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Power systems are one of the most complex engineering structures 
ever built by mankind.

This talk takes you on a journey through the different layers of power 
systems, with the aim of showing to machine learning (ML) researchers 

the numerous decision-making problems each layer presents.

The solutions to these problems will help considerably to accelerate the 
decarbonization of our societies.
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The first layer: Microgrids

Battery

Photovoltaic 
panels

The illustration depicts a simple and standard version of a microgrid, featuring a single 
load and two distributed energy resources (a photovoltaic (PV) installation and a battery).
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(Near) optimal control policies for microgrids

A microgrid is a system that includes one or more loads and one or more distributed
energy resources (DERs), which can operate in parallel with the broader electric
network.
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Let us consider the challenges 
related to the computation of 

(near) optimal policies for 
controlling microgrids* to 

minimise energy costs.

*We focus in the following on microgrids which are located in the European Union with its specific electricity market rules.

The policy can change 
the power setting of the 
battery at the beginning 
of each market period 𝑡.



Before proceeding further, it is important to understand how electricity is traded in the
European Union.

(i) Electricity is treated as a commodity, bought and sold on a quarter-hourly
basis. This means that the electricity commodity traded always refers to quantities
of electrical energy associated with market periods of 15 minutes;

(ii) Electricity can be bought and sold in various markets, such as the day-ahead
market or the intraday market;

(iii) The retailer can act as an interface between markets and consumers. The retail
products are defined by, for example, a feed-in tariff for electricity injection (selling)
and a purchase tariff for electricity consumption (buying).
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Understanding electricity trading in the European Union



Case 1 – Perfect forecast

Context: The computation of a (near) optimal microgrid control policy used to dictate to
what level the battery is charged and discharged (power setting) for every market
period with knowledge of all relevant time-series data (e.g., weather, load, feed-in and
purchase tariffs).
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A policy is an object that, at the beginning of each market period
within the optimisation horizon , selects an action 𝒕 from the action space , based
on a piece of information 𝒕 from the set of available information .

How to compute an optimal microgrid control policy (1/2)

7

Representation of 𝑡 within the time horizon 𝑇.

15 min (duration of 
a market period)



In our context, assuming linear behaviour for the battery dynamics, the energy cost
minimisation problem for the microgrid can be approached as a linear programming
problem. This problem involves determining an action ௧ at each time step

that sets the electrical power to charge (discharge) into (from) the
battery.

However, if we want to be closer to reality, we need to model the non-linear short-
term and long-term dynamics of the battery. This includes factors such as losses that
do not vary linearly with the power setting and battery aging.

How to compute an optimal microgrid control policy (2/2)
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• A (near) optimal control problem of a non-linear system that can be formalised as an
MDP( ), which refers to a Markov Decision Process that includes a time-series variable .
A long time horizon 𝑇 needs to be considered. Very little work has been done so far in the
fields of MDP( ) with a long time horizon. [Case 1]

Why should you be excited as ML researchers
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Case 2 – Load and weather to be forecasted 

Context: The computation of a (near) optimal microgrid control policy for a battery power
setting with time-series of both feed-in and purchase tariffs as input data.
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This second case adds two challenges

Policies take values in the same action space as in the first case. However, the key
difference from Case 1 is the set of available information used to compute optimal
actions, as the weather and load time-series data are no longer available, resulting in
local production and demand being unknown.

This leads to the two following challenges:

1. Forecasting weather and load time-series at a
very local level;

2. Even with accurate probabilistic models for
generating forecasts, optimal control requires
solving a sequential and stochastic problem across
numerous time steps. We believe that policy
gradient techniques in RL (direct policy search
methods) could be effective for addressing this
challenge.

PV power production curves                                   

for different weather conditions.
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• A (near) optimal control problem of a non-linear system that can be formalised as an
MDP( ), which refers to a Markov Decision Process that includes a time-series variable .
A long time horizon needs to be considered. Very little work has been done so far in the
fields of MDP( ) with a long time horizon. [Cases 1 and 2]

• The forecasting of very local weather and load time-series requires one to rely on
probabilistic forecasts. This problem remains largely unsolved to date. [Case 2]

Why should you be excited as ML researchers
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Case 3 – Market enters the game 

Context: The computation of a (near) optimal microgrid control policy for the battery power
setting without any time-series as input data (e.g., weather, load, feed-in and purchase
tariffs) as input, while also enabling bidding on the day-ahead market and accounting for
the imbalance tariff imposed by the Transmission System Operator (TSO).
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Complexity of day-ahead market interactions for the policy (1/2)

*Bidding closes at noon.

0

Beginning of the
first market day

1 47
(12 x 4 - 1)*

47 + 𝑘 x 96,
𝑘∈ {1, 2, ...}

Closing of the
day-ahead market

New
market day

95

Quantities traded on the 
day-ahead market

In Case 3, no longer are there feed-in and purchase tariffs; the microgrid interacts
directly with the day-ahead market. This requires submitting at each 47 96
0,1,2, a vector ௧    ଶସ of energy quantities to be traded on the day-ahead

market.

The energy quantity ସା×ଽ where 1,2,…,24 represents four times the quantity of
energy that is bought for every quarter of an hour of the next day 1. We therefore
have to compute at every 47 96 0,1,2, an additional action ௧ .



• A (near) optimal control problem of a non-linear system that can be formalized as an
MDP( ), which refers to a Markov Decision Process that includes a time-series variable .
A long time horizon needs to be considered. Very little work has been done so far in the
fields of the MDP( ) with long time horizon. [Cases 1 to 3]

• The forecasting of very local weather and load time-series requires one to rely on
probabilistic forecasts. This problem remains largely unsolved to date. [Cases 2 and 3]

• Dealing with very large action spaces, where some actions can only be taken at specific
time steps (day-ahead market). [Case 3]

Why should you be excited as ML researchers?
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Case 4 – forecasting with all relevant markets 

Context: Computation of a (near) optimal microgrid control policy for the battery power
setting without any time-series data as input, while also considering as additional market
the intraday market.
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Action space and bid acceptance for intraday market decisions

In Case 4, a specific action space related to the intraday market must be considered
in addition to the previous action spaces and . We assume that at the beginning of
each market period , a Boolean vector ௧ must be computed to decide whether to
accept or reject each available bid in the order book of the intraday market.*

Note that there may be thousands and
thousands of bids ( ௧ 1)!

Trading (continuous and discrete) and delivery 
timelines for products 𝑄ଵto 𝑄ସ.

If there are ௧ available bids, then the action
space at is:

*The microgrid could also generate its own bids for the intraday market and access existing bids during a market period. 17



• A (near) optimal control problem of a non-linear system that can be formalized as an
MDP( ), which refers to a Markov Decision Process that includes a time-series variable .
A long time horizon needs to be considered. Very little work has been done so far in the
fields of MDP( ) with long time horizon. [Cases 1 to 4]

• The forecasting of very local weather and load time-series requires one to rely on
probabilistic forecasts. This problem remains largely unsolved to date. [Cases 2 to 4]

• Dealing with very large action spaces, where some actions can only be taken at specific
time steps (day-ahead market). [Cases 3 and 4]

• The intraday market integration adds additional forecasting challenges that depend on
multitude of factors (e.g., weather, geopolitical, behaviour of traders, etc). The resulting
MDP( ) shows immensely large action spaces, with various action types that can be taken.
[Case 4]

Why should you be excited as ML researchers
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Case 5 – Operation and sizing

Context: Computation of a (near) optimal microgrid control policy for the battery power
setting while addressing all the previously mentioned challenges, and a (near) optimal
sizing of both the PV installation capacity and the battery storage capacity.
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Sizing problem: an additional one-time decision

The parameters related to the sizing of the capacities belong to a new action space
and need to be optimized.

More specifically, we assume that an additional one-time decision must be made at time
-1, corresponding to the choice of the size of the PV installation capacity and the battery
storage capacity:
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The problem of sizing and operation can be seen from RL researchers as a problem of
optimizing both a policy and an environment. Here, the environment is parameterised byZିଵ
(which includes PV installation capacity and battery storage capacity) and the policy by .

A reinforcement learning point of view on the problem

21
More information in: Bolland, A., Boukas, I., Berger, M., & Ernst, D. (January 2022). Jointly learning environments and control policies with projected
stochastic gradient ascent. Journal of Artificial Intelligence Research, 73, 117-171. https://hdl.handle.net/2268/247965



Timeline of actions across the different action spaces
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• A (near) optimal control problem of a non-linear system that can be formalized as an
MDP( ), which refers to a Markov Decision Process that includes a time-series variable .
A long time horizon needs to be considered. Very little work has been done so far in the
fields of MDP( ) with long time horizon. [Cases 1 to 5]

• The forecasting of very local weather and load time-series requires one to rely on
probabilistic forecasts. This problem remains largely unsolved to date. [Cases 2 to 5]

• Dealing with very large action spaces, where some actions can only be taken at specific
time steps (day-ahead market). [Cases 3 to 5]

• The intraday market integration adds additional forecasting challenges that depend on
multitude of factors (e.g., weather, geopolitical, behaviour of traders, etc). The resulting
MDP( ) shows immensely large action spaces, with various action types that can be taken.
[Cases 4 and 5]

• Determining the optimal sizing of the microgrid to minimize overall costs, including both
investment and operational expenses. This can be formalised as a joint optimization of the
control policy and the environment. [Case 5]

Why should you be excited as ML researchers
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The second layer: Distribution networks

24



Ten years ago, issues in distribution networks were almost non-existent. These networks
operated under the “fit and forget” doctrine, meaning they were built robustly enough so
that any grid user could be connected without facing power quality issues (e.g.,
interruption of supply, overvoltages). Investment decisions were based on established
“good practice” rules.

Today, the situation has changed drastically. The rise of Distributed Energy Resources
(DERs) like PV installations and of new loads like heat pumps and Electric Vehicles
(EVs), is creating serious power quality issues. These include congestions, which refer
to situations where excessive current flows through the network elements, leading to
overloads, as well as voltage issues characterised by voltages often going above or
below admissible values.

The pace at which DERs and new loads are being integrated into the network is
exceeding the financial capabilities of Distribution System Operators (DSOs) to
implement their "good practice" investment rules to maintain the fit and forget doctrine.

The “fit and forget” doctrine for managing distribution networks 
has reached its limitations
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An example of a DER causing a distribution network issue: 
disconnection of domestic PV installations.

Domestic PV installations tend to turn consumers into producers during sunny hours as
these consumers are unable to fully consume the electricity generated, causing voltage
to rise as excess electricity is pushed into the low-voltage distribution network. When the
voltage reaches a certain level (e.g., nominal voltage of 230V + 10%), the PV panels are
disconnected.

Production of a PV installation affected by voltage issues.

Watts (W)To mitigate such issues, it is essential for
DSOs to establish (near) optimal
investment policies taking into account
their limited investment capabilities.
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Each year, the DSO has a specific investment budget 
to maintain and/or expand its network.

The challenge is to allocate this investment budget 
in a way that minimises network issues over time.

This is an extremely difficult optimisation problem. Why?

Difficulty 1:

This challenge has an inherently sequential nature. Investment budget decisions
made each year affect a sequence of interdependent decisions, requiring consideration
of both immediate impacts and long-term consequences.

Computing optimal investment decision-making strategies (1/3) 
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Difficulty 2:

The decision-making process is also challenging due to the vast number of potential
investment options. Even with perfect foresight – turning it into a deterministic problem
– the complexity remains significant.

For a given network, each year, a set of components can either be upgraded or not. In
the simplest case, the action space is defined as: 

where 1 represents an upgrade and 0 represents no upgrade.

A more realistic (and complex) approach to the problem would involve determining the
type of upgrade (e.g., capacity increase or technology enhancements) and the addition
of new components (e.g., transformers).

{0,1}|𝓒|

Computing optimal investment decision-making strategies (2/3) 
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An illustration of an investment decision-making process

Example of a set 𝓒 and the 
corresponding action space 𝓤 C

Investment actions taken during that year

Investment 
policy
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Difficulty 3:

The problem is highly stochastic and uncertain, involving weather forecasts, customer
behaviour and technology prices. These uncertainties can be represented as probability
distributions, which can be used to generate future scenarios.

AI has shown promising results for weather forecasting, with numerous works
demonstrating its potential. However, predicting the evolution of customer behaviours,
technological advancements, and their associated costs remains a significant challenge,
and to date, AI has not provided reliable solutions.

Computing optimal investment decision-making strategies (3/3) 

Developing ML techniques to address these prediction 
problems would be a great challenge for AI researchers! 

30



A smart investment policy alone will not be enough:
Active Network Management (ANM) is also necessary

ANM schemes use a policy to modulate power generation sources, loads and
batteries to avoid congestions and voltage issues on the distribution networks.

The problem of computing ANM policies can be modelled as a stochastic sequential
optimal control problem. The sequential nature is amplified due to time-dependent
constraints introduced by batteries. This makes it a fascinating challenge for RL
researchers to explore and develop effective solutions.

ANM policies can help reduce investment costs! 
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Are you an RL researcher looking to develop an
RL algorithm for solving ANM problems without
having to know too much about distribution
networks?

The GYM-ANM environment is for you!

GYM-ANM is a framework for designing RL
environments that model ANM tasks in distribution
networks. These environments provide new
playgrounds for RL research in the management
of electricity networks that do not require an
extensive knowledge of the underlying dynamics
of such systems.

GYM-ANM: A user-friendly RL framework for network management
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A graphical example of an ANM policy modulating a six-bus 
distribution network
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https://youtu.be/D8kGH94kavY



What you observe in the video

The distribution network consists of six buses, one high to medium-voltage transformer,
three aggregated passive loads, two renewable energy generators, one battery, and one
fossil fuel generator.

This video showcases two situations:

1. A windy night with low consumption: During this period, PV production is zero and
wind production is nearly at its maximum. Due to the low demand, the ANM policy
curtails wind production to prevent overheating of the transmission lines [2:30]. Towards
the end of the night, the policy sets the batteries to charge [4:45] in preparation for the
morning peak of EVs [08:00].

2. A sunny, windy weekday: During the day, residential PV and wind production exceed
the demand [11:30]. The ANM policy curtails both sources [12:00 for PV, 13:00 for Wind]
of energy while charging the batteries [14:00] to store extra energy to prepare for the late
afternoon EV charging period [16:15].
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Coupling investment policies with the computation of ANM policies

To achieve optimality, we need to identify the best pair (investment policy, ANM
policy).

Set of 
investment policies

Set of
ANM policies

Optimal pair (investment policy, 
ANM policy)

Optimal investment policy 
given an ANM policyOptimal investment 

policy without an ANM 
policy

Optimal ANM policy 
without an investment 

policy 
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The third layer: Transmission networks

36

Power plant



Decision-making strategies in transmission networks 

Power system control centres are where
critical decisions to ensure the safe
operation of the power system are made.
Operators in these centres play a crucial role,
especially in high-pressure situations.

Poor decisions in control centres can be fatal,
potentially leading to blackouts. Such failures
may result in significant economic losses and
can endanger lives!

The transmission network covers various decision-making strategies occurring at
different time scales, ranging from a few decades (investment policies) to a few
milliseconds (e.g., protecting devices against short circuits).

A picture of the national control centre of RTE,
the French Transmission System Operator (TSO).
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Machine learning in power system control centres

Resolution schemes for many decision-making strategies in control centres could involve
ML techniques. A recurring issue with existing decision-making tools that rely on
optimisation techniques is that their computational complexity is often too high to
generate the right decisions fast enough to handle critical situations (e.g., the trip of
transmission lines, the disconnection of a large-scale wind farm).

Researchers are exploring the use of Deep Neural Networks (DNNs) as alternatives to
these optimisation programmes, aiming for quicker decision-making based on current
conditions.
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In transmission networks, the static voltage control problem seeks to minimise voltage
constraint violations by determining optimal controls (e.g., generator voltage setpoints,
transformer ratios, shunt/self activations, line openings) for a given power network
context.

The main approach involves:

(i) Using a DNN to process the power network context as input and generate the
control variables as output;

(ii) Training the DNN with the (RL) REINFORCE algorithm to avoid the need to solve
numerous optimisation problems, which would be required in a supervised learning
setting;

(iii) Implementing a Graph Neural Network (GNN) to effectively exploit the topology of
the power network.

Deep Neural Networks for voltage control
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A little bit of mathematics behind the approach (1/2) 

where the context and the controls are structured as a graph.

The function is considered as a black-box function and may not be differentiable
due to discontinuities in the underlying power network simulator. It also encodes or
penalises the constraints.

The actions can be high-dimensional, and the available controls depend on the
context .
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The static voltage control problem in transmission networks can be expressed as the
following parametric optimisation problem:



The approach learns a neural network that maps
the context of a power network to control
variables 𝜽 .

(i) It relies on the computation of ఏ ఏ

using the REINFORCE gradient estimation
with a Gaussian policy ఏ ఏ .

(ii) It requires a neural network that can adapt to
varying topologies and the number of controls
in power networks. This is accomplished
using a general GNN architecture that can
accommodate for hyper, heterogenous and
multi graphs (H2MG).

A little bit of mathematics behind the approach (2/2) 

Single-line diagram:

H2MG:
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Power system operators can make mistakes

On November 4, 2006, a major
blackout occurred in Europe, leaving
more than 15 million customers without
electricity for several hours.

The blackout was caused by human
error, specifically the failure to adhere
to the N-1 security doctrine.

Could AI replace control centre operators to ensure 
better security and efficiency in power systems?
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RTE has developed a GYM environment for training your power system operator agent.

One of the proposed objectives is to control the power system at minimal cost to avoid
congestions. There are two types of actions:

Costly actions: Modifying generation or
flexible loads (including batteries).

Non-costly actions: Actions related to
elements owned by the TSO (e.g., network
topology changes, control of tap changers).

The Grid2Op environment for training your power system 
operator in the GYM framework
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The winning approach of the 2022 L2RPN challenge utilised Monte Carlo Tree Search
(MCTS) techniques. Heuristics were employed to reduce the action space, which is
immense.

Does RL work on voltage control?

RL algorithms based on function
approximators seem to struggle with
changes in system topologies. It is as if
they can only successfully generalise
around a reference topology.

Indeed, so far, they seem to offer good
results only when combined with a
heuristic that keeps them within the
vicinity of the reference topology.
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Fundamental RL research driven by Grid2Op

This problem is linked to very fundamental RL research questions, such as:

(i) Defining metrics related to the difficulty of generalisation in RL. The size of the state
space is not the only thing that matters;

(ii) Developing specific techniques for generalisation in RL when parts of the state space
can be represented by a graph, with a structure that can be determined by a history
of actions (e.g., opening/closing lines, topological changes in substations, etc.).

It is likely that if more RL researchers seriously engaged with 
this environment, we would see significant advances in RL.
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The fourth layer: the supergrid and the global grid

The Katabata Project, led by ULiège (2020), aimed to
gather data on katabatic winds in southern Greenland to
assess the benefit of installing wind farms in this area.

More about Katabata project in: Ernst, D., Fettweis, X., Fonder, M., & Louis, J. (2020). Extreme engineering for fighting climate change and the Katabata 
project. https://hdl.handle.net/2268/251827 

Greenland
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The supergrid is a Direct Current (DC) network that overlays existing Alternating Current
(AC) networks. It is still in its early stages. Currently, TSOs often regard them simply as
(negative) loads in their standard decision-making tools. This approach works
adequately with a few point-to-point DC links.

However, this will change as renewable energy resources become more prevalent,
creating strong business cases for extensive DC links. These long links can help smooth
out the fluctuations of renewable energy production and enable the harvesting of
renewable resources in remote areas with abundant sun and wind.

As a result, decision-making challenges will emerge, which are crucial for the energy
transition. This is especially true if the world comes together to pursue the ambitious
goal of building a global grid, the ultimate step towards decarbonising our societies.

Decision-making strategies and supergrid
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The definition of the global grid

A global grid is an electrical network that spans the entire planet, connecting the world's
electricity consumers and producers. Its backbone would be composed of very long High
Voltage Direct Current (HVDC) links. This extensive network could drive renewable
electricity costs significantly down, potentially putting fossil fuels out of business.

A mapped prototype of the
Global Energy Interconnection
Backbone Grid.
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The planification problem behind the global grid

The primary reason why the different countries of the world have not yet come together
for building the global grid is the lack of an acceptable solution to the “right planning
problem” for its construction.

As a preliminary outline of the main features of this problem, the solution space is a set
of sequences of investments in transmission lines such that:

(i) each new investment should ensure that all directly involved parties benefit from it;
(ii) no party should have the incentive to unilaterally exploit the global grid infrastructure

for its own gain at the expenses of others.

Addressing this problem and finding its solution present 
fascinating challenges for machine learning researchers!
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More information in: Muñoz, J. C., Sauma, E., Muñoz, F. D., & Moreno, R. (2023). Analysis of generation investments under price 
controls in cross-border trade of electricity. Energy Economics, 123, 106722. https://doi.org/10.1016/j.eneco.2023.106722



Coordination between the four layers

The physical coupling between different layers of the network system is becoming very
significant. There is a need for decision-making strategies that operate in a
coordinated manner.

Overvoltage Overvoltage

Reverse 
power flow

Reverse 
power flow

Reverse 
power flow

Reverse 
power flowReverse 

power flow

! !

Example: When there is abundant solar energy, the surplus solar energy is fed into the
electrical grid, potentially causing reverse power flow across several or even all layers of
the network. This can lead to voltage control problems in several layers of the power
system. 50



Are power systems really limited to four physical layers?

Yes, if you limit your power system to the physical network through which electrical
energy is transmitted.

No, if you take a broader perspective that includes other physical layers transmitting
energy in the form of chemical energy as part of the power system.

In this broader view, known as sector coupling, energy-rich molecules (e.g., CH4, H2,
etc.) are increasingly produced from decarbonised electricity. This approach is gaining in
popularity as it integrates different energy forms into a cohesive system.
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An example of sector coupling

Picture taken from: Berger, M., Radu, D.-C., Fonteneau, R., Deschuyteneer, T., Detienne, G., & Ernst, D. (2020). The role of power-to-gas and carbon 
capture technologies in cross-sector decarbonisation strategies. Electric Power Systems Research, 180. https://hdl.handle.net/2268/235110 52



Two relevant challenges for ML in sector coupling (1/2)

Challenge 1:

The emergence of new devices for generating
and storing molecules (e.g., CO2, CH4, H2,
etc.) with sector coupling will lead to complex
sequential decision-making strategies with
long-time horizons.

Additionally, some of these molecules are
used to smooth out intraseasonal fluctuations
in renewable energy.
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Challenge 2:

Significant investments in infrastructure, such as CO and H transport networks, are
required to benefit from sector coupling. Current investment planning techniques often
solve large optimisation problems under the assumption of perfect foresight. However,
this approach falls short for policy makers for two main reasons:

(i) There are too many uncertainties in the energy sector, making the assumption of
perfect foresight unrealistic.

(ii) Implementing solutions is often complicated by issues such as Not In My BackYard
(NIMBY) concerns and geopolitical factors. Policy makers need flexibility in these
proposed solutions.

Addressing these challenges requires moving beyond “classical” deterministic or
stochastic optimisation problems. Two research avenues for ML researchers include
developing decision-making techniques related to no-regret decisions and identifying
necessary conditions for -optimality.

Two relevant challenges for ML in sector coupling (2/2)
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The emerging European hydrogen backbone

Can you imagine the ML
challenges related to the
computation of the optimal
European hydrogen backbone?
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No-regret decision

A no-regret decision is one that will not lead to regrets in the future.

Example:

Consider you have three non-zero probability scenarios (A, B, and C) representing the
uncertainty in parameters influencing the planning of your energy system.

Required installed capacities of electrolysers for each scenario:

Scenario A: 10 GW,
Scenario B: 8 GW,
Scenario C: 12 GW.

If you choose to install 8 GW, this is a no-regret decision because it is optimal for
Scenario B and is also below the optimal capacities computed for Scenarios A and C.
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Picture taken from: Dubois, A., & Ernst, D. (2022). Computing necessary conditions for near-optimality in capacity expansion planning problems. Electric
Power Systems Research, Volume 211. https://hdl.handle.net/2268/263897

Necessary conditions for -suboptimality

Example:

(i) Suppose your optimisation problem aims to
compute the optimal installed capacity of
electrolysers (in GW) and H2 storage capacity
(in GWh).

(ii) Assume that your 0.05-optimal space includes
three elements: (10 GW, 1200 GWh), (8 GW,
600 GWh), and (12 GW, 2400 GWh).

Therefore, installing more than 8 GW of
electrolysers or more than 600 GWh of H2 storage
are two necessary conditions for 0.05-optimality.

Necessary conditions for -optimality are conditions that any -optimal solution must
satisfy. These can be valuable for guiding (near) optimal investment decisions.

Three-dimensional representation 
of an 𝜖- optimal space.
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What a typical ML researcher may say at the end of this talk

All these problems are fascinating, but I am an
ML scientist working on drones. Are there any
challenges in power systems where I could
apply my skills more directly?
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Of course! Let me tell you a story…

In August 2003, a major blackout occurred in North America, initially leaving 50 million
people without electricity. The event resulted in 61,800 MW of load being cut in the USA
and Canada, with an estimated cost in the USA ranging from $4 to $10 billion. The
restoration time varied from a few hours to up to 4 days.
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The official report on the blackout indicates that a generating plant in Eastlake, Ohio, a
suburb northeast of Cleveland, went offline due to high demand. This put a strain on high-
voltage power lines in Walton Hills, Ohio, a southeast suburb of Cleveland, which later
went out of service after coming into contact with “overgrown trees”.

This trip caused the load to shift to other transmission lines, which couldn’t handle the
increased demand, leading to their breakers tripping. As multiple trips occurred, many
generators suddenly lost parts of their loads, causing them to accelerate out of phase with
the grid at different rates. To prevent damage, the generators tripped offline. This
cascading effect ultimately forced the shutdown of more than 100 power plants.

Causes of the 2003 North America blackout
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Building autonomous drones for the monitoring of tree growth

Overgrown trees pose a significant threat to power system security. You could focus on
designing autonomous drones to identify areas where vegetation management is needed.
Even better, you could develop drones that autonomously trim the problematic trees.
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Take home messages

Power systems present numerous complex ML challenges.

With the increasing use of batteries and other energy storage devices, the temporal
coupling of decisions in power system operations is becoming more significant. This
makes power systems an excellent playground for RL researchers!

There is a wide range of decision-making problems, some of which are specific to local
aspects of the power system. Because the machine learning community often focuses on
more mainstream problems, such as autonomous driving, researchers in this field may
find themselves more isolated and receive fewer citations. However, addressing
decision-making problems for power systems plays a vital role in accelerating the
decarbonization of our societies, and is thus a good opportunity to contribute to a
more sustainable environment for current and future generations.
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