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Abstract

Determining an appropriate sample size in psychological experiments is a common 

challenge, requiring a balance between maximizing the chance of detecting a true effect 

(minimizing false negatives) and minimizing the risk of observing an effect where none exists 

(minimizing false positives). A recent study proposes the use of effect size stabilization, a form of 

optional stopping, to define sample size without increasing the risk of false positives. In effect size 

stabilization, researchers monitor the effect size of their samples throughout the sampling process 

and stop sampling when the effect no longer varies beyond predefined thresholds. This study aims 

to improve our understanding of effect size stabilization properties. Simulations involving effect 

size stabilization are presented, with parametric modulation of the true effect in the population and 

the strictness of the stabilization rule. Results indicate that optional stopping based on effect size 

stabilization consistently yields unbiased samples over the long run, as previously demonstrated. 

However, simulations also reveal that effect size stabilization does not guarantee the detection of a 

true effect in the population. Consequently, researchers adopting effect size stabilization put 

themselves at risk of increasing type-2 error probability. Instead of using effect size stabilization 

procedures for testing, researchers should use them for their intended purpose: Reaching accurate 

parameter estimates.

Keywords: Effect Size Stabilization; Stopping Rule; Power; Estimation
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Introduction

Sample size is a critical parameter to consider when running experiments in psychology. This 

parameter determines the probability of detecting a true effect when sampling from a target 

population. In Null Hypothesis Significant Testing (NHST), defining sample size using a stopping 

rule based on p-values can lead to side effects (Simmons et al., 2011) if not performed appropriately 

(Lakens, 2014). For instance, one can sample from a target population, compute the p-value each 

time a new data point is added, and repeat the process until the p-value reaches significance. This 

way of sampling from a population inflates type-1 error probabilities and effect sizes. In other 

words, implementing this method increases the probability of finding an effect when there is none 

and leads to larger effect sizes compared to what should theoretically be observed if no such 

stopping rule was applied. Therefore, when applying this stopping rule, one ends up with a biased 

sample that is not representative of the target population.

Recently, Anderson et al. (2022) proposed a stopping rule which capitalizes on the fact that 

effect sizes stabilize over the course of the sampling process (Schönbrodt & Perugini, 2013). In this 

approach, the researcher samples from a population until the effect size stabilizes. Stabilization here 

refers to the reduction of variation in the effect size throughout the sampling process, set against 

some arbitrary thresholds. Consider an experiment in which a researcher samples from a target 

population in the context of a within-subject design. Each time a participant is added to the sample, 

the effect size (Cohen's d) is calculated. The difference between the current effect size and the one 

observed before adding the new participant is then computed. If this difference does not exceed 

0.05 for 5 consecutive iterations1, the sampling process stops. Otherwise, sampling continues until 

meeting the criteria.

Anderson and colleagues tested this effect size stabilization procedure in a simulation work. 

In this work, two independent researchers conduct the same experiment concurrently. The target 

1 These values are arbitrary and do not matter too much for now.
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population is assumed to present a true effect (i.e., the effect size in the population is real) that 

researchers seek to reveal. While Researcher A follows the effect size stabilization procedure 

described above, Researcher B does not use any stopping rule but terminates the sampling process 

upon Researcher A's completion. Therefore, both researchers end up with the same sample size. 

Their sole difference lies in Researcher A's sample being influenced by the stopping rule, while 

Researcher B's is not. Hence, the sample collected by Researcher B can be used as a control against 

which Researcher A's sample is compared. This hypothetical scenario can be simulated by 

generating random values from a normal distribution, each value representing a data point (i.e., one 

participant) in the sample. Once both researchers finish collecting their samples, the process is 

repeated as many times as needed to obtain distributions of effect sizes and/or p-values for both 

researchers. This simulation work revealed no difference between the samples collected by both 

researchers. That is, both researchers reach, on average, equivalent effect sizes, and this persists 

when considering a varying number of true effect sizes. Therefore, the method proposed by 

Anderson and colleagues does not lead to inflated effect sizes, and by extension, does not inflate 

type-1 error probability2.

The present study

One aspect which remains to be determined is whether the effect size stabilization procedure 

can be a useful tool for testing, in addition to estimating. In testing, the purpose is to detect the 

presence of an effect while in estimation, the purpose is to reduce the uncertainty surrounding a 

given parameter. Each of these methods require different sample sizes justifications (Kelley et al., 

2003; Maxwell et al., 2008). As an example, consider a situation where the true effect size in a 

2 It is important to note that Anderson and colleagues reported Bayes Factors instead of p-values. The present work 

takes a slightly different approach, by focusing specifically on the consequences of the effect size stabilization 

procedure in the context of NHST.
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population is zero. In this scenario, although power is irrelevant, a good estimate can be obtained3. 

Nevertheless, it could still be argued that both procedures are not independent, and that good power 

can be achieved using methods designed to estimate. This is what the present study seek to explore: 

The issue of power. That is, if a true effect exists in the population, what is the probability of 

finding such an effect when applying the proposed stopping rule? If a stopping rule based on effect 

size stabilization ensures to find a true effect, it might be a powerful yet very simple tool for sample 

size justification. Understanding the properties of the effect size stabilization procedure has 

therefore far-reaching implications.

This study addresses the question of power in the context of the stopping rule based on effect 

size stabilization. A series of simulations is reported wherein a researcher samples from a target 

population until the sample's effect size stabilizes. The properties of this stopping rule were 

explored by modulating two parameters: (1) The true effect size in the population and (2) the 

number of iterations needed to reach stabilization. The consequences of modulating these 

parameters were computed for different metrics: (1) The average reached effect size, (2) the effect 

size variability, (3) the average reached power, and (4) the average reached sample size. 

Methods

General principle

The simulations reported in this study involve a hypothetical scenario wherein a researcher 

conducts an experiment by sampling from a target population characterized by a true effect size. 

When sampling from the target population, the researcher uses the effect size stabilization 

procedure. The experiment involves a within-subject design, manipulating two conditions. The type 

of design assumed for these simulations does not matter as the points made in this manuscript apply 

to any test. A within-subject design was chosen for practical and computational reasons: Paired-

3Thanks to Daniël Lakens for suggesting this example.
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samples t-tests are merely one-sample t-tests over the difference between repeated measures. This 

implies that to simulate one participant, only a single data point needs to be sampled, which divides 

by two the time required to generate samples in the simulations. Furthermore, in the hypothetical 

scenario, the researcher expects the effect to go in one specific direction and decides to conduct 

one-sided t-tests. This represents an ideal scenario in which a researcher’s hypothesis is informed by 

a robust theory, which also simplifies the interpretation of simulation results for the present work.

Sampling process

Sampling starts with a base sample size of n=5, and proceeds as follows:

1. Compute the current effect size.

2. Collect one additional data point.

3. Compute the new effect size.

4. Compute the absolute difference between the current effect size and the previous one.

5. If step 4 was performed for less than θ consecutive iterations, go back to step 2. If it was 

performed for at least θ consecutive iterations, go to step 6.

6. If the absolute difference between effect sizes did not exceed λ for θ consecutive times, stop 

the sampling process. If not, go back to step 2.

The λ parameter is the value of the absolute difference between effect sizes that should not be 

exceeded to reach stabilization. The θ parameter is the number of times the difference between 

successive effect sizes has to not exceed λ to stop the sampling process. The higher the θ and λ 

values, the longer the sampling process.
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Simulations details

Simulations were conducted using the Rust programming language4. The sampling process 

outlined in the previous section iterated across 100,000 simulations for each set of parameters, 

resulting in a population of simulated experiments from which the following metrics were 

extracted:

1. The average effect size reached.

2. The standard deviation of the effect sizes.

3. The proportion of experiments leading to a significant p-value.

4. The average sample size reached.

Data points were generated by drawing random values from a normal distribution using the 

rand(v0.8.5) and rand_distr(v0.4.3) crates (or packages). The mean parameter of the normal 

distribution μ varied depending on the assumed effect size (see below), while maintaining a fixed 

standard deviation σ  of 1.0. With this configuration, the μ parameter determines the true effect size 

in the population.

Simulations repeated across a wide range of parameter values. The λ parameter was fixed to  

0.05 to stick with the original implementation from Anderson and colleagues. Note that the value of 

λ does not matter too much in the context of these simulations. The purpose of these simulations is 

to understand how effect size stabilization behaves, not to give precise practical guidelines. 

Simulations revealed that adopting smaller λ values merely increases sample sizes: The smaller the 

λ value, the more conservative the stopping criterion. The θ and μ parameters varied orthogonally. 

The θ parameter varied between 5 to 100 iterations, with a step of 1. The μ parameter varied 

4 Descriptive and inferential statistics aren't supported natively in Rust. For these reasons, all mathematical formulas are 

reported for transparency and reproducibility. An R version of these simulations has been made available on the 

OSF repository.
8

8

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161



STABILIZATION AND POWER

between 0.0 (no effect) to 1.0 (large effect), with a step of 0.01. Hence, there was a total of 

96∗101=9,696 sets of parameters.

Effect size for a given sample x was computed using Cohen's d:

d= x̄
s

(1)

In Eq. 1, x̄ and s are the mean and standard deviation of the sample, respectively:

x̄=1
n (∑

i=1

n

xi) (2)

s=√∑ ( xi− x̄ )2

n−1
(3)

Where n refers to the sample size. Significance of a sample at the end of the sampling process was 

performed by first computing a t-value:

t= x̄
se

(4)

The se term is the sample's standard error:

se= s

√n (5)

This t-value was then compared to the critical value on a t-distribution. To do this, the probability 

density function of the t-distribution was generated using the StudentsT function of the 

statrs(v0.15.0) crate. The distribution used 0.0 as location parameter, the sample's standard 

deviation s as scale parameter, and n−1 as degrees of freedom. An alpha value of α=0.05 was used 

9

9

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178



STABILIZATION AND POWER

to test significance, assuming a one-sided test. Hence, in the null hypothesis, the population's mean 

equals zero, and significance is tested relatively to (positive) deviations from it.

Results

Checking the stability assumption

The effect size stabilization procedure hinges on an implicit assumption that effect sizes 

stabilize over time. When replicating the same experiment many times, the resulting distribution of 

effect sizes should show more variability for small than large samples. Figure 1 displays results 

from 500 simulated experiments in which a researcher samples from a target population with a true 

effect size of 0.5. Each line in the figure indicates the evolution of the effect size of a single 

experiment throughout the sampling process. As can be seen, the stability assumption is met: Effect 

sizes vary more at the beginning than at the end of the sampling process. This phenomenon merely 

reflects the fact that, in small samples, extreme deviations which may occur occasionally have a 

stronger impact than in large samples where this variability drowns among the remaining data 

points.

< INSERT FIGURE 1 ABOUT HERE >

Effect sizes

Figure 2, upper left panel, shows the average observed effect sizes for each set of 

parameters. Colors indicate effect sizes' magnitude, brighter colors representing bigger effects. The 

x-axis indicates the number of iterations required to reach stabilization, or θ. The y-axis indicates 

the effect sizes in the population, or μ. When applying the stopping rule, there is a one-to-one 

correspondence between the observed and true effect sizes. Thus, the effect size stabilization 
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procedure does not inflate effect sizes, an observation which reproduce what was initially reported 

by Anderson and colleagues. This is made possible by the principle of the stopping rule itself, which 

relies on the consistency of the effect size over the course of the sampling process.

< INSERT FIGURE 2 ABOUT HERE >

Despite the consistency in the observed effect sizes, simulations show variability. Figure 2, 

upper right panel, plots effect sizes' standard deviation. Adopting a stricter stopping rule (i.e., 

setting θ to a large value) decreases effect sizes' variability. This is expected under a stopping rule in 

which stabilization is sought.

Power

Central to the current research question, Figure 2, bottom left panel, shows the observed 

power in the simulations. The brightness indicates the observed power, bright and dark colors 

representing high and low power, respectively. For big effect sizes (i.e., μ>0.7), the stopping rule 

guarantees to always detect a true effect, regardless of θ. However, for small effect sizes, the 

detection of a true effect is not guaranteed, even when adopting a large θ. 

Therefore, the bottom left panel of Figure 2 shows that the stopping rule results in different 

power for various effects sizes when holding θ constant. To understand why, let's examine Figure 2, 

bottom right panel, which illustrates the average sample size reached at the end of the sampling 

process for each set of parameters. Irrespective of the true effect size in the population, and for 

constant θ values, comparable sample sizes are reached. This is a core reason why effect size 

stabilization cannot be used for testing: It is less likely to observe small than large effects for an 

equivalent sample size. When seeking for power, one should expect to end up with larger samples 
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when collecting data on a population in which the true effect is small, than when the true effect is 

large. This does not occur when applying the effect size stabilization procedure.

A closer look at effect size variability

Why does one end up with a similar sample size for a different true effect size when adopting 

the same stopping rule (i.e., identical θ)? The answer is deeply rooted in the properties of effect 

sizes, and specifically their variation. Figure 3 shows the standard deviation of different effect sizes 

across sample sizes5. Each line on the graph represents a different true effect size. As can be seen, 

small samples lead to larger effect size variability, as expected. This variability decreases over the 

sampling process, eventually reaching an asymptote. It is notable that all effect sizes display similar 

variability. Due to this property, the magnitude of an effect size does not substantially influence 

sample size under the effect size stabilization procedure because all effect sizes reach stability at 

comparable moments of the sampling process. This observation entails one main consequence. The 

stopping rule based on effect size stabilization cannot be used to reach power, because one might 

end up with an underpowered experiment. This means that effect size stabilization and testing 

should be considered separately.

< INSERT FIGURE 3 ABOUT HERE >

Discussion

This study tested the ability of the effect size stabilization procedure to detect a true effect in 

a population. Specifically, the application of this stopping rule can result in a lack of power, 

depending on the magnitude of the effect size in the population. This phenomenon is caused by an 

important property of effect sizes: Because different effect sizes vary to a comparable extent (see 

5 Each data point was generated using 1,000,000 simulated trials.
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Figure 3), the application of the effect size stabilization procedure leads to similar sample sizes 

regardless of the effect in the population. Hence, effect size stabilization cannot be used for 

hypothesis testing. Instead, effect size stabilization procedures should be taken as they were initially 

intended for: Reaching accurate parameter estimates (Kelley et al., 2003; Maxwell et al., 2008). 

More generally, if a researcher decides to employ effect size stabilization as a stopping rule, 

practical elements should be considered. A given predefined stopping rule will necessarily produce 

different outcomes as soon as other ways to compute effect sizes are used. Cohen's d can 

theoretically take any value from − Inf  to + Inf , while other effect sizes such as η2 and R2 are 

bounded between 0.0 and 1.0. It is therefore important to stick with the same effect size measure 

throughout a study. Even if a different statistical test is performed for different studies, there are 

ways to convert effect sizes, such as transforming R2 to cohen’s d. Lakens (2013) provides useful 

guidelines to deal with effect sizes.

When discussing their simulation results, Anderson and colleagues suggested that effect size 

stabilization could be used alongside - rather than as a replacement for - power analyses. However, 

the practical benefits and implementation details of such a combined approach remain to be 

clarified. One example of a way forward in this direction could be to collect data until reaching 

stabilization, and estimate the required sample size by performing a power analysis based on the 

current effect size. A conservative approach to this would be to compute a confidence interval 

around the observed effect size and take its lower bound to estimate the minimum sample size 

required for achieving the desired power. Nevertheless, predicting the consequences of adopting 

such a method is challenging without formal simulation work, leaving room for further 

investigation.

Although optional stopping based on p-values typically inflates Type-1 error probability 

(Anderson et al., 2022; Simmons et al., 2011), a procedure to adjust for this inflation can be applied, 
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based on the correction of the critical p-value prior to data collection. For instance, in sequential 

analyses  (Lakens, 2014), it is possible to define a maximum sample size, either based on a 

minimally informative effect size and desired power, or on the amount of resources one can invest. 

From this maximum sample size, the researcher can terminate the sampling process early (e.g., 

halfway through) if the effect is observed (i.e., p-value reaching significance) during one or several 

interim analyses. The p-value must be corrected according to the number of interim analyses, such 

that the combined probability to commit Type-1 error at any point of the analysis remains constant 

(e.g., Pocock, 1977). For example, when performing one iterim analysis before completing data 

collection, the p-value can be adjusted from 0.05 to 0.0294 to maintain the rate of false positive at 

~0.05. This correction helps saving important resources by allowing data collection to be potentially 

stopped before reaching the full sample size. A simulation coded in R, showing the effectiveness of 

this procedure in preventing Type-1 error inflation is reported in the Appendix.
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Appendix

rm(list = ls())

# get required sample to reach a certain power, given an effect size and alpha level
get_sample_size <- function(alpha, beta, mu, sigma) {
  return(((qnorm(1.0 - alpha / 2.0) + qnorm(1.0 - beta)) * sigma / mu)^2.0)
}

# number of simulations
n_sim <- 10^5
# minimally informative effect size
minimal_mu <- 0.5
# alpha level
alpha <- 0.05
# beta level
beta <- 0.2
# sample size for each interim analysis
n_interim <- round(get_sample_size(alpha, beta, minimal_mu, 1.0)/2)
# number of participants required to achieve a certain power
n <- n_interim*2
# effect size in the population
mu <- 0.0
# standard deviation in the population
sigma <- 1.0
# corrected alpha levels
alphas <- c(0.0294, 0.0294)

# used to count the number of significant p-values we encounter
cnt <- 0.0
# collected sample during an experiment
a <- rep(0.0, n)
for (epoch in 1:n_sim) {

  
  # we recruit the first part of our sample
  a[1:n_interim] <- rnorm(n_interim, mean = mu, sd = sigma)
  # compute its p-value
  p_value <- t.test(a[1:n_interim])$p.value

  
  # if the p-value is already significant
  # we stop the sampling process and simulate a new set of data
  if (p_value < alphas[1]) {
    cnt <- cnt + 1
  } else {
    # if not, we re-sample from the population
    a[(n_interim+1):n] <- rnorm(n_interim, mean = mu, sd = sigma)
    p_value <- t.test(a)$p.value
    cnt <- cnt + (p_value < alphas[2])
  }

  
}
# here we just print the type-1 error rate
print(cnt / n_sim)
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Figure 1

Evolution of effect sizes over the course of the sampling process.
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Figure 2

Main Simulation Results

Note. x-axis: Number of iterations required to reach stabilization (θ). y-axis: Effect sizes in the 

population (μ).
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Figure 3

Variability of Various Effect Sizes
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