𝐶𝑝. 𝐶𝑜)
 𝑁𝑆𝑀𝐸 ≤ 0.25 

FB 𝐹𝐵 =
2(�̅� − �̅�)

(�̅� + �̅�)
 𝐹𝐵 ≤ 0.25 

FS 𝐹𝑆 =
2(∑(𝑀𝑖 − �̅�)2 − ∑(𝑂𝑖 − �̅�)2)

∑(𝑀𝑖 − �̅�)2 + ∑(𝑂𝑖 − �̅�)2
 𝐹𝑆 ≤ 0.5 

*The M and O stands for predicted and observed concentrations 

5.3. Results 

Figure 5.2. shows the hourly indoor, and outdoor measured concentrations and indoor 

concentrations results by CONTAM for the kitchen zone (most complex zone) of the test-house, 

during 168 hours (7 days, 18-24 July 2021). 

Figure 5.2.a presents the CONTAM results while it is fed by average event emission rates from the 

literature, and Figure 5.2.b presents the CONTAM results when it is fed by calibrated continuous 

emission rates derived by the mass-balance approach. 

Figure 5.3. presents the same parameters as Figure 5.2. but for 1752 hours (73 days, 20 June-31 

August 2021) with calibrated emission rates. For better presentation purposes in Figure 5.3., the 

upper concentration range is kept limited for CO, PM2.5, and PM10. However maximum records of 

CO: 150 mg/m3, PM2.5: 400, and PM10: 800 µg/m3 were recorded during the measurement 

campaign.  
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Fig 5.2. Hourly concentration of indoor and outdoor measurements and indoor results by CONTAM (168 hours 

= 7 days; 18-24 July 2021) – Case study house, a) Average emission rates b) Calibrated emission rates. 
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Fig 5.3. Hourly concentration of indoor and outdoor measurements and results by CONTAM (1752 hours = 

73 days; 20 June - 31 August 2021) – Case study house, Calibrated emission rates. The green shaded area 

shows the equivalent time range of Fig 5.2.  
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The equivalent time range of Figure 5.2. is highlighted by a green shading in Figure 5.3. Also, the 

initial concentrations of pollutants were introduced to CONTAM based on the mean outdoor 

concentration of contaminants during the IAQ measurement campaign. As it is recognizable from 

Figure 5.3., CONTAM simulation results are in high harmony with the measured values over the 

73 days. To statistically examine the model performance and the agreement between model results 

and indoor measurement (see Figure 5.3.), ASTM D5157-19 was employed (ASTM 2019). Data 

characteristics were sufficient to evaluate CONTAM estimates of different zone pollutant levels. 

We calculated the NMSE parameter based on the definition presented by an exclusive EPA (U.S. 

Environmental Protection Agency) chapter of the McGraw-Hill IAQ Handbook (Spengler et al. 

2001). The aforementioned definition is as follows: 

2( )

( . )

p o

p o

C C
NMSE

C C

−
=  (13) 

in which Co represents the measured or observed concentration and Cp represents the predicted 

or modelled concentration. The bar accent denotes averaged values. 

Table 5.4. presents the results of D5157 evaluation criteria for the model output and observed 

(measured) datasets, both for average emission rates of the literature and calculated continuous 

emission rates. The results falling in the D5157 expected ranges are remarked in green cells. 

Also, corresponding scatter plots are presented in Figure 5.4. 
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Table 5.4. Results of D5157 evaluation criteria over the modelled and measured datasets.  

7 days (18-24 July 2021), CONTAM average emission rates 

Acceptable range Measure CO NO NO2 PM2.5 PM10 VOC O3 

r ≥ 0.9 r 0.39 0.48 0.46 0.74 0.8 0.35 0.62 

0.75 ≤ M ≤ 1.25 M 1.90 0.79 0.76 0.96 0.9 0.13 0.81 

b≤0.25(observations) b 3.9≥1.2 5.32≤6.6 3.06≤3.1 0.79≤2.5 3.22≤4.9 50.23≥14.22 10.87≤16.2 

NMSE ≤ 0.25 NMSE 0.09 0.01 0.02 0.11 0.09 0 0.01 

FB ≤ 0.25 FB -0.09 0.01 0.00 -0.04 0.04 -0.01 0.02 

FS ≤ 0.5 FS -1.44 1.06 -0.84 -0.52 -0.31 0.62 0.62 

                                                    73 days (20June-31August 2021), CONTAM calibrated emission rates 

r ≥ 0.9 r 0.74 0.92 0.72 0.75 0.74 0.65 0.55 

0.75 ≤ M ≤ 1.25 M 0.82 0.99 0.41 0.38 0.37 0.6 1.04 

b≤0.25(observations) b 1.04≤1.14 0≤8.13 12.68≥5.03 4.88≥1.93 6.2≥2.97 25.16≥14.22 0.26≤14.97 

NMSE ≤ 0.25 NMSE 0.11 0.01 0.04 0.22 0.13 0 0.04 

FB ≤ 0.25 FB 0.2 –0.01 0.11 0.03 0.25 0.04 0.04 

FS ≤ 0.5 FS 0.33 0.15 –1.1 –1.18 –1.2 –0.15 1.12 
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Fig 5.4. Scatter plots of the model concentration vs. measured values a) 7 days, 18-24 July 2021 (CONTAM averaged 

emission rates), b) 73 days, 20 June-31 August 2021 (CONTAM calibrated emission rates) 
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5.4. Discussions 

As presented, after confirming the performance of LCSs in the “sensor calibration study”, and 

subsequently conducting tests in the “IAQ measurement campaign”, the performance of the 

designed IAQ model in CONTAM was explored. 

As shown in Figure 5.3., the continuous emission rates which were calculated based on the mass-

balance approach led to more realistic continuum results indicating improved model performance 

(compared to literature-extracted emission rates). Regarding the IAQ model validation 

(performance evaluation), as can be seen in Table 5.3., statistical compliance with ASTM-D5157 

(ASTM 2019) criteria varies among different pollutants. The results based on the continuous 

emission rates approach are better to some extent, specifically with improved overall mean r 

(average r of all contaminants) from 0.54 to 0.72. 

The interpretation of scatter plots of the CONTAM results against measured values (see Fig 5.4.) 

suggests that: I) there is a positive correlation among all estimated and measured values, for both 

emission rate approaches, II) in the second approach (see Figure 5.4.b.) the correlation between 

CONTAM results and measured values demonstrates a significant improvement (stronger 

relationship) even in a longer period, but not for PM and O3. This could be due to the strong 

relatively outdoor sources of these contaminants, outside of the indoor emission episodes, and 

the uncertainties in the questionnaire completion (accurate record of natural ventilation and 

exhaust fans operation). 

It should be mentioned that although some criteria do not met the high expectations of D5157, 

considering the long-term comprehensive experiment duration and involved uncertainties (e.g., 

sensors performance, questionnaire, model parameters, etc.), still the model performance is 

reasonable.  
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Figure 5.5. illustrates the comparison of pollutant concentration box plots of CONTAM results 

against measured values of the case study, for both emission rate approaches. The CONTAM 

results are well within the magnitudes and ranges of those by real measurements in both emission 

rate approaches. As presented in Figure 5.5.b, the levels of the modeled and observed average 

concentrations for VOCs: (59.37 and 56.78 ppb), and O3: (59.88 and 57.52 µg/m³), demonstrate 

a very close agreement from the average perspective (same pattern for the Figure 5.5.a). Strictly 

speaking, while the D5157 statistical criteria can support understanding the 

advantages/disadvantages of a designed IAQ model, one additional general assessment can be 

the comparison of whole datasets in terms of average values. This inclusive assessment confirms 

that the model’s strength to estimate the relative outputs (when different variables are varied), 

has a consistent agreement (e.g., exhaust fans and natural ventilation performances or existence 

of emission sources based on occupant activities). Concerning the satisfactory model 

performance with calculated emission rates by the mass-balance approach, the overall mean FB 

value (average FB of all contaminants) of 0.11, indicates a minimum systematic error. 

 
Fig 5.5. CONTAM results vs. indoor measurements of the case study, a) 7 days, 18-24 July 2021, average 

emission rates, and b) 73 days, 20 June - 31 August 2021, mass-balance approach emission rates. 
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To summarize the significant recommendations for IAQ modelling, it is recommended to: 

• It is recommended to use calibrated LCSs for IAQ experiments due to their simple 

application in concurrent multi-zone measurements. Considering, the usual drift of the 

sensors, re-calibration must be managed each year for PM sensors (auto-calibrated, if 

drift data show no need to recalibrate before 12 months) and each 6 months for the others. 

• use CONTAM IAQ model due to its prominent design and coupling capabilities, as well 

as being time and cost-efficient. 

• to perform the emission rate determination tests under highly controlled conditions, due 

to the sensitive impact it has on the results.  

5.5. Conclusions 

A series of experiments to characterize the temporal profiles of poly-contaminants concentrations 

from a test residential house was carried in the summer of 2021 in Belgium to support the 

validation process of a designed model in the IAQ simulation software, CONTAM. Seven 

contaminants CO, PM2.5, PM10, VOCs, NO, NO2 and O3 are considered. 

Initially, the IAQ design with literature-based values of indoor emission rates was validated. 

Afterwards, with support of the experimental IAQ data and mass-balance approach, the indoor 

emission rates were tunned/adjusted in a continuous form (model calibration). The outdoor 

weather data was used to create CONTAM .CTM files. The long-term period of the designed 

model is 73 days of 3 summer months (20 Jun – 31 Aug 2021).  

Absolute validation of a complex model, such as CONTAM, is impossible as there are countless 

possible designs that can be developed by a user for a single case of study. Nonetheless, for the 

simulation performed by the designed model in this study, no substantial errors in the CONTAM 

performance were detected, specially from the average point of view of concentrations in the 

examination time range. The agreement between the measurements and predictions of the CO, 



133 

 

NOx and PMs concentrations in the kitchen zone was very good. Between one to four of the 

calculated statistical values met the ASTM D5157 criteria for each contaminant. The average 

values of simulated and measured concentrations for each contaminant in the whole summer time 

were identical at the level of 83% for CO, 77% for PM10 and +90% for other contaminants. 

The following chapter (Chapter 6) will focus on acquiring future inputs for the CONTAM IAQ 

basis model (year 2021), considering the climate change. 

 

 

Correlated publishment of this chapter: 

Pourkiaei, M., & Romain, A. C. (2022, June). Exploring the Indoor Air Quality in the context 

of changing climate in a naturally ventilated residential Building using CONTAM. In Indoor 

Air 2022, https://hdl.handle.net/2268/292660 
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6. Future Climate Scenarios & Future IAQ Model Inputs 

6.1. Introduction 

This chapter is mainly drafted from reference Pourkiaei et al. 2024 (Systematic framework for 

quantitative assessment of IAQ under future climate scenarios; 2100s projection of a Belgian 

case study). This chapter is an effort to answer the third research question (RQ3). 

To quantitatively evaluate the IAQ in its future state, all or main influential elements must be 

acquired/determined within the pre-defined scenarios. This is vital to assemble a comprehensive, 

and future-representative input dataset for the designated IAQ model. In this regard, the 

following five questions should be addressed: 

1. How would the climate trends (meteorological conditions) vary in future scenarios? 

2. How would the “outdoor Air Pollution (AP)” levels evolve in future scenarios? 

3. How would the “indoor climate” change in the future scenarios? 

4. How may building characteristics and retrofit plans advance in future scenarios to address 

mitigation and adaptation plans? 

5. How may human behavior evolve in the context of changing climate? 

In the following, it has been tried to study the available solutions (see 6.1.1. – 6.1.5.) and present 

selected solutions (see 6.2.) related to each question, respectively. 

6.1.1. Future Climate (Meteorology) 

Numerical climate models utilize quantitative techniques to replicate the complicated 

interactions among pivotal climate drivers (i.e., atmosphere, oceans, land surface, and ice). These 

models are being employed across a spectrum, ranging from probing the dynamics of the climate 

system to projecting future climatic scenarios. Not being limited to exclusively numerical 

formation, climate models can also assume qualitative frameworks and narratives that mainly 

involve descriptive scenarios for potential futures (IPCC 2014, Gjerstad & Fløttum 2022). 
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Climate models can be classified into the following six main categories (Wikipedia: Climate 

Model): 

• Box models 

• Energy Balance Models (EBMs) 

o Zero-dimensional models 

▪ Model with combined surface and atmosphere 

▪ Models with separated surface and atmospheric layers 

• Higher-dimension models 

• Radiative-convective models 

• Earth System Models (ECMs) 

o Global Climate Models or General Circulation Models (GCMs) 

• Numerical models (AI-based models) 

While simpler models have also been used to provide globally- or regionally-averaged estimates 

of the climate response, only GCMs are introduced in this section, as a result of their superior 

capabilities (Edwards 2011). 

GCMs demonstrating physical processes in the environment, are the most advanced tools 

available today for analyzing the reaction of the climate system to the increasing levels of 

greenhouse gases. Only GCMs in combination with nested grid regional models have the 

potential to provide geographically and physically consistent estimates. GCMs characterize the 

climate by a global 3D grid, usually with a horizontal resolution of 250-600 km, and 10-20 

vertical layers in the atmosphere (IPCC 2023). 

Furthermore, numerous physical phenomena, including those linked with clouds take place on 

smaller magnitudes and are challenging to be accurately simulated (source of uncertainty). 

Instead, their recognized attributes need to be averaged across broader scales, within a method 

referred to as parametrization (Wikipedia: parametrization ). Additional uncertainties are caused 
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by the different responses to the same forcing and representation of diverse feedback mechanisms. 

Distinct responses to the same forcing are caused by the variances in how particular processes and 

feedback loops are defined. On the other hand, diverse feedback mechanisms include water vapor, 

temperature rise, clouds and radiation, future atmospheric composition, etc. (Adachi & Tomita 

2020, Tapiador et al. 2022). 

“Climate change projections with climate models require information about future emissions or 

concentrations of greenhouse gases, aerosols, ozone-depleting substances, and land use over time 

(Figure 6.1.). This information can be provided by scenarios, which are internally consistent 

projections of these quantities based on assumptions of how socio-economic systems could 

evolve over the 21st century.” (Arias et al. 2021) 

Intergovernmental Panel on Climate Change (IPCC) is an internationally accredited organization 

on climate change and is well-known due to carrying a leading role in climate scientists, as well 

as governments. The panel gathers objective and inclusive scientific data on anthropogenic 

climate variations. In 2014, the IPCC fifth Assessment Report (AR5) presented four scenarios 

entitled, Representative Concentration Pathways (RCPs). RCPs were GHG concentration (not 

emissions) trajectories approved by IPCC (O’Neill et al. 2014). In 2019, the IPCC AR6 presented 

five climate scenarios entitled, Shared Socioeconomic Pathways (SSPs) which are scenarios of 

projected socioeconomic worldwide variations till 2100. These five central states, namely SSP1-

1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, represent increasing temperature till 2100. 

They are employed to originate GHG emissions scenarios by various climate policies (Riahi et 

al. 2017, Rogelj et al. 2018). 

The likelihoods of these scenarios were not assessed in the AR5. However, a study from 2020 

characterized the SSP5-8.5 as “highly unlikely”, SSP3-7.0 as “unlikely”, and SSP2-4.5 as 

“likely”  
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Fig 6.1. Exact Figure TS.4 from Ref. (Arias et al. 2021) | The climate change cause–effect chain: The intent of this 

figure is to illustrate the process chain starting from anthropogenic emissions, to changes in atmospheric 

concentration, to changes in Earth’s energy balance (‘forcing’), to changes in global climate and ultimately 

regional climate and climatic impact-drivers. Shown is the core set of five Shared Socio-economic Pathway (SSP) 

scenarios as well as emissions and concentration ranges for the previous Representative Concentration Pathway 

(RCP) scenarios in year 2100; carbon dioxide (CO2) emissions (GtCO2yr–1), panel top left; methane (CH4) 

emissions (middle) and sulphur dioxide (SO2), nitrogen oxide (NOx) emissions (all in Mt yr–1), top right; 

concentrations of atmospheric CO2(ppm) and CH4 (ppb), second row left and right; effective radiative forcing for 

both anthropogenic and natural forcings (W.m–2), third row; changes in global surface air temperature (°C) 

relative to 1850–1900, fourth row; maps of projected temperature change (°C) (left) and changes in annual-mean 

precipitation (%) (right) at a global warming level (GWL) of 2°C relative to 1850–1900 (see also Figure TS.5), 

bottom row. Carbon cycle and non-CO2 biogeochemical feedbacks will also influence the ultimate response to 

anthropogenic emissions (arrows on the left). 
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(Hausfather & Peters 2020). On the other hand, a report referring to the aforementioned 

reference; described that the RCP8.5 scenario is most closely with cumulative emissions from 

2005 to 2020 (Schwalm et al. 2020). 

6.1.2. Future Outdoor Air Pollution 

Climate change can impact air contaminant levels by influencing weather, anthropogenic 

emissions (caused by human activities e.g., burning of fossil fuels, deforestation, land use and 

land-use changes (LULUC), livestock production, fertilization, waste management and industrial 

processes), biogenic emissions, and altering the distribution and characterization of airborne 

allergens. The local climate impacts atmospheric chemical reactions and the interactions that take 

place among micro-scale and global-scale environments. By assuming variations of the climate 

via higher temperatures, atmospheric dispersion is going to be potentially influenced. Yet, the 

particular magnitude of change (including micro, meso, synoptic, and global), the tendency of 

alterations in a specific location, and the intensity of variations in air quality remain points of 

concern. Figure 6.2. presents the general assumptions concerning climate change and its 

attributions to the atmospheric contaminant levels. Taking into account the uncertainties of the 

general scheme and its elements, it is beneficial to aim at climate change and air pollution 

simultaneously (Bernard et al. 2001). 

 
Figure 6.2. Framework of climate change and its attributions to pollutant concentrations, Re-illustration 

from (Bernard et al. 2001). 

Atmospheric dispersion models use mathematical and numerical techniques to simulate the 

physical and chemical processes that affect air pollutants as they disperse and react in the 
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atmosphere. Figure 6.3. presents a general hierarchy of data flow to obtain an atmospheric 

dispersion model. 

Atmospheric dispersion models apply mathematical equations to estimate the transport (by the 

wind), the diffusion transfer (by atmospheric turbulence), and the dissemination of pollutants 

within the atmosphere. They find utility in examining an array of pollutants and are frequently 

deployed to examine the outcomes of emissions from industrial origins or to evaluate potential 

exposure associated with hazardous substances. General categories of atmospheric dispersion 

models include (Watson et al. 1988, Snoun et al. 2023): 

• Gaussian dispersion models 

• Chemical Transport Models (CTMs) (Lagrangian & Eulerian) 

• Numerical models 

 

Fig 6.3. General data-flow hierarchy for obtaining an atmospheric dispersion model. 

 

Gaussian dispersion models (also referred to as plume or stationary models) operate on the 

assumption that the pollutant concentration at any given point is established on factors such as 

emission rate, meteorological conditions, and distance from the source. They are usually 

employed due to their relatively straightforward implementation and their ability to estimate 

concentrations across a local scale distances from the source (in the first tens of kilometers around 

a source) (Fernandes et al. 2021, Snoun et al. 2023). 
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Lagrangian models are defined as the generation and transport of parcels of air “puffs” over time. 

These models trace the transport of pollutants by following a collection of particles representing 

the pollutants as they move through the atmosphere. They are used for pollutant dispersion over 

limited distances and in assessing the influence of complex terrain on pollutant transfer (Mensink 

& Matthias 2021). 

Eulerian models are defined as “grids or boxes” within which fluxes take. They utilize a fixed 

cell system to calculate the transport of pollutants throughout the atmosphere. They prove 

particularly valuable for examining the distant (long-range) movement of pollutants and for 

evaluating the effects of emissions by numerous sources. Eulerian grid models are the most 

complex, but potentially the most powerful atmospheric dispersion models involving the least-

restrictive assumptions (Khan & Hasan 2020). 

CTMs, such as CMAQ, WRF-Chem, and CHIMERE are some of well-known developed 

software and models for urban air quality prediction. 

Along with the 4th industrial revolution, newly valuable literature reviews have been carried out 

to provide detailed insights into the performance analysis of AI, machine learning, and ANNs in 

terms of a numerical modeling approach for future outdoor air pollution prediction (Cabaneros 

et al. 2019, Balogun et al. 2021, Masood & Ahmad 2021). Deep Learning (DL) networks such 

as Convolutional Neural Networks, Recurrent Neural Networks (RNN) and Long Short-Term 

Memory recurrent networks (LSTM), as well as hybrid architectures, have been employed to 

estimate air pollution with high efficiency competently (Cabaneros et al. 2019, Feng et al. 2019, 

Li et al. 2020, Wang et al. 2020, Balogun et al. 2021, Masood et al. 2021). Recent studies carrying 

out comparisons between the accuracy performance of CTMs and AI techniques for outdoor Air 

Pollution (AP) prediction, also show a better performance of ML and DL in terms of prediction 

accuracy (Fang et al. 2023). 

https://www.cmascenter.org/cmaq/
https://ruc.noaa.gov/wrf/wrf-chem/
https://www.lmd.polytechnique.fr/chimere/
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Reminder: Deep Learning (DL) approach is a subdivision of Machine 

Learning (ML). Generally, it is a neural network with a more complex design 

structure. It is best to utilize multi-dimensional data efficiently due to its 

powerful learning ability, strong generalization, and flexible model structure. 

Due to its strong learning capability, powerful generalization, and adjustable 

architecture, it is efficient to be utilized for data with high dimensions(LeCun 

et al. 2015). 

6.1.2.1. Atmospheric Chemistry and Outdoor Air Pollution: Mechanisms and Climate 

Change 

Atmospheric chemistry is a critical field of study that focuses on the chemical composition of 

the Earth’s atmosphere and the reactions that occur within it. This discipline is essential for 

understanding outdoor air pollution and its intricate relationship with climate change. This 

section discuss the general mechanisms that affect outdoor air pollution levels and explores how 

these processes are intertwined with climate change (Romain 2022, a, b, c). 

Mechanisms Affecting Outdoor Air Pollution 

Outdoor air pollution is influenced by a variety of sources and processes, both natural and 

anthropogenic. Key pollutants include particulate matter (PM), nitrogen oxides (NOx), sulfur 

dioxide (SO2), carbon monoxide (CO), volatile organic compounds (VOCs), and ozone (O3) 

(ground level ozone → secondary pollutant). The concentration and distribution of these 

pollutants are determined by several mechanisms. Main influential elements are chemical 

reactions,  meteorological factors, and physical processes. 

(i) Chemical Reactions 

In terms of anthropogenic emission sources, major contributors include vehicle emissions, 

industrial activities, power plants, and residential heating. These sources emit significant 

amounts of NOx, SO2, CO, PM (primary ones) and VOCs, which are precursors to secondary 

pollutants like ozone and particulate matter. On the other hand, natural emission sources include 

but not limited to volcanic eruptions, forest fires, and biogenic emissions from plants also 

contribute to atmospheric pollutants. Natural sources can release large quantities of PM and 
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VOCs, influencing air quality over high spatial ranges (Finlayson-Pitts & Pitts 1999, Seinfeld & 

Pandis 2016). 

Main atmospheric chemical reactions are photochemical and oxidation processes. Considering 

the photochemical reactions, sunlight drives many atmospheric reactions, particularly the 

formation of ozone. NOx and VOCs react in the presence of sunlight to produce ground-level 

ozone, a major component of smog. In terms of the oxidation reactions, reactive oxygen species, 

such as hydroxyl radicals (OH●), play a crucial role in the oxidation of pollutants, transforming 

them into secondary pollutants or aiding in their removal from the atmosphere (Jacob 1999, 

Atkinson 2000). 

(ii) Meteorological Factors 

The main influential meteorological factors on the atmospheric chemistry in order of their 

impacts are; wind speed and direction, temperature, atmospheric stability, solar radiation, 

precipitation, humidity, mixing height, and pressure systems (Jacob 1999, Finlayson-Pitts & Pitts 

1999, Holton 2013, Seinfeld 2016). Higher temperatures and intense solar radiation (UV) 

enhance photochemical reactions, leading to increased ozone formation. Wind disperses 

pollutants, affecting their concentration and distribution. Atmospheric stability (refers to the 

tendency of the atmosphere to resist vertical motion, lack of strong winds or sufficient 

precipitation) can lead to the accumulation of pollutants. Rain can remove pollutants from the 

atmosphere through wet deposition, effectively cleaning the air. Conversely, dry periods can lead 

to the buildup of pollutants (Stull 1988, Holton 2013). 

(iii)Physical Processes 

The key physical processes involved in the outdoor air pollution are the deposition and transport. 

In the deposition process, pollutants can settle out of the atmosphere via dry deposition (settling 

on surfaces) and wet deposition (rainout or washout). These processes help to remove pollutants 

from the air. On the other hand, the transport process incorporates the long-range transport 
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(spread) of pollutants across regions and even continents, influencing air quality far from the 

original source (Stull 1988, Holton 2013). 

Air Pollution Relationship with Climate Change 

The interplay between air pollution and climate change is complex, with each influencing the 

other through various feedback mechanisms: 

(i) Greenhouse Gases and Pollutants 

In the literature, the CO2 and Methane (CH4), are discussed to contribute to climate change by 

trapping heat in the atmosphere. Increased temperatures can, in turn, exacerbate air pollution by 

enhancing photochemical reactions (Forster et al. 2007, Bond et al. 2013). Rising temperatures 

and intense solar radiation can enhance the formation of ground-level ozone and secondary 

organic aerosols. Warmer conditions also increase the frequency and intensity of wildfires, which 

emit large quantities of PM and VOCs (Fiore et al. 2015). Also, it is discussed that PM, 

particularly black carbon, absorbs sunlight and warms the atmosphere. Conversely, sulfate 

aerosols reflect sunlight, leading to a cooling effect. The net impact of aerosols on climate is a 

balance between these warming and cooling effects (Forster et al. 2007, Bond et al. 2013). 

Climate change can alter wind patterns, precipitation rates, and atmospheric stability, all of which 

affect the dispersion and deposition of pollutants. For example, more frequent and intense 

heatwaves can lead to stagnant air conditions, trapping pollutants and worsening air quality 

(Jacob & Winner 2009). 

Feedback Mechanisms 

(i) Pollutant Effects on Climate 

Air pollutants like ozone and aerosols directly influence the Earth’s radiative balance. Ozone in 

the troposphere (ground level ozone – secondary polluatnt) acts as a greenhouse gas, contributing 
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to warming. Aerosols, depending on their composition, can either cool the atmosphere by 

reflecting sunlight or warm it by absorbing heat (Jacob & Winner 2009, Fiore et al. 2015). 

(ii) Climate-Driven Emissions 

Changes in climate can influence natural emissions of pollutants. For instance, higher 

temperatures can increase the emission of biogenic VOCs from plants, which are precursors to 

ozone and secondary organic aerosols (Jacob & Winner 2009, Fiore et al. 2015). 

6.1.3. Future Indoor Climate 

There are several approaches available to predict future indoor climate. The future indoor climate 

of buildings can be estimated by building simulations fed with input data from global climate 

models. Building simulations to obtain future indoor climate can be carried out by well-known 

software such as EnergyPluse, TRANSYS, MATLAB, CFD-based models, etc. One additional 

approach is implementing the indoor-to-outdoor (I/O) temperature ratios (Ilacqua et al . 2017, 

Fazli et al. 2021). The other methods are applying machine learning predictive models to predict 

future indoor climate. In this approach, the common choice for indoor climate prediction is the 

ANN, particularly the RNN variants like Long Short-Term Memory (LSTM) network and Gated 

Recurrent Units (GRU) (Setiawan et al. 2022). 

6.1.4. Future Building Characteristics 

Warmer seasons under climate change conditions may lead to increased operation of natural 

ventilation, while the application of cooling systems during extreme heat events may reduce 

natural ventilation use. The strategies for building adaptation comprise strengthening the 

insulations (more air tightened and less natural AERs), implementing new materials, and 

intelligent building technologies, and potentially adopting extended utilization of air 

conditioning systems during summers as compared to the present practices (Mansouri et al. 

2022). 
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The main motivation for the development of future building retrofit scenarios in terms of climate 

mitigation and adaptations, is improving the Indoor Environmental Quality (IEQ) and building 

energy performance (Suppa & Ballarini 2023, Grassie et al. 2023). Generally, the building retrofit 

action plans impact the IAQ in three fashions, as follows: 

1. Transition from fossil fuel-consuming heating (& cooking) systems to electric and 

renewable- or sustainable-based systems, that enhance the IAQ by eliminating pollutant 

emission sources. 

2. Advancement of HVAC control strategies based on optimal indoor thermal comfort 

which potentially reduces the IAQ due to relatively reduced AERs (Laverge et al. 2011, 

Guyot et al. 2018, Guyot et al. 2019). Similarly, reduced use of mechanical ventilation or 

shift to natural ventilation (in summers), which can potentially reduce the minimum 

acceptable indoor airflow rates, are settled in this category. 

3. Increased air tightness and reduced infiltration/exfiltration rates of buildings to conserve 

indoor air thermal capacity and prevent heat losses, which leads to reduced IAQ levels. 

Commonly, the abovementioned scenarios are defined and aimed by regional building codes and 

energy sectors, applicable as input data for IAQ and whole building simulations. 

6.1.5. Future Occupants’ Behavior 

Within the multidisciplinary fields of indoor chemistry and building physics, there is increasing 

attention to occupants’ behavior due to its significance in IAQ and building energy performance 

(Andersen et al. 2009, Palani et al. 2023). The study of occupant behavior involves disciplines 

ranging from building physics to human biology, to evaluate IEQ (Tijani et al. 2016, Han et al. 

2019). Three distinct approaches to this end are as follows: 

1. Deterministic methods via established scenarios and behavioral rules (including but not 

limited to occupancy degree, indoor activity type/schedule, and airflow rate gain by 

ventilation patterns) 
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2. Numerical methods based on experimental observations (e.g., surveys, automated 

mechanical and natural ventilation loggers, etc.) 

3. Social modeling methods that address cognitive and deliberative behaviors 

4. In the context of climate change, future occupants’ behavior scenarios are practically 

defined in terms of variant ventilation processes and operations types/periods, variant 

residence time, and cooking emissions. 

6.2. Material & Methods 

6.2.1. Future Weather Data (Meteorology Conditions) 

The OCCuPANt project partner has provided a historical and forthcoming weather database for 

dynamic building modeling in Belgium via the regional climate model “MAR” (Modèle 

Atmosphérique Régional) version 3.11.4 (Doutreloup & Fettweis 2021, Doutreloup et al. 2022). 

The database provides 13 weather variables including dry bulb temperature at 2m, RH at 2m, 

global horizontal radiation, diffuse solar radiation, direct normal radiation, wind speed at 10m, 

wind direction, dew point at 2m, atmospheric pressure, cloudiness, sky temperature, specific 

humidity at 2m, and precipitation. MAR is a 3D atmospheric model coupled to a one-dimensional 

(1D) transfer scheme between the surface, vegetation, and atmosphere. The spatial resolution of 

MAR is 5km atop an integration domain (120 x 90 grid cells) centered above Belgium as depicted 

in Figure 6.4. to derive hourly results. The central role of MAR is to downscale a global model 

or reanalysis to obtain weather data at a higher resolution of time (temporal) and space (spatial). 

This regional model simulates the past climate (1980-2020) and also provides various future 

forecasts and associated uncertainties for different scenarios based on SSP5-8.5.  
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Fig 6.4. MAR model topography (forms and features of land surfaces). 

6.2.2. Future Outdoor Air Pollution 

Applying representative CTM methods, such as CMAQ and WRF-Chem, are typical methods 

for urban air quality prediction. However, because of unreliable pollutant emission rates, 

complex underlying surface states, and inadequate theoretical groundwork, the calculated results 

lack estimation accuracy (Vautard et al. 2007, Stern et al. 2008, Li et al. 2016). Although these 

approaches are helpful analysis of atmospheric dispersion, turbulent diffusion, wet and dry 

deposition, and decay; severe barriers to models’ accuracy are still present (Sharma et al. 2017, 

Leelőssy et al. 2018, Mirzaei 2021). The origin of error in a CTM is the unreliability of temporal 

variations of emission rates, though the sites of emission sources are normally detected. 

Mesoscale atmospheric interactions (e.g., convection, inversion) and the indeterminate wet 

deposition processes are significant origins of error as well. Also, the functionality of CTMs to 

calculate complex atmospheric photochemical reactions is partial, due to a couple of issues; such 

as unreliability in emission descriptions. Almost all researches carried out by CTMs rely on 

hypothesizes or main variables like emission rates, mixing heights, and cloudiness (Bernard et 
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al. 2001, Vautard et al. 2007, Stern et al. 2008, Li et al. 2016, Sharma et al. 2017, Leelőssy et al. 

2018, Mirzaei 2021).  

6.2.2.1. Deep Air-Quality Forecasting 

Air quality data are high dimensional (with strong nonlinearities). In the context of air pollution, 

high nonlinearity refers to complex relationships between various factors that influence the 

dispersion, transformation, and concentration of pollutants in the atmosphere. Air pollution is 

influenced by numerous nonlinear processes and interactions, including atmospheric chemistry, 

meteorological conditions, emissions from multiple sources, and the physical characteristics of 

pollutants. Subsequently, air quality prediction is an arduous task because of rapid weather 

variations, pollutant emission phenomena, and the presence of numerous influential elements. 

Additionally, the involved parameters in atmospheric dispersion are nonlinear and dynamic; 

including but not limited to wind speed and direction, solar radiation, air temperature, air 

humidity, as well as the pollutant concentrations themselves. All in all, air quality prediction in a 

complex and highly non-linear context is a challenging goal to be spatially and temporally 

precise. Since these elements are inherently interdependent, dealing with interdependencies and 

utilizing them for prediction from multivariable time series data is not easy. To overcome these 

challenges, a hybrid deep learner algorithm consisting of multiplex 1D Convolutional Neural 

Networks and a Bi-directional Long Short-Term Memory recurrent network is developed based 

on the Deep Air Quality Forecasting Framework; DAQFF, in MATLAB software (Du et al. 

2019). The CNN-LSTM deep network considers both spatial and temporal dependencies of air 

quality-related time series data and is explained more in detail in the following part (Du et al. 

2019, Qin et al. 2019, Wang et al. 2020, Li et al. 2020). 

Convolutional Neural Network (CNN) Design 

A representative CNN consists of 3 layers (see Figure 6.5): convolutional, activation, and pooling 

layer. Dissimilar to the traditional convolutional network (classic 2D with application for 
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images), multiples 1D filters convolved over all time steps of air quality time series data (1D-

CNNs), are implemented. As a part of the CNN design, the ReLU is set as the activation function. 

The ReLU is expressed as follows: 

ReLU =>  𝑦(𝑥) = max(𝑥, 0) 

To learn the spatial pattern features, 3 convolution layers are applied as a part of the CNN design,. 

After functioning 3 convolution layers, to alter the high-level expression to a feature vector, and 

employ a fully connected layer to decrease the final output vector dimension, a flattened layer is 

utilized. At this point, a concatenated layer delivers the final output. This enables receiving the 

spatial pattern features of single station time series data (as the 1D filter is employed in each 

convolutional layer, the variation of spatial pattern features, over time series can be 

apprehended), as well as integration of the probable spatial association features of multiple 

stations. Besides, the spatial comprehension and weighted sharing features of the 1D 

convolutional network decrease the parameters for operating with multiplex time series data and 

lead to higher learning performance. Accordingly, with the aid of this approach, the learning 

takes place for more deep representation features of air quality data. 
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Fig 6.5. 1D-CNN design configuration for the current study with 3 Coevolution, 1 Flatten, and 1 Dense 

layer. 

 

Bi-Directional Long Short-Term Memory Recurrent Network (Bi-LSTM) Design 

A general LSTM segment consists of a cell with 3 gates (see Figure 6.6); input, output, and forget. 

The cell recalls values upon optional time intermissions, and the 3 gates control the input and 

output flow of data. Because of this specific memory cell architecture, the LSTM arrangement 

can consider long-term associations of time series data, and prevail over the disadvantages of 

typical recurrent networks (particularly the issue of gradient loss and burst). A chain of repeating 

cells forms the LSTM layer. Also, the tanh can be set for the activation function. With the aid of 
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2 independent hidden layers, a Bi-LSTM network can operate through 2 directions with time 

series data, at the same time. These data are concatenated and fed forward to the output layer. 

Simply put, Bi-LSTM networks are repeatedly functional with time series data in 2 directions. 

 
Fig 6.6. Bi-LSTM cell and network configuration. 

 

6.2.2.2. Data Preparation and Deep-Learner Network Setup 

The hourly recorded air pollution data of the past 15 years (2006-2021) for the CO, NO2, NO, 

PM2.5, PM10, and O3, from 5 air quality stations in Belgium were collected (ISSeP, 2021). VOCs 

were not considered during this study due to the lack of outdoor data. Accordingly, hourly 

weather data for the past 14 years (2008-2021) for the T, P, RH, wind speed (WS) and direction 

(WD), solar irradiance (IR), and precipitation (PR), were gathered (ISSeP, 2021). The 

geographical (spatial) locations of the air quality stations (yellow) and weather stations (red) are 

illustrated in Figure 6.7. Information on the weather and air quality stations and their 

corresponding datasets are presented in Table 6.1. The primary data were randomly divided into 

calibration (80%), validation (10%), and test (10%) datasets. Also, the data of a whole month in 

the summer 2020 was kept blind for presenting the deep-learner network performance. 
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Fig 6.7. Locations of air quality (yellow) and weather stations (red) in Belgium which their corresponding 

data were employed for DL network training. 

 

Table 6.1. Pairs of weather and air quality monitoring stations and their corresponding datasets 

information. 

Air Pollution stations 
Pairs for weather and air 

quality stations 

Weather stations 

T, P, RH, WS, WD, IR, PR 

Sainte-Ode (NO, NO2, O3, PM2.5, PM10) 

[07/04/2011– 18/02/2022] 

Habay (Arlon) (CO)* 

[07/02/2008 – 18/02/2022] 

Pair A 
Sainte-Ode (Arlon) 

[07/02/2008 – 18/02/2022] 

Herstal (NO, NO2, O3, PM2.5, PM10) 

[03/01/2013 – 01/01/2020] 

Liege-Val Benoit (CO)* 

[10/05/2011 – 01/01/2020] 

Pair B 
Herstal 

[03/01/2013 – 01/01/2020] 

Liège -Val Benoit (CO, NO, NO2, O3, PM2.5, PM10) 

[10/05/2011 – 01/01/2020] 
Pair C 

Palais des congrès de Liège 

[10/05/2011 - 01/01/2020] 

Engis (NO, NO2, O3, PM2.5, PM10) 

[11/02/2008 – 01/01/2020] 

Liege-Val Benoit (CO)* 

[10/05/2011 – 01/01/2020] 

Pair D 
Engis 

[11/02/2008 – 01/01/2020] 

Lodelinsart (NO, NO2, O3, PM2.5, PM10) 

[06/02/2008 - 01/01/2020] 
Pair E 

Lodelinsart 

[06/02/2008 - 01/01/2020] 

*The “Sainte-Ode”, “Herstal”, and “Engisstations” air quality stations don’t record CO data. Hence, 

complementary CO records are employed from the nearest available stations, correspondingly. 
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- The common historical time ranges per contaminant, per pairs, were applied for the initial learning steps. For the 

final overall learning run among all contaminants and stations, the tiem range of [03/01/2013 – 01/01/2020] is 

used. 

Also, to expedite the convergence of the DL network, and decrease the effect of outliers, a 

features’ normalization step is performed for the raw data, to the range of [0,1] (by max-min 

function). As part of the Deep-Learner Network design, to prevent the over-fitting issue, several 

methods were employed; including a dropout policy with a probability of 0.3, which is utilized 

broadly among layers. Selecting an appropriate dropout rate is critical for the model’s learning 

balance, some common dropout rates range from 0.2 to 0.5; however, the optimal rate varies 

depending on the specific architecture and problem domain (Lim 2020). Moreover, the early 

stopping approach is applied for high-performance learning, in which a training procedure can 

be interrupted when the validation loss is reduced no more. Correspondingly, mean square error 

(MSE) was employed as the algorithm loss function representative. The hyper-parameters were 

initially regulated by the model performance over the validation dataset, and next, the Adam 

optimizer was applied. The designed CNN-BiLSTM employs singular hidden layers as default, 

consisting of 64 neurons. For spatial and temporal trend feature learning, 3 convolution layers, 

and Bi-LSTM structure with 128 hidden neurons, were applied respectively. The activation 

operator of the output layer is linear and is correspondingly employed for the final prediction. 

Missing features of experimental data are completed by the linear interpolation for single missing 

data points and the average value of the column in which they are placed for the remaining 

missing data points. Convolutional networks are capable of both recursive or direct forecast 

tactics; where the network proceeds one-step estimation and outputs are being fed as inputs for 

following estimations, and where one model is established for each time-step to be estimated. 

Consecutively, Convolutional networks can be employed to estimate the whole output sequence, 

as a one-step estimation of the whole vector. This is a universal advantage of feed-forward ANN. 

Computational tasks were conducted on a PC server, with the AMD Ryzen 5 3500U with Radeon 

Vega Mobile Gfx 2.10 GHz processor, and 16GB of memory. 
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6.2.3. Future Indoor Climate 

For obtaining the future indoor climate; mainly the T and RH, we applied the Input-Output (I/O) 

ratios recorded in the case study summer measurement campaign of 2021. To put it simply, it is 

calculated as the ratio between indoor and outdoor values. These ratios are applied to the future 

outdoor T and RH of the selected Typical Meteorological Years (TMYs) to obtain the 

corresponding indoor values.  

6.2.4. Future Building Characteristics & Occupants Behavior 

Owed to the focus of our study on ambient conditions in the context of climate change, the 

building characteristics and occupants’ behavior patterns were assumed to be fixed. However, it 

is noteworthy to mention that, there is a simple possibility to modify (reduce based on defined 

scenarios) the air tightness and leakage information of the building in CONTAM. 

6.3. Result & Discussions (Future AP) 

Several statistical indexes, such as MAE, RMSE, and r were applied to evaluate the performance 

of the proposed model (Wei et al. 2019). Table 6.2. represents the test error analysis of CNN-

BiLSTM model for the single-step prediction at each paired weather and air quality stations (A-E 

in Table 6.1.).  

Concerning the single-step prediction efficiency of the designed CNN-BiLSTM model, the 

prediction of contaminants over one blind month with untrained inputs was carried out. Figure 

6.8. illustrates the hourly prediction performance of CNN-BiLSTM for 31 consecutive blind days 

of summer 2020 (no missing data completion) in the target city of Arlon for 5 contaminants (NO, 

NO2, O3, PM2.5, PM10, CO(Habay station)). The Figure 6.8. demonstrates the recognized 

agreement level of measured and predicted values, graphically. Excluding sharp fluctuations and 

incidental peaks, the agreement level is satisfactorily acceptable. 
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Table 6.2. The Error analysis of CNN-BiLSTM model for the single-step prediction among paired weather 

and air quality stations (A-E). Test dataset (untrained). 

CNN-BiLSTM 
CO  NO  NO2  O3  PM2.5  PM10  

RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r 

Pair A 0.86 0.05 0.57 17.43 0.42 0.64 80.82 1.94 0.67 443.7 12.9 0.87 148.4 4.65 0.63 251.7 5.94 0.61 

Pair B 0.79 0.01 0.59 16.38 0.38 0.64 79.98 1.88 0.68 435.7 10.2 0.88 132.4 3.12 0.64 249.6 5.88 0.62 

Pair C 0.93 0.06 0.54 19.3 0.56 0.63 82.9 2.18 0.64 466.4 14.9 0.81 152.6 3.19 0.6 263.7 6.17 0.61 

Pair D 0.89 0.15 0.57 21.45 0.52 0.61 86.7 2.09 0.64 491.3 16.1 0.79 166.5 5.3 0.61 286.4 9.36 0.59 

Pair E 0.96 0.17 0.55 23.1 0.62 0.6 92.06 2.18 0.62 501.6 15.7 0.76 184.4 7.04 0.59 311.5 12.1 0.57 

 

Six future Typical Meteorological Years weather files were selected among our database 

(Doutreloup & Fettweis, 2021), to represent the temporal effects of climate change with 3 

different SSP scenarios in Arlon. Additionally, for a better comparison with the past, the modeled 

average TMY of 2001-2020 period was taken into account, as well. The seven selected TMY 

weather files are as follows: 

 

Figure 6.9, illustrates the box plots of the hourly predictions of outdoor air concentrations, 

derived from deep-learner model, for the city of Arlon, in “2000-2020”, “2050s”, and “2100s” : 

SSPs 2-4.5, 3-7.0, and 5-8.5. 

Concerning outdoor air pollution, although, the emissions of key pollutants in Europe have 

almost decreased in the past decade, it is still an important concern. This is because of the 

complexities of the processes related to emissions and air quality, especially interactions with 

meteorology, in which spatial decrease of emissions, do not necessarily reduce atmospheric 

pollutant levels (Doherty et al. 2017, Defra 2022). The outdoor concentration of major of 

contaminants (with outdoor sources) is estimated to reduce in the future by the 2050s and 2100s, 

but PM10 and O3. Two remarkable exceptions are O3 and PM10, which are expected to elevate in 

the future climate trends, thus leading to an increase in their levels which infiltrate and remain in 

buildings (Orru et al. 2013). 

• Arlon TMY2001-2020_MAR   

• Arlon TMY2041-2060_SSP2_MAR-BCC • Arlon TMY2081-2100_SSP2_MAR-BCC 

• Arlon TMY2041-2060_SSP3_MAR-BCC • Arlon TMY2081-2100_SSP3_MAR-BCC 

• Arlon TMY2041-2060_SSP5_MAR-BCC • Arlon TMY2081-2100_SSP5_MAR-BCC 
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Because of well-controlled emissions of CO, it is considered a pollutant with persistent indoor 

sources. However, CO had presented the lowest correlation with outdoor weather among all 

pollutants within our indoor measurement campaigns which led to the lowest “future outdoor CO” 

prediction performance by the deep learner model among all stations (Table 6.2.). In other words, the 

outdoor CO levels, has the minimal varying pattern to learn for the DL (in comparison to other 

contaminants) since it had a robust constant average during past years. On the whole, average outdoor 

CO is predicted to remain constant (or so) by the 2050s and 2100s and the increase. For the PM10, 

the average outdoor concentrations decrease slightly till 2050s, and then increase to some extent till 

2100s. The prediction of future outdoor PM highly relies on the key assumptions (existing a black 

box-based relationship among outdoor PM concentration and weather conditions) in the prediction 

approach. There have been reported several different and contradictory results in terms of future 

outdoor PM concentration predictions over different regions (Deutsch et al. 2010, Ridder et al. 2020). 

The increase in PM10 outdoor concentration (relatively SSP5>3>2) can be explained by the greater 

impacts of higher temperatures on PM10 emission and water evaporation rates. According to the key 

findings of a study conducted in collaboration with the Belgian Interregional Environment Agency 

(IRCEL - CELINE) in 2010, among various elements; climate change is capable of moderately or 

fully undoing the valuable impacts of expected contaminant emission reductions due to higher 

temperatures (increased kinetic of atmospheric chemistry) and the incidence of droughts (lack of 

sufficient precipitation) (Deutsch et al. 2010, Jacob & Winner 2009, Sá et al. 2016). 
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Fig 6.8. Hourly prediction of CNN-BiLSTM for 31 test days of summer 2020 (untrained input), Arlon. 
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Fige 6.9. Outdoor pollutant concentrations of Arlon (AI) for TMYs: “2000-2020” and “2040-2060, 2080-

2100: SSPs 2-4.5, 3-7.0, and 5-8.5”, and corresponding statistics. 
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6.4. Conclusion 

In this chapter providing the required future inputs of the designed IAQ model in CONTAM, was 

presented. The regional future outdoor climate data were obtained by the Belgian database for the 

future climate till 2100 (SSP2,3,5). Future ambient air pollution concentrations were obtained by a 

hybrid deep learner network. The structure of the network was “1D CNN-BiLSTM RNN” and the 

learning dataset contained up to past 15 years of  hourly outdoor weather and air pollution data in 5 

different location in Belgium. The occupants activity patterns and building characteristics kept 

constant, while future AER modeling is considered by CONTAM model. Each input may arise 

uncertainties to a certain degree which were not considered during this study. 

Correlated publishment of this chapter: 

Pourkiaei, et al. (2024). Systematic Framework for Quantitative Assessment of Indoor Air 

Quality Under Future Climate Scenarios; 2100s Projection of a Belgian Case Study. Journal of 

Building Engineering, 109611, https://doi.org/10.1016/j.jobe.2024.109611 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.jobe.2024.109611


169 

 

References 

• Adachi, S. A., & Tomita, H. (2020). Methodology of the constraint condition in dynamical 

downscaling for regional climate evaluation: A review. Journal of Geophysical Research: 

Atmospheres, 125(11), e2019JD032166, https://doi.org/10.1029/2019JD032166 

• Andersen, R. V., Toftum, J., Andersen, K. K., & Olesen, B. W. (2009). Survey of occupant 

behaviour and control of indoor environment in Danish dwellings. Energy and Buildings, 41(1), 

11-16, https://doi.org/10.1016/j.enbuild.2008.07.004 

• Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. Atmospheric 

environment, 34(12-14), 2063-2101, https://doi.org/10.1016/S1352-2310(99)00460-4 

• Balogun, A. L., Tella, A., Baloo, L., & Adebisi, N. (2021). A review of the inter-correlation of 

climate change, air pollution and urban sustainability using novel machine learning algorithms 

and spatial information science. Urban Climate, 40, 100989, 

https://doi.org/10.1016/j.uclim.2021.100989  

• Bernard, S. M., Samet, J. M., Grambsch, A., Ebi, K. L., & Romieu, I. (2001). The potential 

impacts of climate variability and change on air pollution-related health effects in the United 

States. Environmental health perspectives, 109(suppl 2), 199-209, 

https://doi.org/10.1289/ehp.109-1240667 

• Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., ... & 

Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific 

assessment. Journal of geophysical research: Atmospheres, 118(11), 5380-5552, 

https://doi.org/10.1002/jgrd.50171 

• Cabaneros, S. M., Calautit, J. K., & Hughes, B. R. (2019). A review of artificial neural network 

models for ambient air pollution prediction. Environmental Modelling & Software, 119, 285-304, 

https://doi.org/10.1016/j.envsoft.2019.06.014 

• Defra; Department for Environment Food & Rural Affairs, National Statistics Air quality 

statistics in the UK, 1987 to 2021 - Particulate matter (PM10/PM2.5) Updated 28 April 2022, 

Concentrations of particulate matter (PM10 and PM2.5) - GOV.UK 

• Deutsch, F., Vankerkom, J., Veldeman, N., Peelaerts, W., Fierens, F., Vanpoucke, Ch., 

Trimpeneers, E., Vancraeynest, L., Bossuyt, M., Explanatory factors for evolutions in air quality 

Study commissioned by MIRA, Flanders Environmental Research Report, MIRA / Dec 2010, 

https://archief-algemeen.omgeving.vlaanderen.be/xmlui/handle/acd/761967 

https://doi.org/10.1029/2019JD032166
https://doi.org/10.1016/j.enbuild.2008.07.004
https://doi.org/10.1016/S1352-2310(99)00460-4
https://doi.org/10.1016/j.uclim.2021.100989
https://doi.org/10.1289/ehp.109-1240667
https://doi.org/10.1002/jgrd.50171
https://doi.org/10.1016/j.envsoft.2019.06.014
https://www.gov.uk/government/statistics/air-quality-statistics/concentrations-of-particulate-matter-pm10-and-pm25
https://archief-algemeen.omgeving.vlaanderen.be/xmlui/handle/acd/761967


170 

 

• Doherty, R. M., Heal, M. R., & O’Connor, F. M. (2017). Climate change impacts on human 

health over Europe through its effect on air quality. Environmental Health, 16(1), 33-44, 

https://doi.org/10.1186/s12940-017-0325-2 

• Doutreloup, S., Fettweis, X., 2021, https://doi.org/10.5281/zenodo.5606983 

• Doutreloup, S., Fettweis, X., Rahif, R., Elnagar, E. A., Pourkiaei, M. S., Amaripadath, D., & 

Attia, S. (2022). Historical and Future Weather Data for Dynamic Building Simulations in 

Belgium using the MAR model: Typical & Extreme Meteorological Year and Heatwaves. Earth 

System Science Data Discussions, 1-19, https://doi.org/10.5194/essd-14-3039-2022 

• Du, S., Li, T., Yang, Y., & Horng, S. J. (2019). Deep air quality forecasting using hybrid deep 

learning framework. IEEE Transactions on Knowledge and Data Engineering, 33(6), 2412-

2424, https://doi.org/10.1109/TKDE.2019.2954510 

• Edwards, P. N. (2011). History of climate modeling. Wiley Interdisciplinary Reviews: Climate 

Change, 2(1), 128-139, https://doi.org/10.1002/wcc.95  

• Fang, L., Jin, J., Segers, A., Liao, H., Li, K., Xu, B., ... & Lin, H. X. (2023). A gridded air quality 

forecast through fusing site-available machine learning predictions from RFSML v1. 0 and 

chemical transport model results from GEOS-Chem v13. 1.0 using the ensemble Kalman 

filter. Geoscientific Model Development, 16(16), 4867-4882, https://doi.org/10.5194/gmd-16-

4867-2023 

• Fazli, T., Dong, X., Fu, J. S., & Stephens, B. (2021). Predicting US residential building energy 

use and indoor pollutant exposures in the mid-21st century. Environmental Science & 

Technology, 55(5), 3219-3228. https://doi.org/10.1021/acs.est.0c06308 

• Feng, R., Zheng, H. J., Gao, H., Zhang, A. R., Huang, C., Zhang, J. X., ... & Fan, J. R. (2019). 

Recurrent Neural Network and random forest for analysis and accurate forecast of atmospheric 

pollutants: a case study in Hangzhou, China. Journal of cleaner production, 231, 1005-1015, 

https://doi.org/10.1016/j.jclepro.2019.05.319 

• Finlayson-Pitts, B. J., & Pitts Jr, J. N. (1999). Chemistry of the upper and lower atmosphere: 

theory, experiments, and applications. Elsevier, http://dx.doi.org/10.1016/B978-0-12-257060-

5.X5000-X 

• Fiore, A. M., Naik, V., & Leibensperger, E. M. (2015). Air quality and climate 

connections. Journal of the Air & Waste Management Association, 65(6), 645-685, 

https://doi.org/10.1080/10962247.2015.1040526 

• Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, 

D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. Van Dorland, 2007: 

https://doi.org/10.1186/s12940-017-0325-2
https://doi.org/10.5281/zenodo.5606983
https://doi.org/10.5194/essd-14-3039-2022
https://doi.org/10.1109/TKDE.2019.2954510
https://doi.org/10.1002/wcc.95
https://doi.org/10.5194/gmd-16-4867-2023
https://doi.org/10.5194/gmd-16-4867-2023
https://doi.org/10.5194/gmd-16-4867-2023
https://doi.org/10.1021/acs.est.0c06308
https://doi.org/10.1016/j.jclepro.2019.05.319
http://dx.doi.org/10.1016/B978-0-12-257060-5.X5000-X
http://dx.doi.org/10.1016/B978-0-12-257060-5.X5000-X
https://doi.org/10.1080/10962247.2015.1040526


171 

 

Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The 

Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of 

the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, 

M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, 

Cambridge, United Kingdom and New York, NY, USA., http://www.ipcc.ch/pdf/assessment-

report/ar4/wg1/ar4-wg1-chapter2.pdf 

• Gjerstad, Ø., & Fløttum, K. (2022). From Descriptive to Normative Climate Change Narratives: 

Theoretical and Methodological Challenges. In Oxford Research Encyclopedia of Climate 

Science, https://doi.org/10.1093/acrefore/9780190228620.013.857 

• Grassie, D., Dong, J., Schwartz, Y., Karakas, F., Milner, J., Bagkeris, E., ... & Mumovic, D. 

(2023). Dynamic modelling of indoor environmental conditions for future energy retrofit 

scenarios across the UK school building stock. Journal of Building Engineering, 63, 105536, 

https://doi.org/10.1016/j.jobe.2022.105536 

• Guyot, G., Sherman, M. H., & Walker, I. S. (2018). Smart ventilation energy and indoor air 

quality performance in residential buildings: A review. Energy and Buildings, 165, 416-430, 

https://doi.org/10.1016/j.enbuild.2017.12.051 

• Guyot, G., Walker, I. S., & Sherman, M. H. (2019). Performance based approaches in standards 

and regulations for smart ventilation in residential buildings: a summary review. International 

Journal of Ventilation, 18(2), 96-112, https://doi.org/10.1080/14733315.2018.1435025 

• Han, M., May, R., Zhang, X., Wang, X., Pan, S., Yan, D., ... & Xu, L. (2019). A review of 

reinforcement learning methodologies for controlling occupant comfort in buildings. Sustainable 

Cities and Society, 51, 101748, https://doi.org/10.1016/j.scs.2019.101748 

• Han, M., May, R., Zhang, X., Wang, X., Pan, S., Yan, D., ... & Xu, L. (2019). A review of 

reinforcement learning methodologies for controlling occupant comfort in buildings. Sustainable 

Cities and Society, 51, 101748, https://doi.org/10.1016/j.scs.2019.101748 

• Hausfather, Z., & Peters, G. P. (2020). Emissions–the ‘business as usual’ story is 

misleading. Nature, 577(7792), 618-620, https://doi.org/10.1038/d41586-020-00177-3  

• Holton, J. R., & Hakim, G. J. (2013). An introduction to dynamic meteorology (Vol. 88). 

Academic press,  https://doi.org/10.1016/C2009-0-63394-8 

• Ilacqua, V., Dawson, J., Breen, M., Singer, S., & Berg, A. (2017). Effects of climate change on 

residential infiltration and air pollution exposure. Journal of exposure science & environmental 

epidemiology, 27(1), 16-23, https://doi.org/10.1038/jes.2015.38 

http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf
http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf
https://doi.org/10.1093/acrefore/9780190228620.013.857
https://doi.org/10.1016/j.jobe.2022.105536
https://doi.org/10.1016/j.enbuild.2017.12.051
https://doi.org/10.1080/14733315.2018.1435025
https://doi.org/10.1016/j.scs.2019.101748
https://doi.org/10.1016/j.scs.2019.101748
https://doi.org/10.1038/d41586-020-00177-3
https://doi.org/10.1016/C2009-0-63394-8
https://doi.org/10.1038/jes.2015.38


172 

 

• IPCC 2014, the core writing team, Climate Change 2014 Synthesis Report, AR5 Synthesis Report 

- Climate Change 2014. Contribution of Working Groups I, II and III to the Fifth Assessment 

Report of the Intergovernmental Panel on Climate Change, 

https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf  

• IPCC 2023, What is a GCM? https://www.ipcc-data.org/guidelines/pages/gcm_guide.html 

(Accessed March 2022) 

• ISSeP, 2021. Institut Scientifique De Service Public, Belgian Scientific Institute of Public Service 

https://cqaweb.issep.be 

• Jacob, D. J. (1999). Introduction to atmospheric chemistry. Princeton university press, 

https://doi.org/10.1515/9781400841547 

• Jacob, D. J., & Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric 

environment, 43(1), 51-63, https://doi.org/10.1016/j.atmosenv.2008.09.051 

• Khan, S., & Hassan, Q. (2020). Review of developments in air quality modelling and air quality 

dispersion models. Journal of Environmental Engineering and Science, 16(1), 1-10, 

https://doi.org/10.1680/jenes.20.00004 

• Laverge, J., Van Den Bossche, N., Heijmans, N., & Janssens, A. (2011). Energy saving potential 

and repercussions on indoor air quality of demand controlled residential ventilation 

strategies. Building and Environment, 46(7), 1497-1503, 

https://doi.org/10.1016/j.buildenv.2011.01.023 

• LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444, 

https://doi.org/10.1038/nature14539 

• Leelőssy, Á., Lagzi, I., Kovács, A., & Mészáros, R. (2018). A review of numerical models to 

predict the atmospheric dispersion of radionuclides. Journal of environmental radioactivity, 182, 

20-33, https://doi.org/10.1016/j.jenvrad.2017.11.009 

• Li, S., Xie, G., Ren, J., Guo, L., Yang, Y., & Xu, X. (2020). Urban PM2. 5 concentration 

prediction via attention-based CNN–LSTM. Applied Sciences, 10(6), 1953, 

https://doi.org/10.3390/app10061953 

• Li, S., Xie, G., Ren, J., Guo, L., Yang, Y., & Xu, X. (2020). Urban PM2. 5 concentration 

prediction via attention-based CNN–LSTM. Applied Sciences, 10(6), 1953, 

https://doi.org/10.3390/app10061953 

• Li, X., Peng, L., Hu, Y., Shao, J., & Chi, T. (2016). Deep learning architecture for air quality 

predictions. Environmental Science and Pollution Research, 23(22), 22408-22417, 

https://doi.org/10.1007/s11356-016-7812-9 

https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf
https://www.ipcc-data.org/guidelines/pages/gcm_guide.html
https://cqaweb.issep.be/
https://doi.org/10.1515/9781400841547
https://doi.org/10.1016/j.atmosenv.2008.09.051
https://doi.org/10.1680/jenes.20.00004
https://doi.org/10.1016/j.buildenv.2011.01.023
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.jenvrad.2017.11.009
https://doi.org/10.3390/app10061953
https://doi.org/10.3390/app10061953
https://doi.org/10.1007/s11356-016-7812-9


173 

 

• Lim, H. I. (2021). A study on dropout techniques to reduce overfitting in deep neural networks. 

In Advanced Multimedia and Ubiquitous Engineering: MUE-FutureTech 2020 (pp. 133-139). 

Springer Singapore, https://doi.org/10.1007/978-981-15-9309-3_20 

• Mansouri, A., Wei, W., Alessandrini, J. M., Mandin, C., & Blondeau, P. (2022). Impact of Climate 

Change on Indoor Air Quality: A Review. International Journal of Environmental Research and 

Public Health, 19(23), 15616, https://doi.org/10.3390/ijerph192315616 

• Masood, A., & Ahmad, K. (2021). A review on emerging artificial intelligence (AI) techniques 

for air pollution forecasting: Fundamentals, application and performance. Journal of Cleaner 

Production, 322, 129072, https://doi.org/10.1016/j.jclepro.2021.129072 

• Mensink, C., Matthias, V. (2021). Air Pollution Modeling and its Application XXVII, Springer 

Proceedings in Complexity, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-63760-9 

• Mirzaei, P. A. (2021). CFD modeling of micro and urban climates: Problems to be solved in the 

new decade. Sustainable Cities and Society, 69, 102839, 

https://doi.org/10.1016/j.scs.2021.102839 

• O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., ... & Van Vuuren, 

D. P. (2014). A new scenario framework for climate change research: the concept of shared 

socioeconomic pathways. Climatic change, 122, 387-400, https://doi.org/10.1007/s10584-013-

0905-2 

• Orru, H., Andersson, C., Ebi, K. L., Langner, J., Åström, C., & Forsberg, B. (2013). Impact of 

climate change on ozone-related mortality and morbidity in Europe. European Respiratory 

Journal, 41(2), 285-294, https://doi.org/10.1183/09031936.00210411 

• Palani, H., Acosta-Sequeda, J., Karatas, A., & Derrible, S. (2023). The role of socio-

demographic and economic characteristics on energy-related occupant behavior. Journal of 

Building Engineering, 75, 106875, https://doi.org/10.1016/j.jobe.2023.106875 

• Pourkiaei, M., Rahif, R., Falzone, C., Elnagar, E., Doutreloup, S., Martin, J., ... & Romain, A. 

C. (2024). Systematic Framework for Quantitative Assessment of Indoor Air Quality Under 

Future Climate Scenarios; 2100s Projection of a Belgian Case Study. Journal of Building 

Engineering, 109611, https://doi.org/10.1016/j.jobe.2024.109611 

• Qin, D., Yu, J., Zou, G., Yong, R., Zhao, Q., & Zhang, B. (2019). A novel combined prediction 

scheme based on CNN and LSTM for urban PM 2.5 concentration. IEEE Access, 7, 20050-

20059, https://doi.org/10.1109/ACCESS.2019.2897028 

• Ridder, K., Couderé, K., Depoorter, M., Liekens, I., Pourria, X., Steinmetz, D., Vanuytrecht, E., 

Verhaegen, K., Wouters, H., Evaluation of The Socio-Economic Impact of Climate Change in 

https://doi.org/10.1007/978-981-15-9309-3_20
https://doi.org/10.3390/ijerph192315616
https://doi.org/10.1016/j.jclepro.2021.129072
https://doi.org/10.1007/978-3-662-63760-9
https://doi.org/10.1016/j.scs.2021.102839
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.1183/09031936.00210411
https://doi.org/10.1016/j.jobe.2023.106875
https://doi.org/10.1016/j.jobe.2024.109611
https://doi.org/10.1109/ACCESS.2019.2897028


174 

 

Belgium Study Commissioned by The National Climate Commission: Final Report, July 2020 

(2020/RMA/R/2271), https://www.adapt2climate.be/study-evaluation-of-the-socio-economic-

impact-of-climate-change-in-belgium/?lang=en 

• Romain, AC, 2022-2023.a, Air quality: Pressure - State - Response, ULiege lecture ENVT0893 

in Master in environmental science and management, 

https://www.programmes.uliege.be/cocoon/20232024/en/cours/ENVT0893-1.html 

• Romain, AC, 2022-2023.b,  Environmental impact of buildings,  ULiege lecture ENVT0170-1 in 

Master in environmental science and management, 

https://www.programmes.uliege.be/cocoon/20232024/en/cours/ENVT0170-1.html 

• Romain, AC, 2022-2023.c, Metrology of atmospheric pollutants, ULiege lecture ENVT0899-1 in 

Master in environmental science and management, 

https://www.programmes.uliege.be/cocoon/20232024/en/cours/ENVT0899-1.html 

• Sá, E., Martins, H., Ferreira, J., Marta-Almeida, M., Rocha, A., Carvalho, A., ... & Borrego, C. 

(2016). Climate change and pollutant emissions impacts on air quality in 2050 over Portugal. 

Atmospheric Environment, 131, 209-224, https://doi.org/10.1016/j.atmosenv.2016.01.040 

• Schwalm, C. R., Glendon, S., & Duffy, P. B. (2020). RCP8. 5 tracks cumulative CO2 

emissions. Proceedings of the National Academy of Sciences, 117(33), 19656-19657, 

https://doi.org/10.1073/pnas.2007117117 

• Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: from air pollution 

to climate change. John Wiley & Sons. 

• Setiawan, K. E., Elwirehardja, G. N., & Pardamean, B. (2022, October). Systematic Literature 

Review on Machine Learning Predictive Models for Indoor Climate in Smart Solar Dryer Dome. 

In 2022 4th International Conference on Cybernetics and Intelligent System (ICORIS) (pp. 1-7). 

IEEE, https://doi.org/10.1109/ICORIS56080.2022.10031503  

• Sharma, S., Sharma, P., & Khare, M. (2017). Photo-chemical transport modelling of 

tropospheric ozone: a review. Atmospheric Environment, 159, 34-54, 

https://doi.org/10.1016/j.atmosenv.2017.03.047 

• Snoun, H., Krichen, M., & Chérif, H. (2023). A comprehensive review of Gaussian atmospheric 

dispersion models: current usage and future perspectives. Euro-Mediterranean Journal for 

Environmental Integration, 8(1), 219-242, https://doi.org/10.1007/s41207-023-00354-6 

• Stern, R., Builtjes, P., Schaap, M., Timmermans, R., Vautard, R., Hodzic, A., ... & 

Kerschbaumer, A. (2008). A model inter-comparison study focussing on episodes with elevated 

https://www.adapt2climate.be/study-evaluation-of-the-socio-economic-impact-of-climate-change-in-belgium/?lang=en
https://www.adapt2climate.be/study-evaluation-of-the-socio-economic-impact-of-climate-change-in-belgium/?lang=en
https://www.programmes.uliege.be/cocoon/20232024/en/cours/ENVT0893-1.html
https://www.programmes.uliege.be/cocoon/20232024/en/cours/ENVT0170-1.html
https://www.programmes.uliege.be/cocoon/20232024/en/cours/ENVT0899-1.html
https://doi.org/10.1016/j.atmosenv.2016.01.040
https://doi.org/10.1073/pnas.2007117117
https://doi.org/10.1109/ICORIS56080.2022.10031503
https://doi.org/10.1016/j.atmosenv.2017.03.047
https://doi.org/10.1007/s41207-023-00354-6


175 

 

PM10 concentrations. Atmospheric Environment, 42(19), 4567-4588, 

https://doi.org/10.1016/j.atmosenv.2008.01.068 

• Stull, R. B. (1988). An introduction to boundary layer meteorology (Vol. 13). Springer Science 

& Business Media., https://doi.org/10.1007/978-94-009-3027-8 

• Suppa, A. R., & Ballarini, I. (2023). Supporting climate-neutral cities with urban energy 

modeling: a review of building retrofit scenarios, focused on decision-making, energy and 

environmental performance, and cost. Sustainable Cities and Society, 104832, 

https://doi.org/10.1016/j.scs.2023.104832 

• Tapiador, F. J., Navarro, A., Moreno, R., Sánchez, J. L., & García-Ortega, E. (2020). Regional 

climate models: 30 years of dynamical downscaling. Atmospheric Research, 235, 104785, q 

https://doi.org/10.1016/j.atmosres.2019.104785 

• Tapiador, F. J., Navarro, A., Moreno, R., Sánchez, J. L., & García-Ortega, E. (2020). Regional 

climate models: 30 years of dynamical downscaling. Atmospheric Research, 235, 104785, q 

https://doi.org/10.1016/j.atmosres.2019.104785 

• Tijani, K., Ploix, S., Haas, B., Dugdale, J., & Ngo, Q. D. (2016). Dynamic Bayesian Networks to 

simulate occupant behaviours in office buildings related to indoor air quality. arXiv preprint 

arXiv:1605.05966, https://doi.org/10.48550/arXiv.1605.05966 

• Vautard, R., Builtjes, P. H., Thunis, P., Cuvelier, C., Bedogni, M., Bessagnet, B., ... & Wind, P. 

(2007). Evaluation and intercomparison of Ozone and PM10 simulations by several chemistry 

transport models over four European cities within the CityDelta project. Atmospheric 

environment, 41(1), 173-188, https://doi.org/10.1016/j.atmosenv.2006.07.039 

• Wang, H. W., Li, X. B., Wang, D., Zhao, J., & Peng, Z. R. (2020). Regional prediction of 

ground-level ozone using a hybrid sequence-to-sequence deep learning approach. Journal of 

Cleaner Production, 253, 119841, https://doi.org/10.1016/j.jclepro.2019.119841 

• Watson, A. Y., Bates, R. R., & Kennedy, D. (1988). Mathematical Modeling of the Effect of 

Emission Sources on Atmospheric Pollutant Concentrations. In Air Pollution, the Automobile, 

and Public Health. National Academies Press (US, 

https://www.ncbi.nlm.nih.gov/books/n/nap1033/pdf/ 

• Wei, W., Ramalho, O., Malingre, L., Sivanantham, S., Little, J. C., & Mandin, C. (2019). Machine 

learning and statistical models for predicting indoor air quality. Indoor Air, 29(5), 704-726, 

https://doi.org/10.1111/ina.12580  

• Wikipedia: Climate Model: https://en.wikipedia.org/wiki/Climate_model 

• Wikipedia: Parametrization: https://en.wikipedia.org/wiki/Parametrization_(climate_modeling) 

https://doi.org/10.1016/j.atmosenv.2008.01.068
https://doi.org/10.1007/978-94-009-3027-8
https://doi.org/10.1016/j.scs.2023.104832
https://doi.org/10.1016/j.atmosres.2019.104785
https://doi.org/10.1016/j.atmosres.2019.104785
https://doi.org/10.48550/arXiv.1605.05966
https://doi.org/10.1016/j.atmosenv.2006.07.039
https://doi.org/10.1016/j.jclepro.2019.119841
https://www.ncbi.nlm.nih.gov/books/n/nap1033/pdf/
https://doi.org/10.1111/ina.12580
https://en.wikipedia.org/wiki/Climate_model
https://en.wikipedia.org/wiki/Parametrization_(climate_modeling)


176 

 

  



177 

 

 

 

 

 

 

 

 

 

 

7. FUTURE IAQ STATE IN THE 

 CONTEXT OF CHANGING CLIMATE 

 & 

 INTRODUCTION OF CLIMATE 

CHANGE-INDOOR AIR QUALITY 

INDEX (CAPI) 

 

 

 

 

 



178 

 

7. Future IAQ State In The Context Of Changing Climate & 

Introduction Of Climate Change-Indoor Air Quality Index (CAPI) 

7.1. Quantitative Analysis Of Future IAQ Under Climate Change Scenarios, Till 

2100 

This section (7.1) has been drafted from reference Pourkiaei et al. 2024 (Systematic framework 

for quantitative assessment of Indoor Air Quality under future climate scenarios; 2100s 

projection of a Belgian case study). This chapter is an continued effort (to chapter 5) to answer 

the fourth research question (RQ4). 

After obtaining all the IAQ model inputs with their future values, the simulations to predict the 

future IAQ state of the case study house in CONTAM (basis year 2021) were carried out. Figure 

7.1., shows the CONTAM hourly indoor pollutant concentration estimates for CO, NO2, NO, 

PM2.5, PM10, and O3, in “2000-2020”, “2050s”, and “2100s”: SSPs 2-4.5, 3-7.0, and 5-8.5. The 

estimated indoor pollutant concentrations by CONTAM, are derived from an internal integrated 

process of mass balance equations in which, different contributions of indoor and outdoor origins 

are taken into account. 

Considering long-term IAQ measurement campaigns with the help of low-cost sensors and 

establishing IAQ databases are crucial for better insight and future studies. The proposed hybrid 

deep-learner algorithm is capable of drawing out and learning the high-dimensional spatial and 

temporal features of air quality data time series in different regions. Our model performance is 

satisfactory since it can adopt regional pattern features by 1D-CNN, and long-term reliance 

features by Bi-LSTM. 

The predicted reduction in outdoor pollution concentration combined with the natural ventilation 

system will, on average, contribute to the reduction of indoor pollutant concentrations, which are 

infiltrated from outdoors. Outdoor O3 and PM10, which are expected to elevate in the future 

climate trends (see Figure 6.9), thus leading to an increase in their levels which infiltrate and 

remain in buildings. 
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Since the average outdoor CO is predicted to remain constant the increase in the indoor levels is 

only due to the contribution of indoor sources of the Arlon case-study basis model. For 

contaminants with primarily periodic indoor sources such as PM2.5, PM10, and NO, the main 

contributions are from indoor sources. PM2.5 and NO mean indoor levels are marginally 

decreased in future climate trends. This reduction is due the natural ventilation and a slight 

decrease in average outdoor PM2.5 and NO levels. 

For the PM10, the average indoor concentrations decrease slightly till 2050s, and then increase 

to some extent till 2100s;following the same pattern of outdoor average PM10 levels.  

It is also approximated that mean indoor contaminant exposures are: 

• Constant for CO (with substantial indoor sources, as indoor and outdoor emissions are 

not varied). 

• Decreased for PM2.5 and NO (those with periodic indoor sources that are naturally 

ventilated with decreased outdoor concentrations). 

• Increased for NO2 (slightly), PM10, and O3 (those with dominant outdoor sources which 

are naturally ventilated with increased outdoor concentrations). 
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Fig 7.1. Indoor pollutant concentrations of Arlon test-house (CONTAM), for TMYs: “2000-2020” and 

“2040-2060, 2080-2100: SSPs 2-4.5, 3-7.0, and 5-8.5”, and corresponding statistics. 
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7.2. Climate Change-IAQ Index( IAQ-CC Index: CAPI) 

To provide a decision support tool, and objectivize and quantify the importance of climate change 

effects on IAQ, a novel IAQ-CC index is presented as follows: CAPI = 
DCPI

DCE
 

“Climate Change Affected Poor IAQ” Ratio = (
Days of CC Correlated Poor IAQ

Days of CC Events
) [0,1] 

Based on the classification of IAQ indices, CAPI is considered a “Class-M1” type index (Pourkiaei 

& Romain 2023). This index describes the portion of days with climate change effects (e.g., heat 

waves and Ozon peak episodes), in which, poor IAQ occurs due to those specific events. In other 

words, the targets are indoor air ELV exceedances that are triggered by outdoor air ELV 

exceedances due to climatological events. This assumptions relies on the facts that climatological 

extreme events by impacting outdoor air quality can potentially affect IAQ. For this aim only those 

poor IAQ states which are solely correlated to the outdoor air quality conditions (outdoor air quality 

conditions are potentially impacted by extreme events, more likely for PM10 and O3). Therefore, 

applying this index is sensible after a specific time period, such as a month or a season. Considering 

the structure of this index, it is applicable for each indoor zone, or to the entire building indoor 

environment as a whole. As the CAPI index is closer to the lower limit (0), the smaller portion of 

heat-wave  and Ozone peak events are followed by correlated poor IAQ. On the other hand, the 

CAPI closer to the upper limit (1), indicates the higher portion of heat-wave  and Ozone peak events 

are followed by correlated poor IAQ. 

The definition of a poor IAQ is a challenge by itself since there is no comprehensive integrated 

reference available for all indoor pollutants (Pourkiaei & Romain 2023). In this regard, Table 

7.1. presents the guidelines which are employed in this study for IAQ assessment, based on “ISO 

16000-6:2011 Indoor Air”, and the newly updated “WHO global air quality guidelines 2021” 

(ISO16000-6 2011, WHO 2021). Accordingly, the identification of the poor IAQ state, with 
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respect to each pollutant, should follow the corresponding defined time scale as presented in the 

Table 7.1. 

Table 7.1. Recommended 2021 AQG levels of pollutants and 2005 air quality guidelines (daily). 

Pollutants Averaging time 2005 air quality guideline 2021 AQG level 

PM2.5, μg/m3 24-hour 25 15 

PM10, μg/m3 24-hour 50 45 

O3, μg/m3 8-hour 100 100 

NO2, μg/m3 24-hour - 25 

CO, mg/m3 24-hour - 4 

TVOC, mg/m3 ISO 16000-6:2011 ; 10-25 

7.2.1. Heat-Waves & Ozon-Peaks 

The IRM characterizes a heat wave as a duration of at least 5 consecutive days that the maximum 

temperature is at least 25°C (summer days), in which at least 3 days exceeds the maximum 

temperature of 30°C (tropical days) (Doutreloup et al. 2022, Dodona 2022). On the other hand, 

the Ozon peak events (alarm phase) are defined based on the daily Ozone measurements and 

ozone forecasts, as follows: “On the previous day, in at least one weather station, an hourly mean 

O3 concentration reaches higher than 240 µg/m³ (EU limit value) AND for the present day, for at 

least one weather station, an hourly mean O3 value predicted higher than 180 µg/m³ (EU 

information threshold)”. The IRCEL - CELINE has reported that the alarm phase criteria of O3 

have never taken place, afterward the very beginning of their recordings, in 2005 (Irceline 2022). 

7.2.2. CAPI Results 

To calculate the CAPI index, firstly, the number of days with climate change events should be 

determined. As mentioned earlier, the alarm phase criteria of O3 have never taken place in 

Belgium, since the beginning of the recordings (2005) to date. Hence, ozone criteria are not 

practical since its peak episodes are rare conditions, even for the highest predicted future outdoor 

O3 level (174 μg/m3 for 2100s, SSP-3). Therefore, future summer heat waves of each weather 

scenario were extracted based on the definition of IRM in the range of 20 June - 31 August (73 

days), and are presented in Table 7.2. and Figure 7.2. In the next step, the number of days with 

poor IAQ in the heat wave periods, are extracted based on ELVs of Table 7.2., and are presented 
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in Table 7.3. The exceedance of limits due to other sources than the outdoor environment (e.g., 

given occupants’ behaviors) is not considered (eliminated based on the target of CAPI).  

Table 7.2. Different summer HW events date and duration extracted from corresponding weather scenario. 

Weather Scenario HW Events Dates Days Number 

Arlon TMY 2000-2020 – MAR - 0 

Arlon 2021 Real Data [11-15 Aug] 5 

Arlon 2022 Real Data [16-25 Jul, 7-19 Aug] 23 = (10+13) 

Arlon TMY 2041-2060_SSP-2 - 0 

Arlon TMY 2041-2060_SSP-3 [21-30 Jul] 10 

Arlon TMY 2041-2060_SSP-5 [17-23 Jul, 2-7 Aug] 13 (=7+6) 

Arlon TMY2081-2100_SSP-2 [17-23 Jul, 13-17 Aug] 12 (=5+7) 

Arlon TMY2081-2100_SSP-3 [29 Jul - 8 Aug] 11 

Arlon TMY2081-2100_SSP-5 [20-25 Jun, 13-23 Jul, 14-21 Aug] 25 (=6+11+8) 
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Fig 7.2. Heat-wave events over different weather scenarios in the context of changing climate. 
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Table 7.3. Different climate change correlated poor-IAQ days of summers, extracted from future IAQ. 

Weather Scenario CC-correlated poor-IAQ Dates Days Number 

Arlon TMY 2000-2020 – MAR No heat events - 

Arlon 2021 Real Data 0 0 

Arlon 2022 Real Data 3 3 

Arlon TMY 2041-2060_SSP-2 No Heat events - 

Arlon TMY 2041-2060_SSP-3 [22-30 Jul] 9 

Arlon TMY 2041-2060_SSP-5 [17-22 Jul, 2-7 Aug] 12 (=6+6) 

Arlon TMY2081-2100_SSP-2 [17-20 Jul, 14-17 Aug] 8 (=4+4) 

Arlon TMY2081-2100_SSP-3 [29 Jul - 6 Aug] 9 

Arlon TMY2081-2100_SSP-5 [20-25 Jun, 13-22 Jul, 14-21 Aug] 24 (=6+10+8) 

 

Finally, the CAPI index is calculated as the ratio of climate change-correlated poor-IAQ days, 

over the CC-events days (in here heat waves duration), and is presented in Table 7.4. and 

Figure 7.3. 

Table 7.4. CAPI final step calculation. 
Weather Scenario CAPI Ratio CAPI 

Arlon TMY 2000-2020 – MAR No CC Events - 

Arlon 2021 Real Data 0
5⁄  0 

Arlon 2022 Real Data 3
22⁄  0.13 

Arlon TMY 2041-2060_SSP-2 No CC Events - 

Arlon TMY 2041-2060_SSP-3 9
10⁄  0.9 

Arlon TMY 2041-2060_SSP-5 12
13⁄  0.92 

Arlon TMY2081-2100_SSP-2 8
12⁄  0.67 

Arlon TMY2081-2100_SSP-3 9
11⁄  0.81 

Arlon TMY2081-2100_SSP-5 24
25⁄  0.96 
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Fig 7.3. The evolution of CAPI index over different future weather scenarios in the context of climate change. 

Regarding the CAPI index results, primarily, we try to take a deeper look into its components. 

The number of heat wave events, duration, and intensity were increased by the temporal 

evolution of climate predictions of the MAR model (2021 actual measurements < 2050’s < 

2100’s). This trend is also followed in the SSP scenarios of each future weather forecast period 

(SSP2 < SSP3 < SSP5). Also, 100% of investigated heat waves are concurrent with outdoor Ozon 

pick episodes. Concerning the future “CC correlated” poor IAQ days, the estimated IAQ results 

by CONTAM were compared to the guideline values presented in Table 1. Accordingly, linked 

exceedances to the ambient pollutant concentrations were extracted (Table 3). Figure 7.4. depicts 

the CAPI projections via SSP2, 3, and 5 between 2021, 2050s, and 2100s. 
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Fig 7.4. CAPI projections via SSP2, 3, and 5 between 2021, 2050s, and 2100s. 

 

7.3. Implications For IAQ “Climate Adaptation And Mitigation Actions” 

This section (5.3) is mainly inspired and drafted from the Handbook of Indoor Air Quality-

Springer (Zhang et al. 2023, chapter 72). “IAQ is likely to be impacted both by climate change 

itself (direct) and the corresponding adaptation and mitigation strategies (indirect). Both 

adaptation and mitigation efforts are likely to lead to tighter buildings with less natural 

ventilation. Therefore, alongside energy efficiency and thermal comfort measures, it is crucial to 

identify and reduce indoor pollution sources, incorporating air cleaning or local ventilation where 

necessary. 

Rising temperatures will significantly affect indoor thermal comfort, altering the patterns of 

window use and air conditioning to maintain internal comfort. These changes are likely to impact 

indoor concentrations of pollutants from both indoor and outdoor sources. 

Air conditioning effectively reduces indoor heat exposure and protects health during heatwaves. 

However, prolonged AC use can prevent physiological adaptation to moderate heat increases, 

increasing risk if individuals must leave the AC environment or during power outages. Extensive 

AC use also strains the power grid, potentially causing blackouts and contributing to the UHI. 
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Mitigation efforts, including commitments to a net-zero carbon economy, suggest a shift towards 

an all-electric energy system based on renewable sources. This shift implies lower ambient air 

pollution (particularly NO2 and PM), no indoor gas cooking emissions, and tighter building 

envelopes for energy efficiency. However, reduced ventilation can increase the impact of indoor 

pollution sources. Tighter buildings may require engineered retrofits to ensure effective 

ventilation. As global temperatures rise, space heating energy needs will diminish, potentially 

increasing the use of renewable wood-based fuels, which could impact IAQ if not properly 

ventilated. There may also be population migrations to cooler regions, establishing new 

communities closer to the poles. 

Natural ventilation, modifiable via window opening by occupants, is another option. 

Encouraging natural ventilation at night could help since pollution concentrations tend to be 

lower, though less so in a warming climate. 

Adaptive, intelligent control ventilation systems that monitor various indoor and outdoor 

conditions and adjust fresh air infiltration could maximize comfort and IAQ while being energy 

efficient. These systems could minimize infiltration during extreme air pollution episodes, 

preserving IAQ. Demand-controlled mechanical exhaust ventilation can reduce indoor CO2 

concentrations and save energy during the heating season. 

Effective source control or elimination will be critical in tighter, energy-efficient homes to 

maintain IAQ. Air cleaners can be effective but require frequent maintenance and appropriate 

scaling to the space volume and AER.” (Zhang et al. 2023, chapter 72) 

7.4. Conclusions 

Considering long-term IAQ measurement campaigns with LCS, establishing IAQ databases are 

crucial for better insight and future studies. The proposed hybrid deep-learner algorithm is 

capable of drawing out and learning the high-dimensional spatial and temporal features of air 

quality data time series in different regions. Our model performance is satisfactory since it can 
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adopt regional pattern features by 1D-CNN, and long-term temporal reliance features by Bi-

LSTM. 

It is also approximated that mean indoor contaminant exposures are: 

• Constant for CO 

(with substantial indoor sources, as indoor and outdoor emissions are not varied). 

• Decreased for PM2.5 and NO 

(those with periodic indoor sources that are naturally ventilated with decreased outdoor 

concentrations). 

• Increased for NO2 (slightly), PM10, and O3 

(those with dominant outdoor sources which are naturally ventilated with increased 

outdoor concentrations). 

The mean indoor level of contaminants, those with dominant indoor origins not only for CO, but 

also for VOCs (which was not considered in this study due to the lack of outdoor data) show the 

significance of ranking extensive endeavors to decrease and control indoor emission sources, 

advancement of ventilation systems, and applying high-performance air cleaners (purifiers) to 

increase the IAQ levels in residential buildings. It should be mentioned that CONTAM (and no 

other IAQ model to the best knowledge of authors) doesn’t reflect the temperature variations in 

terms of emission rates, as its implemented contaminant source/sink elements are independent 

by temperature (constant coefficient model, pressure driven model, cutoff concentration model, 

and dispersion rate sink model) (Dols & Polidoro 2020). No physical chemistry-based emission 

model considering the temperature parameter has been developed to date, even for VOCs, but 

semi-empirical models based on correlation/regression case studies (De Jonge et al. 2018, De 

Jonge & Laverge 2019) 

A set of final rather than random results is obtained, based on the mean hypothesis for model 

input elements which do not explain the essential uncertainties in the estimations. It was assumed 
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that some parameters to be fixed in the future, even though they seem to be different and changed 

to a certain level. In other words, the effects of forecasted variations of meteorological and 

outdoor air quality levels are kept aside, by making the correlated parameters in the model 

scenarios fixed. For instance, whole-house-average emission rates would be different in the 

future, but they rather change by some means unpredictable and consequently arduous to 

integrate in the future building IAQ models. The assumption of the well-mixed zone for pollutant 

concentration prediction was taken, though the experiments for developing/tuning the model 

were punctual (rather than well-mixed sampling). The taken assumptions allowed a quantitative 

evaluation of climate change effects on IAQ, for the mid-term and long-term future by a limited 

set of accessible infrastructures and resources. 
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8. General Conclusions , Perspectives & Link With Research Questions 

8.1. General Conclusions 

This research as part of a PhD study within the OCCuPANt project at ULiège, investigated the 

impacts of climate change on IAQ during the summer months in a naturally ventilated house 

located in the south of Belgium. The findings highlight the significant influence of outdoor 

climatic conditions on indoor pollutant levels with direct contributions to outdoor-indoor natural 

AERs, and outdoor air pollution levels (in the context of changing climate), while less focusing 

on the critical role of mechanical ventilation systems, future occupant’s behavior scenarios, and 

building characteristics. Our data analysis revealed that elevated outdoor temperatures and 

increased frequency of heatwaves, both consequences of climate change, contribute to higher 

indoor concentrations of certain pollutants, such as O3 and PM10. The naturally ventilated nature 

of the house allows for greater impacts of outdoor pollutants, particularly during periods of high 

outdoor concentrations. This is exacerbated during heatwaves when windows and doors are often 

kept open to cool the indoor environment based on wrong habits. Moreover, the study 

demonstrated a clear diurnal pattern in pollutant levels, with peaks corresponding to outdoor 

activity and traffic patterns. Indoor activities, such as cooking, heating, and cleaning, also 

contributed to short-term spikes in pollutant concentrations, highlighting the interplay between 

indoor and outdoor sources. The correlation analysis between indoor and outdoor pollutant levels 

underscored the significant influence of outdoor air quality on indoor conditions, particularly for 

pollutants like NO2 and O3. Despite the natural ventilation, indoor pollutant levels were mostly 

lower than outdoor levels, indicating the building’s unappropriated active natural ventilation 

performances. These findings emphasize the need for adaptive strategies to mitigate the impacts 

of climate change on IAQ. Recommendations include enhancing building designs to improve 

ventilation performance without compromising IAQ, implementing real-time IAQ monitoring 

systems, and promoting behavioral changes to minimize indoor pollutant sources. 
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Conclusively, climate change could poses a significant challenge to maintaining healthy IAQ, 

particularly in naturally ventilated buildings. Proactive measures and continuous monitoring are 

essential to protect occupant health and improve resilience against the evolving heat events and 

climatic conditions. Future research should focus on developing and testing these adaptive 

strategies in various building types and climatic regions to ensure broader applicability and 

effectiveness. 

Although the black box deep-learner model for future outdoor air pollution doesn’t take the 

“different future GHG emission scenarios” to consideration directly, it is employing the future 

input data (which are) highly-correlated with those scenarios. So, different GHG scenarios 

(based on SSP criteria: technology, population, policies, etc.) are taken into account in our future 

regional ambient air pollution prediction as depicted in the Figure 7.6.: 

 

Fig 7.6. Th process of indirect consideration of GHG emission scenarios in future outdoor air pollution 

prediction. SSP5 scenario (Taking the Highway) = 100% direct consideration of GHG emission scenarios. 

Finally, to provide a decision supporting tool and objectivize the assessment of climate change 

impacts on IAQ, a hybrid climate change-IAQ index (CAPI) was designed. CAPI integrates the 

state of IAQ, outdoor air pollution, and heat waves simultaneously. Both experiments and future 

temporal estimates of CAPI till 2100 showed an increased trend of declining IAQ levels in the 

context of increasing extreme heat events. CAPI’s results for the chosen case study were derived 

by the exceedances of O3 levels, though the other pollutants were also considered and applied. 
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8.2. Perspectives And Link With Research Questions 

In this section, firstly thesis Research Questions (RQs) are represented and then the brief link to 

the thesis manuscript and summarized answers are provided. 

8.2.1. RQ1 

. RQ1. How do current methods assess time-integrated IAQ information in residential buildings 

in temperate climates in the context of climate change? 

The second chapter was dedicated to answer to this question. Current methods for assessing time-

integrated IAQ information in residential buildings in temperate climates, in the context of 

climate change, typically involve a combination of continuous monitoring and modeling 

techniques. These methods employ sensors to measure concentrations of key pollutants such as 

PM2.5 and PM10, VOCs, CO2, and NO2 over extended periods. Data from these sensors is then 

integrated with building simulation models, like CONTAM or EnergyPlus, which account for 

variables such as ventilation rates, building envelope characteristics, and occupant behavior. 

Additionally, these models incorporate climate projections and future air pollution to simulate 

future IAQ scenarios under varying weather and ambient air quality conditions driven by climate 

change. By combining real-time monitoring with predictive modeling, these methods provide a 

comprehensive assessment of IAQ over time, helping to identify trends, potential health risks, 

and the effectiveness of mitigation strategies in maintaining healthy indoor environments amidst 

changing climatic conditions. 
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8.2.1.1. Key References: 

Seppänen, O. A., & Fisk, W. J. (2006). Some quantitative relations between indoor 

environmental quality and work performance or health. HVAC&R Research, 12(4), 957-973. 

Discusses the impact of indoor environmental quality on health and productivity, which provides 

a foundation for understanding the importance of monitoring IAQ. 

Wargocki, P., & Wyon, D. P. (2013). Providing better thermal and air quality conditions in 

school classrooms would be cost-effective. Building and Environment, 59, 581-589. 

Highlights the significance of maintaining good IAQ for health and performance, underpinning 

the need for comprehensive IAQ assessment methods. 

Batterman, S. (2017). Review and extension of CO2-based methods to determine ventilation 

rates with application to school classrooms. International Journal of Environmental Research 

and Public Health, 14(2), 145. 

Reviews methods for assessing ventilation rates using CO2 measurements, relevant to evaluating 

IAQ in residential settings. 

Kumar, P., Druckman, A., Gallagher, J., Gatersleben, B., Allison, S., & Eisenman, T. S. 

(2019). The nexus between air pollution, green infrastructure, and human health. 

Environment International, 133, 105181. 

Discusses the interaction between air pollution, green infrastructure, and health, highlighting the 

broader context of IAQ assessment. 

Fisk, W. J. (2015). Review of some effects of climate change on indoor environmental 

quality and health and associated no-regrets mitigation measures. Building and 

Environment, 86, 70-80. 

Reviews the potential impacts of climate change on IAQ and proposes mitigation measures, 

providing context for current assessment methods. 

Gupta, A., & Mittal, A. (2021). Indoor air quality monitoring systems and COVID-19 risk 

mitigation: A systematic review. Environmental Research, 198, 111205. 

Systematic review of IAQ monitoring systems, relevant to understanding current methods used 

in residential buildings. 

U.S. Environmental Protection Agency (EPA). (2018). Report on the Environment: Indoor 

Air Quality. 

Provides comprehensive information on IAQ, including monitoring and assessment methods, 

particularly relevant in the context of climate change. 
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8.2.2. RQ2 

. RQ2. How to efficiently employ low-cost sensors for IAQ model development? 

The third and fourth chapters were dedicated to answer to this question. To efficiently employ 

LCS for IAQ model development, it is essential to strategically deploy these sensors to capture 

high-resolution spatial and temporal data on key pollutants. First, proper calibration of the 

sensors against reference-grade instruments to improve accuracy must be ensured. A network of 

these sensors should utilized and placed in various indoor locations to gather comprehensive data 

reflecting different sources and activities. Afterwards, gathered data must be integrated with 

advanced computational models, like CONTAM or EnergyPlus, to simulate IAQ dynamics under 

varying conditions. Advanced machine learning algorithms can further enhance model accuracy 

by identifying patterns and correlations in the collected data. Regular maintenance and validation 

of sensor performance are crucial to ensure data reliability. This approach not only reduces costs 

but also provides robust data to inform effective IAQ management strategies. 

8.2.2.1. Key References: 

Wang, S., & Song, G. (2020). Calibration of low-cost particulate matter sensors: Model 

development for a multi-pollutant monitoring instrument. Sensors, 20(18), 5177. 

Gupta, A., & Mittal, A. (2021). Indoor air quality monitoring systems and COVID-19 risk 

mitigation: A systematic review. Environmental Research, 198, 111205. 

Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., ... & Bartonova, 

A. (2017). Can commercial low-cost sensor platforms contribute to air quality monitoring 

and exposure estimates? Environment International, 99, 293-302. 
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8.2.3. RQ3 

. RQ3. How to determine future regional values of IAQ influential parameters following pre-

defined scenarios of climate change? 

The sixth chapter was dedicated to answer to this question. To determine future regional values 

of IAQ-influential parameters, such as future weather, air pollution, building characteristics, and 

occupant behavior under predefined climate change scenarios, a comprehensive approach is 

necessary. Firstly, climate models (e.g., CMIP6) must employed to project future weather 

patterns and temperature changes specific to the region. For future air pollution levels, outputs 

from chemical transport models (e.g., CMAQ) that consider both emission scenarios and 

atmospheric chemistry changes must be integrated. Future building characteristics can be 

projected using scenarios developed by building energy models (e.g., EnergyPlus) that 

incorporate advancements in energy efficiency, construction materials, and ventilation systems. 

Future occupant behavior can be estimated through sociological studies and surveys, combined 

with agent-based modeling to simulate changes in lifestyle, energy usage, and indoor activities. 

These projections can be integrated into IAQ models (e.g., CONTAM) to simulate IAQ under 

various climate scenarios, providing a detailed understanding of potential future conditions. 

8.2.3.1. Key References: 

IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working 

Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate 

Change. 

Jacob, D. J., & Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric 

Environment, 43(1), 51-63. 

Haines, A., & Ebi, K. (2019). The imperative for climate action to protect health. The New 

England Journal of Medicine, 380(3), 263-273. 

Hamilton, I., Milner, J., Chalabi, Z., Das, P., Jones, B., Shrubsole, C., ... & Wilkinson, P. 

(2015). Health effects of home energy efficiency interventions in England: a modelling 

study. BMJ Open, 5(4), e007298. 
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8.2.4. RQ4 

. RQ4. How to quantify and evaluate the IAQ performance of buildings under the overheating 

impact of climate change, using a decision-supporting tool? 

The seventh chapter was dedicated to answer to this question. To quantify and evaluate the IAQ 

performance of buildings under the overheating impact of climate change, a hybrid climate 

change-IAQ index can be developed and utilized as a decision-support tool. This index integrates 

climate projections (e.g., temperature, humidity) from climate models with IAQ parameters (e.g., 

concentrations of target pollutants) measured through sensors or simulated via building energy 

and IAQ models such as EnergyPlus and CONTAM. The developed hybrid IAQ and climate 

change index (CAPI) employ these data points to assess the combined effect of external climatic 

conditions and internal pollutant sources on IAQ. By applying this type of index, stakeholders 

can compare different building designs, ventilation strategies, and retrofitting measures to 

determine their effectiveness in maintaining acceptable IAQ levels under future climate 

scenarios. This tool supports evidence-based decision-making to enhance building resilience 

against overheating and protect occupant health. 

To find the most influential factor on IAQ in the context of climate change,  a sensitivity analysis 

is essential. However, (pollutant-dependently), due to the stronger local emissions of indoor 

sources, these are likely more influential unless climate change alters the typical patterns of 

outdoor air concentrations during time (e.g., O3 & PM). 

On the other hand, the crucial aspect of occupants’ behavior in the context of climate change will 

remain the ventilation performance rather than common indoor activities themselves. Because 



200 

 

indoor human activities are less likely to face impactful changes in terms of processes and 

temporal patterns (e.g., cooking, cleaning, etc.). This presents a significant challenge particularly 

without a systematic social analysis of natural/mechanical ventilation use in response to rising 

outdoor temperatures. The IPCC predicts future increases in outdoor temperatures ranging from 

1.0 to 1.8°C under the SSP1-2.6 scenario, and from 3.3 to 5.7°C under the SSP5-8.5 scenario. 

8.2.4.1. Key References: 

Hamilton, I., Milner, J., Chalabi, Z., Das, P., Jones, B., Shrubsole, C., ... & Wilkinson, P. 

(2015). Health effects of home energy efficiency interventions in England: a modelling 

study. BMJ Open, 5(4), e007298. 

Zusman, M., Schumacher, C. S., Gassett, A. J., Spalt, E. W., Austin, E., Larson, T. V., ... & 

Sheppard, L. (2020). Calibration of low-cost particulate matter sensors: Model 

development for a multi-pollutant monitoring instrument. Environment international, 134, 

105329. 

Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., ... & Bartonova, 

A. (2017). Can commercial low-cost sensor platforms contribute to air quality monitoring 

and exposure estimates? Environment International, 99, 293-302. 
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2. First Author – Conference Paper 
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https://doi.org/10.1016/j.buildenv.2022.109397  

 

5. First Author – Journal Paper 

Pourkiaei & Romain 2023. Scoping review of indoor air quality indexes: Characterization 

and applications. Journal of Building Engineering, 106703, 

https://doi.org/10.1016/j.jobe.2023.106703  

 

6. Co-Author - Final report: 

Study to motivate and propose requirements and recommendations for air purifiers in 

Belgium (Specifications DGEM/DPPC COVID/MD/22003) 

 

7. First Author – Journal Paper 

Pourkiaei et al. 2024. Systematic Framework for Quantitative Assessment of Indoor Air 

Quality Under Future Climate Scenarios; 2100s Projection of a Belgian Case 

Study. Journal of Building Engineering, 109611, 

https://doi.org/10.1016/j.jobe.2024.109611 

 

8. First Author – Conference Paper 

Pourkiaei & Romain, 2024. Quantitative analysis of indoor air quality under future 

climate scenarios: Projection till 2100’s for a Belgian case-study, Indoor Air 2024 

Sustaining the Indoor Air Revolution: Raise Your Impact, ISIAQ, USA, July 2024, 

https://hdl.handle.net/2268/322466 
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