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Stable Marriage Problem (SMP)

» Introduced by Gale and Shapley in 1962

> Aim : to match men and women based on their preferences for all
members of the opposite gender
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Stable Marriage Problem (SMP)

» A matching is if there are no blocking pairs.

> A pair is a pair of unmatched individuals who prefer each
other to their partners in the matching.
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Stable Roommate Problem (SRP)

» Generalization of SMP to non-bipartite model

» Each individual ranks all the others in order of preference.
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SMP vs SRP

‘ SMP SRP

Graphs ‘ Complete bipartite Complete
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SMP vs SRP

SMP SRP
Graphs Complete bipartite Complete
3 stable matching? Always Not always
Find one (if any) Polynomial Polynomial

E. Vandomme

Gale-Shapley (1962)

No stable matching

Irving (1985)
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Stability in Kidney Exchange Programs
Patient with a serious kidney disease may resort to:
» Dialysis
» Transplant from a deceased donor

» Transplant from a willing donor
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Stability in Kidney Exchange Programs
Patient with a serious kidney disease may resort to:
» Dialysis
» Transplant from a deceased donor

» Transplant from a willing donor

Patient might not be compatible with the donor: e.g.,
» Blood incompatibility

» Tissue type incompatibility
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Compatibility graph
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G=(V,A) where:

» V ={1,...,n} set of vertices, consisting of all patient-donor pairs.

» A, the set of arcs, designating compatibilities between the vertices.
Two vertices ¢ and j are connected by arc (7, j) if the donor in pair 7 is

compatible with the patient in pair j.
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Possible exchanges
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Definition

An exchange is a set of disjoint cycles in the directed graph such that every

cycle length does not exceed a given limit K.

» Aim: to maximize the number of patients transplanted

» When K = 2, an exchange is a matching.
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Definition
An exchange is a set of disjoint cycles in the directed graph such that every
cycle length does not exceed a given limit K.

» Aim: to maximize the number of patients transplanted

» When K = 2, an exchange is a matching.
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Stable Exchange (SE)

Definition
Given a directed graph G = (V, A),

» an exchange M is stable if no blocking cycle u exists for M.

» A cycle u is blocking for an exchange M if it is not included in M and
for every vertex i € V(u), @ prefers u to M.

» Vertex i prefers the cycle u to the exchange M if either
» i gV (M), or
> i€ V(M), (ki) € A(u), (K',i) € A(M), and i prefers k to k'
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Locally Stable Exchange (LSE)

Definition (Baratto-Crama-Pedroso—Viana, accepted)
Given a directed graph G = (V, A),

» an exchange M is locally stable if no blocking cycle w exists for M.

» A cycle u is locally blocking for an exchange M if it is not included in
M, it intersects M and for every vertex i € V(u), ¢ prefers u to M.

» Vertex i prefers the cycle u to the exchange M if either
» i gV (M), or
> i€ V(M), (ki) € A(u), (K',i) € A(M), and i prefers k to k'
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SE vs LSE

A stable matching is if it has the largest possible size among all
stable matchings. And similarly for maximum locally stable matchings.

» SE problem: What is the maximum size of a stable matching?
(K =2, 72 don’t have a stable matching out of 600 tested - 12% )

» LSE problem: What is the maximum size of a non-empty locally
stable matching?
(K =2, 1 out of 600 tested has a solution of cardinality zero - 0.2% )

» For 50 instances with V' = 200,
45 out of 50 have a stable exchange;
50 out of 50 have a locally stable exchange > 0;
45 instances max. stable exchange = max. locally stable exchange
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» SE problem: What is the maximum size of a stable matching?
(K =2, 72 don’t have a stable matching out of 600 tested - 12% )

» LSE problem: What is the maximum size of a non-empty locally
stable matching?
(K =2, 1 out of 600 tested has a solution of cardinality zero - 0.2% )

» For 50 instances with V' = 200,
45 out of 50 have a stable exchange;
50 out of 50 have a locally stable exchange > 0;
45 instances max. stable exchange = max. locally stable exchange

Work in Progress:
» Computing a maximum locally stable exch. for K > 3 is NP-hard.

» Computing a maximum locally stable exch. for K = 2 is polynomial.

locally stable roommate problem
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Locally Stable Roommate Problem (LSRP)

Proposition

If M is a stable matching and M’ is a locally stable matching,
then V(M') C V(M) and |[M’| < |M].

Proposition

If a graph has a stable matching, then

1. all its stable matchings cover the same set of vertices, and

2. all its stable matchings are maximum locally stable.

A locally stable matching is maximal if it is not included (edge-wise) in any
other locally stable matching.

Proposition
All maximal locally stable matchings cover the same set of vertices and
hence, they have the same size.
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Irving’s algorithm - Phase 1
Idea:

> Successive deletion of entries in the preference lists

procedure PHASEL(T : table of preference lists)

end procedure
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Irving’s algorithm - Phase 1

Idea:

> Successive deletion of entries in the preference lists
so that no deleted pair can be included in a locally stable matching.
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Irving’s algorithm - Phase 1
Idea:

> Successive deletion of entries in the preference lists
so that no deleted pair can be included in a locally stable matching.
procedure PHASEL(T : table of preference lists)
assign each person to be free  y free vs semi-engaged
while some free person x has a nonempty list do
y < first person on z’s list } x proposes to y
for each person z ranked below x in y’s list do 2 becomes semi-
delete the pair {y, z} from T }
end for
end while
end procedure

engaged to y
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Irving’s algorithm - Phase 1 - comments

» For a given instance of the problem, all possible executions of phase 1
of the algorithm yield the same reduced preference table
(Gusfield and Irving 1989)

» If, at any stage of phase 1, x proposes to y, then in a locally stable
matching M

1. x cannot have a better partner than y;
2. if y € V(M), y cannot have a worse partner than x.

» If T is the phase-1 table for a roommate instance, then
1. y = firsty(z) if and only if = lastr(y);

2. if the edge {z,y} is absent from T then z and y cannot be
partners in a locally stable matching.
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Irving’s algorithm - Phase 1
Suppose that T' is the phase-1 table for a roommates instance. Then

» if all persons have lists of size 1, there is a stable matching (and
therefore a locally stable one) of size n.

» if one person has an empty list, there is no stable matching, but there
could be a non-empty locally stable matching.

» if all lists have at least 1 element and some at least 2, then there could
exist a non-empty locally stable matching and/or a stable one.
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Irving’s algorithm - Phase 2

Idea: Further reduction of the table T' using rotations.
Definition (Irving 1985)
For a given table T', a sequence

P = (1307290): ceey (xT—layT—l)

such that y; = firstr (x;), yi+1 = secondr(x;) for all ¢ (taken modulo r), is
called a rotation exposed in T'.
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Irving’s algorithm - Phase 2

Idea: Further reduction of the table T' using rotations.
Definition (Irving 1985)
For a given table T', a sequence

pP= (130790): ceey (a‘:W‘—layr—l)

such that y; = firstr (x;), yi+1 = secondr(x;) for all ¢ (taken modulo r), is
called a rotation exposed in T'.
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» If T is a table in which some list contains at least two entries, then
there is at least one rotation exposed in 7.
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Irving’s algorithm - Phase 2

How to use it 7

Conjecture
Let p = (z0,%0),- .., (zr—1,yr—1) be a rotation exposed in a table T

1. In any locally stable matching embedded in T, either x; and y; are
partners for all values of ¢ or for no value of i.

2. If there is a locally stable matching in which x; and y; are partners,
then there is another one in which they are not.
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Irving’s algorithm - Conclusion

In the example, (1,3),(3,2),(2,1) is a rotation:
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Conjecture
At the end of Phase 2,

» if the table contains only empty lists, there is no stable matching and
only the trivial empty locally stable matching.

» if the table contains only empty lists and lists with one element, there
is no stable matching and the nonempty lists specify a maximum
locally stable matching.

> if the table contains only lists with one element, they specify a stable
matching which is also a maximum locally stable matching.
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When ties are allowed in the preference lists,

» SMP : Deciding whether a bipartite graph has a stable marriage is
polynomial.

» SRP : Deciding whether a graph has a stable matching is NP-complete.

» LSRP : What is the complexity of deciding whether a graph has a
nonempty locally stable matching?

Only a partial answer for now.

Proposition

When ties are allowed in the preference lists, deciding whether a graph has
a locally stable perfect matching is NP-complete.
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