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Highlights
Perturbations of consciousness arise
from the interplay of brain network ar-
chitecture, dynamics, and neuromodu-
lation, providing the opportunity to
interrogate the effects of these elements
on behaviour and cognition.

Fundamental building blocks of brain
function can be identified through the
lenses of space, time, and information.

Each lens reveals similarities and
differences across pathological and
pharmacological perturbations of
consciousness, in humans and across
Disentangling howcognitive functions emerge from the interplay of brain dynamics
and network architecture is among the major challenges that neuroscientists face.
Pharmacological and pathological perturbations of consciousness provide a lens
to investigate these complex challenges. Here, we review how recent advances
about consciousness and the brain’s functional organisation have been driven
by a common denominator: decomposing brain function into fundamental con-
stituents of time, space, and information. Whereas unconsciousness increases
structure–function coupling across scales, psychedelics may decouple brain
function from structure. Convergent effects also emerge: anaesthetics, psyche-
delics, and disorders of consciousness can exhibit similar reconfigurations of
the brain’s unimodal–transmodal functional axis. Decomposition approaches re-
veal the potential to translate discoveries across species, with computational
modelling providing a path towards mechanistic integration.
different species.

Anaesthesia and brain injury can in-
duce unconsciousness via different
mechanisms, but exhibit shared neu-
ral signatures across space, time,
and information.

During loss of consciousness, the brain’s
ability to explore functional patterns
beyond the dictates of anatomy may
become constrained.

The effects of psychedelics may involve
decoupling of brain structure and func-
tion across spatial and temporal scales.
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Resolving brain complexity
Neuroscientists face the challenge of disentangling how cognitive function emerges from the
complex interplay of brain dynamics and network architecture. From development and evolution
to mental illness and even consciousness, many of the grand challenges of neuroscience are
system-wide phenomena: they encompass multiple intertwined spatial and temporal scales.
The brain itself is a paradigmatic example of a complex system, comprised of intricately nested
networks and multi-scale dynamics [1]. Embracing this complexity presents notable challenges,
but also offers an opportunity to redefine current understanding of brain function.

This opportunity is nowwithin reach because two trends are converging. First, the increasing richness
of empirical neuroimaging data allows capturing the complexity of brain function with ever-greater
resolution, while also making this complexity harder to ignore. Second, theoretical advances make
it possible to tame the complexity of brain data, by discerning its fundamental constituents.

Disentangling the fundamental constituents of a complex system allows neuroscientists to ‘zoom in’
on neural interactions in terms of: (i) a time-resolved perspective, which recognises that brain activity
comprises the ebb and flow of distinct dynamical states; (ii) a multi-scale perspective, viewing the
brain in terms of distributed patterns of structure–function relationships across spatial scales; and
(iii) an information (see Glossary)-resolved perspective [2], disentangling different forms of information
storage, transfer, and integration. These apparently distinct approaches are complementary facets of
the same common denominator: obtaining greater resolution into specific aspects of the data.

In this article, we review how recent breakthroughs in understanding the brain’s functional archi-
tecture through neuroimaging have been driven by the common principle of decomposition into
fundamental constituents. To illustrate this notion, we focus on the investigation of consciousness
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through neuroimaging. Perturbations of consciousness arise from the complex interplay of brain
network structure, dynamics, and neuromodulation, providing fertile ground to interrogate their
effects on behaviour and cognition. This is made possible by the ability to acquire non-invasive
neuroimaging of the entire brain in vivo across species, particularly via functional MRI (fMRI).
We outline convergent elements across humans, non-human primates, and rodents. The identi-
fication of this convergence was made possible by the use of shared neuroimaging tools, shared
experimental manipulations, and, crucially, shared ways of decomposing brain function. We
conclude by outlining a path forward to integrate multiple decompositions through computational
modelling, which also enables shedding light on the neurobiological origins and causal roles of the
phenomena that are being decomposed.

Progress through contextualisation and decomposition
The traditional approach in neuroimaging has been to map circumscribed cognitive operations
onto discrete, spatially localised patches of neural tissue, leading to foundational early successes
[3,4]. However, the abundant evidence for regional specialisation from neuropsychology and
brain mapping should not be interpreted as precluding the coexistence of distributed function
in the brain [5,6]. Formalisms from graph theory were recruited to simultaneously consider the
network of interactions between all brain regions, both locally and globally: the functional and
structural connectomes. Thus, a region’s specialisation must be understood in the ‘neural
context’ provided by its interactions with the rest of the brain [7].

We argue that recent experimental and theoretical advances in neuroscience can be understood
as manifestations of the next step in this process: establishing context for the functional interac-
tions themselves. This is made possible by an array of decomposition techniques, which yield
different lenses to resolve functional interactions: in terms of their temporal dynamics, their distributed
spatial scales, and the types of information they convey (Figure 1).

In this article, we use ‘decomposition’ to encompass both: (i) summarising the data in terms of a
small number of principal/independent components, extracted from the data themselves
(i.e., dimensionality reduction); and (ii) re-representing the data in terms of a prespecified set of
constituent elements, acting as ‘building blocks’. What is common across both cases is that
each decomposition provides a lens to bring into focus specific aspects of the data.

Throughout the history of science, the principle of decomposition has been a catalyst of scientific
discovery. Decomposition (as dimensionality reduction) has been instrumental in facilitating data
compression, with popular approaches in neuroimaging being unsupervised clustering and
principal/independent components analysis (PCA/ICA): their purpose is to provide insight about a
dataset by identifying its most important dimensions [8–10] (note that a variety of alternative criteria
may be adopted for determining the number of dimensions, as reviewed in [10]). Crucially, although
a sparser re-representation of the data is often insightful, not all insightful re-representations of the
data must be sparser. Another important usage of decomposition approaches is to ‘translate’ data
into a common alphabet of fundamental building blocks that enables taxonomisation, systematic
comparison, and prediction. A celebrated example is the decomposition of chemical elements into
their atomic constituents: the resulting periodic table of elements catalysed the shift from
alchemy to modern chemistry. Here, we use ‘decomposition’ to encompass both meanings: data
compression/dimensionality reduction, and translation into a common alphabet.

A case study: decomposing consciousness
The inquiry into the neural bases of consciousness and its perturbations is a particularly fruitful
test-case to illustrate the trend of decomposing neural interactions as the common principle
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Figure 1. Progressive refinement in the characterisation of brain function. From considering the function of brain
regions in isolation (A), connectomics and ‘neural context’ (B) shift the focus to connectivity between regions. (C) With this
perspective, one can ‘zoom in’ on connections themselves, through the lens of time, space, and information: a connection
between the same regions can be expressed differently at different points in time (time-resolved functional connectivity), or
different spatial scales, or for different types of information (‘information-resolved’ view from information decomposition).
Venn diagram of the information held by two sources (grey circles) shows the redundancy between them as the blue
overlap, indicating that this information is present in each source; synergy is indicated by the encompassing red oval,
indicating that neither source can provide this information on its own.
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Glossary
Co-activation patterns (CAPs):
recurrent patterns of brain regions that
tend to be active at the same time as
each other, typically in terms of relative
BOLD signal.
Connectome: the network of
connections between brain regions,
whether physical white-matter tracts
(structural connectome), or statistical
relationship between functional time-
series (functional connectome).
Disorders of consciousness (DoC):
syndromes including coma, vegetative
state/unresponsive wakefulness
syndrome (UWS), and minimally
conscious state (MCS), typically due to
traumatic or anoxic brain injury,
characterised by behavioural
unresponsiveness to environmental
stimuli and believed to involve reduced/
absent consciousness.
Dynamic functional connectivity
(FC): also termed time-varying
functional connectivity; the identification
of a number of functional connectivity
patterns that recur over time, often
through data-driven clustering of
connectivity over short subsets of the full
scan.
Electroencephalographic (EEG)
microstates: transient, temporally
recurrent patterns of EEG activity.
Embedding: re-representation of an
object (here, brain connectivity) in a low-
dimensional space that preserves the
relationships between the object’s
constituent elements.
Fourier transform: mathematical
re-representation of a signal from the
temporal domain to the domain of
temporal frequencies.
Gradient: in the context of the current
article, ‘gradient’ refers to a spatial
pattern of variation reflecting the position
of each brain region in a low-dimensional
space.
Information: in the Shannon formalism,
information reflects reduction in entropy
(uncertainty about the value of a variable)
upon observing the value of other
variables.
Integrated information: proposed
measure of consciousness from
integrated information theory, intended
to quantify the extent towhich ‘the whole
of a system is greater than the sumof the
parts’.
Macroscale computational model:
simulation of regional brain activity, often
encompassing the entire brain or cortex.
Such models typically comprise: (i) a
underlying recent progress. Loss of consciousness (LOC; typically identified as loss of behavioural
responsiveness) can arise from different perturbations of the brain’s delicate functioning, ranging
from transient anaesthetic interventions, to brain injury and chronic disorders of consciousness
(DoC) [11–19]. However, psychedelic drugs can also profoundly alter consciousness, but
without suppressing it [19–21]. Therefore, in recent years, prominent advances have arisen from
using neuroimaging to compare different ways of losing responsiveness (anaesthesia, DoC,
sleep), or different kinds of pharmacological alterations (anaesthetics, psychedelics, and other
psychoactive substances), both within and across species (including humans, macaque and
marmoset monkeys, rats, and mice) [11–14,16,17,19,20,22–30]. Here, we highlight how different
decompositions applied to fMRI recordings have advanced the neuroscientific understanding of
consciousness and its perturbations, as a running example of how this approach may benefit
neuroscience more broadly.

Decomposing time: from static connectivity to dynamics
Even at rest, the brain is never idle, and both consciousness and cognition are best understood as
processes that unfold over time. One way to investigate the brain’s dynamism is to characterise
them in terms of various ‘brain states’, understood as distinct, recurrent patterns of brain activity
or functional coupling that emerge from, and have consequences for, physiology and/or behaviour
[31]. In contrast to calculating time-averaged activity or connectivity patterns over an entire scan-
ning session, ‘time-resolved’ analyses based on dynamic brain states provide a window into the
distinct configurations that take place at different points in time, providing a time-resolved perspec-
tive on brain function [32–38]. Arguably, two main approaches of disentangling the temporal
dimension of brain function have emerged in the literature: (i) by studying the number of available
brain states and the transitions between them, and (ii) by analysing the characteristics of the
time-resolved states themselves. In what follows we highlight some of themore prominent applica-
tions to the study of consciousness and its perturbations and what insights they have enabled.
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mathematical account of each brain
region’s local dynamics (e.g., Kuramoto
oscillator, or excitatory and inhibitory
neuronal populations); and (ii) a wiring
diagram of how regions are connected
(e.g., from diffusion MRI tractography,
tract-tracing, or simple geometric rules).
Modules: groups of nodes that are
more interconnected with each other
than with the rest of the network.
Neuromodulation: physiological
process whereby chemicals regulate the
activity of neurons (exogenous
neuromodulation via electric stimulation
is also possible).
Psychedelics: chemicals that induce
an altered state of consciousness, which
can involve diverse subjective
manifestations, including sense of
meaning and connection, hallucinations,
and depersonalisation/‘ego dissolution’.
Redundancy: information that can be
obtained from each individual one
among several sources, so that it would
remain available even if one source were
removed.
Synergy: information that can only be
obtained by combining multiple sources
of information together, so that it would
become unavailable if any one source
were removed.
Transmodal cortex: regions of the
cortex that perform associative functions.
Unimodal cortex: visual, auditory,
somatosensory, and motor regions of
the cortex, which process information
pertaining to a single modality.
State transitions and functional repertoire
Regardless of the specific method used to detect brain states (see [33,39] for reviews of different
approaches and methodological avenues), it is well established that their resulting dynamics vary
according to anatomy, cognitive demands, individual differences, and pathology [33,35,38–41].
Hence, it is reasonable to hypothesise that the patterns of occurrence of different brain states
can shed light on the brain’s capacity to support different cognitive operations.

This approach has revealed similarities across ways of losing consciousness, across modalities,
and across species. Although dynamic reconfigurations of functional connectivity (FC) can be
observed even in the unconscious (unresponsive) brain, the brain tends to visit a more limited
repertoire of states across pathological and pharmacological LOC [14]. A restricted dynamical
repertoire is observed in humans anaesthetised with several anaesthetics, in terms of fewer time-
varying patterns of brain activity or connectivity being visited: co-activation patterns (CAPs)
[12] and dynamic FC [14,42,43] from fMRI, but also electroencephalographic (EEG) micro-
states [41,44]. These results generalise across species. A single state tended to dominate the
fMRI dynamics of macaques anaesthetised with propofol or sevoflurane [22,45,46]; anaesthetised
mice stop ‘visiting’ unique CAPs that are characteristic of wakefulness [47]; and a single principal
component dominates the dynamics of ultra-fast fMRI in anaesthetised rats [48].

Beyond anaesthesia, DoC patients also exhibit a restricted repertoire of CAPs [12,13] and
preferentially dwell in low-complexity, structurally coupled states of dynamic FC [14,49]. Similar
results were obtained for deep sleep during simultaneous EEG-fMRI: different methods indicate
that wakefulness-specific states are rarely visited during deep sleep, when instead a single
sleep-specific state predominates [43,50,51] and fewer state transitions are observed [50,52].
Changes in repertoire characteristics have also been reported under psychedelics: both psilocybin
and the non-classic psychedelic nitrous oxide increase the prevalence of a state of global
coherence/co-activation, whether assessed byCAPs or dynamic FC [20,53,54]. LSD and psilocybin
also reshape the transitions between CAPs, corresponding to increased ease and diversity of
transitions [55].

Time-resolved structure–function coupling and anti-coordinated patterns
Complementary to the investigation of state transitions, another fruitful line of research focuses on
the properties of the states themselves. If a state is visitedmore often or for longer than others, the
properties that set it apart from other states can provide insights into its role for brain function. By
lumping the different dynamical states together, traditional ‘static’ FC is unable to illuminate the
unique characteristics of each state, providing a time-averaged description that may obscure
crucial aspects of brain function and its alterations.

As a prominent example, dynamic functional states of high similarity to the underlying structural
connectivity (structurally coupled) and predominantly short-range connectivity are disproportion-
ately frequent during unresponsiveness (Figure 2). This phenomenon has been observed with
different methods and for different anaesthetics, as well as during sleep [43,56] and in
DoC patients [14,49]; and even in different species: human [14,43,49], macaque [22,45], rat
[57], and mouse [47]. Deep-brain stimulation of the centro-median thalamus, which can restore
behavioural responsiveness despite continuous anaesthetic infusion in macaques [58–60], and
rats [61], also restores the ability of anaesthetised macaques’ brains to visit wakefulness-specific
states characterised by lower structure–function coupling (similarity between time-resolved FC
and structural connectivity) [46]. Even when a link is not explicitly drawn, the states that are visited
more often during consciousness than LOC tend to be dominated by transmodal cortical net-
works [12,49], which are known to be relatively decoupled from the underlying structure [62,63].
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Figure 2. Temporal decomposition reveals consciousness-related changes in structure–function coupling.
(A) States of dynamic functional connectivity can be obtained (among several methods) by clustering the correlation
patterns between regional fMRI time-series obtained during short portions of the full scan period. (B) Both anaesthesia
(shown here for the macaque) [45] and disorders of consciousness [14] increase the prevalence of the more structurally
coupled states in fMRI brain dynamics, at the expense of the structurally decoupled ones that are less similar to the
underlying structural connectome. Adapted from [45]. Abbreviation: SC, structural connectivity.
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Conversely, temporal decomposition has revealed that function becomes decoupled from structure
under the effects of psychedelics. LSD reduces coupling between the structural connectome and a
state of dynamic FC characterised by high network segregation (low prevalence of connectivity
between modules) [64]. This effect of LSD was not apparent when only considering static FC
[64]. The time-resolved approach also dissolved an apparent paradox, whereby both psychedelics
and LOC were found to reduce the prevalence of anti-coordinated functional patterns in the brain
(i.e., negative temporal correlation, or anti-phase) [12,13,21,45–47,64–70]. Time-resolved analysis
showed that this apparent similarity is due to traditional static FC ‘blurring’ temporally distinct
effects: the reduced occurrence of anti-coordinated patterns induced by LSD [64] and
Trends in Neurosciences, July 2024, Vol. 47, No. 7 555
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anaesthesia/DoC [15] pertains to different dynamical states, demonstrating the value of temporal
decomposition for understanding shared and distinct features of different perturbations of
consciousness.

Decomposing space: distributed function across spatial scales
In addition to all-or-none mapping of circumscribed cognitive operations onto spatially discrete
regions, some brain processes may instead depend on graded contributions from multiple over-
lapping and spatially discontiguous patterns, working in concert across scales [71–74]. Whereas
traditional neuroimaging views functional brain activity in terms of signals corresponding to
discrete spatial locations, distributed approaches propose to view brain function as composed
of overlapping contributions from distinct spatial scales. Thus, the traditional spatially-resolved
approach and the scale-resolved approach provide complementary perspectives: one isolates
each region and has revealed that key cortical and subcortical regions are involved in supporting
consciousness [15,21,25,46,58–60,75–77]. The other instead disentangles different spatial
scales (Figure 3, Key figure). Two approaches have become prominent in recent years to inves-
tigate distributed function in the brain: re-representing brain function in terms of overlapping func-
tional gradients (Figure 3A) and re-representing it in terms of distributed structure–function
relationships: across scales, rather than across time (Figure 3B).

Functional gradients: low-dimensional distributed patterns
The brain’s intrinsic functional organisation can be re-represented in terms of a small set
of continuous, spatially overlapping whole-brain patterns, termed ‘functional gradients’
(Figure 3A and Box 1) [78]. Gradients map FC to a low-dimensional space where proximity
indicates functional similarity. Each gradient represents a dimension in this space and the re-
gions whose FC is most different along that dimension, known as ‘anchoring points’, establish
opposite extremes (Figure 3B). For example, the principal gradient of human FC is anchored in
the unimodal cortex at one end and in the transmodal association cortex at the other end [78]
(Figure 3A).

This framework has contributed to recent progress in the study of pathological and pharmacological
perturbations of consciousness. Both propofol anaesthesia and DoC (which induce both unrespon-
siveness and unconsciousness) are characterised by reduced differentiation between the unimodal
and transmodal ends of the principal FC gradient (Figure 3C) [13]. This effect on the principal gradient
is not shared by ketamine anaesthesia, which induces unresponsiveness, but preserves conscious
experience in the form of vivid dreams [13]. Therefore, the authors proposed that principal gradient
integrity may help to dissociate LOC from mere loss of behavioural responsiveness, a thorny issue
with deep clinical implications [79]. During both sleep and dexmedetomidine sedation, the spatial
organisation of human blood oxygen level-dependent (BOLD) dynamics loses its association with
the principal unimodal-transmodal gradient [23]. The same was observed in macaque electrocorti-
cography across sleep and anaesthesia [23]. Further demonstrating generalisability across species,
in the macaque brain the range of the principal gradient is diminished by anaesthesia with propofol,
sevoflurane, and ketamine and restored upon recovery of behavioural arousal induced by centro-
median thalamic stimulation [80].

However, the interpretation of the principal gradient specifically reflecting consciousness (as
recently argued [79]) may be challenged by recent reports that serotonergic psychedelics LSD,
psilocybin [81], and DMT [82], all consistently induce an analogous degradation of the principal
gradient. Crucially, none of these drugs render individuals unconscious: rather, they distort con-
sciousness. Therefore, degradation of the unimodal–transmodal gradient may be a more general
feature of altered consciousness, rather than a marker of its loss.
556 Trends in Neurosciences, July 2024, Vol. 47, No. 7
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Figure 3. (A) Functional gradients provide a low-dimensional embedding of functional data [here, functional connectivity from
blood oxygen level-dependent (BOLD) signals]. The first three gradients are shown and the anchoring points of each gradient
are identified by different colours. (B) Representation of the first two gradients as a 2D scatterplot shows that anchoring points

(Figure legend continued at the bottom of the next page.)
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Structural eigenmodes: re-representing function in terms of structure
In addition to obtaining a low-dimensional representation of the functional data (i.e., decomposition
as data compression), it is also possible to derive multi-scale distributed patterns from brain
anatomy, using them to re-represent brain activity altogether: whether in terms of structural
connectivity [49,62,83], spatial proximity [84], or cortical curvature and geometry [72,85–88],
among others (Box 1). We refer to the bases of the re-representation as ‘structural eigenmodes’.
Decomposition of brain activity in terms of structural eigenmodes enables interrogating the contri-
bution of global structural patterns at different spatial scales. Like functional gradients, structural
eigenmodes are spatially overlapping whole-brain patterns, each providing resolution into a
specific spatial scale (granularity): from entire hemispheres, to just a few millimetres [83].

Whereas the time-resolved approach reflects structure–function similarity at different points in
time, structural eigenmodes allows investigating how structure constrains function across spatial
scales, providing complementary insights: time-resolved and scale-resolved. Predominance of
large-scale structural eigenmodes in the functional signal indicates that function is constrained
by the underlying structure: elements that are similar to one another in terms of large-scale struc-
ture (highly interconnected on the connectome, or geometrically proximal) will tend to exhibit sim-
ilar functional signals to one another (Figure 3D). Predominance of fine-grained patterns instead
indicates that the spatial organisation of the functional signal is relatively unconstrained by the
underlying structure [62] (Figure 3D).

Decomposing brain activity into the eigenmodes of a high-resolution structural connectome,
‘connectome harmonic decomposition’ (CHD), revealed that the psychedelics LSD, psilocybin,
and sub-anaesthetic ketamine induce decoupling of function from network structure: they increase
the contribution of fine-grained (high-frequency) eigenmodes, at the expense of large-scale (low-
frequency) ones [16,89] (Figure 3E). The same CHD approach revealed that propofol- and brain
injury-induced unconsciousness (distinct frommere unresponsiveness) manifest as the opposite pat-
tern: increased contribution of large-scale structural eigenmodes, at the expense of high-frequency
ones [16] (Figure 3E). Increased contribution of large-scale structural eigenmodes was also observed
in DoC patients using individualised connectomes [49] and using EEG alpha-band and the eigen-
modes of electrodes’Euclidean distances [84]. These resultswere recently extended to themacaque
brain, with a shift towards greater contribution of large-scale structural eigenmodes being observed
under anaesthesiawith propofol, sevoflurane, and ketamine and reversed by centro-median thalamic
stimulation that also induces recovery of behavioural arousal [80].

Decomposing information: synergistic interactions
Another way of decomposing brain function is by considering the brain as an information pro-
cessing system [2,90] and identifying the different types of information it relies on. In particular,
correspond to the two extremes of each gradient. Interpretation of gradients is adapted from [13]. (C) Perturbations of human
consciousness can bemapped into this low-dimensional space, in terms of which gradients exhibit a restricted range (distance
between its anchoring points) compared with baseline [13,81,82]. (D) Structural eigenmodes re-represent the signal from the
space domain, to the domain of spatial scales. This is analogous to how the Fourier transform re-represents a signal from
the temporal domain to the domain of temporal frequencies (Box 1). Large-scale structural eigenmodes indicate that the
spatial organisation of the signal is closely aligned with the underlying organisation of the structural connectome. Nodes tha
are highly interconnected to one another exhibit similar functional signals to one another (indicated by colour). Fine-grained
patterns indicate a divergence between the spatial organisation of the functional signal and underlying network structure
nodes may exhibit different functional signals even if they are closely connected. The relative prevalence of different structura
eigenmodes indicates whether the signal is more or less structurally coupled. (E) Connectome harmonics (structura
eigenmodes from the high-resolution human connectome) show that loss of consciousness and psychedelics have opposite
mappings on the spectrum of eigenmode frequencies (adapted from [16,89]). Abbreviations: DMN, default mode network
DoC, disorders of consciousness; FC, functional connectivity.
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recent accounts have revealed that (Shannon) information is not a monolithic entity: rather,
several fundamentally distinct ‘kinds’ of information exist [2]. Two sources can possess informa-
tion about a given target that is either unique (each source provides independent information),
redundant (the same information is provided by both sources, such that all uncertainty is
resolved upon observing any one of them) or synergistic (complementary information, which
is available only when both sources are considered together) [91,92]. As an example, 3D vision
emerges from combining inputs from the two eyes, such that closing either eye abolishes it: it
requires cooperation between them [2].

Partial information decomposition and its extensions provide a formal framework that allows to
distinguish these qualitatively different phenomena [91,92]. This general mathematical framework
is not restricted to neuroscience and has found applications as diverse as genetic networks
[93,94], sociocultural data [95], music [96], and financial markets [97]. In neuroscience, applica-
tions of information decomposition range from entire brains [92,98–100] to neuronal cultures
[101,102]. Information decomposition complements approaches to conceptualise and quantify
neural information in terms of encoding and decoding [103]. It can be used to track ‘extrinsic’
information: how external stimuli predict neural activity and how neural activity in turn predicts
behaviour [90,104–109]. However, information decomposition can also be applied to task-free
neural time-series (e.g., from fMRI, electrophysiology). In the brain, spontaneous activity is not
random: the brain’s future state is partly determined by its past state(s). This means that
regions’/neurons’ past state holds ‘intrinsic’ information about their future state: howmuch uncer-
tainty about the regions’ future activity is resolved by knowing the past of both (synergy) and how
much is resolved equally by either of them (redundancy) [92,98–100]. This application is entirely
Box 1. Eigenmodes in the brain

Functional gradients and structural eigenmodes rely on the mathematics of eigenmode decomposition [146]. Eigenmode
decomposition is a mathematical approach underpinning multiple widely used techniques in neuroscience, including
principal components analysis (PCA) and the Fourier transform (Figure I).

PCA provides an illustrative example. PCA re-represents high-dimensional data in terms of few principal components
explaining most of the variance, identified by rotating the axes on which the data is represented. Functional gradients
[78] and ‘functional harmonics’ [147] are analogous to PCA’s principal components, but obtained via nonlinear
eigendecomposition (such as diffusion map embedding) [148] whereas PCA is linear. Re-representing functional data
in terms of patterns extracted from the same data also underlies the ‘connectivity domain’ approach [74], based on inde-
pendent components analysis.

Structural eigenmodes are also obtained through nonlinear eigendecomposition (specific algorithms differ: see [148] for a
review) but with one key difference: how their bases are built. In PCA and functional gradients, the new ‘basis functions’ (in the
mathematical sense) to re-represent the data are extracted from the functional data themselves (e.g., BOLD signals) and the goal
is data compression by highlighting the most relevant patterns. Conversely, structural eigenmodes re-represent brain function in
terms of an independent basis function: the eigenmodes are obtained from structural connectivity [49,62,83], geometry
[84,86,87], or cortical folding [72,85]. Similar eigenmodes can be extracted from different bases, even across species (Figure I).

The widely used Fourier transform is another application of eigenmode decomposition: the signal is re-represented from the
time domain to the domain of temporal frequencies (Figure I). In this case the modes in question (termed harmonic modes)
are sinusoids of different temporal frequency. High-frequency temporal harmonics correspond to fast-changing signals, such
that data-points may have very different values even if they are close in time. Low-frequency temporal harmonics correspond
to signals that vary slowly over time, such that temporally contiguous data-points have similar values.

Decomposition into temporal frequencies has a long history in the neuroscience of consciousness. Gamma-band oscillations
were among the first proposed neural correlates of consciousness [149,150]. EEG oscillations are the gold-standard for
sleep staging, and slow waves (1–4Hz) increase in anaesthesia and disorders of consciousness [59,76,129–131], possibly
providing a neural marker of brain dissociation from the environment, distinct from behavioural unresponsiveness [76,131].
However, the association is imperfect: conscious states can co-occur with slow waves (as in Angelman syndrome) and
unconscious states [non-rapid eye movement (NREM) sleep] can occur without slow waves (as in dup15q syndrome) [151].
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Figure I. Eigenmodes in the brain. (A) Connectome harmonics are obtained from high-resolution diffusion MRI
tractography (adapted from [83]). (B) Spherical harmonics are obtained from the geometry of a sphere (adapted from
[87]). (C) Geometric eigenmodes are obtained from the geometry of a high-resolution mesh of cortical folding (adapted
from [72]). (D) A macaque analogue of connectome harmonics can be obtained at lower resolution from a macaque
structural connectome that combines tract-tracing with diffusion MRI tractography (adapted from [80]), showing
similarity with many human patterns. (E) Illustration of the Fourier transform as re-representation of the signal from the
time domain to the domain of temporal frequencies (adapted from [16]).
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analogous to the widely-used resting-state FC (temporal correlation between time-series), but with
additional insight obtained by distinguishing different information dynamics. Specifically, one can
distinguish between integration as ‘combining information’ (synergy) versus integration as ‘having
the same information’ (redundancy) [2]. Although appealing for its conceptual simplicity, traditional
FC can only reflect the similarity between different regions’ temporal fluctuations and therefore it is
unsuitable to distinguish between these fundamentally different phenomena, instead simply
reflecting redundancy between regions [99,100,110]. Indeed, correlation is maximal when one
element simply copies the other, corresponding to maximum redundancy, and no synergy. It is
worth highlighting that Shannon’s well-known definition is not the only way to operationalise
information. Alternatives include extended definitions of entropy [111] and non-Shannon quantities
developed in recent versions of the integrated information theory of consciousness (IIT)
[112–116], which posit that ‘information is a shape in concept space’ [112] and propose an alter-
native, stronger formalisation of ‘intrinsic’ information [117,118]. Future work should explore the
560 Trends in Neurosciences, July 2024, Vol. 47, No. 7
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empirical potential of these alternative operationalisations of information for neuroimaging analysis
(see Outstanding questions).

Insights about neural function from information decomposition
Information decomposition can be applied both to extrinsic and intrinsic (Shannon) information, as
well as different species and imaging modalities. This key strength has led to several fruitful
applications. fMRI studies of intrinsic dynamics have shown that although all brain regions engage
in both synergistic and redundant interactions, their relative prevalence across regions is neither
uniform nor random. Sensorimotor functions are supported by a modular backbone of structurally
coupled redundant interactions, which dominate in primary cortices [99,100,110]. Redundancy
provides robustness against single points of failure: information that is redundantly provided will
not be lost, if any one source is disrupted. This may be especially warranted for the brain’s
input–output systems, given their pivotal role for enabling behaviour [2].

By contrast, synergistic interactions are structurally decoupled and predominate in higher-order
association cortices, bridging across different brainmodules to support higher cognitive functions
[99,100,110]. Corroborating the role of synergy for integrative function, the prevalence of synergy
correlates with both post-mortem and in vivo markers of synaptic density [100]. Synergistic (as
opposed to redundant) interactions also appear to be specifically enhanced in humans over
other primates [100], especially in evolutionarily expanded regions [100]. This is noteworthy
because synergy enables the exploitation of additional information, beyond the sum of individual
sources’ contributions. Its increased prevalence in humans may therefore hint at a fundamental
computational difference between species.

Despite its more recent inception, information decomposition has already begun to contribute to
progress about consciousness and its neural substrate. On the theoretical front, information
decomposition has illuminated similarities and differences between numerous proposed mea-
sures of IIT’s ‘integrated information’ (Φ), showing that despite all intending to capture ‘the extent
to which the whole is greater than the sum of its parts’, in practice they each reflect different com-
binations of information dynamics. Decomposing different Φ measures represents major prog-
ress because it allows understanding and predicting their respective behaviours under different
scenarios. For example, the original measure ΦWMS from [119] can sometimes be negative and
the alternative measure of integrated information termed ‘causal density’ [120] can exceed the
mutual information between system’s past and future [121]. These observations were initially
used to dismiss ΦWMS and causal density as suitable measures of integrated information [121].
Information decomposition explains why such ‘counterintuitive’ behaviours occur: causal density
is inflated by double-counting synergistic dynamics, whereas ΦWMS will be negative whenever a
system is redundancy-dominated, becauseΦWMS involves subtracting the system’s redundancy
[92]. Once individual information dynamics have been disentangled, it becomes straightforward
to propose ‘revised’ measures that exactly capture one’s desired information dynamics [92].

The theoretical progress afforded by information decomposition translates directly into empirical
progress. A revisedmeasure of integrated information,ΦR (which does not subtract the redundancy)
revealed that synergy-based integration in human fMRI signals is consistently reduced between
high-synergy brain regions when responsiveness is lost: both in DoC patients and in anaesthetised
volunteers compared with both wakefulness and post-anaesthetic recovery [122]. Crucially,
the similarity between anaesthesia and DoC was obscured when the original ΦWMS was used,
demonstrating how the conceptual clarity brought by information decomposition enables practical
discovery [122]. Notably, the shared reductions of ΦR all occurred in regions that satisfied an
information-theoretic definition of the ‘global workspace’ from global neuronal workspace theory
Trends in Neurosciences, July 2024, Vol. 47, No. 7 561
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of consciousness [122–124]. Thus, the authors proposed that pharmacological and pathological
LOC could both be understood as a breakdown of the brain’s ‘synergistic global workspace’
[100], pointing towards a potential convergence of two prominent theories of consciousness,
when viewed through the lens of information decomposition [125–128]. More broadly, this work
revealed that acute pharmacological intervention and lesion-induced connectome perturbations
can have convergent effects on information dynamics in the human brain. Being a relatively recent
development, the perspective of information decomposition is yet to be applied more widely to
further states of altered consciousness, such as sleep or psychedelics: its extension could provide
ample opportunities for further discovery.

Catalysing integrative discovery by combining decompositions
Overall, the case study of consciousness shows that the different lenses offered by decomposition
approaches can lead to tangible progress on complex neuroscientific questions. Information de-
composition has revealed that ‘integrated information’ can arise from diverse information dynamics
and, even without committing to specific theoretical accounts, the shared reduction in integrated
information across DoC and anaesthesia validates the longstanding intuition that consciousness
requires the coexistence of integration and differentiation [125–128]. Functional geometry has
further proven capable of reflecting different aspects of subjective experience beyond mere
responsiveness, not only across perturbations of consciousness but also in psychiatric conditions.
Perhaps the most well-established discovery, provided by both temporal and eigenmode decom-
positions, is that increased structure–function coupling is a consistent neural marker of LOC,
across species and across diverse pathological and pharmacological perturbations of conscious-
ness. Conversely, reduced structure–function coupling seems to characterise the psychedelic ex-
perience in humans’ brains, even when elicited by drugs with widely different molecular
mechanisms. Taken together, these lines of research have revealed that brain structure–function
coupling can track the presence (vs. absence) and diversity of subjective experience and is
under bi-directional control by neuromodulation and thalamic activity.

Crucially, it is only when integrating multiple decompositions and multiple perturbations (different
anaesthetics, DoC, different psychedelics) that the full picture emerges. Diverse ways of becoming
unconscious appear to share common neural signatures; likewise, the psychedelic state can man-
ifest similarly across different drugs. However, some of these signatures (functional geometry) may
be shared across LOC and the psychedelic state, whereas others (structure–function coupling) are
diametrically opposite between the two. Thus, decompositions along different dimensions provide
a way to illuminate both similarities and differences between phenomena of interest. Rather than
seeking to explain each phenomenon in isolation, different phenomena can be compared and
contextualised against each other, adopting various decompositions to disentangle the dimen-
sions along which they are alike and those that set them apart.

The different decompositions reviewed here are neither redundant nor antithetical with each other, nor
with themore common approaches focusing on temporal frequencies [59,76,129–131] (Box 1). They
also complement extensive evidence from spatial localisation approaches, implicating specific cortical
and subcortical regions in supporting consciousness [15,21,25,46,58–60,75–77]. Recent develop-
ments are already combining information decomposition with time- and frequency-resolved ap-
proaches [99,132,133] (e.g., revealing that the effects of anaesthesia on synergy and redundancy
in macaque electrocorticography are driven by δ and γ temporal frequency bands) [132]. Extending
these efforts, by further combining, for example, temporal and eigenmode decompositions in the
same dataset [134], or by applying them to further alterations of consciousness, such as dreaming
[135], will provide a path towards a more comprehensive understanding of the different facets of
brain function.
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However, there is a need to understand the neurobiological origins and mechanistic roles of the
phenomena that are being decomposed. The fact that decompositions can be applied across
imaging modalities and across species with greater experimental accessibility than humans,
offers a fruitful avenue of progress in this direction. A prominent example is the discovery, in
macaques, that anaesthetic-induced structure–function coupling and collapse of the principal
gradient are both reversed when consciousness is restored by centro-median thalamus stimula-
tion [46,80]. Computational models may represent another promising avenue to develop a
mechanistic account of how multiple aspects of neurobiology shape functional properties, disso-
ciating them from each other in ways that are still beyond the capabilities of experimental research
in vivo [136] (Figure 4). The ability to bridge scales and modalities is one of the key advantages of
computational modelling [136] (Box 2).
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dynamics
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Figure 4. Computational modelling to integrate decompositions and obtain mechanistic insights. Computational
models of brain activity come in a variety of forms, from highly detailed to abstract and from cellular-scale to brain regions
[136]. Macroscale computational models of brain activity (sometimes also known as ‘phenomenological’ models) provide a
prominent example of how computational modelling can be used to integrate different decompositions and explore the
underlying causal mechanisms. Such models typically involve two essential ingredients: a mathematical account of the
local dynamics of each region (here illustrated as coupled excitatory and inhibitory neuronal populations), and a wiring
diagram of how regions are connected (here illustrated as a structural connectome from diffusion tractography). Each of
these ingredients can be perturbed to simulate some intervention or to interrogate their respective contribution to the
model’s overall dynamics and fit to empirical data. For example, using patients’ structural connectomes [139,140], or
rewired connectomes [141]; or regional heterogeneity based on microarchitecture or receptor expression (e.g., from PET
or transcriptomics) [139,142–144]. The effects on different decompositions can then be assessed to identify the
mechanistic role of heterogeneity and connectivity. As an alternative to treating decomposition results as the dependent
variable of the simulation, they can also be used as goodness-of-fit functions for the model, to improve models’ ability to
match the richness of real brain data. These two approaches establish a virtuous cycle between computational modelling
and decompositions of brain function, whereby each can shed light and inform the other. Adapted in part from [145].
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Box 2. Computational modelling to integrate decompositions

Computational models ([136]; see Figure 4 in main text) have already provided insights about the potential mechanisms
underlying various decompositions in relation to consciousness. At the macroscale, dynamic mean-field models of neuronal
populations coupled according to DoC patients’ structural connectomes exhibited reduced prevalence of synergistic inter-
actions, recapitulating the reduction observed in empirical fMRI recordings from the same patients and suggesting potential
connectomics origins for this information decomposition signature [145]. A Wilson-Cowan model of excitatory and inhibitory
populations showed that increasing neuronal excitation induces a shift towards fine-grained eigenmodes [152], reflecting
empirical results with psychedelics [16,89]. Shifting the excitation–inhibition balance towards inhibition instead increases
the contribution of large-scale structural eigenmodes, consistent with the empirical effects of propofol [16].

Somemacroscale computational models can be enriched with biological information pertaining to molecular- and
cellular-level properties, such as gene [144,153] or receptor expression [139,154], thereby ‘linking cellular mecha-
nisms and large-scale dynamics’ [136]. Propofol’s effects on dynamic FC can be recapitulated by modulating regional
inhibition in a mean-field model according to empirical GABA-A receptor distribution [139]; likewise for LSD-induced
dynamics and 5-HT2A receptors [154].

Models can also incorporate cellular-scale detail. One such model, comprising dual-compartment layer V pyramidal
neurons, recently showed that a measure of integrated information (Φ*) [113] can be tuned by the thalamic inputs that
control coupling between apical and basal cellular compartments [155]. This work provides a potential bridge between
the cellular-level empirical observation that anaesthetics decouple apical and basal compartments [156] and the macro-
scale observation that Φ* is diminished by anaesthesia in macaque electrophysiological recordings [60], consistent with
dendritic integration theory [157]. Future extensions with information decomposition may explore which specific informa-
tion dynamics drive the loss of integrated information.

Different decompositions also afford the opportunity to develop computational models that more faithfully capture the richness
of brain activity. Enriching models with regional heterogeneity according to functional gradients (from eigenmode decomposi-
tion) has provided superior fit to empirical data [144,158]. The measure of goodness-of-fit itself can be refined to account for
dynamic connectivity (from temporal decomposition), improving the model’s ability to simulate different conditions [159].

Ultimately, modelling necessitates simplifying the true neurobiological complexity, which may be an especially relevant
limitation for consciousness [160].
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Outstanding questions
What causal mechanisms control the
distinct dimensions of the brain’s
functional architecture and to what
extent are they shared versus distinct
across decompositions?

Which of these mechanisms and
decompositions are most suitable as
targets for therapeutic intervention?

Are some kinds of information
preferentially carried by different
temporal frequencies, specific temporal
states, or at specific spatial scales?

What are the common signatures of
altered states (psychedelics, dreaming,
psychosis), as revealed by distinct
decomposition approaches?

Can information decomposition be
extended to the latest developments
of integrated information theory?

Which dimensions of the brain’s
functional architecture are shared
across species and which (if any) are
uniquely human?
Concluding remarks
The decomposition approaches that we outlined here are not restricted to a specific scale of
investigation, neuroimaging modality, or species. Using the same decomposition and imaging
modality across different species provides a ‘common currency’ to catalyse translational discovery
[137], especially in combination with perturbations such as anaesthesia, the effects of which are
widely conserved across species [128,138].

Through the running example of consciousness, we illustrated the value of combining the unique
perspectives provided by each decomposition. A first key insight is that numerous consistencies
exist across pathological and pharmacological ways of losing consciousness. This is observed
across each decomposition, with evidence of similar trends across species, offering the promise
of translational potential. Secondly, across each decomposition, LOC may preferentially target
those aspects of brain function that are most decoupled from brain structure. Synergy, which
is structurally decoupled and especially prevalent in structurally decoupled regions, is consistently
targeted by pathological and pharmacological LOC, just as structurally decoupled temporal
states and structurally decoupled spatial eigenmodes are also consistently suppressed. Thus,
different decompositions have provided convergent evidence that consciousness relies on the
brain’s ability to explore functional patterns beyond the mere dictates of anatomy: across spatial
scales, over time, and in terms of how they interact to convey information.

Altogether, the choice of lens through which to view the brain’s complexity plays a fundamental
role in how neuroscientists understand brain function and its alterations. Although many open
questions remain (see Outstanding questions), integrating these different perspectives may pro-
vide essential impetus for the next level in the neuroscientific understanding of brain function.
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