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Abstract

The Unit Commitment (UC) problem is a key optimization task in power systems
to forecast the generation schedules of power units over a finite time period by
minimizing costs while meeting demand and technical constraints. However, many
parameters required by the UC problem are unknown, such as the costs. In this
work, we estimate these unknown costs using simulation-based inference on an
illustrative UC problem, which provides an approximated posterior distribution
of the parameters given observed generation schedules and demands. Our results
highlight that the learned posterior distribution effectively captures the underlying
distribution of the data, providing a range of possible values for the unknown
parameters given a past observation. This posterior allows for the estimation of past
costs using observed past generation schedules, enabling operators to better forecast
future costs and make more robust generation scheduling forecasts. We present
avenues for future research to address overconfidence in posterior estimation,
enhance the scalability of the methodology and apply it to more complex UC
problems modeling the network constraints and renewable energy sources.

1 Introduction

Forecasting the generation schedule of power generating units whose energy is sold on the electricity
market is key for actors like electricity traders and transmission system operators. Accurate forecasts
ensure efficient and secure power system operation, but market liberalization complicates forecasting
due to the unknown behavior of multiple market participants. An approach to forecasting the
generation schedule is to model the scheduling of generation units of all agents through a centralized
total-cost minimization problem. Economic theory supports this strategy, suggesting that well-
designed competitive markets yield efficient outcomes, similar to those achieved by centralized
decision-making [19, 10]. However, the size of these models, with numerous variables and parameters,
makes it difficult to solve, leading to the use of smaller models where multiple power plants are
aggregated into fewer representative units. The reduced optimization problem is called the Unit
Commitment (UC) problem. This UC problem provides a generation schedule over a fixed time
interval as a function of extrinsic parameters including technical constraints of the units, energy
demand, costs related to fuel, start-up and transmission. However, cost parameters are often unknown
and are addressed in the optimization process either by expert knowledge or by robust or stochastic
optimization techniques that handle the uncertainty [17]. In practice, the generation schedule is made
public on a daily basis, facilitating the inference of the unknown parameters of the UC model through
a probabilistic inverse problem. By estimating a distribution over these parameters, operators can
perform better informed forecast of the costs in the short term, leading to more accurate forecasts of
generation schedules.
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In this paper, we present an illustrative UC problem and apply simulation-based inference (SBI)
[3] to estimate unknown cost parameters. SBI, which has been widely applied in fields such as
particle physics [2], climate science [18] and robotics [13], estimates the posterior distribution of
model parameters based on observations, capturing inherent uncertainty in these parameters. The
simulator, i.e., the UC model, is complex and computationally expensive, making traditional methods
like Markov Chain Monte Carlo (MCMC) impossible to use for inference. We propose to use Neural
Posterior Estimation (NPE) [16, 14, 12, 8] which is an amortized method, meaning that the inference
model is trained on a dataset of simulations after which it can then be used to make inference on new
observations without having to retrain the model. In contrast, MCMC would require running the full
simulation iteratively for each new observation, making NPE a significantly faster and more scalable
solution.

2 Problem formulation

The UC problem determines the generation schedules of power units over a finite time period
while meeting demand scenarios and adhering to various technical constraints. These constraints
include generation limits, ramping rates, and start-up/shutdown durations, all dictated by the physical
characteristics of each unit. Although some of these parameters are well known to all market
participants, key parameters, such as the cost of producing one unit of energy driven by trading
strategies for purchasing the fuel to produce it, still remain unknown. This work focuses on estimating
these unknown cost parameters from recent historical data, which are critical for improving the
accuracy of UC models and enhancing generation scheduling predictions.

Formally, the solution of the UC problem can be written as Gt = f(ψt,θt, δt), where f defines
the UC optimization problem solved over T time steps that will be used to construct the inverse
probabilistic model. The vector ψ includes known physical characteristics of generation units, such
as generation limits, start-up costs, and ramping rates,G represents the generation schedule for each
unit at each time step, and δ denotes the demand. Finally, θ represents unknown cost parameters,
like fuel costs, that we want to estimate to better forecast them in the short-term future to improve
generation scheduling. All these parameters are defined for each time step t of the horizon of T time
steps

In electricity markets, market operators publicly release historical data shortly after operations,
including estimated demands δ’s which are the forecasted demand values used during the scheduling
process. These estimates inform real-time operational decisions and are influenced by various
predictive models. Realized generation schedules, Gi which are the actual generation outputs
corresponding to the estimated demand, reflect the solutions derived from the UC problem at the
time. The publicly available historical data {(δi,Gi)}Ni=1 are used to construct empirical prior joint
distribution for the demand, p(δ) capturing typical demand profiles and their variability over time.
The unknown θ cost parameters are never observed but are known to be within a certain range, a
prior p(θ) can be constructed as a uniform distribution over this range.

The primary objective of this work is to estimate the posterior distribution of the unknown cost
parameters θ given the available historical data p(θ|G, δ), as stated in Section 1, to better forecast
cost parameters that will allow for better informed generation scheduling knowing the uncertainty in
the parameters.

3 SBI for UC parameter estimation

Bayes’ rule can be used to write down the posterior distribution p(θ|G, δ). This requires knowing
the likelihood p(G|θ, δ), the prior distributions p(θ) and p(δ) assuming θ and δ are marginally
independent, and the evidence p(G). SBI is used to estimate a neural surrogate of the posterior
distribution using simulated observations. Specifically, we use NPE for that purpose, which maximizes
the expected log-posterior density Ep(G,θ,δ) [log qϕ(θ|G, δ)] where qϕ(θ|G, δ) is a neural density
estimator, such as a normalizing flow, with parameters ϕ. The expectation Ep(G,θ,δ) of the joint
distribution can be estimated by first sampling from the prior costs p(θ) and the prior demand p(δ)
and then feeding these samples into the forward model. In practice, this model corresponds to the UC
problem defined in Section 2 for the fixed parameter ψ.
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4 Experiments

The practical implementation focuses on an illustrative UC problem, with J = 9 generation units,
where all generation costs θ ∈ RJ are assumed unknown and must be estimated. This problem
spans T = 24 hourly timesteps, representing a single day (see Appendix C for its mathematical
formulation). Demand-side management (DSM) is integrated as the 10th unit, designed to adapt
electricity demand by encouraging consumers to shift usage during periods of excess or insufficient
supply. This DSM unit offers high flexibility, allowing it to start or stop instantly, with ramping
rates that can reach its maximum capacity at any given time. However, this flexibility incurs higher
generation and start-up costs.

The parameters ψ include start-up costs, maximum rates for increasing and decreasing production,
minimum and maximum power at which we can start and stop the unit, minimum time a unit must
remain active or inactive after being turned on or off, and upper/lower generation limits. As stated in
Section 2, these parameters are known and static over the time horizon considered. The parameters θ
are the generating costs of the 9 units. Given the day-long horizon, these costs are assumed static but
unknown, with a prior distribution p(θ) modeled as uniform.

In this scenario, the prior distribution of the demand parameter δ is synthetically constructed to
mimic realistic fluctuations in electricity consumption, following a sinusoidal pattern. The base
demand is modulated to create peaks and troughs in the demand profile, to reflect the typical diurnal
variations observed in real-world electricity consumption patterns. To introduce variability and
simulate real-world uncertainties, Gaussian noise with zero-mean and standard deviation of 10% of
the peak demand is added to the demand signal.

Training and validation sets are generated with 216 simulations each, using the joint distribution
p(G,θ, δ) = p(θ) p(δ) p(G|θ, δ) to produce parameter-observation pairs (θ, (δ,G)). With these
pairs, we apply NPE, as described in Section 3, and compare the performance of two types of flow,
namely, Masked Autoregressive Flow (MAF) [15] and Neural Spline Flow (NSF) [6], for posterior
estimation qϕ(θ|G, δ). Both models are composed of 3 transformations, each parametrized by
a masked Multi-Layer Perceptron (MLP) with 3 hidden layers of size 256 and ReLU activation
functions. The NPE method is trained using the Adam optimizer [11] with a batch size of 256 and a
learning rate of 0.001 over 100 epochs. The best model is selected on the validation loss, with the
learning curve shown in Appendix in Figure 3.
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Figure 1: Corner plot shows marginal pos-
terior distributions on the diagonal and joint
posterior distributions for unit pairs elsewhere.
These are evaluated using the observed gen-
eration scheduleG∗, with a Masked Autore-
gressive Flow (blue) and a Neural Spline Flow
(orange). Black dots represent the true param-
eter values θ∗ that generated this schedule.
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Figure 2: Coverage plot assessing the com-
putational faithfulness of qϕ(θ|G, δ) in terms
of expected coverage. The coverage probabil-
ity is under the credibility level 1− α, which
indicates that the posterior approximations
produced by NPE are slightly overconfident.
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To assess the resulting posterior distribution, we first sample parameters θ∗ and demand δ∗ from
their priors p(θ) and p(δ), generating a corresponding generation scheduleG∗. Using Monte-Carlo
sampling, we estimate the density of qϕ(θ|G∗, δ∗) and visualize the results through corner plots
(Figure 1). These plots show the marginal and joint distributions of the sampled parameters, with the
true parameter values θ∗ overlaid on top.

Next, we assess the consistency of the NPE posterior by calculating the expected coverage probability
across various credible levels. In essence, we determine the probability that the true parameters
sampled from p(θ,G, δ) lies within the smallest region of probability 1− α of the learned posterior
qϕ(θ|Gi, δi).

Formally, we compute the coverage probability Ep(θ,G,δ)

[
1{θi ∈ Θqϕ(θ|Gi,δi)(1 − α)}

]
where,

Θqϕ(θ|Gi,δi) is the highest posterior density region of the posterior distribution [9], defined as:

Θqϕ(θ|Gi,δi)(1− α)=argmin
Ω

{Ω|E[1{θ ∈ Ω}]=1− α} (1)

To compute this expected coverage probability, we repeatedly sample from the joint distribution
p(θ, δ,G) to obtain pairs (θi, (Gi, δi)). We then sample θ from the learned posterior distribution
qϕ(θ|G, δ) for each simulated observation (Gi, δi) and determine the 1−α highest posterior density
region. Well-calibrated posteriors should have an expected coverage probability close to the credibility
level 1−α. If the expected coverage probability falls below 1−α, it suggests overconfident posteriors.
If above, it indicates conservative posteriors. This comprehensive evaluation aids in assessing the
reliability of the approximate posterior distributions. In our case, the coverage curve (Figure 2) is
computed using the two trained flows and a test set of 212 pairs, and shows slight overconfidence.
While it is important for the posterior distribution to accurately center around the true parameter
values, a slight overconfidence in the posterior’s width might not pose a significant issue in our
context.

Additional assessment of the results is provided in Appendix B, which further confirms the accuracy
of the learned flow in capturing the true posterior distribution. Specifically, the assessment reveals
that the posterior distribution is well-centered, as evidenced by the fact that only a few parameters
sampled from this learned posterior distribution qϕ(θ|G, δ) generate a generation schedule that
deviates significantly from the true oneG∗.

5 Conclusion

In this work, we tackled the UC subproblem of estimating unknown parameters using SBI, which
provides an approximation of the posterior probability distribution p(θ|G, δ). This approach allows
for quick inference while capturing parameter uncertainty. This posterior distribution provides a
range of possible values for the unknown parameters rather than just a single estimate, enabling
operators to account for uncertainties in their decision-making process.

Future research should address the overconfidence in posterior estimation, as discussed in Section 4.
Possible solutions include ensembles methods which average predictions from multiple models to
improve reliability [9], and introducing regularization terms either to the loss function to encourage a
more balanced and conservative model [5] or to directly penalize overconfident coverage [7].

To increase the granularity of UC problems, resulting in hundreds of parameters, future work should
focus on enhancing the function approximator, as current NPE methods are limited to handling tens
of parameters. For instance, [4] introduces flow matching techniques to improve the scalability and
computational efficiency of SBI. Additionally, active learning strategies are useful for dealing with
high-dimensional parameter spaces and costly sampling processes. A method for selecting the most
informative data points to optimize the calibration process has also been proposed [1], focusing
computational resources on areas with the greatest uncertainty to enhance the efficiency and accuracy
of simulation-based inference in large-scale systems.

Finally, the next step is to apply these approaches over longer time horizons, such as two years, and
incorporate renewable energy sources, which introduce additional uncertainty into the UC problem.
This broader application will test the robustness and scalability of the methodology in practice.
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A Appendix / supplemental material
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Figure 3: Learning curves of the 2 trained flows

B Additional assessments

To further assess the results from Section 4, we aim to conduct a quantitative analysis of the posterior
predictive distribution p(G|G∗) which is the distribution of the generation schedules produced by
sampling parameters from qϕ(θ|G∗, δ). The method to do that is by sampling 212 parameters from
the posterior qϕ(θ|G∗, δ) given the observed generation schedule G∗. This observed generation
schedule is produced by sampling a parameter θ∗ and a demand δ∗ from their respective prior
distributions p(θ) and p(δ), and generate, using the model, a generation scheduleG∗. Then, when
θ’s are sampled from the posterior, they are passed one by one through the UC problem f(ψ,θ, δ),
where f is defined in Section 2. Figure 4 shows the posterior predictive distributions p(G|G∗)
for various quartiles against the true generation output G∗. On the one hand, we see that for the
power plants that need to be active, the 68.7% quantile is well constrained around the true generation
schedule. On the other hand, when the plant should remain inactive, the spread is wider for the 95.5%
and 99.7% quartiles, resulting in a slight displacement of the median compared to the true observed
generation schedule. In conclusion, the parameter distribution learned from NPE produces results
that are consistent with the observed generation schedule.
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Figure 4: Sanity checks of the MAF flow on all power plants. To obtain the posterior predictive
distribution p(G|G∗), we sample several θ’s from qϕ(θ|G∗, δ∗) and then pass them through the UC
problem defined before. This results in a list of generation schedules, from which we computed the
68.7%, 95.5% and 99.7% quartiles, as well as the mean and median. This diagnostic is an indication
of the good quality of the inference results obtained with the trained flow. In particular, they
demonstrate that the generation schedules produced by the parameters sampled from qϕ(θ|G∗, δ∗)
are close to the real generation scheduleG∗.
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C Mathematical formulation

The mathematical formulation consists of an objective function and a set of constraints, utilizing
various parameters and decision variables. The objective function minimizes the total cost, which
includes both the generation cost and the start-up cost of the units. The constraints ensure that the
UC solution is technically feasible, meets all operational requirements, and respects the physical
limitations of the generating units.

C.1 Notations

Table 1: Summary of notations and descriptions for Unit Commitment Problem. The bold cost vector
c represents the generation costs that we want to infer in this paper.

Symbol Description

Sets and indices
t ∈ T Time intervals.

j ∈ J Index of the power generator.

Parameters
cj ∈ R Cost of producing an additional unit of electricity from generator unit j.

cUj ∈ R Start-up cost of generator unit j at time t.

D(t) ∈ R Total demand at time t.

R(t) ∈ R Spinning reserve requirements at time t.

αjs, βjs ∈ R Fixed coefficients of a linear function.

RU
j ∈ R Maximum ramp-up rate for generator unit j.

SU
j ∈ R Maximum start-up rate for generator unit j.

RD
j ∈ R Maximum ramp-down rate for generator unit j.

SD
j ∈ R Maximum shutdown rate for generator unit j.

TU
j ∈ N Minimum duration that generator unit j must remain on after being started.

TD
j ∈ N Minimum duration that generator unit j must remain off after being shutdown.

Gj ∈ R Upper generation limit of unit j.

Gj ∈ R Lower generation limit of unit j.

Uj ∈ N Required on-time periods for unit j at start of horizon.

Dj ∈ N Required off-time periods for unit j at start of horizon.

Decision variables

gj(t) ∈ R+ Total power output from unit j at time t.

ḡj(t) ∈ R+ Maximum available power from unit j at time t.

vj(t) ∈ {0, 1} Binary variable to know if unit j is on at time t.

yj(t) ∈ {0, 1} Binary variable to know if unit j starts at time t.

zj(t) ∈ {0, 1} Binary variable to know if unit j shuts at time t.
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C.2 Problem

min
Ξ

∑
t∈T

∑
j∈J

(
cj(gj(t)) + cUj yj(t)

)
s.t.

∑
j∈J

gj(t) = D(t), ∀t ∈ T

∑
j∈J

ḡj(t) ≥ D(t) +R(t), ∀t ∈ T

cj(gj(t)) ≥ αjsgj(t) + βjs, s = 1, ...Cj , ∀j ∈ J

vj(t− 1)− vj(t) + yj(t)− zj(t) = 0, ∀j ∈ J, ∀t ∈ T

gj(t)− gj(t− 1) ≤ RU
j vj(t− 1) + SU

j yj(t) ∀j ∈ J, ∀t ∈ T

gj(t− 1)− gj(t) ≤ RD
j vj(t) + SD

j zj(t) ∀j ∈ J, ∀t ∈ T

t∑
k=t−TU

j +1,k≥1

yj(k) ≤ vj(t),∀t ∈ [Lj + 1, ..., |T |], ∀j ∈ J

vj(t) +

t∑
k=t−TD

j +1,k≥1

zj(k) ≤ 1,∀t ∈ [Fj + 1, ..., |T |], ∀j ∈ J

¯
Gjvj(t) ≤ gj(t) ≤ ḡj(t) ≤ Ḡj(t)vj(t), ∀j ∈ J, ∀t ∈ T

ḡj(t) ≤ gj(t− 1) +RU
j vj(t− 1) + SU

j yj(t), ∀j ∈ J, ∀t ∈ T

ḡj(t) ≤ Ḡj [vj(t)− zj(t+ 1)] + zj(t+ 1)SD
j , ∀j ∈ J, ∀t ∈ T

where the optimization variables in set Ξ are gj(t), gj(t), vj(t), yj(t),

and zj(t),∀j ∈ J, ∀t ∈ T.

C.3 Constraints and objective explanation

min
Ξ

∑
t∈T

∑
j∈J

(
cj(gj(t)) + cUj yj(t)

)
This objective function captures two main components of the operational cost:

1. The generation costs, which typically include fuel costs and other variable operating costs.
This cost is usually a function of the power output.

2. The start-up costs, whenever a unit is turned on. These costs are often significant and can
include fuel for warming up the unit, maintenance costs due to thermal stress, and labor
costs.

By minimizing this sum over all time periods and all generating units, the problem seeks to find the
most cost-effective schedule for unit commitment and dispatch.

• Demand Constraint: ∑
j∈J

gj(t) = D(t) ∀t ∈ T

This constraint ensures that the total power generated across all units exactly meets the
anticipated demand for each time step. It is crucial for maintaining the balance between
supply and demand in the power system.

• Capacity Reserve Constraint:∑
j∈J

ḡj(t) ≥ D(t) +R(t) ∀t ∈ T

This constraint guarantees that the maximum available power at each time step is greater
than or equal to the demand plus the reserve requirements. It ensures system reliability by
maintaining sufficient spare capacity.
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• Logical Coherence of Binary Variables:

vj(t− 1)− vj(t) + yj(t)− zj(t) = 0 ∀j ∈ J, ∀t ∈ T

This constraint ensures the logical consistency of the binary variables representing the unit’s
state (on/off), startup, and shutdown. It links the unit’s state in consecutive time periods
with its startup and shutdown decisions.

• Ramping Constraints:

gj(t)− gj(t− 1) ≤ RU
j vj(t− 1) + SU

j yj(t) ∀j ∈ J, ∀t ∈ T

gj(t− 1)− gj(t) ≤ RD
j vj(t) + SD

j zj(t) ∀j ∈ J, ∀t ∈ T

These constraints limit the rate of change in a unit’s output between consecutive time periods.
They account for both normal ramping rates when the unit is on and the start-up/shutdown
rates when the unit is being turned on or off.

• Minimum Up-time Constraint:
t∑

k=t−TU
j +1,k≥1

yj(k) ≤ vj(t) ∀t ∈ [Lj + 1, ..., |T |],∀j ∈ J

with Lj = min{|T |, Uj}
This constraint ensures that once a unit is started up, it remains on for at least TU

j time steps.
It prevents frequent cycling of units, which can be inefficient and cause wear and tear.

• Minimum Down-time Constraint:

vj(t) +

t∑
k=t−TD

j +1,k≥1

zj(k) ≤ 1 ∀t ∈ [Fj + 1, ..., |T |],∀j ∈ J

with Fj = min{|T |, Dj}
This constraint ensures that once a unit is shut down, it remains off for at least TD

j time
steps. Like the up-time constraint, it prevents frequent cycling of units.

• Generation Limits:

Gjvj(t) ≤ gj(t) ≤ ḡj(t) ≤ Ḡjvj(t) ∀j ∈ J, ∀t ∈ T

ḡj(t) ≤ gj(t− 1) +RU
j vj(t− 1) + SU

j yj(t) ∀j ∈ J, ∀t ∈ T

ḡj(t) ≤ Ḡj [vj(t)− zj(t+ 1)] + zj(t+ 1)SD
j ∀j ∈ J, ∀t ∈ T

These constraints ensure that when a unit is on, its power output is within its operational
limits. They also link the actual output, maximum available output, and the unit’s on/off
status. The last two equations further constrain the maximum available power based on the
previous period’s output and the unit’s ramping capabilities.
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