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Abstract 

The noncovalent complexes between the BlaI protein dimer (wild type and GM2 

mutant) and its double-stranded DNA operator were studied by nanospray mass 

spectrometry and MS/MS. Reproducibility problems in the nanospray single-stage 

MS are emphasized. The relative intensities depend greatly on the shape of the 

capillary tip, and on the capillary-cone distance. This results in difficulties in 

assessing the relative stabilities of the complexes simply from MS spectra of protein-

DNA mixtures. Competition experiments are a better approach to determine relative 

binding affinities. A competition between histidine-tagged BlaIWT (BlaIWTHis) and 

the GM2 mutant revealed that the two proteins have similar affinities for the DNA 

operator, and that they co-dimerize to form heterocomplexes. The low sample 

consumption of nanospray allows MS/MS spectra to be recorded at different collision 

energies for different charge states with 1 µL of sample. The MS/MS experiments on 

the dimers reveals that the GM2 dimer is more kinetically stable in the gas phase than 

the wild type dimer. The MS/MS experiments on the complexes shows that the two 

proteins require the same collision energy to dissociate from the complex. This 

indicates that the rate-limiting step in the monomer loss from the protein-DNA 

complex arises from the breaking of the protein-DNA interface rather than the 

protein-protein interface. The dissociation of the protein-DNA complex proceeds by 

the loss of a highly charged monomer (carrying about two thirds of the total charge 

and one third of the total mass). MS/MS experiments on a heterocomplex also show 

that the two proteins BlaIWTHis and BlaIGM2 have slightly different charge 

distributions in the fragments. This emphasizes the need for better understanding the 

dissociation mechanisms of biomolecular complexes. 



Introduction 

Electrospray ionization mass spectrometry has proven to be extremely useful for the 

study of noncovalent complexes. Several reviews have been dedicated to studies of 

this kind.1-9 It is now commonly accepted that, provided that some experimental 

precautions are taken to minimize non-specific aggregation, the electrospray mass 

spectra reflect the composition of the solution regarding the stoichiometries of the 

observed complexes. It is however more tricky to assess whether the relative 

intensities of the peaks reflect the relative abundances of the corresponding species in 

solution. Different studies on small model systems have been conducted in 

electrospray ionization to test this hypothesis, and several authors have shown that the 

equilibrium binding constants could be determined.10-13 Others have proceeded by 

competition experiments to determine relative binding affinities that correlate well 

with solution data.14-16 

The present work is part of a project which aims to study the complexation of the BlaI 

repressor with its DNA target. The BlaI repressor is a prokaryotic regulator that, in the 

absence of β-lactam antibiotic, prevents the transcription of the blaP gene, encoding 

the Bacillus licheniformis 749/I β-lactamase BlaP.17 BlaI is a protein with 128 amino 

acids composed of two functional domains: a DNA-binding domain located in its N-

Terminal end and a dimerization domain located in its C-Terminal region.18,19 In 

Bacillus licheniformis, BlaI specifically recognises 3 regulatory regions. These 

operators present a symmetry dyad of 23 bp long with the following consensus 

sequence20: 5’-AAAGTATTACATATGTAAGNTTT-3’. Cross linking experiments 

revealed that BlaI is present in the bacterial cell as a dimer, and gel filtration 

experiments revealed that BlaI binds the DNA as a preformed dimer.21 



Several papers have already described the study of protein-DNA complexes by 

electrospray mass spectrometry, either in the negative22-25 or in the positive ion 

mode.26-29 In all these papers the stoichiometries of the complexes were found to 

match the solution-phase behavior. Competition experiments between the specific 

DNA sequence and mutant DNA’s have also shown that only the specific complexes 

were detected by ESI-MS.22-24,26,29 The stability of the complexes in solution as a 

function of the ammonium acetate concentration has been monitored by ESI-MS.22,29 

The stability of the complexes in the gas phase has been studied by in-source CID.26,29 

Kapur et al.29 have addressed the problem of the relative response factors in the ESI-

MS spectra of their complexes, and found that, in their experimental conditions, the 

response of the free protein and the response of the complex were the same within 

experimental error. However, this finding is not supposed to be a general case. 

In contrast to this whole body of literature describing the use of the electrospray 

technique (with flow rates from 0.3 to 10 µL/min), only one paper was found to report 

a study of a protein-DNA complex by nanospray mass spectrometry.30 These authors 

used the method to detect a previously unexpected complex stoichiometry. The main 

advantage of nanospray is the low sample consumption. The use of nanospray to 

study noncovalent biomolecular complexes has been pioneered by Robinson’s 

group.31-38 Nanospray is believed to be more gentle than electrospray for the transfer 

of the ions from the solution to the mass analyzer:34,35 there is no gas flow coaxial to 

the spray, and therefore there are fewer activating collisions in the nanospray source. 

Nanospray has allowed very large assemblies,33,39,40 and even a virus capsid of 2.5 

MDa,41 to be detected intact. Like electrospray, nanospray allows specific complexes 

to be detected.31-38 A competition experiment between peptides for SH2 protein also 

shows a good agreement between calorimetric and nanospray-MS results.34 The 



association or dissociation of protein complexes has also been monitored by 

nanospray-MS.37,42 In particular, the relative proportions of tetramer and monomers of 

transthyretin and mutants are in agreement with the biological activity.31 

The present paper describes a nanospray-Q-TOFMS and MS/MS study of the 

complexes between the repressor protein BlaI (wild type and GM2 mutant: 

Met97Ile/Val98Leu) and its DNA operator. To our knowledge, this is the first MS/MS 

study on protein-DNA complexes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Experimental 

Plasmids and DNA manipulations 

PET (Novagen) containing the T7 promotor under the control of the lacI repressor, 

was used as a vector for the overexpression of the BlaIWT, BlaIGM2 and BlaIWTHis 

products. The construction of the plasmids PET22BBlaIWT and PET22BBlaIGM2 

was described elsewhere.21 Plasmid PET22BBlaIWTHis was constructed with the 

following protocol: a 400 bp fragment covering the blaI gene was amplified by 

polymerase chain reaction (PCR) using PET22BBlaIWT as template and the 

following oligonucleotides as primers: 5’-

ATACATATGAAAAAAATACCTCAAATCTCTG-3’ (BlaINdeI) and 5’- 

TTACTCGAGTTCCTTCTTTCTGTTCTTATG-3’ (BlaIXhoI).  The amplified 

fragment was ligated to the PGEM-T-Easy plasmid to give the PGEM-T-Easy 

BlaIWT. The identity of the amplified DNA segment was confirmed by determination 

of its nucleotide sequence. PGEM-T-EasyBlaIWT was digested with NdeI and XhoI 

restriction enzymes, and the fragment corresponding to BlaIWT was purified by 

agarose gel electrophoresis and ligated to the PET22B digested with the same 

endonucleases to give the PET22BBlaIWTHis. In this construct, an inframe fusion 

was obtained between the 3’ end of the blaI gene and the PET22B sequence coding 

for the histidine tag, to give BlaI protein with six additional histidine residues at the C 

terminal end. 

 

Protein overexpression and purification 

BlaIWt, BlaIWTHis and BlaIGM2 proteins were prepared by growing Escherichia 

Coli Bl21DE3plys containing the corresponding recombinant PET22B plasmid on LB 



medium supplemented with 100 µg/mL ampicillin and 30 µg/mL chloramphenicol. 

Cells were grown at 37 °C to an A600nm of about 0,7-0,8 and isopropyl β-D-

thiogalactopyranoside (IPTG) was then added to a final concentration of 1 mM. After 

3h, cells were collected by centrifugation (at 9000 g for 20 min) and resuspended in 

the washing buffer (10 mM Tris-HCl pH = 7,5 – NaCl 1%). Cells were then collected 

by centrifugation and resuspended in the lysis buffer (15 mM Tris-HCl pH = 8 – 

10mM MgSO4 – 100 mM KCl – 2.5 mg/L Pefabloc). The cells were disrupted by 

passage through a desintegrator (INCELTECH Z, MODEL) at 20 kpsi. DNA was 

digested by an endonuclease (benzonase, Eurogentec, 5µl/4l cultivation) for 30 min at 

4 °C. Insoluble materials were removed by centrifugation at 14000 rpm for 40 min 

and the resulting supernatant was dialyzed two times against 2l of buffer A (50 mM 

HEPES pH = 7.6 – 1 mM EDTA – glycerol 5 %). The solution was first applied to a 

S-Sepharose Fast Flow equlibrated in buffer A and then eluted at 5 ml/min using 

buffer B (50 mM HEPES pH = 7.6 – 1 mM EDTA – 0.6 M NaCl - glycerol 5 %). The 

BlaI-containing fractions were pooled, dialysed two times against 2 L of buffer C (50 

mM HEPES pH = 7.6 – 1 mM EDTA – 0.2 M NaCl – glycerol 5 %) and then loaded 

onto Hitrap-Heparin-S Sepharose equilibrated with buffer C and eluted at 1mL/min 

using a gradient of 0.2 – 2 M NaCl. The major protein fractions were pooled and 

prepared for MS studies. The final yield of purified (95 % pure) protein was 

approximately 15 mg per litre of cell culture. 

 

MS sample preparation 

Protein. Purified BlaI proteins were prepared for MS analysis by dialysis against a 

buffer containing 150 mM ammonium acetate (NH4OAc) and then concentrated to 25 

µM by using a centricon (Amicon, Brussel, Belgium). Finally, protein solutions were 



desalted by filtration on a Micro Bio-Spin 6 microcolumn (Bio-Rad, Hercules, CA, 

USA) conditioned with ammonium acetate (150 mM). 

DNA Operator. The DNA sequence of the operator duplex used in this work 

represents the perfect palindromic operator recognized by BlaI. Oligonucleotide 5’- 

AAAGTATTACATATGTAATACTTT-3’ (M = 7348 Da) was obtained from 

Eurogentec (Liège, Belgium). The duplex is a dimer of this self-complementary 

oligonucleotide (M = 14696 Da). The duplex is formed by heating the single strand to 

95 °C, followed by overnight cooling. 

Complexes. The complexes were formed by mixing the protein and the DNA operator 

in equimolar (protein/duplex) amounts, and incubating for 2h at room temperature. 

 

Mass Spectrometry 

The nanospray tips were gold-coated glass capillaries (Protana, Odense, DK) that are 

cut manually. The spectrometer was a Q-TOF2 (Micromass, Manchester, UK) 

equipped with the Z-Spray nanoflow source. The source block was heated to 80 °C. 

Note that only the cone was heated and that the nanospray capillary remained cold. A 

voltage of 850 to 1050 V (see text) was applied to produce the spray. The cone 

voltage was set at an optimal value of 40 V for all experiments. This is well below the 

dissociation onset for the complex, and high enough to achieve good ion transmission. 

In the MS/MS mode, argon was used as collision gas. 



Results and Discussion 

MS1 of protein-DNA mixtures 

Initially, our goal was to investigate whether nanospray-MS could give a reliable 

measure of the relative binding affinities of different proteins for DNA, and 

eventually a measure of the absolute binding constants. Therefore it was necessary to 

measure the relative intensities of complex and free DNA or protein in mixtures. We 

first tested the reproducibility of the mass spectra (MS1) for the wild type (BlaIWT) 

mixed with equimolar amounts of DNA operator (double-stranded). Several 

capillaries were made with the same mixture, and spectra were recorded over several 

days. It rapidly appeared that the reproducibility regarding the relative intensities of 

the peaks was poor. To illustrate this point, the two most different spectra among all 

those obtained are displayed in Figure 1. Except for the sodium, content which is 

obviously higher in spectrum (a) than in spectrum (b), the mixtures were prepared 

identically. Spectrum (a) shows a signal corresponding to the free double-stranded 

DNA operator (ds) and to the protein dimer (D), but these peaks do not appear in 

spectrum (b). The MS/MS results (see below) show that these two species cannot 

arise from the dissociation of the complex. The species present in solution are clearly 

sampled in a different way in the two nanospray experiments. 

This is further illustrated in Figure 2. The two spectra were acquired from the same 

capillary, containing equimolar amounts of the BlaI mutant GM2 and DNA. The 

spray was induced, and spectrum (2a) was recorded. Then the spray was stopped, the 

capillary was re-cut, and the spray was restarted. Spectrum (2b) was acquired with 

this second spray from the same capillary. The data obtained clearly show that the 

way in which the capillary is cut is a crucial parameter in the appearance of the mass 



spectrum. In the course of our systematic studies, we also found that two other 

parameters have a dramatic influence on the relative intensities in the spectra: the 

spacing between the capillary and the cone (in the Z-spray configuration), and the 

capillary voltage. These two parameters are linked: the larger the capillary-cone 

distance, the larger the capillary voltage must be in order to maintain a stable spray. 

We found that the larger the capillary-cone distance, the more favored are the species 

of high m/z (data not shown).  

Such a dependence of relative intensities on the position where the plume is sampled 

has already been demonstrated in electrospray.43,44 The present results show that a 

dramatic dependence on the capillary position also occurs in nanospray. They also 

illustrate that in nanospray the mass spectra depend on parameters that are difficult to 

control, like the shape of the capillary tip, which have a large influence on the 

formation of a stable spray in the cone-jet mode. Moreover, it is well known that 

achieving a stable cone-jet mode is extremely difficult for aqueous solutions.45 These 

problems are avoided in electrospray, in which the flow rate is controlled and fixed, 

and a sheath gas regulates the spray formation. It is obvious, by comparing Figure 1 

and Figure 2 that the relative binding affinities of the two variants of BlaI can not be 

reliably ascertained by comparing the relative intensities of the complexes in the 

nanospray mass spectra (MS1).  

 

Competition between wild type and mutant BlaI 

The only way to avoid the reproducibility problem between different capillaries is to 

perform competition experiments between species of similar masses. Here we mixed 

equimolar amounts of BlaIWT and BlaIGM2 with the DNA operator. As BlaIWT and 

BlaIGM2 cannot be distinguished by their masses (4 Da difference), BlaIWT was 



replaced with a mutant bearing a histidine mass tag at the C-terminal-domain, 

BlaIWTHis. Such a modification is supposed not to affect the DNA binding. The 

mass spectrum of the equimolar mixture is shown in Figure 3. Not only the 

homodimer complexes can form, but also a heterodimer complex (WTHis + GM2 + 

dsDNA) forms, despite the fact that the mutation is located in the dimerization 

domain. Furthermore, the relative intensities of the homodimer peaks show that 

BlaIWT has only a slightly higher affinity for the DNA than  BlaIGM2. This was 

impossible to assess from the simple mass spectra of the protein-DNA mixtures only. 

In nanospray mass spectrometry, the competition experiment is an approach that 

allows the confident determination of the relative binding affinities, with not too 

many experimental constraints. 

 

MS/MS 

It is obvious that the great advantage of nanospray is the low sample consumption, 

which allows us to perform MS/MS experiments with only a few picomoles of 

material. To probe the gas-phase stability of the complexes, we performed MS/MS 

experiments on the WT and GM2 protein dimers (Figure 4) and on their complexes 

with the DNA operator (Figures 5 and 6). In all cases, MS/MS was performed by 

automated data acquisition. For each charge state, eight different collision energies 

were used (the cone voltage was maintained at 40 V), and the total duration of 

acquisition was 40 min. For three hours of data acquisition, usually less than 1 µL of 

sample is consumed.  

A great advantage of MS/MS over in-source CID in nanospray is that, in contrast to 

full scan MS1, the MS/MS spectrum does not depend on the spray conditions (shape 

of the capillary, capillary-cone distance, capillary voltage). Sometimes the spray had 



to be re-initiated during the data acquisition, with no effect on the relative intensities 

measured in the MS/MS spectra. 

For BlaI dimers, MS/MS was performed on a 25 µM protein solution, on charge states 

12+ and 11+. For charge state 12+, the relative intensity of the dimer peak did not 

decrease to zero at high energies, but rather levelled off, indicating that either some 

monomer 6+ is isolated together with the dimer12+, or that the dimer12+ dissociates 

into monomer6+. The former hypothesis is more plausible than the latter, due to the 

uneven charge partitioning that is observed for the charge state 11+ (see below). We 

therefore have chosen to discuss the MS/MS behavior of the non-even charge state 

11+, which is unambiguously a dimer. Two fragmentation pathways are observed: (1) 

dimer11+ → monomer7+ + monomer4+ and (2) dimer11+ → monomer8+ + monomer3+. 

The uneven charge separation of these dimers recalls that already observed by 

Versluis et al.46 For both the wild type and the mutant BlaI dimers, the percentage of 

dimer as a function of the collision energy was calculated as follows:  

% Dimer = I(dimer11+) x 100 / (I(dimer11+)+I(mono8+)+I(mono7+))   (1) 

The results are displayed in Figure 4. The GM2 mutant dimer is found to be 

unambiguously more kinetically stable in the gas phase than the WT dimer. The same 

qualitative result was found for the charge state 12+ (not shown). This indicates that 

the mutation in the dimerization domain of the protein increased the gas-phase kinetic 

stability of the GM2 dimer. This probably means that favorable electrostatic 

interactions are created by the mutation in GM2. This does not, however, necessarily 

reflect the relative stabilities in solution, which can be partly due to hydrophobic 

interactions. 

The MS/MS experiment was then conducted on the complexes (dimer + dsDNA) at 

charge states 14+ and 13+. The MS/MS spectra of the complex14+ at 40 eV for the 



WT and the GM2 protein are shown in Figure 5. The major fragment is the 

monomer9+. The complementary fragment (monomer + dsDNA)5+ could be detected 

at high m/z, but with a low relative intensity. The shape of the peak also indicates 

some simultaneous neutral loss, which could not be resolved from the (monomer + 

dsDNA)5+ species. This could be due to depurination of the dsDNA.26,29 For the 

charge state 13+ the two major fragments are the monomers 9+ and 8+. The loss of 

one highly charged monomer (much lower m/z than the parent ion) parallels a feature 

commonly encountered for protein complexes.46-48 This is the first time such behavior 

has been reported for protein-DNA complexes, to our knowledge.  

In order to compare the gas-phase kinetic stability of BlaIWT and BlaIGM2 

complexes with DNA, the percentage of surviving complex, calculated with equation 

2, is plotted against the collision energy. 

% Complex = I(complex) x 100 / {I(complex) + Σ I(mono)}   (2) 

The results are plotted in Figure 6 for the charge states 14+ and 13+. In contrast with 

the MS/MS results for the dimers, there is no difference in the relative collision 

energy dependence of the percentage of surviving complex. As the mutation is located 

in the dimerization domain of BlaI, this indicates that the rate-limiting step in the 

dissociation is likely to imply the opening of the complex at the protein-DNA 

interface rather at the protein-protein interface (dimerization domain).  

We also performed a MS/MS experiment on the heterocomplex (WTHis + GM2 + 

dsDNA)14+. The spectrum recorded at 45 eV is shown in Figure 7. It was hoped that 

the proportion of BlaIWTHis and BlaIGM2 monomers could give, by analogy with 

the kinetic method,49,50 an estimation of the relative affinities for the DNA. The 

results in Figure 7 show that the situation is not so simple: depending on the charge 

state, the relative abundances of the two proteins differ. The BlaIWTHis has a greater 



tendency to accommodate more charges than the GM2 mutant. This was also 

observed in the MS/MS experiments on the heterocomplex at charge state 13+ (not 

shown). This further illustrates the importance of studying the hows and whys of 

charge partitioning upon collision-induced dissociation of multiply charged 

biomolecular complexes.  

 



Conclusion 

In summary, we have studied the complexes between BlaI protein dimers and their 

DNA operators by nanospray mass spectrometry. Reproducibility problems in the 

relative intensities of the complexes were emphasized in MS1 experiments. These are 

attributed to the low spray stability in aqueous solutions. As a consequence, the 

sampling of the ions emitted by nanospray is highly influenced by parameters like the 

shape of the spray tip, the capillary-cone distance, etc… However, MS/MS 

experiments were highly reproducible (the relative intensities did not depend on the 

spray stability), and could be conducted with minimal sample consumption. MS/MS 

allows us to probe the contribution of intermolecular interactions (hydrogen bonds, 

etc…) to the stability of the complexes.  

 

 

 

Acknowledgements 

 

This work was supported in part by the Belgian Program of Interuniversity Poles of 

Attractions (PAI n° P5/33) and a grant from the Fonds National de la Recherche 

Scientifique (credit aux chercheurs n° 1.5201.02). VG is a Research Fellow of the 

Fonds National de la Recherche Scientifique (FNRS, Brussel, Belgium), VD is a 

fellow of the Fonds pour la Recherche dans l’Industrie et l’Agriculture (FRIA) and BJ 

is a Research Associate of the Fonds National de la Recherche Scientifique (FNRS, 

Brussel, Belgium). 

 



References 

 

 

 1. Smith RD, Light-Wahl KJ. Biol. Mass Spectrom. 1993; 22: 493. 

 2. Smith DL, Zhang Z. Mass Spectrom. Rev. 1994; 13: 411. 

 3. Przybylski M, Glocker MO. Angew. Chem. Int. Ed. 1996; 35: 806. 

 4. Smith RD, Bruce JE, Wu Q, Lei QP. Chem. Soc. Rev. 1997; 26: 191. 

 5. Loo JA. Mass Spectrom. Rev. 1997; 16: 1. 

 6. Winston RL, Fitzgerald MC. Mass Spectrom. Rev. 1997; 16: 165. 

 7. Veenstra TD. Biophys. Chem. 1999; 79: 63. 

 8. Schalley CA. Mass Spectrom. Rev. 2001; 20: 253. 

 9. Daniel JM, Friess SD, Rajagopalan S, Wendt S, Zenobi R. Int. J. Mass 

Spectrom. 2002; 216: 1. 

 10. Gao J, Cheng X, Chen R, Sigal GB, Bruce JE, Schwartz BL, Hofstadler SA, 

Anderson GA, Smith RD, Whitesides GM. J. Med. Chem. 1996; 39: 1949. 

 11. Jorgensen TJD, Roepstorff P, Heck AJR. Anal. Chem. 1998; 70: 4427. 

 12. Sannes-Lowery KA, Drader JJ, Griffey RH, Hofstadler SA. Trends Anal. Chem. 

2000; 19: 481. 

 13. Sannes-Lowery KA, Griffey RH, Hofstadler SA. Anal. Biochem. 2000; 280: 

264. 

 14. Leize E, Jaffrezic A, Van Dorsselaer A. J. Mass Spectrom. 1996; 31: 537. 

 15. Blair SM, Kempen EC, Brodbelt JS. J. Am. Soc. Mass Spectrom. 1998; 9: 1049. 

 16. Kempen EC, Brodbelt JS, Bartsch RA, Jang Y, Kim JS. Anal. Chem. 1999; 71: 

5493. 



 17. Charlier P, Coyette J, Dehareng D, Dive G, Duez C, Dusart J, Fonzé E, Fraipont 

C, Frere JM, Galleni M, Goffin C, Joris B, Lamotte-Brasseur J, Nguyen M. 

Medecine/sciences 1998; 14: 544. 

 18. Joris B, Hardt K, Ghuysen JM. New Comprehens. Biochem. 1994; 27: 505. 

 19. Wittman V, Lin HC, Wong HC. J. Bacteriol. 1993; 175: 7383. 

 20. Himeno T, Imanaka T, Aiba S. J. Bacteriol. 1981; 168: 1128. 

 21. Filee P, Benlafya K, Delmarcelle M, Moutzourelis G, Frere JM, Brans A, Joris 

B. Mol. Microbiol. 2002; 44: 685. 

 22. Griffey, R. H.; Greig, M. J.; Sasmor, H. Non-Covalent Complexes of 

Oligonucleotides Observed Using Electrospray Ionization Mass Spectrometry. 

In New Methods for the Study of Biomolecular Complexes; Ens, W., Ed.; 

Kluwer Academic Publishers: 1998. 

 23. Cheng X, Morin PE, Harms AC, Bruce JE, Ben-David Y, Smith RD. Anal. 

Biochem. 1996; 239: 35. 

 24. Cheng X, Harms AC, Goudreau PN, Terwilliger TC, Smith RD. Proc. Natl. 

Acad. Sci. USA 1996; 93: 7022. 

 25. Veenstra TD, Benson LM, Craig TA, Tomlinson AJ, Kumar R, Naylor S. 

Nature Biotechnol. 1998; 16: 262. 

 26. Potier N, Donald LJ, Chernushevich I, Ayed A, Ens W, Arrowsmith C, Standing 

KG, Duckworth DC. Protein Sci. 1998; 7: 1388. 

 27. Craig TA, Benson LM, Tomlinson AJ, Veenstra TD, Naylor S, Kumar R. 

Nature Biotechnol. 1999; 17: 1214. 

 28. Deterding LJ, Kast J, Przybylski M, Tomer KB. Bioconjug. Chem. 2000; 11: 

335. 

 29. Kapur A, Beck JL, Brown SE, Dixon NE, Sheil MM. Protein Sci. 2002; 11: 

147. 



 30. Donald LJ, Hosfield DJ, Cuvelier SL, Ens W, Standing KG, Duckworth DC. 

Protein Sci. 2001; 10: 1370. 

 31. Nettleton EJ, Sunde M, Lai Z, Kelly JW, Dobson CM, Robinson CV. J. Mol. 

Biol. 1998; 281: 553. 

 32. Rostom AA, Sunde M, Richardson SJ, Schreiber G, Jarvis SA, Batemas R, 

Dobson CM, Robinson CV. Proteins 1998; Suppl 2: 3. 

 33. Rostom AA, Robinson CV. J. Am. Chem. Soc. 1999; 121: 4718. 

 34. Chung EW, Henriques DA, Renzoni D, Morton CJ, Mulhern TD, Pitkeathly 

MC, Ladbury JE, Robinson CV. Protein Sci. 1999; 8: 1962. 

 35. Rostom AA, Robinson CV. Curr. Opin. Struct. Biol. 1999; 9: 135. 

 36. Rostom AA, Tame JRH, Ladbury JE, Robinson CV. J. Mol. Biol. 2000; 296: 

269. 

 37. Fändrich M, Tito MA, Leroux MR, Rostom AA, Hartl FU, Dobson CM, 

Robinson CV. Proc. Natl. Acad. Sci. USA 2000; 97: 14151. 

 38. Tito MA, Miller J, Walker N, Griffin KF, Williamson ED, Despeyroux-Hill D, 

Titball RW, Robinson CV. Biophys. J. 2001; 81: 3503. 

 39. Van Berkel WJH, Van Den Heuvel RHH, Versluis C, Heck AJR. Protein Sci. 

2000; 9: 435. 

 40. Rostom AA, Fucini P, Benjamin DR, Juenemann R, Nierhaus KH, Hartl FU, 

Dobson CM, Robinson CV. Proc. Natl. Acad. Sci. USA 2000; 97: 5185. 

 41. Tito MA, Tars K, Valegard K, Hadju J, Robinson CV. J. Am. Chem. Soc. 2000; 

122: 3350. 

 42. Vis H, Dobson CM, Robinson CV. Protein Sci. 1999; 8: 1368. 

 43. Gomez A, Tang K. Phys. Fluids 1994; 6: 404. 

 44. Tang K, Smith RD. J. Am. Soc. Mass Spectrom. 2001; 12: 343. 



 45. Cech NB, Enke CG. Mass Spectrom. Rev. 2001; 20: 362. 

 46. Versluis C, van der Staaij A, Stokvis E, Heck AJR, De Craene B. J. Am. Soc. 

Mass Spectrom. 2001; 12: 329. 

 47. Versluis C, Heck AJR. Int. J. Mass Spectrom. 2001; 210/211: 637. 

 48. Felitsyn N, Kitova EN, Klassen JS. Anal. Chem. 2001; 73: 4647. 

 49. Cooks RG, Patrick JS, Kotiaho T, McLuckey SA. Mass Spectrom. Rev. 1994; 

13: 287. 

 50. Cooks RG, Wong P. Acc. Chem. Res. 1998; 31: 379. 

 

 

 



Figure Legends 

Figure 1. 

Nanospray mass spectra (MS1) of an equimolar mixture (25 µM) of BlaIWT and 

double-stranded (ds) DNA. Spectra A and B were recorded with different capillaries. 

C = (WT2 + dsDNA); ds = double-stranded DNA ; ss = single-stranded DNA. 

 

Figure 2. 

Nanospray mass spectra (MS1) of an equimolar mixture (25 µM) of BlaIGM2 and 

double-stranded (ds) DNA. Spectra A and B were recorded with the same capillary. 

Spectrum B was recorded after re-cutting the capillary that was used to record 

spectrum A. C = (GM22 + dsDNA); ss = single-stranded DNA; M = GM2 monomer; 

D = GM2 dimer. 

 

Figure 3. 

Nanospray mass spectrum (MS1) of an equimolar mixture (25-25-25 µM) of 

BlaIGM2, BlaIWTHis and double-stranded DNA (competition experiment). Only the 

region of the complexes (protein dimer + dsDNA) is shown for clarity. Two white 

circles represent the homocomplex (GM22 + dsDNA); two black circles represent the 

homocomplex (WTHis2 + dsDNA); a white and a black circle represent the 

heterocomplex (GM2 + WTHis + dsDNA). 

 



Figure 4. 

Relative intensity of the dimer as a function of the collision energy in nanospray-

MS/MS experiments on the protein dimers (black = WT; white = GM2). The relative 

intensities were calculated using equation (1). 

 

Figure 5. 

Nanospray-MS/MS spectra of the complexes (A) (WT2 + dsDNA)14+ and (B) (GM22 

+ dsDNA)14+ at the same collision energy (40 ev). C = complex; M = protein 

monomer; ds = double-stranded DNA. Note the magnification factor between m/z 

5300 and 6300. 

 

Figure 6. 

Relative intensity of the complex as a function of the collision energy in nanospray-

MS/MS experiments on the protein-DNA complexes (black = WT; white = GM2; 

circles = charge state 14+; triangles = charge state 13+). The relative intensities were 

calculated using equation (2). 

 

Figure 7. 

Nanospray-MS/MS experiment on the heterocomplex (GM2 + WTHis + dsDNA)14+ 

at 45 eV collision energy. C = complex; G = GM2 monomer; W = WTHis monomer. 
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