

Power systems are one of the most complex engineering structures ever built by mankind.

This talk takes you on a journey through the different layers of power systems, with the aim of showing to machine learning (ML) researchers the numerous decision-making problems each layer presents. Prover systems are one of the most complex engineering structures

ever built by mankind.

This talk takes you on a journey through the different layers of power

systems, with the aim of showing to machine learning (ML) r

decarbonization of our societies.

The first layer: Microgrids

load and two distributed energy resources (a photovoltaic (PV) installation and a battery).

(Near) optimal control policies for microgrids

(Near) optimal control policies for microgrids
A microgrid is a system that includes one or more loads and one or more distributed
energy resources (DERs), which can operate in parallel with the broader electric
network. (Near) optimal control policies for microgrids
A microgrid is a system that includes one or more loads and one or more distributed
energy resources (DERs), which can operate in parallel with the broader electric
Microgrid network.

Let us consider the challenges related to the computation of (near) optimal policies for controlling microgrids* to minimise energy costs.

Understanding electricity trading in the European Union

Understanding electricity trading in the European Union
Before proceeding further, it is important to understand how electricity is traded in the
European Union.
(i) Electricity is traded as a commodity hought and sold on **Understanding electricity trading in the**
Before proceeding further, it is important to under
European Union.
(i) Electricity **is treated as a commodity, bou**s
hasis. This means that the electricity commod

- Understanding electricity trading in the European Union
Before proceeding further, it is important to understand how electricity is traded in the
European Union.
(i) Electricity is treated as a commodity, bought and sold o derstanding electricity trading in the European Union
pre proceeding further, it is important to understand how electricity is traded in the
ppean Union.
Electricity is treated as a commodity, bought and sold on a quarter**derstanding electricity trading in the European Union**
pre proceeding further, it is important to understand how electricity is traded in the
ppean Union.
Electricity is treated as a commodity, bought and sold on a quart Understanding electricity trading in the European Union
Before proceeding further, it is important to understand how electricity is traded in the
European Union.
(i) Electricity is treated as a commodity, bought and sold o **derstanding electricity trading in the European**
pre proceeding further, it is important to understand how elect
ppean Union.
Electricity is **treated as a commodity, bought and sold c**
basis. This means that the electri
-
- Before proceeding further, it is important to understand how electricity is traded in the European Union.

(i) Electricity is treated as a commodity, bought and sold on a quarter-hourly

basis. This means that the electric by proceeding further, it is important to understand how electricity is traded in the poean Union.
Electricity is treated as a commodity, bought and sold on a quarter-hourly basis. This means that the electricity commodity are proceeding rathet, it is important to understand now electricity is traded in the pean Union.
Electricity is **treated as a commodity, bought and sold on a quarter-hourly**
basis. This means that the electricity commod

Case 1 – Perfect forecast

<u>Context:</u> The computation of a (near) optimal microg

what level the battery is charged and discharged Case 1 – Perfect forecast
Context: The computation of a (near) optimal microgrid control policy used to dictate to
what level the battery is charged and discharged (power setting) for every market
period t with knowledge o **Case 1 – Perfect forecast**
Context: The computation of a (near) optimal microgrid control policy used to dictate to
what level the battery is charged and discharged (**power setting**) for every market
period *t* with knowl **Case 1 – Perfect forecast**

Context: The computation of a (near) optimal microgrid control policy used to dictate to

what level the battery is charged and discharged (**power setting**) for every market

period *t* with kn Case 1 – Perfect forecast

Context: The computation of a (near) optimal microwhat level the battery is charged and discharge

period t with knowledge of all relevant time-series

purchase tariffs).

How to compute an optimal microgrid control policy (1/2)
A policy is an object that, at the beginning of each **market period** $t \in \{0, 1, ..., T - 1\}$
within the optimisation horizon T , selects an action u_t from the acti **How to compute an optimal microgrid control policy (1/2)**
A policy is an object that, at the beginning of each **market period** $t \in \{0, 1, ...,$ within the optimisation horizon T , selects an action u_t from the action spa **ntrol policy (1/2)**
narket period $t \in \{0, 1, ..., T - 1\}$
from the action space \mathcal{U} , based
nformation \mathcal{I} . **How to compute an optimal microgrid co**
A policy is an object that, at the beginning of each representing the optimisation horizon T , selects an **action** u_t
on **a piece of information** i_t from the set of **available from the set of available information 1.1**
A policy is an object that, at the beginning of each market period $t \in \{0, 1, ..., T - 1\}$
within the optimisation horizon T, selects an action u_t from the action space u , based

7

How to compute an optimal microgrid control policy (2/2)

How to compute an optimal microgrid control policy (2/2)
In our context, assuming linear behaviour for the battery dynamics, the energy cost
minimisation problem for the microgrid can be approached as a linear programmi How to compute an optimal microgrid control policy (2/2)
In our context, assuming linear behaviour for the battery dynamics, the energy cost
minimisation problem for the microgrid can be approached as a linear programming **How to compute an optimal microgrid control policy (2/2)**
In our context, assuming linear behaviour for the battery dynamics, the energy cost
minimisation problem for the microgrid can be approached as a linear programmi **te an optimal microgrid control policy (2/2)**
uming linear behaviour for the battery dynamics, the energy cost
m for the microgrid can be approached as a linear programming
em involves determining an action $u_t \in \mathcal{U}$ battery. Froblem. This problem involves determing an action $u_t \in \mathcal{U}$ at each time step
 $t \in \{0, 1, ..., T-1\}$ that sets the electrical power to charge (discharge) into (from) the

battery.
 $(u_0^*, \ldots, u_{T-1}^*) \in \mathcal{U}$ arg min $Cost(u$

Problem. This problem involves determining an action
$$
u_t \in \mathcal{U}
$$
 at each time step $t \in \{0, 1, \ldots, T-1\}$ that sets the electrical power to charge (discharge) into (from) the battery.

\n**Output**

\n
$$
(u_0^*, \ldots, u_{T-1}^*) \in \argmin_{(u_0, \ldots, u_{T-1}) \in \mathcal{U}^T}
$$

\nwhere $\mathcal{U} = [Power_{\min}, Power_{\max}]$

\nHowever, if we want to be closer to reality, we need to model the non-linear short-term and long-term dynamics of the battery. This includes factors such as losses that do not vary linearly with the power setting and battery aging.

Why should you be excited as ML researchers

Why should you be excited as ML researchers
• A (near) optimal control problem of a non-linear system that can be formalised as an **MDP(** ε **)**, which refers to a Markov Decision Process that includes **a time-series var hy should you be excited as ML researchers**
A (near) optimal control problem of a non-linear system that can be formalised as an
MDP(ε), which refers to a Markov Decision Process that includes **a time-series variab hy should you be excited as ML researchers**
A (near) optimal control problem of a non-linear system that can be formalised as ar
MDP(ε), which refers to a Markov Decision Process that includes **a time-series variab**

Case 2 – Load and weather to be forecasted

Context: The computation of a (near) optimal microgrid control policy for

cotting with time earies of beth food in and purphase teriffs as input data Case 2 – Load and weather to be forecasted
Context: The computation of a (near) optimal microgrid control policy for a battery power
setting with time-series of both feed-in and purchase tariffs as input data. Case 2 – Load and weather to be forecasted

Context: The computation of a (near) optimal microgrid control policy for a battery power

setting with time-series of both feed-in and purchase tariffs as input data.

This second case adds two challenges

This second case adds two challenges
Policies take values in the same action space u as in the first case. However, the key
difference from Case 1 is the set \jmath of available information used to compute optimal
acti **This second case adds two challenges**
Policies take values in the same action space u as in the first case. However, the key
difference from Case 1 is the set $\mathcal I$ of available information used to compute optimal
act **This second case adds two challenges**
Policies take values in the same action space \mathcal{U} as in the first case. However, the key
difference from Case 1 is the set \mathcal{I} of available information used to compute opti **This second case adds two challenges**

Policies take values in the same action space $\mathcal U$ as in the first case. Hower

difference from Case 1 is the set $\mathcal I$ of available information used to comp

actions, as the wea **This second case adds two challenges**

Policies take values in the same action space \mathcal{U} as in the first case. H

difference from Case 1 is the set \mathcal{I} of available information used to

actions, as the weather **This second case adds two challenges**

Policies take values in the same action space \mathcal{U} as in the first case. However, the key

difference from Case 1 is the set \mathcal{I} of available information used to compute op **This second case adds two challenge**
Policies take values in the same action space u a
difference from Case 1 is the set \jmath of available i
actions, as the weather and load time-series data
local production and deman **This second case adds two challenges**

Policies take values in the same action space $\mathcal U$ as in the first case. However, the key

difference from Case 1 is the set $\mathcal I$ of available information used to compute optima This second case adds two challenges

Policies take values in the same action space u as in the first case. However, the l

difference from Case 1 is the set j of available information used to compute optir

actions, Policies take values in the same action space $\mathcal U$ as in the first case. However, the ket difference from Case 1 is the set $\mathcal I$ of available information used to compute optim actions, as the weather and load time-ser

Policies take values in the same action space u as in the first case. However, the difference from Case 1 is the set β of available information used to compute actions, as the weather and load time-series data are no difference from Case 1 is the set *1* of available information used to compute optim
actions, as the weather and load time-series data are no longer available, resulting
local production and demand being unknown.
This lead actions, as the weather and load time-series data are no longer available, resulting in

local production and demand being unknown.

This leads to the two following challenges:

1. Forecasting weather and load time-series challenge.

Why should you be excited as ML researchers

- **Why should you be excited as ML researchers**
• A (near) optimal control problem of a non-linear system that can be formalised as an **MDP(** ε **)**, which refers to a Markov Decision Process that includes **a time-series var hy should you be excited as ML researchers**
A (near) optimal control problem of a non-linear system that can be formalised as an
MDP(ε), which refers to a Markov Decision Process that includes **a time-series variab hy should you be excited as ML researchers**
A (near) optimal control problem of a non-linear system that can be formalised as an
MDP(ε), which refers to a Markov Decision Process that includes **a time-series variab Why should you be excited as ML researchers**

• A (near) optimal control problem of a non-linear system that can be formalised as an **MDP(** ε), which refers to a Markov Decision Process that includes **a time-series va hy should you be excited as ML researchers**
A (near) optimal control problem of a non-linear system that can be formalised as an
MDP(ε), which refers to a Markov Decision Process that includes **a time-series variab**
-

**Case 3 – Market enters the game

Context: The computation of a (near) optimal microgrid of

Setting without any time-series as input data (e.g., we** Case 3 – Market enters the game

Context: The computation of a (near) optimal microgrid control policy for the battery power

setting without any time-series as input data (e.g., weather, load, feed-in and purchase

tar Case 3 – Market enters the game

<u>Context:</u> The computation of a (near) optimal microgrid control policy for the battery power

setting without any time-series as input data (e.g., weather, load, feed-in and purchase

tari **Case 3 – Market enters the game**

<u>Context:</u> The computation of a (near) optimal microgrid control policy for the battery power

setting without any time-series as input data (e.g., weather, load, feed-in and purchase

t Case 3 – Market enters the game

Context: The computation of a (near) optimal microgrid control policy for the battery power

setting without any time-series as input data (e.g., weather, load, feed-in and purchase

tar

Complexity of day-ahead market interactions for the policy (1/2)

Complexity of day-ahead market interactions for the policy (1/2)
In Case 3, no longer are there feed-in and purchase tariffs; the microgrid interacts
directly with the day-ahead market. This requires submitting at each **Complexity of day-ahead market interactions for the policy (1/2)**
In Case 3, no longer are there feed-in and purchase tariffs; the microgrid interacts
directly with the day-ahead market. This requires submitting at each **Complexity of day-ahead market interaction Case 3, no longer are there feed-in and purchanced in Case 3, no longer are there feed-in and purchanced in and purchanced in and purchanced in a vector** $v_t \in \mathcal{V} \subset \mathbb{R}^{24}$ **id market interactions for the policy (1/2)**
re feed-in and purchase tariffs; the microgrid interacts
ket. This requires submitting at each $t = 47 + k \times 96$, $k \in$
 24 of energy quantities to be traded on the day-ahead
 market. **Complexity of day-ahead market interactions for the policy (1/2)**
In Case 3, no longer are there feed-in and purchase tariffs; the microgrid interacts
directly with the day-ahead market. This requires submitting at each **Complexity of day-ahead market interactions for the policy (1/2)**
In Case 3, no longer are there feed-in and purchase tariffs; the microgrid interacts
directly with the day-ahead market. This requires submitting at each **Complexity of day-ahead market interactions for the policy (1/2)**

In Case 3, no longer are there feed-in and purchase tariffs; the microgrid interacts

directly with the day-ahead market. This requires submitting at eac

have to compute at every $t = 47 + k \times 96$, $k \in \{0,1,2,...\}$ an additional action $v_t \in V$.

*Bidding closes at noon.

Why should you be excited as ML researchers?

- **Why should you be excited as ML researchers?**
• A (near) optimal control problem of a non-linear system that can be formalized as an **MDP(** ε **)**, which refers to a Markov Decision Process that includes **a time-series va hy should you be excited as ML researchers?**
A (near) optimal control problem of a non-linear system that can be formalized as an **MDP(** ε), which refers to a Markov Decision Process that includes **a time-series varia hy should you be excited as ML researchers?**
A (near) optimal control problem of a non-linear system that can be formalized as an **MDP(** ε), which refers to a Markov Decision Process that includes **a time-series varia Why should you be excited as ML researchers?**

• A (near) optimal control problem of a non-linear system that can be formalized as an **MDP(** ε), which refers to a Markov Decision Process that includes **a time-series v hy should you be excited as ML researchers?**
A (near) optimal control problem of a non-linear system that can be formalized as an **MDP(** ε), which refers to a Markov Decision Process that includes **a time-series varia •** A (near) optimal control problem of a non-linear system that can be formalized as an **MDP(***e*), which refers to a Markov Decision Process that includes **a time-series variable** *e*. A long time horizon needs to be co **hy should you be excited as ML researchers?**
A (near) optimal control problem of a non-linear system that can be formalia
MDP(ε), which refers to a Markov Decision Process that includes **a time-series** v
A long time
-
-

Case 4 – forecasting with all relevant markets

<u>Context:</u> Computation of a (near) optimal microgrid control policy for the
setting without any time-series data as input, while also considering as a Case 4 – forecasting with all relevant markets
Context: Computation of a (near) optimal microgrid control policy for the battery power
setting without any time-series data as input, while also considering as additional mar Case $4 -$ forecasting with all relevant markets

<u>Context:</u> Computation of a (near) optimal microgrid control policy for the battery power

setting without any time-series data as input, while also considering as addition Case 4 – forecasting with all relevant m

<u>Context:</u> Computation of a (near) optimal microgrid

setting without any time-series data as input, while a

the intraday market.

Action space and bid acceptance for intraday market decisions

Action space and bid acceptance for intraday market decisions
In Case 4, a specific action space $\mathcal W$ related to the intraday market must be considered
in addition to the previous action spaces $\mathcal U$ and $\mathcal V$. We ass **Action space and bid acceptance for intraday market decisions**
In Case 4, a specific action space W related to the intraday market must be considered
in addition to the previous action spaces U and V . We assume tha **Action space and bid acceptance for intraday market decisions**
In Case 4, a specific action space W related to the intraday market must be considered
in addition to the previous action spaces $\mathcal U$ and $\mathcal V$. We assume **Action space and bid acceptance for intraday market decisions**
In Case 4, a specific action space $\mathcal W$ related to the intraday market must be considered
in addition to the previous action spaces $\mathcal U$ and $\mathcal V$. We a **Action space and bid acceptance fo**
In Case 4, a specific action space $\mathcal W$ related to
in addition to the previous action spaces $\mathcal U$ and
each market period t , a Boolean vector w_t m
accept or reject each availabl **axis and bid acceptance for intraday market decis**
pecific action space W related to the intraday market must be completed previous action spaces $\mathcal U$ and $\mathcal V$. We assume that at the begineric t , a Boolean vector

For any other than the previous action spaces $\mathcal U$ and $\mathcal V$. We assume that at the begin exact on market period t , a Boolean vector w_t must be computed to decide when accept or reject each available bid in the ord each market period t, a Boolean vector w_t must be corected or reject each available bids in the order book of the intervalse of the intervalse of w at t is:

If there are n_t available bids, then the action

space W Trading (continuous and discrete) and delivery timelines for products Q_1 to Q_4 . space W at t is:

*The microgrid could also generate its own bids for the intraday market and access existing bids during a market period.

Why should you be excited as ML researchers

- **Why should you be excited as ML researchers**
• A (near) optimal control problem of a non-linear system that can be formalized as an **MDP(** ε), which refers to a Markov Decision Process that includes **a time-series var hy should you be excited as ML researchers**
A (near) optimal control problem of a non-linear system that can be formalized as an
MDP(ε), which refers to a Markov Decision Process that includes **a time-series variab hy should you be excited as ML researchers**
A (near) optimal control problem of a non-linear system that can be formalized as an
MDP(ε), which refers to a Markov Decision Process that includes **a time-series variab Why should you be excited as ML researchers**

• A (near) optimal control problem of a non-linear system that can be formalized as an
 MDP(ε), which refers to a Markov Decision Process that includes **a time-series v hy should you be excited as ML researchers**
A (near) optimal control problem of a non-linear system that can be formalized as an
MDP(ε), which refers to a Markov Decision Process that includes **a time-series variab Why should you be excited as ML researchers**

• A (near) optimal control problem of a non-linear system that can be formalized as an **MDP(** ϵ), which refers to a Markov Decision Process that includes **a time-series var hy should you be excited as ML researchers**
A (near) optimal control problem of a non-linear system that can be formalized as
MDP(ε), which refers to a Markov Decision Process that includes **a time-series variable Why should you be excited as ML researchers**

• A (near) optimal control problem of a non-linear system that can be formalized as an
 MDP(ε), which refers to a Markov Decision Process that includes a time-series va
-
-
- **Hy Should you be excited as with researchers**
A (near) optimal control problem of a non-linear system that can be formalized as an
MDP(ϵ **)**, which refers to a Markov Decision Process that includes **a time-series varia** A (near) optimal control problem of a non-linear system that can be formalized as an **MDP(** ε), which refers to a Markov Decision Process that includes **a time-series variable** ε .
A long time horizon needs to be co $MDP(\varepsilon)$, which refers to a Markov Decision Proce
A long time horizon needs to be considered. Ve
fields of $MDP(\varepsilon)$ with long time horizon. [Cases 1
The forecasting of very local weather and lo
probabilistic forecasts.

Case 5 – Operation and sizing

<u>Context:</u> Computation of a (near) optimal microgrid control po

setting while addressing all the previously mentioned challend Case 5 – Operation and sizing

<u>Context:</u> Computation of a (near) optimal microgrid control policy for the battery power

setting while addressing all the previously mentioned challenges, and a (near) optimal

sizing of bo **Case 5 – Operation and sizing**

<u>Context:</u> Computation of a (near) optimal microgrid control policy for the battery power

setting while addressing all the previously mentioned challenges, and a (near) optimal

sizing of Case 5 – Operation and sizing

Context: Computation of a (near) optimal microgrid control policy for the battery power

setting while addressing all the previously mentioned challenges, and a (near) optimal

sizing of both

Sizing problem: an additional one-time decision

Sizing problem: an additional one-time decision
The parameters related to the sizing of the capacities belong to a new action space $\mathcal Z$
and need to be optimized.
More specifically, we assume that an additional one-ti

Sizing problem: an additional one-time de
The parameters related to the sizing of the capacities l
and need to be optimized.
More specifically, we assume that an additional one-time
-1, corresponding to the choice of the **Sizing problem: an additional one-time decision**
The parameters related to the sizing of the capacities belong to a new action space $\mathbb Z$
and need to be optimized.
More specifically, we assume that an additional one-ti **Sizing problem: an additional one-time decision**
The parameters related to the sizing of the capacities belong to a new action space $\mathcal Z$
and need to be optimized.
More specifically, we assume that an additional one-ti Sizing problem: an additional one-ti
The parameters related to the sizing of the capand need to be optimized.
More specifically, we assume that an additional of
-1, corresponding to the choice of the size of the
storage ca

$$
z_{-1} \in \mathcal{Z} \text{ where } \mathcal{Z} \subset (\mathbb{R}^+)^p, p \in \mathbb{N}
$$

A reinforcement learning point of view on the problem
The problem of sizing and operation can be seen from RL researchers as a problem of
optimizing both a policy and an environment. Here, the environment is parameteris A reinforcement learning point of view on the problem
The problem of sizing and operation can be seen from RL researchers as a problem of
optimizing both a policy and an environment. Here, the environment is parameterised **A reinforcement learning point of view on the problem**
The problem of sizing and operation can be seen from RL researchers as a problem of
optimizing both a policy and an environment. Here, the environment is parameteris

 $\begin{aligned} \pi_\theta: \mathcal{I} \times \{0,\ldots,T-1\} &\rightarrow \mathcal{U} \times \mathcal{V} \times \mathcal{W} \colon \text{policy-taking decision based on accessible information } i_t \in \mathcal{I} \\ \theta \in \Theta \colon \text{policy paramctcription} \\ (z_{-1},\theta^*) \in \arg\max_{(z_{-1},\theta)} V(z_{-1},\theta) \text{ where } V(z_{-1},\theta) = \underset{d_t = \pi_Q(i_t,\,t)}{\mathbb{E}} \sum_{f_t=0}^{T-1} r_t \\ &\qquad \qquad \quad \$ $\begin{split} \pi_{\theta}: \mathcal{I} \times \{0,\ldots, T-1\} &\rightarrow \mathcal{U} \times \mathcal{V} \times \mathcal{W} \colon \text{policy-taking decision based on accessible information } i, \\ \theta \in \Theta \colon \text{policy parameterisation} \\ (z^*_{-1}, \theta^*) \in \text{arg}\max\limits_{(z=1,\theta)} V(z_{-1},\theta) \text{ where } V(z_{-1},\theta) = \underset{S_0 \sim P_0(\cdot)}{\mathbb{E}} \sum_{\ell=0}^{T-1} r_\ell \\ & \theta_1 \in \mathcal$

Timeline of actions across the different action spaces

Why should you be excited as ML researchers

- **Why should you be excited as ML researchers**
• A (near) optimal control problem of a non-linear system that can be formalized as an **MDP(** ε), which refers to a Markov Decision Process that includes **a time-series var hy should you be excited as ML researchers**
A (near) optimal control problem of a non-linear system that can be formalized as an
MDP(ε), which refers to a Markov Decision Process that includes **a time-series variab hy should you be excited as ML researchers**
A (near) optimal control problem of a non-linear system that can be formalized as an
MDP(ε), which refers to a Markov Decision Process that includes **a time-series variab Why should you be excited as ML researchers**

• A (near) optimal control problem of a non-linear system that can be formalized as an
 MDP(ε), which refers to a Markov Decision Process that includes **a time-series v hy should you be excited as ML researchers**
A (near) optimal control problem of a non-linear system that can be formalized as an
MDP(ε), which refers to a Markov Decision Process that includes **a time-series variab Why should you be excited as ML researchers**

• A (near) optimal control problem of a non-linear system that can be formalized as an **MDP(** ϵ), which refers to a Markov Decision Process that includes **a time-series var hy should you be excited as ML researchers**
A (near) optimal control problem of a non-linear system that can be formalized a
MDP(ε), which refers to a Markov Decision Process that includes **a time-series variat**
A **Why should you be excited as ML researchers**

• A (near) optimal control problem of a non-linear system that can be formalized as an
 MDP(ε), which refers to a Markov Decision Process that includes a time-series va **Hy Should you be excited as with researchers**
A (near) optimal control problem of a non-linear system that can be formalized as an
MDP(ϵ **)**, which refers to a Markov Decision Process that includes **a time-series varia** A (near) optimal control problem of a non-linear system that can be formalized as an **MDP(** ε), which refers to a Markov Decision Process that includes **a time-series variable** ε .
A long time horizon needs to be co
-
-
- $\mathsf{MDP}(\varepsilon)$, which refers to a Markov Decision Process that A long time horizon needs to be considered. Very little fields of MDP(ε) with long time horizon. [Cases 1 to 5]
The forecasting of very local weather and A long time horizon needs to be considered. Very little work has been done so far in the

fields of MDP(ε) with long time horizon. [Cases 1 to 5]

• The forecasting of very local weather and load time-series requires fields of MDP(ε) with long time horizon. [Cases 1 to 5]
The forecasting of very local weather and load time-series requires one to rely on
probabilistic forecasts. This problem remains largely unsolved to date. [Cases The forecasting of very local weather and load time-series requires one to reprobabilistic forecasts. This problem remains largely unsolved to date. [Cases 2 to 5] Dealing with very large action spaces, where some actions
-

The second layer: Distribution networks

24

The "fit and forget" doctrine for managing distribution networks has reached its limitations

The "fit and forget" doctrine for managing distribution networks
has reached its limitations
Ten years ago, issues in distribution networks were almost non-existent. These networks
operated under the "fit and forget" doctr The "fit and forget" doctrine for managing distribution networks
has reached its limitations
Ten years ago, issues in distribution networks were almost non-existent. These networks
operated under the "fit and forget" doctr The "fit and forget" doctrine for managing distribution networks
has reached its limitations
Ten years ago, issues in distribution networks were almost non-existent. These networks
operated under the "fit and forget" doctr The "fit and forget" doctrine for managing distribution networks
has reached its limitations
Ten years ago, issues in distribution networks were almost non-existent. These networks
operated under the "fit and forget" doctr The "fit and forget" doctrine for managing
has reached its limitations
Ten years ago, issues in distribution networks were alm
operated under the "fit and forget" doctrine, meaning th
that any grid user could be connected The "fit and forget" doctrine for managing distribution networks

has reached its limitations

Ten years ago, issues in distribution networks were almost non-existent. These networks

that any grid user could be connected The "fit and forget" doctrine for managing distribution networks
has reached its limitations
Ten years ago, issues in distribution networks were almost non-existent. These networks
operated under the "fit and forget" doctr

The "fit and forget" doctrine for managing distribution networks
has reached its limitations
Ten years ago, issues in distribution networks were almost non-existent. These networks
operated under the "fit and forget" doctr The "fit and forget" doctrine for managing distribution networks
has reached its limitations
Ten years ago, issues in distribution networks were almost non-existent. These networks
operated under the "fit and forget" doctr **has reached its limitations**
Ten years ago, issues in distribution networks were almost non-existent. These networks
operated under the "fit and forget" doctrine, meaning they were built robustly enough so
that any grid u The years ago, issues in distribution networks were almos
operated under the "fit and forget" doctrine, meaning they
that any grid user could be connected without facing
interruption of supply, overvoltages). Investment de Ten years ago, issues in distribution networks were almost non-existent. These networks
operated under the "fit and forget" doctrine, meaning they were built robustly enough so
that any grid user could be connected withou operated under the "fit and forget" doctrine, meaning they were built robustly enough so
that any grid user could be connected without facing power quality issues (e.g.,
interruption of supply, overvoltages). Investment de that any grid user could be connected without facing power quality issues (e.g., interruption of supply, overvoltages). Investment decisions were based on established "good practice" rules.
Today, the situation has changed

An example of a DER causing a distribution network issue: disconnection of domestic PV installations.

An example of a DER causing a distribution network issue:
disconnection of domestic PV installations.
Domestic PV installations tend to turn consumers into producers during sunny hours as
these consumers are unable to ful An example of a DER causing a distribution network issue:
disconnection of domestic PV installations.
Domestic PV installations tend to turn consumers into producers during sunny hours as
these consumers are unable to full An example of a DER causing a distribution network issue:
disconnection of domestic PV installations.
Domestic PV installations tend to turn consumers into producers during sunny hours as
these consumers are unable to ful An example of a DER causing a distribution network issue:

disconnection of domestic PV installations.

Domestic PV installations tend to turn consumers into producers during sunny hours as

these consumers are unable to disconnected. An example of a DER causing a distribution network issue:

disconnection of domestic PV installations.

Domestic PV installations tend to turn consumers into producers during sumny hours as

these consumers are unable to An example of a DER causing a distribution network issentistic production of domestic PV installations.

Domestic PV installations.

Domestic PV installations.

Domestic PV installations.

these consumers are unable to fu An example of a DER causing a distribution network is-

disconnection of domestic PV installations.

Domestic PV installations.

Domestic PV installations tend to turn consumers into producers during s

these consumers ar **disconnection of domestic PV installations.**

Domestic PV installations tend to turn consumers into producers these consumers are unable to fully consume the electricity gene

to rise as excess electricity is pushed into

Computing optimal investment decision-making strategies (1/3)

Each year, the DSO has a specific investment budget to maintain and/or expand its network.

The challenge is to allocate this investment budget in a way that minimises network issues over time.

This is an extremely difficult optimisation problem. Why?

Each year, the DSO has a spectrom
to maintain and/or expansion of the challenge is to **allocate thin in a way that minimises networe**
This is an extremely difficult optimisation problem.
Difficulty 1:
This challenge has an Each year, the DSO has a specific investment budget
to maintain and/or expand its network.
The challenge is to allocate this investment budget
in a way that minimises network issues over time.
This is an extremely difficul Each year, the DSO has a specific investment budget
to maintain and/or expand its network.
The challenge is to **allocate this investment budget**
in a way that minimises network issues over time.
This is an extremely diffic to maintain and/or expand its network.

The challenge is to **allocate this investment budget**

in a way that minimises network issues over time.

This is an extremely difficult optimisation problem. Why?

Difficulty 1:

Th

Computing optimal investment decision-making strategies (2/3)

**Computing optimal investment decis
Difficulty 2:
The decision-making process is also challenging
investment options**. Even with perfect foresight **Computing optimal investment decision-making strategies (2/3)**
Difficulty 2:
The decision-making process is also challenging due to the **vast number of potential**
investment options. Even with perfect foresight – turning **Computing optimal investment decision-making strategies (2/3)**
Difficulty 2:
The decision-making process is also challenging due to the **vast number of potential**
investment options. Even with perfect foresight – turning **Computing optimal investment decision-making**

<u>Difficulty 2:</u>

The decision-making process is also challenging due to the **vast**

investment options. Even with perfect foresight – turning it into a

— the complexity rem **Computing optimal investment decision-making strategies (2/3)**

Difficulty 2:

The decision-making process is also challenging due to the **vast number of potential**

investment options. Even with perfect foresight – turn **Computing optimal investment decision-making strategies (2/3)**

Difficulty 2:

The decision-making process is also challenging due to the **vast number of potential**

investment options. Even with perfect foresight – turn Difficulty 2:

The decision-making process is also challenging due to the **vast number of potential**

investment options. Even with perfect foresight – turning it into a deterministic problem

– the complexity remains sig

$$
u = \{0,1\}^{|c|}
$$

The decision-making process is also challenging due to the **vast number of potential**
investment options. Even with perfect foresight – turning it into a deterministic problem
– the complexity remains significant.
For a g threstment options. Even with perfect foresight – turning it into a deterministic problem

- the complexity remains significant.

For a given network, each year, a set of **components** c can either be upgraded or not. In - the complexity remains significant.

For a given network, each year, a set of **components** \mathcal{C} can either

the simplest case, the **action space** \mathcal{U} is defined as:
 $\mathcal{U} = \{0,1\}^{|c|}$

where 1 represents an

An illustration of an investment decision-making process

Computing optimal investment decision-making strategies (3/3)

**Computing optimal investment decis
Difficult<u>y 3:</u>
The problem is highly stochastic** and uncertain,
behaviour and technology prices. These uncertain **Computing optimal investment decision-making strategies (3/3)**
Difficulty 3:
The problem is highly stochastic and uncertain, involving weather forecasts, customer
behaviour and technology prices. These uncertainties can b **Computing optimal investment decision-making strategies (3/3)**

<u>Difficulty 3:</u>

The problem is **highly stochastic** and uncertain, involving weather forecasts, customer

behaviour and technology prices. These uncertainti **Computing optimal investment decision-making strategies (3/3)**
 $\frac{1}{100}$
 $\frac{1}{100}$ $\frac{1}{200}$
The problem is **highly stochastic** and uncertain, involving weather forecasts, customer
behaviour and technology prices.

Computing optimal investment decision-making strategies (3/3)

Difficulty 3:

The problem is highly stochastic and uncertain, involving weather forecasts, customer

behaviour and technology prices. These uncertainties c **Computing optimal investment decision-making strategies (3/3)**

<u>Difficulty 3:</u>

The problem is highly stochastic and uncertain, involving weather forecasts, customer

behaviour and technology prices. These uncertainties **Computing optimal investment decision-making strategies (3/3)**

Difficulty 3:

The problem is highly stochastic and uncertain, involving weather forecasts, customer

behaviour and technology prices. These uncertainties ca **Computing optimal investment decision-making strategies (3)**

Difficulty 3:

The problem is highly stochastic and uncertain, involving weather forecasts, cus

behaviour and technology prices. These uncertainties can be re

Developing ML techniques to address these prediction problems would be a great challenge for AI researchers!

A smart investment policy alone will not be enough: Active Network Management (ANM) is also necessary A smart investment policy alone will not be enough:
Active Network Management (ANM) is also necessary
ANM schemes use a policy to modulate power generation sources, loads and
batteries to avoid congestions and voltage issu A smart investment policy alone will not be enough:
Active Network Management (ANM) is also necessary
ANM schemes use a policy to modulate power generation sources, loads and
batteries to avoid congestions and voltage issu

ANM policies can help reduce investment costs!

Active Network Management (ANM) is also necessary

ANM schemes use a policy to modulate power generation sources, loads and

batteries to avoid congestions and voltage issues on the distribution networks.

ANM policies c ANM schemes use a policy to modulate power generation sources, loads and
batteries to avoid congestions and voltage issues on the distribution networks.

The problem of computing ANM policies can be modelled as a stochas MM schemes use a policy to modulate power generation sources, loads and
batteries to avoid congestions and voltage issues on the distribution networks.

The problem of computing ANM policies can be modelled as a stochas NMM schemes use a policy to modulate power generation sources, loads and
batteries to avoid congestions and voltage issues on the distribution networks.
ANM policies can help reduce investment costs!
The problem of computi

GYM-ANM: A user-friendly RL framework for network management

GYM-ANM: A user-friendly RL framework for network management
Are you an RL researcher looking to develop an
RL algorithm for solving ANM problems without
hetworks? GYM-ANM: A user-friendly RL framework for network manager
Are you an RL researcher looking to develop an
RL algorithm for solving ANM problems without
having to know too much about distribution
networks? **GYM-ANM: A user-friendly RL framework for network mana**
Are you an RL researcher looking to develop an
RL algorithm for solving ANM problems without
having to know too much about distribution
networks?
The GYM-ANM environ networks? **GYM-ANM: A user-friendly RL framework for network m**
Are you an RL researcher looking to develop an
RL algorithm for solving ANM problems without
having to know too much about distribution
networks?
The GYM-ANM environmen

Are you an RL researcher looking to develop an

RL algorithm for solving ANM problems without

having to know too much about distribution

networks?

The GYM-ANM environment is for you!

GYM-ANM is a framework for designin extensive knowledge of the underlying dynamics
of such systems.
The GYM-ANM environment is for you!
GYM-ANM is a framework for designing RL
environments that model ANM tasks in distribution
metworks. These environments pro The GYM-ANM environment is for you!
The GYM-ANM environment is for you!
GYM-ANM is a framework for designing F
environments that model ANM tasks in distribution
networks. These environments provide ne
playgrounds for RL re

A graphical example of an ANM policy modulating a six-bus distribution network

https://youtu.be/D8kGH94kavY

What you observe in the video

What you observe in the video
The distribution network consists of six buses, one high to medium-voltage transformer,
three aggregated passive loads, two renewable energy generators, one battery, and one
fossil fuel genera What you observe in the video
The distribution network consists of six buses, one high to medium-voltage transformer,
three aggregated passive loads, two renewable energy generators, one battery, and one
fossil fuel genera What you observe in the video
The distribution network consists of six buses, one
three aggregated passive loads, two renewable en
fossil fuel generator.
This video showcases two situations:
1. A windy night with low consu What you observe in the video
The distribution network consists of six buses, one high to medium
three aggregated passive loads, two renewable energy generators,
fossil fuel generator.
This video showcases two situations:

What you observe in the video

The distribution network consists of six buses, one high to medium-voltage transformer,

three aggregated passive loads, two renewable energy generators, one battery, and one

fossil fuel What you observe in the video
The distribution network consists of six buses, one high to medium-voltage transformer,
three aggregated passive loads, two renewable energy generators, one battery, and one
fossil fuel gener **What you observe in the video**
The distribution network consists of six buses, one high to medium-voltage transformer,
three aggregated passive loads, two renewable energy generators, one battery, and one
fossil fuel gen **What you observe in the video**
The distribution network consists of six buses, one high to medium-voltage transformer,
three aggregated passive loads, two renewable energy generators, one battery, and one
fossil fuel gen **What you observe in the video**
The distribution network consists of six buses, one high to medium-voltage transformer,
three aggregated passive loads, two renewable energy generators, one battery, and one
fossil fuel gen The distribution network consists of six buses, one high to medium-voltage transformer, three aggregated passive loads, two renewable energy generators, one battery, and one fossil fuel generator.
This video showcases two three aggregated passive loads, two renewable energy generators, one battery, and one
fossil fuel generator.
This video showcases two situations:
1. **A windy night with low consumption**: During this period, PV production i fossil fuel generator.

This video showcases two situations:
 1. A windy night with low consumption: During this period, PV production is zero and

wind production is nearly at its maximum. Due to the low demand, the AN

Coupling investment policies with the computation of ANM policies

Coupling investment policies with the computation of ANM policies
To achieve optimality, we need to identify the <mark>best pair (investment policy, ANM</mark>
policy). policy).

The third layer: Transmission networks

Π

Decision-making strategies in transmission networks

Decision-making strategies in transmission networks
The transmission network covers various decision-making strategies occurrifferent time scales, ranging from a few decades (investment policies) to
milliseconds (e.g., p **Decision-making strategies in transmission networks**
The transmission network covers various decision-making strategies occur
different time scales, ranging from a few decades (investment policies) to
milliseconds (e.g., Decision-making strategies in transmission networks
The transmission network covers various decision-making strategies occurrifferent time scales, ranging from a few decades (investment policies) transmission decisions (e. **Decision-making strategies in transmission networks**

The transmission network covers various decision-making strategies occurredifferent time scales, ranging from a few decades (investment policies) to

milliseconds (e.g **Decision-making strategies in transmission networks**
The transmission network covers various decision-making strategies occurring at
different time scales, ranging from a few decades (investment policies) to a few
millise **Decision-making strategies in transmission networks**
The transmission network covers various decision-making strategies occurring at
different time scales, ranging from a few decades (investment policies) to a few
millise **Decision-making strategies in transmission networks**
The transmission network covers various decision-making strategies occurring at
different time scales, ranging from a few decades (investment policies) to a few
millise

Decision-making strategies in transmission netwom
The transmission network covers various decision-making strate
different time scales, ranging from a few decades (investment
milliseconds (e.g., protecting devices against of the scales, ranging from a few decades
milliseconds (e.g., protecting devices against short circu
Power system control centres are where
critical decisions to **ensure the safe**
operation of the power system are made.
Op

A picture of the national control centre of RTE, the French Transmission System Operator (TSO).

Machine learning in power system control centres

Machine learning in power system control centres
Resolution schemes for many decision-making strategies in control centres could involve
ML techniques. A recurring issue with existing decision-making tools that rely on
opt Machine learning in power system control centres
Resolution schemes for many decision-making strategies in control centres could involve
ML techniques. A recurring issue with existing decision-making tools that rely on
opt **Machine learning in power system control centres**
Resolution schemes for many decision-making strategies in control centres could involve
Resolution schemes for many decision-making strategies in control centres could inv **Machine learning in power system control centres**
Resolution schemes for many decision-making strategies in control centres could involve
ML techniques. A recurring issue with existing decision-making tools that rely on
o **Machine learning in power system control centres**
Resolution schemes for many decision-making strategies in control centres could involve
ML techniques. A recurring issue with existing decision-making tools that rely on
o **Machine learning in power system control centres**
Resolution schemes for many decision-making strategies in control centres could involve
Resolution schemes for many decision-making strategies in control centres could inv Resolution schemes for many decision-making strategies in control centres could involve
ML techniques. A recurring issue with existing decision-making tools that rely on
optimisation techniques is that their computational

conditions.

Deep Neural Networks for voltage control

Deep Neural Networks for voltage control
In transmission networks, the static voltage control problem seeks to minimise voltage
constraint violations by determining optimal controls (e.g., generator voltage setpoints,
tran **Deep Neural Networks for voltage control**
In transmission networks, the static voltage control problem seeks to minimise voltage
constraint violations by determining optimal controls (e.g., generator voltage setpoints,
tr **Deep Neural Networks for voltage control**
In transmission networks, the static voltage control problem seeks to minimise voltage
constraint violations by determining optimal controls (e.g., generator voltage setpoints,
tr context. **Deep Neural Networks for voltage control**

In transmission networks, the static voltage control problem

constraint violations by determining optimal controls (e.g., g

transformer ratios, shunt/self activations, line ope (ii) Training the DNN with the (RL) REINFORCE algorithm to avoid the need to solve
(ii) Using a DNN to process the power network context.
(i) Using a DNN to process the power network context as input and generate the
conte ep Neural Networks for voltage control
ansmission networks, the static voltage control problem set
straint violations by determining optimal controls (e.g., gene
sformer ratios, shunt/self activations, line openings) for a (ii) Training the DNN with the (RL) REINFORCE algorithm to avoid the need to solve the mericular control and solved the need to solve the main approach involves:

(i) Using a DNN to process the power network context as inp **Example 10**
 EXAMPLE 10 In unalisins of networks, the state voltage collub plobiem seeks to milimise voltage server constraint violations by determining optimal controls (e.g., generator voltage setpoints, transformer ratios, shunt/self activatio

-
- setting; Solid Woodhors by determining optimal controls (exercise the power ratios, shunt/self activations, line openinext.

main approach involves:

Using a DNN to process the power network correction variables as output;

Trainin
-

A little bit of mathematics behind the approach (1/2)

A little bit of mathematics behind the approach (1/2)
The static voltage control problem in transmission networks can be expressed as the
following parametric optimisation problem:
 $y \in y(x) f(y,x)$
where the context x and t A little bit of mathematics behind the approach (1/2)
The static voltage control problem in transmission networks can be expressed as the
following parametric optimisation problem: **A little bit of mathematics behind the approach (1/2)**
The static voltage control problem in transmission networks can be expression problem:

$$
\min_{y \in y(x)} f(y, x)
$$

A little bit of mathematics behind the approach (1/2)
The static voltage control problem in transmission networks can be expressed as the
following parametric optimisation problem:
 $y \in y(x) f(y,x)$
where the context x and the The static voltage control problem in transmission networks can be expressed as the following parametric optimisation problem:
 $y \in y(x)$ $f(y,x)$

where the context x and the controls y are structured as a graph.

The funct The static voltage control problem in transmission ne
following parametric optimisation problem:
 $y \in y(x) f(y,x)$
where the context x and the controls y are structured a
The function f is considered as a **black-box functio**
d The functions context x and the controls y are structured as a graph.
The function f is considered as a **black-box function** and may **not** be **differentiable** due to discontinuities in the underlying power network s

context x .

A little bit of mathematics behind the approach (2/2)

A little bit of mathematics behind the approach (2/2)
The approach learns a neural network that maps
the context of a power network to control single-line diagram:
variables y_{θ} : $x \rightarrow y$. A little bit of mathematics behind the approach (2/2)
The approach learns a neural network that maps
the context of a power network to control
variables y_{θ} : $x \to y$.
(i) It relies on the computation of $\nabla_{\theta} f(y_{\theta}(y$

-
- the relation of the connection of $\nabla_{\theta} f(y_{\theta}(x), x)$
ables $y_{\theta}: x \to y$.
It relies on the computation of $\nabla_{\theta} f(y_{\theta}(x), x)$
using the REINFORCE gradient estimation
with a Gaussian policy $\Pi_{\theta}: \mathcal{N}(y_{\theta}(x), \sigma_1)$.
It re

Power system operators can make mistakes

Power system operators can make mistakes
On November 4, 2006, a major
blackout occurred in Europe, leaving
more than 15 million customers without
electricity for several bours **Power system operators can make mistakes**
On November 4, 2006, a major
blackout occurred in Europe, leaving
more than 15 million customers without
electricity for several hours. **Power system operators can make mistakes**

On November 4, 2006, a major

blackout occurred in Europe, leaving

more than 15 million customers without

electricity for several hours.

The blackout was caused by human

The **Power system operators can make mistakes**

On November 4, 2006, a major

blackout occurred in Europe, leaving

more than 15 million customers without

electricity for several hours.

The blackout was caused by human

err **Power system operators can make mistakes**

On November 4, 2006, a major

blackout occurred in Europe, leaving

more than 15 million customers without

electricity for several hours.

The blackout was caused by human

err **Power system operators can make mistakes**

On November 4, 2006, a major

blackout occurred in Europe, leaving

more than 15 million customers without

electricity for several hours.

The blackout was caused by human

err **Power system operators can make mistakes**

On November 4, 2006, a major

blackout occurred in Europe, leaving

more than 15 million customers without

electricity for several hours.

The blackout was caused by human

err

Could AI replace control centre operators to ensure better security and efficiency in power systems?

The Grid2Op environment for training your power system
operator in the GYM framework
RTE has developed a GYM environment for training your power system operator agent.
One of the proposed objectives is to control the power The Grid2Op environment for training your power system
operator in the GYM framework
RTE has developed a GYM environment for training your power system operator agent.
One of the proposed objectives is to control the power The Grid2Op environment for training your power system
operator in the GYM framework
RTE has developed a GYM environment for training your power system operator
One of the proposed objectives is to control the power system The Grid2Op environment for training your power system
operator in the GYM framework
RTE has developed a GYM environment for training your power system operator a
One of the proposed objectives is to control the power syst The Grid2Op environment for training your pow
operator in the GYM framework
RTE has developed a GYM environment for training your power s
One of the proposed objectives is to control the power system
congestions. There are The Grid2Op environment for training your power system operator in the GYM framework

Does RL work on voltage control?

Does RL work on voltage control?
The winning approach of the 2022 L2RPN challenge utilised Monte Carlo Tree Search
(MCTS) techniques. Heuristics were employed to reduce the action space, which is
immense. (MCTS) techniques. Heuristics were employed to reduce the action space, which is
(MCTS) techniques. Heuristics were employed to reduce the action space, which is
immense. immense. **Does RL work on voltage control?**
The winning approach of the 2022 L2RPN challenge utilised Monte Commense.
(MCTS) techniques. Heuristics were employed to reduce the action
immense.
RL algorithms based on function
approxi **Does RL work on voltage control?**
The winning approach of the 2022 L2RPN challenge utilised Monte Carlo
(MCTS) techniques. Heuristics were employed to reduce the action spain
mense.
RL algorithms based on function
approxi **Does RL work on voltage control?**

The winning approach of the 2022 L2RPN challenge utilised Monte Carlo Tre

(MCTS) techniques. Heuristics were employed to reduce the action space,

immense.

RL algorithms based on func **Does RL work on voltage control?**
The winning approach of the 2022 L2RPN challenge utilised Monte
(MCTS) techniques. Heuristics were employed to reduce the action
immense.
RL algorithms based on function
approximators se

Does RL work on voltage control?
The winning approach of the 2022 L2RPN challenge utilise
(MCTS) techniques. Heuristics were employed to reduce
immense.
RL algorithms based on function
approximators seem to struggle with (MCTS) techniques. Heuristics were employed to reduce the
immense.

RL algorithms based on function

approximators seem to struggle with

changes in system topologies. It is as if

they can only successfully generalise

a

Fundamental RL research driven by Grid2Op

- Fundamental RL research driven by Grid2Op
This problem is linked to very fundamental RL research questions, such as:
(i) Defining metrics related to the difficulty of generalisation in RL. The size of the state
space is no (i) Defining metrics related to the difficulty of generalisation in RL. The size of the state
(i) Defining metrics related to the difficulty of generalisation in RL. The size of the state
space is not the only thing that m
- **ndamental RL research driven by Grid2Op**
problem is linked to very fundamental RL research questions, such as:
Defining metrics related to the difficulty of generalisation in RL. The siz
space is not the only thing that m Fundamental RL research driven by Grid2Op
This problem is linked to very fundamental RL research questions, such as:
(i) Defining metrics related to the difficulty of generalisation in RL. The size of the state
space is no **ndamental RL research driven by Grid2Op**
problem is linked to very fundamental RL research questions, such as:
Defining metrics related to the difficulty of generalisation in RL. The size of the state
space is not the onl **ndamental RL research driven by Grid2Op**
problem is linked to very fundamental RL research questions, such as:
Defining metrics related to the difficulty of generalisation in RL. The size of the state
space is not the onl

It is likely that if more RL researchers seriously engaged with this environment, we would see significant advances in RL.

The fourth layer: the supergrid and the global grid

More about Katabata project in: Ernst, D., Fettweis, X., Fonder, M., & Louis, J. (2020). Extreme engineering for fighting climate change and the Katabata project. https://hdl.handle.net/2268/251827

Decision-making strategies and supergrid

Decision-making strategies and supergrid
The supergrid is a Direct Current (DC) network that overlays existing Alternating Current
(AC) networks. It is still in its early stages. Currently, TSOs often regard them simply **Decision-making strategies and supergrid**
The supergrid is a Direct Current (DC) network that overlays existing Alternating Current
(AC) networks. It is still in its early stages. Currently, TSOs often regard them simply Decision-making strategies and supergrid

The supergrid is a Direct Current (DC) network that overlays existing Alternating Current

(AC) networks. It is still in its early stages. Currently, TSOs often regard them simply **Decision-making strategies and supergrid**
The supergrid is a Direct Current (DC) network that overlays existing Alternating
(AC) networks. It is still in its early stages. Currently, TSOs often regard them sit
(negative) **Decision-making strategies and supergrid**
The supergrid is a Direct Current (DC) network that overlays existing Alternating Current (AC) networks. It is still in its early stages. Currently, TSOs often regard them simply **Decision-making strategies and supergrid**
The supergrid is a Direct Current (DC) network that overlays existing Alternating Current
(AC) networks. It is still in its early stages. Currently, TSOs often regard them simply **Decision-making strategies and supergrid**
The supergrid is a Direct Current (DC) network that overlays existing Alternating Current
(AC) networks. It is still in its early stages. Currently, TSOs often regard them simply **Decision-making strategies and supergrid**
The supergrid is a Direct Current (DC) network that overlays existing Alternating Current (AC) networks. It is still in its early stages. Currently, TSOs often regard them simply The supergrid is a Direct Current (DC) network that overlays existing Alternating Current (AC) networks. It is still in its early stages. Currently, TSOs often regard them simply as (negative) loads in their standard decis The supergrid is a Direct Current (DC) network that overlays existing Alternating Current (AC) networks. It is still in its early stages. Currently, TSOs often regard them simply as (negative) loads in their standard decis

The superginal is a building the interval community (AC) networks. It is still in its early stages. Currently, TSOs often regard them simply as (negative) loads in their standard decision-making tools. This approach works

The definition of the global grid

The definition of the global grid
A global grid is an electrical network that spans the entire planet, connecting the world's
electricity consumers and producers. Its backbone would be composed of very long High
voltage Di The definition of the global grid
A global grid is an electrical network that spans the entire planet, connecting the world's
electricity consumers and producers. Its backbone would be composed of very long High
Voltage Di The definition of the global grid
A global grid is an electrical network that spans the entire planet, connecting the world's
electricity consumers and producers. Its backbone would be composed of very long High
Voltage Di The definition of the global grid

A global grid is an electrical network that spans the entire planet, connecting the world's

electricity consumers and producers. Its backbone would be composed of very long High

Voltage anet, connecting the world's
composed of very long High
ork could drive renewable
ssil fuels out of business.
A mapped prototype of the
Global Energy Interconnection
Backbone Grid. anet, connecting the world's
composed of very long High
prk could drive renewable
ssil fuels out of business.
A mapped prototype of the
Global Energy Interconnection
Backbone Grid. anet, connecting the world's
composed of very long High
prk could drive renewable
ssil fuels out of business.
A mapped prototype of the
Global Energy Interconnection
Backbone Grid.

The planification problem behind the global grid

The planification problem behind the global grid
The primary reason why the different countries of the world have not yet come together
for building the global grid is the lack of an acceptable solution to the "right plann The planification problem behind the global grid
The primary reason why the different countries of the world have not yet come together
for building the global grid is the lack of an acceptable solution to the "right plann The planification problem behind the globar
The primary reason why the different countries of the word
for building the global grid is the lack of an acceptable s
problem" for its construction.
As a preliminary outline o The planification problem behind the global grid
The primary reason why the different countries of the world have not yet come together
for building the global grid is the lack of an acceptable solution to the "right plann The planification problem behind the global grid
The primary reason why the different countries of the world have not yet come together
for building the global grid is the lack of an acceptable solution to the "right plann The planification problem behind the global grid
The primary reason why the different countries of the world have not yet come together
for building the global grid is the lack of an acceptable solution to the "right plann The planification problem behind the global grid
The primary reason why the different countries of the world have not yet come together
for building the global grid is the lack of an acceptable solution to the "right plann **Example 10** provident problem behind the global grid
primary reason why the different countries of the world have not yet come
puilding the global grid is the lack of an acceptable solution to the "right p
plem" for its c

-
-

Addressing this problem and finding its solution present fascinating challenges for machine learning researchers!

More information in: Muñoz, J. C., Sauma, E., Muñoz, F. D., & Moreno, R. (2023). Analysis of generation investments under price controls in cross-border trade of electricity. Energy Economics, 123, 106722. https://doi.org/10.1016/j.eneco.2023.106722

Coordination between the four layers

Coordination between the four layers
The physical coupling between different layers of the network system is becoming very
significant. There is **a** need for decision-making strategies that operate in a
coordinated manne **Coordination between the four layers**
The physical coupling between different layers of the network system is becoming very
significant. There is a need for decision-making strategies that operate in a
coordinated manner **Coordination between the four layers**
The physical coupling between different layers of the network system is becoming very
significant. There is a need for decision-making strategies that operate in a
coordinated manner

 $system.$

Are power systems really limited to four physical layers?

Are power systems really limited to four physical layers?
<u>Yes,</u> if you limit your power system to the physical network through which electrical
energy is transmitted. **Are power systems really limited to form**
 Yes, if you limit your power system to the physenergy is transmitted.

Notif you take a broader perspective that inclue

Are power systems really limited to four physical layers?

<u>Yes,</u> if you limit your power system to the physical network through which electrical
 No, if you take a broader perspective that includes other physical laye **Are power systems really limited to four physical layers?**
 Yes, if you limit your power system to the physical network through which electrical
 energy is transmitted.
 No, if you take a broader perspective that i

Are power systems really limited to four physical layers?
 Yes, if you limit your power system to the physical network through which electrical
 Right energy is transmitted.
 No, if you take a broader perspective t trical
itting
, H₂,
ng in **Yes**, if you limit your power system to the physical network through which electrical
energy is transmitted.
No, if you take a broader perspective that includes other physical layers transmitting
energy in the form of **Yes**, if you limit your power system to the physical network through which electrical
energy is transmitted.
No, if you take a broader perspective that includes other physical layers transmitting
energy in the form of

An example of sector coupling

Picture taken from: Berger, M., Radu, D.-C., Fonteneau, R., Deschuyteneer, T., Detienne, G., & Ernst, D. (2020). The role of power-to-gas and carbon

capture technologies in cross-sector decarbonisation strategies. Electri

Two relevant challenges for ML in sector coupling (1/2)

Two relevant challenges for ML in sec

<u>Challenge 1:</u>

The emergence of new devices for generating

and storing molecules (e.g., CO₂, CH₄, H₂, Two relevant challenges for ML in sector coupling (1/2)

Challenge 1:

The emergence of new devices for generating

and storing molecules (e.g., CO₂, CH₄, H₂,

etc.) with sector coupling will lead to complex

sequen Two relevant challenges for ML in sector coupling (1/

Challenge 1:

The emergence of new devices for generating

and storing molecules (e.g., CO₂, CH₄, H₂,

etc.) with sector coupling will lead to complex

sequenti Two relevant challenges for ML in sector coupling (1/2)

Challenge 1:

The emergence of new devices for generating

and storing molecules (e.g., CO₂, CH₄, H₂,

etc.) with sector coupling will lead to complex

sequen Challenge 1:

The emergence of new devices for generating

and storing molecules (e.g., CO_2 , CH_4 , H_2 ,

etc.) with sector coupling will lead to complex

sequential decision-making strategies with
 long-time horizon

Two relevant challenges for ML in sector coupling (2/2)

Two relevant challenges for ML in sec
Challenge 2:
Significant investments in infrastructure, such as (
required to benefit from sector coupling. Current in **Two relevant challenges for ML in sector coupling (2/2)**

Challenge 2:

Significant investments in infrastructure, such as CO_2 and H_2 transport networks, are

required to benefit from sector coupling. Current invest **Two relevant challenges for ML in sector coupling (2/2)**
Challenge 2:
Significant investments in infrastructure, such as CO_2 and H_2 transport networks, are
required to benefit from sector coupling. Current investmen **Two relevant challenges for ML in sector coupling (2/2)**
Challenge 2:
Significant investments in infrastructure, such as CO_2 and H_2 transport networks, are
required to benefit from sector coupling. Current investmen Two relevant challenges for ML in sector coupling (2/2)

Challenge 2:

Significant investments in infrastructure, such as CO_2 and H_2 transport networks, are

required to benefit from sector coupling. Current investme Two relevant challenges for ML in sector coupling (2/2)

Challenge 2:

Significant investments in infrastructure, such as CO_2 and H_2 transport networks, are

required to benefit from sector coupling. Current investme **o relevant challenges for ML in sector coupled and the Ulenge 2:**

llenge 2:

lificant investments in infrastructure, such as CO₂ and H

lired to benefit from sector coupling. Current investment

e large optimisation pr Two relevant challenges for ML in sector coupling (2/2)

Challenge 2:

Significant investments in infrastructure, such as CO_2 and H_2 transport networks, are

required to benefit from sector coupling. Current investme **o relevant challenges for ML in sector coupling (2/2)**

<u>Ilenge 2:</u>

ilficant investments in infrastructure, such as CO_2 and H_2 transport networks, are

iried to benefit from sector coupling. Current investment plan Dretevant Challenges for ML IIT sector

Ilenge 2:

ilficant investments in infrastructure, such as CO₂

iired to benefit from sector coupling. Current inves

e large optimisation problems under the assumpti

approach fal Challenge 2:

Significant investments in infrastructure, such as CO_2 and H_2 transport networks, are

required to benefit from sector coupling. Current investment planning techniques often

solve large optimisation pr

-
-

Significant investments in infrastructure, such as CO_2 and H_2 transport networks, are
required to benefit from sector coupling. Current investment planning techniques often
solve large optimisation problems under the Expansion in the constrainties of the method of the method in the standard of benefit from sector coupling. Current investment planning techniques often solve large optimisation problems under the assumption of perfect fo For a solve large optimisation problems under the assumption of phis approach falls short for policy makers for two main reasons (i) There are too many uncertainties in the energy sector, reperfect foresight unrealistic.

The emerging European hydrogen backbone

No-regret decision

No-regret decision
A no-regret decision is one that will not lead to regrets in the future.
Example:

Example:

No-regret decision
A no-regret decision is one that **will not lead to regrets in the future.**
<u>Example:</u>
Consider you have three non-zero probability scenarios (A, B, and C) representing the
uncertainty in parameters inf **No-regret decision**
A no-regret decision is one that **will not lead to regrets in the future**.
<u>Example:</u>
Consider you have three non-zero probability scenarios (A, B, and C) representing the
uncertainty in parameters inf No-regret decision

A no-regret decision is one that will not lead to regrets in the future.

<u>Example:</u>

Consider you have three non-zero probability scenarios (A, B, and C) representing the

uncertainty in parameters inf **No-regret decision**
A no-regret decision is one that **will not lead to regrets**
Example:
Consider you have three non-zero probability scenarios
uncertainty in parameters influencing the planning of you
Required installed **No-regret decision**

A no-regret decision is one that **will not lead to regret:**

<u>Example:</u>

Consider you have three non-zero probability scenaric

uncertainty in parameters influencing the planning of yo

Required insta A no-regret decision is one that **will not lead to regrets**
Example:
Consider you have three non-zero probability scenarios
uncertainty in parameters influencing the planning of you
Required installed capacities of electro A no-regret decision is one that **will not lead to regrets in the future.**

<u>Example:</u>

Consider you have three non-zero probability scenarios (A, B, and C) representing the

uncertainty in parameters influencing the plann A no-regret decision is one that will not lead to regrets in the tuture.

Example:

Consider you have three non-zero probability scenarios (A, B, and C) representing the

uncertainty in parameters influencing the planning

Necessary conditions for ϵ -suboptimality

Necessary conditions for ϵ **-suboptimality**
Necessary conditions for ϵ -optimality are conditions that any ϵ -optimal solution must
satisfy. These can be valuable for guiding (near) optimal investment decisions.
Exa **Necessary conditions for** ϵ **-suboptimality**
Necessary conditions for ϵ -optimality are conditions that any ϵ -optimal solution must
satisfy. These can be valuable for guiding (near) optimal investment decisions.
Exa

Example:

- (i) Suppose your optimisation problem aims to

compute the optimal installed capacity of

electrolysers (in GW) and H_2 storage capacity

(in GWh).

(ii) Assume that your 0.05-optimal space includes

three elements: (10 **Necessary conditions for** ϵ **-suboptimality**

Necessary conditions for ϵ -optimality are conditions that any ϵ -optimal solution must

satisfy. These can be valuable for guiding (near) optimal investment decisions.
 Cessary conditions for ϵ **-suboptimality**

essary conditions for ϵ -optimality are conditions that any ϵ -optimal solution must

sfy. These can be valuable for guiding (near) optimal investment decisions.

<u>mple:</u>
 Cessary conditions for ϵ **-suboptimality**

essary conditions for ϵ -optimality are conditions that any ϵ -optim

sfy. These can be valuable for guiding (near) optimal investment deciments:

Suppose your optimisation **cessary conditions for** ϵ **-subopti**
essary conditions for ϵ -optimality are condity.
These can be valuable for guiding (near)
mple:
Suppose your optimisation problem aims
compute the optimal installed capacity
electro Example:

(i) Suppose your optimisation problem aims to

compute the optimal installed capacity of

electrolysers (in GW) and H_2 storage capacity

(in GWh).

(ii) Assume that your 0.05-optimal space includes

three ele
	-
	- electrolysers or more than 600 GWh of H_2 storage

What a typical ML researcher may say at the end of this talk

**AL researcher may say at the end of this talk
All these problems are fascinating, but I am an
ML scientist working on drones. Are there any
challenges in power systems where I could
apply my skills more directly? AL researcher may say at the end of this talk**
All these problems are fascinating, but I am an
ML scientist working on drones. Are there any
challenges in power systems where I could
apply my skills more directly? **AL researcher may say at the end of this talk**
All these problems are fascinating, but I am an
ML scientist working on drones. Are there any
challenges in power systems where I could
apply my skills more directly? **AL researcher may say at the end of this talk**
All these problems are fascinating, but I am an
ML scientist working on drones. Are there any
challenges in power systems where I could
apply my skills more directly?

Of course! Let me tell you a story…

Of course! Let me tell you a story...
In August 2003, a major blackout occurred in North America, initially leaving 50 million
people without electricity. The event resulted in 61,800 MW of load being cut in the USA
and **Of course! Let me tell you a story...**
In August 2003, a major blackout occurred in North America, initially leaving 50 million
people without electricity. The event resulted in 61,800 MW of load being cut in the USA
and Of course! Let me tell you a story...

In August 2003, a major blackout occurred in North America, initially leaving 50 million

people without electricity. The event resulted in 61,800 MW of load being cut in the USA

and Of course! Let me tell you a story...
In August 2003, a major blackout occurred in North America, initially leaving 50 million
people without electricity. The event resulted in 61,800 MW of load being cut in the USA
and Ca

Causes of the 2003 North America blackout

Causes of the 2003 North America blackout
The official report on the blackout indicates that a generating plant in Eastlake, Ohio, a
suburb northeast of Cleveland, went offline due to high demand. This put a strain on hi **Causes of the 2003 North America blackout**
The official report on the blackout indicates that a generating plant in Eastlake, Ohio, a
suburb northeast of Cleveland, went offline due to high demand. This put a strain on hi **Causes of the 2003 North America blackout**
The official report on the blackout indicates that a generating plant in Eastlake, Ohio, a
suburb northeast of Cleveland, went offline due to high demand. This put a strain on hi **Causes of the 2003 North America blackout**
The official report on the blackout indicates that a generating plant in Eastlake, Ohio, a
suburb northeast of Cleveland, went offline due to high demand. This put a strain on hi

Causes of the 2003 North America blackout
The official report on the blackout indicates that a generating plant in Eastlake, Ohio, a
suburb northeast of Cleveland, went offline due to high demand. This put a strain on hi **Causes of the 2003 North America blackout**
The official report on the blackout indicates that a generating plant in Eastlake, Ohio, a
suburb northeast of Cleveland, went offline due to high demand. This put a strain on hi The official report on the blackout indicates that a generating plant in Eastlake, Ohio, a suburb northeast of Cleveland, went offline due to high demand. This put a strain on high-
svoltage power lines in Walton Hills, Oh The official report on the blackout indicates that a generating plant in Eastlake, Ohio, a suburb northeast of Cleveland, went offline due to high demand. This put a strain on high-
voltage power lines in Walton Hills, Ohi

Building autonomous drones for the monitoring of tree growth

Building autonomous drones for the monitoring of tree growth
Overgrown trees pose a significant threat to power system security. You could focus on
designing autonomous drones to identify areas where vegetation managemen **Building autonomous drones for the monitoring of tree growth
Overgrown trees** pose a significant threat to power system security. You could focus on
designing autonomous drones to identify areas where vegetation managemen Building autonomous drones for the monitoring of tree growth
Overgrown trees pose a significant threat to power system security. You could focus on
designing autonomous drones to identify areas where vegetation management

Take home messages

Take home messages
Power systems present numerous complex ML challenges.
With the increasing use of batteries and other energy storage devices, the tempora

Take home messages
Power systems present numerous complex ML challenges.
With the increasing use of batteries and other energy storage devices, the temporal
coupling of decisions in power system operations is becoming more Take home messages
Power systems present numerous complex ML challenges.
With the increasing use of batteries and other energy storage devices, the temporal
coupling of decisions in power system operations is becoming more Take home messages

Power systems present numerous complex ML challenges.

With the increasing use of batteries and other energy storage devices, the temporal

coupling of decisions in power system operations is becoming m

Take home messages

Power systems present numerous complex ML challenges.

With the increasing use of batteries and other energy storage devices, the temporal

coupling of decisions in power system operations is becoming m Fake from the messages

Power systems present numerous complex ML challenges.

With the increasing use of batteries and other energy storage devices, the temporal

coupling of decisions in power system operations is becomi Power systems present numerous complex ML challenges.
With the increasing use of batteries and other energy storage devices, the temporal
coupling of decisions in power system operations is becoming more significant. This
 Fower systems present numerous complex ML challenges.

With the increasing use of batteries and other energy storage devices, the temporal

coupling of decisions in power system operations is becoming more significant. Thi For the increasing use of batteries and other energy storage devices, the temporal coupling of decisions in power system operations is becoming more significant. This makes power systems an excellent playground for RL res With the increasing use of batteries and other energy storage devices, the temporal coupling of decisions in power system operations is becoming more significant. This makes power systems an excellent playground for RL res With the increasing use of batteries and other energy storage devices, the temporal coupling of decisions in power system operations is becoming more significant. This makes power systems an excellent playground for RL res

Illustration by Roberto Perry.

Acknowledgments

Alireza Bahmanyar **Amina Benzerga**
Haulogy **Mulican Contained Band** Haulogy Senior Electric Power **Example 2** PhD Student Systems Expert

Amina Benzerga François Cubelier ULiège ULiège PhD Student

Benjamin Donnot RTE **Research Community Community** Project/Research Officer

ULiège & RTE Postdoctoral Researcher

Laurine Duchesne Raphaël Fonteneau Haulogy ULiège

onsultancy Services (Senior Researcher Head of Consultancy Services Balthazar Donon

ULiège ULiège Thibaut Techy Energy Expert 64

Research in the lab – the first layer
we also have a wide the search in the label

Research in the lab — the first layer
Aittahar, S., Manuel de Villena Millan, M., Derval, G., Castronovo, M., Boukas, I., Gemine, Q., & Ernst, D. (2023). Optimal
control of renewable energy communities with controllable **Research in the lab — the first layer**
Aittahar, S., Manuel de Villena Millan, M., Derval, G., Castronovo, M., Boukas, I., Gemine, Q., & Ernst, D. (2023). Optimal
control of renewable energy communities with controllable

Research in the lab — the first layer
Alttahar, S., Manuel de Villena Millan, M., Derval, G., Castronovo, M., Boukas, I., Gemine, Q., & Ernst, D. (2023). Optimal
control of renowable energy communities with controllable **Research in the lab – the first layer**
Aittahar, S., Manuel de Villena Millan, M., Derval, G., Castronovo, M., Boukas, I., Gemine, Q., & Emst, D. (2023). Optimal
control of renewable energy communities with controllable A 77586. https://hdl.handle.net/2268/296721 **Research in the lab — the first layer**
Alttahar, S., Manuel de Villena Millan, M., Derval, G., Castronovo, M., Boukas, I., Gemine, Q., & Ernst, D. (2023). Optimal
https://hdl.handle.net/2268/264828
Manuel De Villena, M., **Research in the lab - the first layer**
Attahar, S., Manuel de Villena Millan, M., Derval, G., Castronovo, M., Boukas, I., Gemine, Q., & Ernst, D. (2023). Optimal
control of renewable energy communities with controllable A **Research in the lab – the first layer**
Aittahar, S., Manuel de Villena Millan, M., Derval, G., Castronovo, M., Boukas, I., Gemine, Q., & Ernst, D. (2023). Optimal
control of renewable energy communities with controllable Alttahar, S., Manuel de Villena Millan, M., Derval, G., Castronovo, M., Boukas, I., Gemine, Q., & Ernst, D. (2023). Optimal
control of renewable energy communities with controllable Assets. Frontiers in Energy Research.
ht Aittahar, S., Manuel de Villena Millan, M., Derval, G., Castronovo, M., Boukas, I., Gemine, Q., & Ernst, D. (2023). Optimal

Inthus://hdl.handle.net/2268/264828

Manuel De Villena, M., Aittahar, S., Mathieu, S., Boukas, I. Attanar, S., Manuel de Villena Millan, M., Derval, G., Castronovo, M., Boukas, I., Germic, Q., & Ernst, D. (2023). Optimal
control of renewable energy communities with controllable Assets. Frontiers in Energy Research.
htt control of renewable energy communities with controllable Assets. *Frontiers in Energy Research*.

Manuel De Villena, M., Aitlahar, S., Mathieu, S., Boukas, I., Vermeulen, E., & Ernst, D. (2022). Financial optimization of

https://hdl.handle.net/2268/247965

Research in the lab — the second layer
Vassallo, M, Bahmanyar, A., Duchesne, L., Leerschool, A., Gerard, S., Wehenkel, T. & Ernst D. (2024). **A systematic**
procedure for topological path identification with raw data tran **Research in the lab — the second layer**
Vassallo, M, Bahmanyar, A., Duchesne, L., Leerschool, A., Gerard, S., Wehenkel, T. & Ernst D. (2024). **A systematic**
procedure for topological path identification with raw data tran **Research in the lab - the second layer**
Vassallo, M, Bahmanyar, A., Duchesne, L., Leerschool, A., Gerard, S., Wehenkel, T. & Ernst D. (2024). A systematic
procedure for topological path identification with raw data transf **Research in the lab - the second layer**
Vassallo, M, Bahmanyar, A., Duchesne, L., Leerschool, A., Gerard, S., Wehenkel, T. & Ernst D. (2024). A systematic
procedure for topological path identification with raw data transf **Research in the lab — the second layer**
Vassallo, M, Bahmanyar, A., Duchesne, L., Leerschool, A., Gerard, S., Wehenkel, T. & Ernst D. (2024). A systematic
procedure for topological path identification with raw data transf **Research in the lab - the second layer**
Vassallo, M, Bahmanyar, A., Duchesne, L., Leerschool, A., Gerard, S., Wehenkel, T. & Ernst D. (2024). A systematic
procedure for topological path identification with raw data transf **Research in the lab – the second layer
Vassallo, M, Bahmanyar, A., Duchesne, L., Leerschool, A., Gerard, S., Wehenkel, T. & Ernst
procedure for topological path identification with raw data transformation in electrical di**

Research in the lab - the second layer
Wassallo, M, Bahmanyar, A., Duchesne, L., Leerschool, A., Gerard, S., Wehenkel, T. & Ernst D. (2024). A systematic
procedure for topological path identification with raw data transf **Research in the lab - the second layer**
Vassallo, M, Bahmanyar, A, Duchesne, L., Leerschool, A., Gerard, S., Wehenkel, T. & Ernst D. (2024). A systematic
procedure for topological path identification with raw data transfo **Research in the lab — the second layer**
Vassallo, M, Bahmanyar, A., Duchesne, L., Leerschool, A., Gerard, S., Wehenkel, T. & Ernst D
procedure for topological path identification with raw data transformation in electrical **Research in the lab - the second layer**
Vassallo, M, Bahmanyar, A., Duchesne, L., Leerschool, A., Gerard, S., Wehenkel, T. & Ernst D. (2024). A systematic
procedure for topological path identification with raw data transf **Research in the lab — the second layer**
Vassallo, M, Bahmanyar, A., Duchesne, L., Leerschool, A., Gerard, S., Wehenkel, T. & Ernst D. (2024). A systematic
procedure for topological path identification with raw data transf

Vassallo, M. Bahmanyar, A., Duchesne, L., Leerschool, A., Gerard, S., Wehenkel, T. & Ernst D. (2024). A systematic
procedure for topological path identification with raw data transformation in electrical distribution netwo https://hdl.handle.net/2268/247385 International Conference on Energy, Electrical and Power Engineering (CEEPE 2024). https://hdl.handle.net/2268/311815
Benzerga, A., Bahmanyar, A., Mathieu, S. & Ernst D. (2023). Smart meter data analytics case study: Ident Benzerga, A., Bahmanyar, A., Mathieu, S. & Emst D. (2023). Smart meter data analytics case study: Identification of
LV distribution network topology to design optimal planning solutions. Applications of Big Data and Artifi

https://hdl.handle.net/2268/173942

Research in the lab — the third layer
Donon, B., Cubelier, F., Karangelos, E., Wehenkel, L., Crochepierre, L., Pache, C., Saludjian, L., & Panciatici, P. (2024).
Dopology-aware reinforcement learning for tertiary voltage **Research in the lab — the third layer**
Donon, B., Cubeller, F., Karangelos, E., Wehenkel, L., Crochepierre, L., Pache, C., Saludjian, L., & Panciatici, P. (2024).
Topology-aware reinforcement learning for tertiary voltage **Research in the lab — the third layer**
Donon, B., Cubelier, F., Karangelos, E., Wehenkel, L., Crochepierre, L., Pache, C., Saludjian, L., & Pan
Topology-aware reinforcement learning for tertiary voltage control. *Procee* **Research in the lab — the third layer**
Donon, B., Cubeller, F., Karangelos, E., Wehenkel, L., Crochepierre, L., Pache, C., Saludjian, L., & Panciatici, P. (2024).
Topology-aware reinforcement learning for tertiary voltage **Research in the lab — the third layer**

Donon, B., Cubelier, F., Karangelos, E., Wehenkel, L., Crochepierre, L., Pache, C., Saludjian, L., & Panciatici, P. (2024).
 Topology-aware reinforcement learning for tertiary volt Research in the lab — the third layer

Donon, B., Cubelier, F., Karangelos, E., Wehenkel, L., Crochepierre, L., Pache, C., Saludjian, L

Topology-aware reinforcement learning for tertiary voltage control. *Proceedings of* Research in the lab – the third layer
Donon, B., Cubelier, F., Karangelos, E., Wehenkel, L., Crochepierre, L., Pache, C., Saludjian, I

Research in the lab — the third layer
Donon, B., Cubelier, F., Karangelos, E., Wehenkel, L., Crochepierre, L., Pache, C., Saludjian, L., & Panciatici, P. (2024).
Topology-aware reinforcement learning for tertiary voltage **Research in the lab — the third layer**
Donon, B., Cubelier, F., Karangelos, E., Wehenkel, L., Crochepierre, L., Pache, C., Saludjian, L., & Panciatici, P. (2024).
Topplogy-aware reinforcement learning for terting voltage Elsevier. https://hdl.handle.net/2268/251079 **Research in the lab — the third layer**

Donon, B., Cubelier, F., Karangelos, E., Wehenkel, L., Crochepierre, L., Pache, C., Saludjian, L., & Panciatici, P. (2024).

Topology-aware reinforcement learning for tertiary volta **Research in the lab – the third layer**
Donon, B., Cubelier, F., Karangelos, E., Wehenkel, L., Crochepierre, L., Pache, C., Saludjian, L., & Panciatici, P. (2024).
Topplogy-aware reinforcement learning for tertary voltage Donon, B., Cubelier, F., Karangelos, E., Wehenkel, L., Crochepierre, L., Pache, C., Saludjian, L., & Panciatici, P. (2024).
Topology-aware reinforcement learning for tertiary voltage control. Proceedings of the XXIII Power Donon, B., Cubelier, F., Karangelos, E., Wehenkel, L., Crochepierre, L., Pache, C., Saludjian, L., & Panciatici, P. (Topology-aware reinforcement learning for tertiary voltage control. *Proceedings of the XXIII Power Sychm*

Research in the lab – the fourth layer

Research in the lab — the fourth layer
Dubois, A., & Ernst, D. (2022). Computing necessary conditions for near-optimality in capacity expansion planning
problems. *Electric Power Systems Research*, Volume 211, Elsevier.

Research in the lab – the fourth layer
Dubois, A., & Emst, D. (2022). Computing necessary conditions for near-optimality in capacity expansion planning
problems. *Electric Power Systems Research*, Volume 211, Elsevier. <u></u> **Research in the lab — the fourth layer**

Dubois, A., & Ernst, D. (2022). Computing necessary conditions for near-optimality in capacity expansion planning

problems. *Electric Power Systems Research*, Volume 211, Elsevier **Research in the lab — the fourth layer**
Dubois, A., & Ernst, D. (2022). Computing necessary conditions for near-optimality in capacity expansion planning
problems. *Electric Power Systems Research*, Volume 211, Elsevier. 393-401. https://hdl.handle.net/2268/230016 **Research in the lab — the fourth layer**

Dubois, A., & Ernst, D. (2022). Computing necessary conditions for near-optimality in capacity expansion planning

problems. *Electric Power Systems Research*, Volume 211, Elsevier **Research in the lab — the fourth layer**

Dubois, A., & Emst, D. (2022). Computing necessary conditions for near-optimality in capacity expansion planning

problems. *Electric Power Systems Research*, Volume 211, Elsevier. **Research in the lab — the fourth layer**

Dubois, A., & Ernst, D. (2022). Computing necessary conditions for near-optimality in capacity expansion plannin

problems. *Electric Power Systems Research*, Volume 211, Elsevier. **Research in the lab — the fourth layer**

Dubois, A., & Ernst, D. (2022). Computing necessary conditions for near-optimality in capacity expansion planning

problems. *Electric Power Systems Research*, Volume 211, Elsevier Dubois, A., & Ernst, D. (2022). Computing necessary conditions for near-optimality in capacity expansion planning
problems. *Electric Power Systems Research*, Volume 211, Elsevier. https://hdl.handle.net/2268/263897
Radu, Dubois, A., & Ernst, D. (2022). Computing necessary conditions for near-optimality in capacity expansior
problems. *Electric Power Systems Research*, Volume 211, Elsevier. https://hdl.handle.net/2268/263897
Radu, D.-C., Be

https://hdl.handle.net/2268/144423

Research in the lab – sector coupling
www.composition.com
www.composition.com

Research in the lab – sector coupling
Mbenoun, J., Benzerga, A., Miftari, B., Detienne, G., Deschuyteneer, T., Vazquez, J., Derval, G., & Ernst, D. (2024).
Integration of offshore energy into national energy system: A ca **Research in the lab – sector coupling**
Mbenoun, J., Benzerga, A., Miftari, B., Detienne, G., Deschuyteneer, T., Vazquez, J., Derval, G., & Ernst, D. (2024).
Integration of offshore energy into national energy system: A ca **Research in the lab – sector coupling**

Mbenoun, J., Benzerga, A., Miltari, B., Detienne, G., Deschuyteneer, T., Vazquez, J., Derval, G., & Ernst, D. (2024).

Integration of offshore energy into national energy system: A **Research in the lab - sector coupling**

Mbenoun, J., Benzerga, A., Miftari, B., Detienne, G., Deschuyteneer, T., Vazquez, J., Derval, G.,

Integration of offshore energy into national energy system: A case study on Belgiu **Research in the lab — sector coupling**
Mbenoun, J., Benzerga, A., Miftari, B., Detienne, G., Deschuyteneer, T., Vazquez, J., De
Integration of offshore energy into national energy system: A case study on Belgiur
https://h

Research in the lab — sector coupling

Mbenoun, J., Benzerga, A., Miftari, B., Detienne, G., Deschuyteneer, T., Vazquez, J., Derval, G., & Ernst, D. (2024).

Integration of offshore energy into national energy system: A **Research in the lab – sector coupling**

Mbenoun, J., Benzerga, A., Miftari, B., Detienne, G., Deschuyteneer, T., Vazquez, J., Derval, G., & Ernst, D. (2024).

Integration of offshore energy into national energy system: A **Research in the lab – sector coupling**

Mbenoun, J., Benzerga, A., Miltari, B., Delienne, G., Deschuyteneer, T., Vazquez, J., Derval, G., & Ernst, D. (2024).

Integration of offshore energy into national energy system: A modelling and care in the Teab¹ – Section Cotaphing

Mbenoun, J., Benzerga, A., Miftari, B., Detienne, G., Deschuyteneer, T., Vazquez, J., Derval, G., & Ernst, D. (2024).

Integration of offshore energy into national ene Mbernoun, J., Benzerga, A., Miftari, B., Detienne, G., Deschuyteneer, T., Vazquez, J., Derval, G., & Ernst, D. (2024).
Integration of offshore energy into national energy system: A case study on Belgium. *ORBi-University o* Mbenoun, J., Benzerga, A., Miftari, B., Detienne, G., Deschuyteneer, T., Vazquez, J., Derval, G., & Ernst, D. (2024).
Integration of offshore energy into national energy system: A case study on Belgium. ORBi-University of