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Stable Marriage Problem (SMP)

I Introduced by Gale and Shapley in 1962

I Aim : to match men and women based on their preferences for all
members of the opposite gender
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É. Vandomme 3 / 20



Stable Marriage Problem (SMP)

I Introduced by Gale and Shapley in 1962

I Aim : to match men and women based on their preferences for all
members of the opposite gender

A

B

C

X

Y

Z

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

A: Y X Z
B: Z Y X
C: X Z Y

X: B A C
Y: C B A
Z: A C B
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Stable Marriage Problem (SMP)

I A matching is stable if there are no blocking pairs.

I A blocking pair is a pair of unmatched individuals who prefer each
other to their partners in the matching.
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Stable Roommate Problem (SRP)

I Generalization of SMP to non-bipartite model

I Each individual ranks all the others in order of preference.
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I Aim : to find a stable
matching
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SMP vs SRP

SMP SRP

Graphs Complete bipartite Complete

∃ stable matching? Always Not always

Find one (if any) Polynomial Polynomial

Gale-Shapley (1962) Irving (1985)
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Stability in Kidney Exchange Programs

Patient with a serious kidney disease may resort to:

I Dialysis

I Transplant from a deceased donor

I Transplant from a willing donor

Patient might not be compatible with the donor: e.g.,

I Blood incompatibility

I Tissue type incompatibility
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Compatibility graph

G=(V,A) where:

I V = {1, ..., n} set of vertices, consisting of all patient-donor pairs.

I A, the set of arcs, designating compatibilities between the vertices.
Two vertices i and j are connected by arc (i, j) if the donor in pair i is
compatible with the patient in pair j.
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Possible exchanges

Definition
An exchange is a set of disjoint cycles in the directed graph such that every
cycle length does not exceed a given limit K.

I Aim: to maximize the number of patients transplanted

I When K = 2, an exchange is a matching.
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Stable Exchange (SE)
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Definition
Given a directed graph G = (V,A),

I an exchange M is stable if no blocking cycle u exists for M.

I A cycle u is blocking for an exchange M if it is not included in M and
for every vertex i ∈ V (u), i prefers u to M.

I Vertex i prefers the cycle u to the exchange M if either

I i 6∈ V (M), or

I i ∈ V (M), (k, i) ∈ A(u), (k′, i) ∈ A(M), and i prefers k to k′.
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Locally Stable Exchange (LSE)
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Definition (Baratto–Crama–Pedroso–Viana, accepted)

Given a directed graph G = (V,A),

I an exchange M is locally stable if no blocking cycle u exists for M.

I A cycle u is locally blocking for an exchange M if it is not included in
M, it intersects M and for every vertex i ∈ V (u), i prefers u to M.

I Vertex i prefers the cycle u to the exchange M if either

I i 6∈ V (M), or

I i ∈ V (M), (k, i) ∈ A(u), (k′, i) ∈ A(M), and i prefers k to k′.

É. Vandomme 11 / 20



SE vs LSE

A stable matching is maximum if it has the largest possible size among all
stable matchings. And similarly for maximum locally stable matchings.

I SE problem: What is the maximum size of a stable matching?
(K = 2, 72 don’t have a stable matching out of 600 tested - 12% )

I LSE problem: What is the maximum size of a non-empty locally
stable matching?
(K = 2, 1 out of 600 tested has a solution of cardinality zero - 0.2% )

I For 50 instances with V ≈ 200,
45 out of 50 have a stable exchange;
50 out of 50 have a locally stable exchange > 0;
45 instances max. stable exchange = max. locally stable exchange

Work in Progress:

I Computing a maximum locally stable exch. for K ≥ 3 is NP-hard.

I Computing a maximum locally stable exch. for K = 2 is polynomial.
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Locally Stable Roommate Problem (LSRP)

Proposition

If M is a stable matching and M ′ is a locally stable matching,
then V (M ′) ⊆ V (M) and |M ′| ≤ |M |.

Proposition

If a graph has a stable matching, then

1. all its stable matchings cover the same set of vertices, and

2. all its stable matchings are maximum locally stable.

A locally stable matching is maximal if it is not included (edge-wise) in any
other locally stable matching.

Proposition

All maximal locally stable matchings cover the same set of vertices and
hence, they have the same size.
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Irving’s algorithm - Phase 1

Idea:

I Successive deletion of entries in the preference lists

so that no deleted pair can be included in a locally stable matching.

procedure Phase1(T : table of preference lists)

assign each person to be free
while some free person x has a nonempty list do

y ← first person on x’s list
for each person z ranked below x in y’s list do

delete the pair {y, z} from T
end for

end while

end procedure

free vs semi-engaged

x proposes to y

x becomes semi-
engaged to y
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Irving’s algorithm - Phase 1 - comments

I For a given instance of the problem, all possible executions of phase 1
of the algorithm yield the same reduced preference table
(Gusfield and Irving 1989)

I If, at any stage of phase 1, x proposes to y, then in a locally stable
matching M

1. x cannot have a better partner than y;
2. if y ∈ V (M), y cannot have a worse partner than x.

I If T is the phase-1 table for a roommate instance, then

1. y = firstT (x) if and only if x = lastT (y);
2. if the edge {x, y} is absent from T then x and y cannot be

partners in a locally stable matching.
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Irving’s algorithm - Phase 1

Suppose that T is the phase-1 table for a roommates instance. Then

I if all persons have lists of size 1, there is a stable matching (and
therefore a locally stable one) of size n.

I if one person has an empty list, there is no stable matching, but there
could be a non-empty locally stable matching.

I if all lists have at least 1 element and some at least 2, then there could
exist a non-empty locally stable matching and/or a stable one.
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Irving’s algorithm - Phase 2

Idea: Further reduction of the table T using rotations.

Definition (Irving 1985)

For a given table T , a sequence

ρ = (x0, y0), . . . , (xr−1, yr−1)

such that yi = firstT (xi), yi+1 = secondT (xi) for all i (taken modulo r), is
called a rotation exposed in T .

1: 3 2 4 5 6

2: 1 3 4 5 6

3: 2 1 4 5 6

4: 55 1 2 3 6

5: 44 1 2 3 6

6: 1 2 3 4 5

(1,3),(

3

,2)

,(

2

,1)

I If T is a table in which some list contains at least two entries, then
there is at least one rotation exposed in T .
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Irving’s algorithm - Phase 2

How to use it ?

Conjecture

Let ρ = (x0, y0), . . . , (xr−1, yr−1) be a rotation exposed in a table T .

1. In any locally stable matching embedded in T , either xi and yi are
partners for all values of i or for no value of i.

2. If there is a locally stable matching in which xi and yi are partners,
then there is another one in which they are not.

x1

x2

x3

x4

y1

y2

y3

y4

1

1

1

1

2

2

2
2

1

1

1

1

x1
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x3
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y4
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Irving’s algorithm - Conclusion

In the example, (1,3),(3,2),(2,1) is a rotation:

1: 3 2 4 5 6

2: 1 3 4 5 6

3: 2 1 4 5 6

4: 5 1 2 3 6

5: 4 1 2 3 6

6: 1 2 3 4 5

Conjecture

At the end of Phase 2,

I if the table contains only empty lists, there is no stable matching and
only the trivial empty locally stable matching.

I if the table contains only empty lists and lists with one element, there
is no stable matching and the nonempty lists specify a maximum
locally stable matching.

I if the table contains only lists with one element, they specify a stable
matching which is also a maximum locally stable matching.
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Future work

When graphs are incomplete, we think the same reasoning applies.

When ties are allowed in the preference lists,

I SMP : Deciding whether a bipartite graph has a stable marriage is
polynomial.

I SRP : Deciding whether a graph has a stable matching is NP-complete.

I LSRP : What is the complexity of deciding whether a graph has a
nonempty locally stable matching?

Only a partial answer for now.

Proposition

When ties are allowed in the preference lists, deciding whether a graph has
a locally stable perfect matching is NP-complete.
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