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Hadron interaction and QCD

e Hadronic interactions : Involve particles that undergo strong interactions.

e QCD : Widely recognized as the theory of strong interactions.

e QCD is most applicable to processes in which the coupling constant is small.
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Problem : soft gcd : perturbation theory breaks down

e Solution : Pheno. models
e abundant in the literature :

o based on the Gribov-Regge phenomenology.

hinge on fundamental principles of S matrix theory : unitarity, analyticity and
crossing

empirical parameterizations



Unitarity Problem

S(s,b) =1+ 1G(s,b)

2
Unitarity demands that |S(b)|” <1 ——

Unitarity circle: the amplitudes must lay on the
circle to satisfy the unitarity condition for elastic scattering.
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Several ways to represent the unit circle

e one can map the upper complex plane into a circle via a complex exponential
S(s,b) =exp(iz(s,b)) with Im z(s,b) > 0.

> G(s.b) = i(1 — exp(ix(s, b))).

e Use a one-to-one map through a Mdbius transform

570 o
S(s,b) = 1 i L_Z’Eb’z%, with  Im 2/(s,b) > 0.
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High-energy collider data for pp and pp scattering
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Single diffractive cross-sections
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Single-diffractive cross section at ultra-high energy
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Unitarisation and multi-particle production

Slight better description for cross-sections with the U matrix scheme than the
eikonal

What about the multiplicity distribution

on(s)
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The model
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e Superposition procedure : summing contributions from parton-parton collisions occurring
at each impact parameter weighted by the inelastic overlap function, which dictates the
unitarisation scheme.

e picture : the KNO scaling violation viewed as an extension of the geometrical scaling
violation
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Multiplicity distributions for inelastic pp collision
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Multiplicity distributions for inelastic pp collision
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Multiplicity distributions for inelastic pp data
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Multiplicity distributions for inelastic pp data
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Hadron mean multiplicity

e |n line with Troshin and

Tyurin :

(n(s)) = 2.328 s9201,

e this alignment further
support the use of The

U Matrix scheme
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KNO scaling violation
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Particles correlation and fluctuation
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Particles correlation and fluctuation

e Predictions match with the data points

within the ISR energy range

e Qverestimates the fluctuations and correlations
in the multiplicity distribution with rising energy

notably above LHC energy.
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Particles correlation and fluctuation ™"
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Model’'s OQutcomes

Pronounced KNO scaling violation resulting from a strong Geometrical scaling violation

Unexpected overestimation of the fluctuations and correlations with increasing energy

Attributed to statistical fluctuations related to the inelastic overlap function and hence
to the U Matrix scheme

What is the distribution of pomerons in the U-Matrix scheme ?



Thank you for your attention
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