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Abstract

This chapter describes a methodology based on the continatiprobabilistic rea-
soning, automatic learning and Monte-Carlo simulatiortsictv has been used extensively
for the study of electric power systems. The first part dbssrithe generic approach to-
gether with the principles of the main classes of automaticling methods. The second
part discusses a few real-life applications and some nesarels directions. The chapter
concludes with a discussion of the usefulness of the prapagproach and its applicability
to the study of complex systems, in general.

1 Context and statement of scope of the paper

This paper summarizes research and development work which started irdtbgghties.

The practical problem which has driven the research was electric pgstenss dynamic
security assessment. Electric power systems are essentigy @mplex nonlinear systems
which have significantly grown in size and importance during the last 50 yeatise Aeginning
of this century, electric power systems were rather small isolatédrsgsconnecting customers
and power plants inside small geographical areas. When the technology became, ihatur
was realized that economies of scale and increased reliability would Iséb|gog the small
systems were interconnected among each other. Indeed, interconnection maule fmskare
very large power plants among different users, and reduced the amount of ngctssdrby
reserves to serve plant outages. This was the beginning of a long period of tisinamystems
enhancement, resulting in bulk power systems stretching over whole contikentsxample,



the Western European interconnected system (UCPTE) covers a geograpdacal about
2000 kilometers North to South by about 4000 kilometers West to East, and presesattyate
energy to about 300 million citizens through more than 10 countries.

The very large size of electric power systems makes their understandirtgeandhstering
of their reliability a quite complex problem. An interconnected system is ¢getay a number
of independent companies which have to take decisions without knowing precisely vhat w
be the strategy of their neighbors. Thus, electric power systems are also axgoople of
distributed decision making under uncertainties. Uncertainties areddiathe external envi-
ronment of the system as well as to its internal behavior. The external enviraaetimy on
the power system are both physical (e.g. meteorological effects) and socio-ecgdemand
for electricity, social role of electric energy, ecological trends,)etmoth are quite uncertain
from the viewpoint of power engineers. For a decision maker, the internal behavibe of t
electric power system is uncertain because of partial knowledge about the sgzistence of
human factors, as well as because of the high system complexity.

Since the electric power systems are built by engineers, there has beenteathtign of
analytical modeling, of system theory applications to power systems, and, iasth&0l years,
of computer based numerical simulations.

In the late seventies and early eighties, it was believedAhdicial Intelligence(Al) tech-
niques could provide solutions to help improve the performance of electric powtenss/sin
this period, many pioneering papers have been published proposing to apply expert psstem a
proaches to various problems in designing and operating the power system. Someavofkhis
has yielded actual applications in the mean-while. Pattern recognition, adtteshnique,
was first proposed for dynamic security assessment by Tom DyLiacco, in thexas [1, 2],
and, since then, many researchers have worked on the topic, applying differengtess (sta-
tistical pattern recognition, neural networks and machine learning) to diffe@ver system
problems (load forecasting, system identification and state estimataduiljtgtassessment and
control).

During the last ten years, an important amount of research work was atssdaaut in the
field of automatic learning per se. In particular, automatic learning theasyreached by now
a certain level of maturity and resulted in unifying the work carried out figr@dint research
schools, such as statistics, connectionnist systems, computer sciencafenmal artelligence.
Data Mining is the most recent trend which contributed to render automaticithg) popular
among non-specialists. Data mining has emerged in the mid nineties, asahsitiplinary
field of applied research in response to the need for extracting meaningfuhation from
ever growing databases. It has already some success stories, ahteagt & make the field
popular among practitioners.

Within this context, the research of the author of this contribution may be positiased



follows: in the mid eighties, we started to work on the application of melgarning to electric
power system transient stability assessment; in the early ninegestanted collaborating with
Electricité de France (a major utility in Europe) in order to find out howpplyathe resulting
methods to practical problems of economic and technical significance. This cali@ois
still pursued at the time of writing this paper, almost ten years latereMoportantly, a large
amount of the work done at the University has actually been transferred topracigce and
is today used within Electricité de France. More recently, a certamber of other utilities
have started to consider the resulting approaches as valuable altertmtives usual way of
working. On our side, we believe that the present trend in liberalization andinaiitbg of
electric power systems will make the methodologies using automatic leawemgmore useful
than in the past.

The methodology which is described in this paper is basically a “computer expgtime
type of method. For a given power system and for a given practical problem, it usee-M
Carlo simulations (coupled with existing power system simulators) tpkaalarge number of
relevant power system dynamic scenarios, together with automatic leaamdgléta mining
toolboxes) to extract synthetic information from the resulting databases.

Given the scope of the Academic Press Theme volumes within which this wauklished,
we aim at describing to non-specialists the following aspects : the basmgas underlying
the approach; the main techniques which are used (with a stronger focus on thosenaiich
be classified under the Al theme); the practical interest of this work indheegt of electric
power systems; and the possible uses in a more general setting in order tconaeter
experiments to study complex systems from simulations. The last objectiwetigated by
our feeling that many other fields could benefit from the approach : mechanical engjpee
chemical engineering, computer systems, telecommunications, etc.

The paper is organized as follows. Section 2 is a general description of theviak
in a sufficiently general language to make it clear that it can be applieda@e number of
problems; it focuses on the framework description. Section 3 describes indsdailea certain
number of complementary automatic learning methods of general interest. Sécaviews
a certain number of practical applications in the context of electric powégraysngineering
and Section 5 provides general conclusions, directions for further researchsandsdis the
applicability of this work outside the field of electric power systems.

2 Framework

This section introduces a general framework for the study of complex system&aifewvork
combines system theory methods with probabilistic reasoning and automatiotefiom ar-
tificial intelligence. The overall approach is able to build simple modeld decision rules
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Figure 1. Overall probabilistic framework based on automatic learning

which may be used for the design, monitoring, and control of complex systems in uncertai
environments.

The principle of the framework is depicted in figure 1. It starts with the $jgation of
models (probabilistic and system theory type models), proceeds with the autgerai@ation
of a database of system behaviors by Monte-Carlo simulations, and further wihtthetion
of synthetic information from this database by automatic learning. The lasbfstie@ approach
consists in using the extracted information in order to acquire a better uamcidirsg of the
system behavior and to make decisions for design and control.

Note. Although we focus in this paper mainly on situations where, as depicted in figure
1, the databases are generated by Monte-carlo simulations, it is of course possible to apply
automatic learning to databases collected from actual measurements. This distinitiba
further illustrated in section 4.

2.1 Probabilistic reasoning

As we will see, the core of the framework is provided by probabilistic reasomihgzsh we
will introduce in an abstract although intuitive way. Probabilistic reasonges a probabilistic
model of the reality and probability theory (theorems and techniques) to explaihtusl.

2.1.1 Probabilistic models

Probabilistic modeling starts with the definition of a set of possible objetieddheuniverse
These objects represent the possible behaviadithe physical world which is studied. To make
things as simple as possible, we will assume that the universe is finite tfemegh it may be
very large). This is justified by the fact that we will consider the modelingystem behavior
using digital computers, which can only represent a finite number of possible behaviors.
Hence, in the context of the analysis and control of a given complex system, theseniver
represents all the possible ways this system may behave during a certaipetio@, taking
into account the possible external inputs and internal uncertainties. In the tast téxt we
will also use the terngcenarioto denote such a hypothetical behavior of a given system.
The second step in probabilistic modeling consists in defining a family of subkéte



universe which may be observed (these are callemhtan the probabilistic literature). Again,
we will assume for the sake of simplicity that in our case this collect@rians every possible
subset of the univerde

The last step of probabilistic modeling consists of assuming a probability needdus is a
functior® which assigns to each subset in the collection of observable subsets a numiserbetw
0 and 1 representing its probability, where 0 means impossibility and lirdgrta

2.1.2 Conditioning

Conditioning is the basic tool in probability theory to exploit observations.
Let A be a event (a subset of the universe). Thethdfccurs (which means that the observed

or assumed system behavior belongs to this subset), the probabilities of all eeenpslated

in the following way :

P(BNA)

P(B) = P(BIA) = =g,

1)

whereP(B|A) denotes the probability of evest given the fact that event has occurred.

Thus all events which are disjoint frosh become impossible. On the other hand, among
the events which intersect with, some become more probable and some other less. The events
whose probability remains unchangd®l B) = P(B|A)) are said to be independent 4f

One can argue that this way of defining the conditional probability measure is gc¢heall
only rational possibility, yielding completely consistent reasoning procedure$[8pability
theory thus provides a consistent and sound framework to model reasoning under umegrtaint

2.1.3 Interpretations

As such, probability calculus does not impose any particular physical interpret@tctually,
several interpretations coexist and are used in practice. We willlyre@all the classical and
the Bayesian views.

In the classical “objectivistic” interpretation, probabilities are véehas limit values of ob-
served frequencies, and could be determined (up to certain level of egrbyaobserving the
physical system behaviors and counting the number of occurrences which belong to tkeediffer
subsets of the universe.

In the Bayesian “subjectivistic” interpretation, probabilities are usechddel the state of
knowledge of a user. Thus, different users may use different probability medfstines have
different knowledge about a system. Also, a given user may in principle revigedbability
measure, when his state of knowledge evolves. Thus, in the Bayesian irdggorgirobability
theory is a tool (among other candidate tools which have been proposed in the ketatur
model reasoning under uncertainty.



In addition, the Bayesian framework allows one to reason about probabilityunesgsnod-
els) using meta-probabilities. Thus a user may start with a prior diswibot candidate prob-
ability measures, and update this as new observations come in. Eventuallya afifficient
number of observations, this model will converge to the objectivistic frequenedbasdel.

Although the Bayesian and classical views have been subject to very adidistessions
during a long period, we do not believe that in practice there is opposition betweéndhe
approaches, and, in the context of this paper, ingredients of both paradigms will be used.

2.1.4 Random variables, time and random processes

In practice, the behavior of a complex system is generally not completely obterVdhat is
available to observations are measurements, alarms and events whicldogng time. For
example, in an electric power system it is possible to measure the valtagede, or the power
flow through a line but normally one doesn’t have a full picture of the system behavior.

Such observations are random variables, i.e. real-valued or discretd f@hotions defined
on the universe of system behavibrSince the system is dynamic, we assume that most random
variables are time tagged : when we talk about a measurement we acllalipout the value
assumed by this measurement at a certain time.

A random process is basically a collection of similar random variablestakéifferent
time steps (we will assume for simplicity that time is also disqQrdter example, the successive
values of voltage at a given node of a power system would define a random process. Depending
on the particular scenario, a different realization (a time seridspwiobserved at the chosen
node.

Once a probabilistic model has been defined, it induces probabilistic models for &y col
tion of random variables or processes which are defined on the universe of scenarios

2.1.5 Reasoning

Probabilistic reasoning aims at exploiting information which may be observedsystem in
order to infer information about unobserved variables. Let us enumerate a numbactatgr
examples, in the context of electric power systems.

System identification. Given the values of measurements of voltages and power flows in the
system at different time steps, what are the most likely values of paeasnaf a linear
circuit theory model representing the system ?

State estimation. Given the values at timeof a certain number of measurements, and a linear
circuit theory model, what is the most likely value of voltages at each node efttem ?



Load forecasting. Given the values of hourly consumptions at a certain node of the system
during the last two years, what is the expected value of hourly consumption during the
next two weeks ?

Stability prediction. Given the values of rotor angles during the last 300 milliseconds, what is
the probability that there will be a loss of synchronism within the next few seconds ?

Planning. Given the values of water inflows and temperatures during the last fift\s yaaf
suming a certain economical growth and system structure, what is the ekpesteof
operating the power system during the next five years ?

Thus, the standard pattern is “Given some observation, say something about some unob-
served (past, present or future) feature of the system”. The basic tool tert®se questions
is provided by conditioning, which allows to compute the conditional probability digtahs
of the variables of interest. Indeed, having defined the basic probability model efregse-
narios, it is in principle possible to compute the conditional probability model of angtam
variable (or process) given any type of assumptions on some other random varmalpes- (
cesses).

Once the conditional distributions are available, itis possible to extradisgyotnformation
from them for decision making, such as expected values or most likely values.

2.1.6 Analytical computations versus Monte-Carlo simulations

In order to go one step further in our discussion, it is necessary to add sontergtriacour
model. This will be done more carefully in section 4.2.2, but for the time being westaiit
with an intuitive discussion.

Let us suppose that our system scenarios may be described completely usinoanoerta
ber of parameters together with some equations which allow to compute all rarad@bles
and processes once the parameter values are given. Without any deepaestietmay as-
sume that each parameter belongs to a finite set of possible values, and thavénseuof
possible scenarios is merely the Cartesian product of these sets. The bhsigilty measure
may then be defined by assigning a positive number to each combination of paraahetst v
in such a way that the total mass sums up to one.

Clearly, whatever the complexity of the functions which define our random varjables
would in principle be possible to use analytical derivations in order to exprasptbbability
distributions as a function of the ground probabilities.

Further, if an observation is made on a certain random variable (sayhthabltage at a
certain node and time assumes a given value), the basic probability measutemeplaced
by a conditional probability measure. Indeed, the observation (unless the randoblevaria
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Figure 2: Use of Monte-Carlo simulations instead of analytical derivations

constant over the universe) will correspond to a non-trivial event : the subde¢ ohiverse
where the random variable assumes the observed value. This event can thed toedesme
the conditional probability measure and hence refresh all the induced probabiéisunas of
all other random variables.

Clearly, for a real complex system, the above analytical procedure would gliekbme
extremely cumbersome, to the extend to jeopardize feasibility. Thistiseilucomplicated by
the fact that in decision making it is generally necessary to find decisibithare optimal in
some sense, which in turn requires the computation of conditional probabilityodisdns with
respect to a potentially very large number of alternative events correspaiading possible
decisions.

In situations where the analytical computations are intractable, one may usotiie-
Carlo approach [4, 5]. This basically consists in sampling (subsets of) thersaigf scenarios
according to the basic probability measure and to compute the values of eattededmdom
variable. The technique may be used in order to compute expected values of randdoiesar
or values corresponding to some optimality criterion. It may also be usedsgeserate sam-
ples which can then be compiled into conditional probability distribution modelsitmynaatic
learning.

Thus, using the Monte-Carlo approach one can pre-compute conditional probabilities of
some random variables given values of some others, by using sampling, then useoe-pre
piled models later on for decision making. Figure 2 sketches the idea of using [@arlte-
simulations instead of analytical derivations to extract conditional probaloiddels. This
approach is often economic for the following reasons:

e most of the computations may be carried out in advance, while decision making may be
done efficiently in real-time;

e the most heavy part of the Monte-Carlo approach may be easily carried out ilelpara

e the conditional probability distributions may be approximated to the desired degree of
accuracy (using automatically learned models);
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¢ only the variables which actually influence each other need to be represeitiedcon-
ditional probability models derived by automatic learning;

e the models extracted by automatic learning may be formulated in such a wafhela
can be interpreted physically, which makes it possible to enrich human isepend also
to use human expertise to validate the results.

The overall scheme, combining automatic learning with Monte-Carlo stroak&will be
further discussed and illustrated in section 4.2.

2.2 Automatic learning and data mining

In this section we will focus on supervised learning, which aims at developimgt/output
models from observed databases. From a theoretical viewpoint, automatindgaressentially
a generalization of statistical estimation. Below we first formuthte problem as a function
approximation problem, then we reformulate it as a problem of building probabitnsidels,
S0 as to make explicit its relationship with the previous section. Then Wénafly discuss
the contributions of the recently emerged field called data mining. We postponestussion
of technical and theoretical details to section 3.

2.2.1 Supervised learning as function approximation

In a formal setting, and independently of any particular assumption, the supeausedatic
learning problem is generally formulated as follows.

Definition 1 Given a sample of input/output pairs, s8y= {(z1,v1),- .., (zn, ys)}, and a set

of candidate input/output models (or hypothesksjfind an optimal model* € H, such that

Ui 2 H*(x;) is as close as possible tpfor the observed pairs, as well as for any other possible
input/output pair which may be observed.

In this general setting, both andy may be vectors of real numbers or discrete (symbolic)
attributes. Ify is symbolic, we will talk about classification problemsyifs a real number (or
a vector of real number) we will talk about regression problems.

In the automatic learning literaturg, is called the hypothesis space. It is a set of mappings
from the input space towards the output space. Examples of hypothesis spaces aosvas foll
the set of linear input/output functions defined by a set of matrices (parameterset of
decision trees of variable complexity, the set of neural networks of givertsteetc.

Thus, supervised learning aims at first choosing an appropriate hypothesi$&spadehen
selecting a predictive model i which may be used in order to guess certain output variables
as afunctionof some other input variables.



In order to make our definition more precise, it is necessary to define mornsglyawhat
is meant by a good approximation. This will be further elaborated in the next subsé&dtiem.
in section 3 we will discuss the main principles which allow one to iderti§pood hypothesis
from a learning sample.

As we will show in section 3, different automatic learning methods esdigrdiéfer in the
type of hypothesis space they use and in the search method they use in order to findiak opti
hypothesis. On the other hand, the criteria used to measure hypothesis qualityesieatyg
independent of the type of automatic learning method.

2.2.2 Learning as identification of probabilistic models

Let us make the link with the probabilistic models introduced in section 2.1.

We start by assuming that each observation corresponds to some object in thieeuaive
possible objects. Hence, input and output variables are actually random vadabtesd on
the universe, and function approximation aims at building an approximation of soema
variables ) as a functional combination of some other random variablgs (

However, according to our discussion in section 2.1, all the information proalbledt the
output variables by the input variables may be encoded appropriately in a conditionddiptpba
model

P(ylz). (@)

Now, let us choose a deviance criteridfy, y') in order to measure the difference between
two output values. The precise form of the deviance criterion is not relevant tpresent
discussion, but it should have properties similar to classical distanceunesa Using any
such measure, any hypothesis may be compared to the target random variable byrapitsput
expected riskdefined as follows

A
R(H) = E{d(y, H(x))} = [ d(y, H(z))dP(z,y), (3)
Yy
where the expectation is taken along the joint probability distribution of input-optprd. The

lower R, the more accurate the hypothesis according to the chosen deviance criterion.
Thus, it is straightforward to derive from the conditional probability distitoubf eqn. (2)
an optimal input/output model by the following equation [6]
un(z) = axg,min [ d(y.y)P(s). @

Y
This optimal model is called in the automatic learning literatureBhgesmodel. For a given

choice of input and output variables, it depends of course on the deviance criterion used. The
expected risk of the Bayes model, defined by

Rp = E{d(y.yp(z))}. (5)
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is by definition the ultimate lower bound of the risk (it is usually calleddeal risk, or residual
error in the literature on automatic learning).

For example, in classification problems (discrete output), the conditional pritypalskri-
bution will be discrete. The usual deviance criterion is misclassifingirobability in this case.
Thus, the conditional probability afgivenz may be used in order to identify the most probable
value ofy givenz. This would correspond to using egn. (4) with the discrete deviance measure,
ie. d(y,y') =1 —4(y,y'), which is equal to zero iff = y' and equal to one otherwise. The
resulting Bayes rule has a minimum error probability.

If the output variable is numerical, the usual deviance criterion is the eutldian, leading
to minimum square error learners, which essentially aim at approximatygts conditional
expectation®{y|z}. Various hypotheses (e.g. Gaussian noise) may be used in order to justify
such criteria, but this discussion would lead us too far from our topic.

If the input-output relationship is deterministic (i.e. if there exists a fumcfi(-) such that
y = f(z)) then, with these deviance measures, it is also true that

yp(z) = f(x) andRp = 0. (6)

However, in general, the Bayes model, although it does provide an optimal gudss dartputs
in terms of the inputs, does not provide full information about the probabilistic oalsttip
among them. Thus, the point we would like to stress here is that rather thamgiauiomatic
learning as function approximation as in section 2.2.1, it is advantageous tospsobabilistic
modeling. This leads to the following rephrasing of the automatic learning problem.

Definition 2 Given a database of input output/pairs, s, v1),..., (., y,)}, and a set
of candidate input/output probabilistic models find an optimal modeP* € P, such that
P*(y|x) is as close as possible in the average to the true conditional probabiligy:z).

Note that this definition is slightly more general than the first definition : thectilbggenow
is not only to provide a good way to guess what would be the output given the inputs, but also
to describe the probabilistic nature of the input-output behavior of the system. Howasvsr
stated by eqn. (4), once a good probabilistic model of the system is availablstraightfor-
ward to derive a good approximation function from it.

In section 3.2 we will review the main principles which lead to the formaradf automatic
learning algorithms, i.e. algorithms which try to solve the learning probléatsdby these two
definitions with the sole information provided by a sample (i.e. without knowing the tondi
probability distributions explicitely).
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2.2.3 Data mining

Anticipating on section 3.2, let us say that the two main lines of theoretiogltess in automatic
learning in the last twenty years are, on the one hand, generalization diicdh8stimation to
flexible families of models (decision trees, neural networks, projection guegiression), and
a better theoretical understanding of non-parametric (variable complexity) aticdearning
methods, in the small to medium sample size case, on the other hand.

From the practical point of view, automatic learning algorithms have been iragagnifi-
cantly, which makes it possible to handle larger and larger databases .skmtiestime database
and data collection technologies have progressed even more quickly, to suclermtrttext the
traditional tools (structured query languages) offered by database managentemissye not
sufficiently powerful anymore to make the best use of the information contairtbeé existing
databases.

The need for smarter tools to extract synthetic information from databasdschtsthe
development of so called data mining platforms. These are software envintswieich gen-
erally combine traditional database management systems with an autosaatimg) toolbox,
sophisticated user interfaces, and visualization techniques [7].

The same need has also led to a new research area called knowledgerngistoatabases
(KDD), which aims at developing methods to extract and validate useful kagelom very
large databases. In particular, the added value of KDD with respect tautmatic learning is
to help users to formulate more flexible criteria (automatic learningaret generally focuses
on accuracy only) to extract useful information from databases.

On the other hand, under research is also the development of parallel automatiode
algorithms, in order to be able to treat very large data sets with adctep&sponse times [8].

3 Automatic learning methods

The present section focuses on the description of a subset of complementary muteanat

ing methods. Throughout this section we will use simple hypothetical examplesiradeaa
academic example database generated for power system stability asstssdicontrol, which

we first introduce. Next we discuss the main theoretical considerations veadiao the prin-
ciples of many modern automatic learning methods. Then we review the thredarmalies

of supervisedearning methods, and their combination into hybrid techniques. Finally, we end
with a brief discussion afinsupervisetearning methods and principles.
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Table 1: Spreadsheet view of a small part of the OMIB database

Pu Qu Pl VI Xinf Vinf CCT STATUS
SC5001 876.029 -193.660 -98.179 1.067 54.598 1.076 0.261 SECURE
SC5002  1110.880 -423.190 -119.300 1.119 58.228 1.112 0.162 SECURE
SC5003 980.132 79.722 -122.600 1.063  62.537 1.062 0.213 SECURE
SC5004 974.139  217.073 -100.520 1.015  64.428 1.010 0.190 SECURE
SC5005 927.198 -618.470 -100.000 1.020  42.557 1.017 0.174 SECURE
SC5006  1192.590 617.266 -103.460 1.073 51.230 1.065 0.199 SECURE
SC5007  1069.120 7.137 -109.460 1.016  66.446 1.010 0.129 INSECURE
SC5008  1189.200 905.121 -87.433 1.056  66.052 1.071 0.167 SECURE
SC5009 999.084 685.442 -107.870 1.109 59.726 1.110 0.272 SECURE
SC5010  1241.880 -442.250 -105.680 1.078 58.917 1.079 0.091 INSECURE
SC5011 845.574 816.962 -106.180 1.103 57.922 1.098 0.352 SECURE
SC5012  1151.250 10.003  -86.426 1.108  64.069 1.113 0.162 SECURE
SC5013 963.600 -312.430 -96.890 0.988  61.517 0.986 0.131 INSECURE
SC5014 721.150 155.468 -95.262 1.050  63.566 1.027 0.347 SECURE
SC5015  1135.190 320.912 -117.480 1.049 56.051 1.041 0.176 SECURE
SC5016 939.189  234.557 -109.450 1.100  49.913 1.110 0.293 SECURE
SC5017 923.754 294.472 -100.300 1.106 74.579 1.120 0.252 SECURE
SC5018 886.942 446.574 -87.805 0.950 57.044 0.950 0.230 SECURE

3.1 Academic example database

We will use an example of power system security assessment to ilistngdmatic learning
methods. We will discuss this problem and its subproblems in section 4. Let uly seyehat
the security of a power system denotes its capacity to react in a saiigfavay to unforeseen
events (short-circuits, outages, mis-operations, etc.). In preventive pamaer system security
assessment and control aims at taking decisions in order to obtain a $atisleel of security
while reducing operating costs as much as possible. For a large power systeactithty is
quite complex. Below, we will use automatic learning in order to deriveraplsi as possible
rules for preventive security assessment and control. For illustration mspoe will use a
very simple academic example, which is not at all representative of thplerity of real large
scale systems, but simple enough to make explanations easy.

Table 1 shows a spreadsheet view of a small part of a database related tosyeteen
transient stability assessment. The lines of the table correspond to theedifbbjects of the
database, which are representing different power system scenarioscdtacin corresponds
to a variable characterizing the scenarios : the first six columns will @& nsour illustrations
as input variables, and the last two as output variables.

Physically, the database corresponds to an acadsmeitnachine infinite-bus (OMIBpwer
system, composed of a generator, a load, and an equivalent transmission lingdedhmen
“infinite bus”. These latter two elements are a simplified representaf the remaining power
system to which the generator is connected (see figure 3). The first two eariablsure the
active (Pu) and reactive (Qu) power generated, while the third and foridiol@ measure the
active power consumed locally (Pl) and the voltage magnitude at the load BusTfé next
two variables represent the equivalent system strength in terms of vfltaxfleand transmis-
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Figure 3: Simple one-machine infinite-bus system (OMIB)

Conditional histograms of CCT-SBS vs SECURITY Temporal attribute OMEGA(t) of data base OMIB (18 scenarios)

Figure 4: lllustration of OMIB database content

sion system (Xinf). The last two variables shown in table 1 are meagthre degree of stability
of the system with respect to a given (fixed) fault at the generator bus: C@Xedethe critical
clearing time, which is the maximum duration of the fault without loss of synchrgriStatus”
denotes whether the system is sufficiently secure or not.

The complete database is composed of 10000 random scenarios simulated for this small
system. It is composed of two parts corresponding to two different assumpticesar®s 1
to 5000 correspond to a specific hypothesis where variables PI, VI, Xinf and \érdoaistant;
scenarios 5001 to 10000 relax this hypothesis (see Table 1). Thus the first part of tesdata
corresponds to a simpler problem than the second part of the database : the inputtsdige ac
reduces to two dimensions, since only the first two parameters are variable

Figure 4 shows two graphics illustrating the content of the whole database : heftpaat
contains the histogram of the distribution of values of CCTs, and its right hand hpasiss
some temporal attributes (curves) related to the mechanical rotor sp#eelgenerator when
submitted to a short-circuit (one can easily figure out the stable scenarmyaimse which
are shown as those which rotor speed remains bounded).

We will start by using parts of this simpler database in order to illustratematic learning
methods. Figure 5 shows two and three dimensional scatterplots of these firstcBdadics
of the database. The left hand part of the figure shows the (simple) relationshigeinanputs
(Pu and Qu) and symbolic output (security status); we will use this output vat@blestrate
classification methods. The left hand part, shows the relationship betiveemputs and the
continuous output CCT; we will use this output variable to illustrate regressbnigues.
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Figure 5: First 5000 random scenarios of the OMIB database (adapted from [21])

In order to be able to evaluate the capability of the models derived by autdesatiing to
predict correctly unseen states, we split our sub-database in two parés :a(learning sample
(LS) we use scenarios 1 to 3000 in order to build models; (ii) as a test saififlewfe use the
scenarios 3001 to 5000 to evaluate accuracy of models on unseen states.

3.2 Theoretical considerations

In this section we will briefly discuss the main principles behind automasiming. We rec-
ommend to read references [9, 10, 11] for a more comprehensive discussion of tetys
sketched below.

3.2.1 Learning principles

Whether automatic learning is formulated as function approximation or as contlipicia
ability distribution approximation, the main difficulty is to exploit corrgcthe information
provided in a learning sample so as to choose a correct approximation in the blypsémesis
space.

In this context, it is useful to distinguish among the situation where the hypotipesie &
small compared to the size of the sample, and the opposite situation where the bigsjihee
is very large. Actually, the former case is the usual situation considergdndard parametric
asymptotic statistics. The latter case is the one generally considettezinmore recent theoret-
ical work on automatic learning, and has led to new learning principles, for@edor neural
networks and decision trees.

In the large sample (and small hypothesis space) case, the prevailing grincitomatic
learning consists of minimizing the empirical risk. This amounts to choosing aslbogndi-
date models the one which yields the smallest deviance in the learning setthas straight-
forward to show that, under the assumption of independent learning samples, thiswilbdel
converge towards the best choice (within the given hypothesis space) when file baoomes
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infinitely large. (See, for example, [11] for a precise discussion of the meatitigmall”
hypothesis space.)

In the small sample case (or when the hypothesis space is very large), neiatig advis-
able to tradeoff the empirical risk with a measure of the complexity of theerhbgpothesis.
For example, in the case of decision tree induction this leads to so callechgmmeithods, as
will be discussed later on. The necessity of this compromize is relatée sotcalled “overfit-
ting” problem : a small empirical risk measured on the learning set does nasaeite imply
a small actual risk, measured outside the training set. This will be fuitthstrated below for
various types of automatic learning methods.

Risk complexity tradeoff. The two above extreme cases may be combined using a general
quality measure for automatic learning, which is of the following form

Q(H,S):RE(H,S)—G—QC(H), (7)

whereR.(H, S) denotes the empirical risk as measured on the learning sathigl¢H ) is a
measure of the complexity of the hypotheFisandg is a non-negative parameter depending on
the sought compromise. Typicallg,would decrease when the learning sample size increases.
The objective of automatic learning is then to sel8¢tin ‘H which minimizes(, given the
learning samplé.

The precise definition of the empirical risk will depend on the exact problem fatroal
For example, if the problem is seen as a function approximation problem, withrasgeare
error criterion, then we would use the following definition of the empiric# ris

R(H,8) = = [ Hiz) - yil - ®

On the other hand, if the purpose is to develop a conditional probability model, the useral cri
rion would be sample log-likelihood, i.e.

R(P.S) = = " log Plyfsi). (©)

Bayesian principle. In the Bayesian framework, the hypothesis space is first “decorated”
with a prior probability distribution, and the Bayesian learning principle cessiscomputing,
from these priors and from the learning sample, the posterior probability of any hgmythe
which serves as a criterion to evaluate candidate hypotheses. This turnstioaitfalowing
formulation

Qp(H,S) =log P(H|S) =log P(S|H) + log P(H) — log P(S), (20)
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where the last term is usually dropped since is does not depend on the chosen hygbthesis
The two first terms of this criterion are of similar nature than the twimseof equation (7): the

first term measures how well the sample is explained by the hypothesis, and:timel serm
depends only on the prior properties of the hypothesis (complexity in eqn. (7), probability in
eqgn. (10)). Also, a closer look at criterion (10) shows that the smaller theihgasample, the
bigger the weight of this latter term, and thus the less complex (or the more apobable)

the optimal hypothesis.

Minimum description length principle (MDL).  The MDL principle stems from information
theory, and more specifically, from data compression coding theory [12]. dsdfadt the best
hypothesis is the one which allows to represent the output information of the leataiag s
the most compact form, taking into account the coding of approximation errors in thanlga
set and the cost of coding the hypothesis itself. Thus the description length of thendada a
model is expressed as follows

DL(H,S) = DL(S|H) + DL(H), (11)

where the first term is the length of coding the errors of the model in the learning &e
eqgual to zero when the empirical risk is equal to zero) and the second tdrenriember of bits
required to code the model itself (it is smaller for less complex modelsg MDL principle
has been applied to many different automatic learning methods, and in particthe context
of decision tree induction [13, 14, 15] and pruning [16, 17].

It is clear that all three criteria essentially try to reach theséype of compromise : choos-
ing more complex models only if the explanation they provide for the learning stasegmifi-
cantly better.

3.2.2 Bias and variance

The recent work in automatic learning led to the rediscovery of a well krgveamomenon in
statistics, namely the “bias-variance tradeoff”.

The bias-variance tradeoff, which actually provides an interpretatiothéolkearning prin-
ciples described in section 3.2.1, may be simply stated as follows :

e any automatic learning algorithm computes a hypothesis which is a function of the lea
ing sample;

¢ the learning sample is random in nature, hence also the result of the autoraatiode
algorithm;

e the prediction at a certain point of the input space by an hypothesis found by automatic
learning is thus a random variable;
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Figure 6: lllustration of bias and variance

¢ the bias (at a certain location in the input space) is defined as the diffdretween the
desired value at this point (say the value predicted by the Bayes model), angh&utesl
prediction of the hypotheses produced by automatic learning for different samples of a
given size;

e the variance (at a certain location in the input space) is the square ddébetween the
average predictions of hypotheses and individual ones;

¢ both bias and variance contribute to sub-optimality, in the sense that both ireanl
hypothesis being different in the average from the Bayes model,

e for fixed hypothesis complexity, variance generally decreases when the ssizela-
creases, whereas bias remains constant;

¢ for fixed sample size, variance generally increases when the hypothesisezdnipl-
creases, whereas bias will generally decrease.

This is further depicted in figure 6 using a simple example where both input and output
spaces are one-dimensional. The two graphs are drawn for identical conditiorsdsgat
information, same learning sample size) except that in the left hand graphyritimexity of
the hypothesis is smaller than in the right hand graph.

The first observation which can be made from figure 6 is that bias and variarnyctoa
one input location to another. Thus, typically, variance is higher in regions whepeabability
to observe input variables is lower (e.g. close to the boundaries of the input Spadég other
hand, bias is higher in the regions where the Bayes rule has a higher curvature.

The comparison of the left and right graphs of figure 6 illustrates how variance asddyy
in opposite direction when the complexity of the hypothesis is increased.

In the recent years, the improved understanding of the bias-variance traglédti the
proposal of new algorithms aiming at fighting against bias with reduced variancdsvaoae
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fighting against variance with reduced bias models (see for example théulieecan bagging
and boosting [18, 19, 20]).

Bias-variance tradeoff by cross-validation. Whatever the approach leading to the chosen
quality measure, in many practical situations it is difficult to define isedg the tradeoff be-
tween empirical risk and complexity. In other words, the form of the measufaawn up to
the value of the parametgr which is typically problem dependent : intuitively, if the problem
is more complex, the value ¢f should be larger, and vice-versa.

Thus the appropriate value gfmust be identified from the available samples, using cross-
validation. In practice this leads to the following procedure :

¢ divide the available sample in two parts;

e using the first part of the sample and a sequence of candidate valdebufd a corre-
sponding sequence of hypotheses;

e using the second part of the sample, evaluate the generalization capabilaghohe-
pothesis and select the one which obtains the best performance.

This procedure will be illustrated below. Let us notice that it may be furtki@med in order to
make the best use of the available samples. Clearly, it results irtarcarcrease in compu-
tational burden since instead of building a single hypothesis it requires the buitigsyeral

ones.

3.2.3 Learning algorithms

Once the hypothesis space and quality measure have been defined, automatic leareipg m
amounts to an optimization (or search) problem. Depending on the structure of the hypoth-
esis space, different optimization techniques may be used : direct solutioisehy équa-
tion solvers (linear models with quadratic quality measures), nonlinear iaggtion, heuristic
search, enumerative search, genetic algorithms, or any combination ofébbsjties.

It is also interesting to distinguish between incremental and batchihgpstrategies. In-
cremental learning proceeds by using the individual learning samples in a sebjoamieer in
order to progressively adapt the hypothesis. Batch learning methods proceed bhesihgke
sample as was suggested in the preceding description. The advantage of indrevaamie
is to avoid storage of learning samples, which may become cumbersome in gpicataons.

Its main disadvantage with respect to batch learning is sub-optimaligrims of speed and
accuracy.

Part of the research work carried out in the recent years led to the dewaopirefficient
optimization procedures, as we will outline below.
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3.3 Main classes of supervised learning methods

Let us recall the objective of supervised learning :

Given a set of exampldgthe learning set (LS)) of associated input/output pairs,
derive a general rule representing the underlying input/output relationship, which
may be used to explathe observed pairs and/or predictitput values for any new
unseen input.

In automatic learning we use the teattributeto denote the parameters (or variables) used to
describe the input information.

In the context of electric power system security assessmemtxanplewvould thus corre-
spond to a state of a particular power system, or more generally to a sichdjatamic scenario.
The input attributes would be relevant parameters describing its eldctate and topology,
which can be either directly measured in real-time or can be computedia way from real-
time measurements. Outputs could be information concerning its securitkaiompée in the
form of a discrete classification (e.g. secure / insecure), or a numesmaiity margin such as
the CCT in our OMIB example.

Note. For the sake of simplicity, we will only describe the principles of th@uarautomatic
learning methods. For precisions concerning technical details of the methods illuskrali@w,
we kindly refer the reader to [21] where all the information required to reprodineeresults
shown here is provided.

3.3.1 Machine learning

Machine learningML) is a subfield of automatic learning concerned with the automatic design
of rules similar to those used by human experts (e.g. if-then rules). We silite onlyTop
down induction of decision tre¢$DIDT) and some of its variants, which form one of the most
successful classes of such methods [22, 23].

Decision trees. Before describing how TDIDT proceeds to build decision trees let us explain
what a decision tree is and how it is used to classify a state. Figurevsshioypothetical binary
decision tree (DT) for our problem using the two attributes Pu and Qu. The boldsan the
tree suggest how a hypothetical state (Pu = 1000 MW and Qu=-500 MVAr) traveesesé in

a top down fashion to reach a terminal node. One starts at the topnode and appiergisdy

the dichotomous tests encountered to select the appropriate successor. Whanal texde

is reached, the output information stored there is retrieved. Thus, for our hypatis¢éite the
conclusion is “insecure”. Note that the tree may be translated into an ésptigt of if-then
rules, one for each terminal node. E.g. the tree in figure 7 translates into #seimdicated
beneath it.
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Hypothetical state

Pu=1000MW
Qu=-500Mvar

Topnode

Pu <950 MW ?
yes
Conclude
5
Secure Qu < 0 Mvar

Terminal node
yes no

Equivalent If-Then rules :

[ Conclude ] [ Conclude } Rule 1 : If (Pu < 950MW) then Conclude Secure

Insecure Secure Rule 2 : If (Pu > 950MW) and (Qu < OMvar) then Conclude Insecure

Terminal node Terminal node Rule 3 : If (Pu > 950MW) and (Qu > OMvar) then Conclude Secure

Figure 7: Hypothetical decision tree and equivalent if-then rules (taken[Ran

Decision tree growing. Now, let us illustrate on our example how the TDIDT method will
extract from our learning set a number of classification rules in the form ofiaidedree.

Figure 8 illustrates the successive node splitting procedure. The procedurtaiized
by creating the topnode of the tree, which corresponds to thelffillas shown in figure 8a.
Note that the relative size of the dark and light areas of the box used to nepties¢opnode
corresponds to the proportion of insecure and secure states in the full learnj@@%etsecure
states vs 2091 secure states).

The method starts with a list of attributes (also cattaddidate attributesn terms of which
it will formulate the tree tests. In our example we use only two candidatbuttts (Pu and Qu)
since all other input parameters are constant in the first part of the database.

To develop the topnode, each candidate attribute (here Pu and Qu) is considered im
order to determine an appropriate threshold. To this end, the learning set éslspmereasing
order of the considered attribute values, then for each successivetatirddue, a dichotomic
test is formulated and the method determines how well this test sepae&i@® and insecure
states, using an information theoretic score measure. The score measuraalized, between
0 (no separation at all) and 1 (perfect separation). Figure 8b shows howdieevsgies in
terms of the threshold both for Pu and Qu at the topnode. Thus, the optimal thresholdgor Pu
found to be 1096.2 MW (with a score of 0.36) and the optimal threshold for Qu is found to be
—125MVAr (with a score of 0.09). Finally, the overall best test is identifiethattopnode to be
Pu>1096.2 MW.

Once the optimal test is found, the next step consists of creating two successsicoode
responding to the two possible issues of the test; the learning set is theiopediinto corre-
sponding subsets by applying the test to its states. The result of this stepesaed at figure
8c. Note that the number on the top of each node represents the number of corresponding learn-
ing states : 3000 at the topnode, 1026 at the first successor and 1974 at the second successor
Note also that the first successor contains a strong majority of insecues, staile the second
successor contains a very strong majority of secure states.
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Figure 8: Three first steps of decision tree growing (taken from [21])
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Figure 9: “Orthogonal” decision tree (end result) (taken from [21])

Stopping to split criterion.  Asis illustrated on figure 8d, the procedure continues recursively
to splitthe recently created successors, gradually separating the aedlinsecure states until a
stop splitting criterion is met. The stop splitting criterion decidestivbiea node should indeed
be further developed or not. There are two possible reasons to stop splitting a hatteyield
two types of terminal nodesleavesanddeadends A leaf is a node which corresponds to a
sufficiently pure subset (e.g. all states belong to the same class). A deadendde where
there is not enough statistical support for choosing an appropriate test. Stopgptideadend
nodes prevents the tree from over-fitting the learning set and hence allomethed to reach
a good compromise between accuracy and simplicity.

The end result of this procedure is the tree shown at figure 9, which partitionsathéelg
set into subregions defined by line segments orthogonal to the Pu or Qu axes; this “orthogonal

22



tree is composed of 18 test nodes, 12 leaves and 7 deadends.

Validation. Since the tree is grown to reach a good compromise between simplicity pnd se
aration of secure and insecuearningstates it provides a kind of summary of the relationship
observed in the learning set between Pu and Qu attributes and secassy &ut, how well
does it generalize to unseen states ? To answer this question, we use taede2060 states
different from the learning states and compare the security class pktictée tree with the
one derived from the CCT computed by numerical simulation.

Thus each test state is directed towards a terminal node on the basisngutsattribute
values (Pu and Qu) and applying sequentially the dichotomous tests encounteredtohsel
appropriate successor. When a terminal node is reached, the output majorityf theessorre-
sponding learning subset stored there is retrieved and the test statesifiediainto this class.
E.g. states reaching terminal nodes L1, L2, D1, L4, D3, D5, D6, D7, L7 and L10 arefedi
to be insecure, while those reaching terminal nodes L3, D2, D4, L5, L6, L8, L9, L11k2d L
are predicted to be secure. Among the 2000 test states, this yields 1954 cagsifications,

15 insecure states declared erroneously secure, and 31 false alararserm@r rate Pe of 2.3%.

Refinements. There are many refinements of the TDIDT method of interest in the context
of security assessment. First of all, decision trees may exploityedisitrete attributes (e.g.

to represent power system topology, or events) together with numerical ones méalyesiso

be generalized to an arbitrary number of (security) classes and to téstsnare than two
outcomes.

Another interesting extension consists of using linear combinations instead o sitagl
tribute (orthogonal) splits, yielding so-called “oblique” decision trees. Tdreyuseful when
there are strong interactions among different candidate attributes. Foplkexamour illustra-
tive problem we could use linear combinations among Pu and Qu, which should provide a more
efficient separation between secure and insecure states.

Figure 10 shows a tree obtained in this fashion. During tree building, we searsplits in
the form of “Pu + Weight*Qw Threshold” instead of searching for single attribute splits (in the
form of “Pu<Threshold” and “Qu Threshold”). The optimal splitting procedure is modified in
order to determine automatically both an appropriate weight and the optimaidlded each
test node.

The fact that the resulting “oblique” tree is significantly simpler than thétyonal” one
of figure 9 (only 6 test nodes, 6 leaves and 1 deadend) confirms our intuition. The tlee is a
much more reliable (no non-detections and only two false alarms among the 208tatest
i.e. an error rate of 0.1%).

Figure 10 further illustrates the difference between the two classdichbundaries induced
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Figure 10: “Oblique” decision tree and classification boundaries (adapted froin [21]
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by the two trees : a rather rough staircase approximation for the “orthogonalgraenuch
smoother boundary for the “oblique” one.

The only price to pay for this improvement is an increase in CPU time atré@egrow-
ing stage, since searching for linear combinations is more intricate thechsegafor optimal
thresholds. E.g. in our example it took 30 secénmsgrow the “oblique” tree and only 3
seconds to grow the “orthogonal” one.

In addition to “oblique” trees, other interesting extensionsrageessionrees which infer
information about a numerical output variable, dndzytrees which use fuzzy logic instead
of crisp logic to represent output information in a smooth fashion [24]. Both appreatioey
us to infer information about security margins, similarly to the techniquesigs®d below in
§83.3.2 and 3.3.3.

For example, figure 11 shows a (partial view of a) regression tree which apptexsitha
CCT of the OMIB system as a piecewise constant function of the machine rotor arle i
during fault period. Note that the shaded area and the number in each box provide idormat
about the mean and standard deviations of CCTs of the scenarios corresponding to each node
The top-node corresponds to all possible scenarios, whereas the terminal nodgsnodrtes
a subset of scenarios falling within a certain rangé (6f values. For example, the lower left
node corresponds to scenarios such &&ab0) > 54.2° andd(100) > 67.4°; for this kind of
scenarios the mean CCT value is 68ms and its standard deviation is equal t&cli9irely, the
lower right node corresponds to scenarios such&fidi)) < 39.5°; they have a mean CCT of
383ms and a standard deviation of 21ms. Thus, the regression tree allows one to ageroxim
the CCT from rotor angles in the during fault period; in our example this approximation is
actually quite accurate, the mean absolute error being about 2ms.

Finally, a recent research field in the context of decision tree inductionstsé temporal
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Figure 11: Regression tree (CCT functioniof))

trees [25]. These are decision trees which may exploit directly temptirddutes, in order to
classify a situation as early as possible in a certain class.

Salient features of decision trees. The main strength of decision trees is their interpretability.
By merely looking at the test nodes of a tree one can easily sort out the most adtlidtutes
(i.e. those which most strongly influence the output) and find out how they influence the output.
Furthermore, at the tree growing stage the method provides a great deal of adlidifiorna
mation, e.g. about scores of different candidate attributes, their correlatiodghe overall
information they provide to the tree.

Another very important asset is the ability of the method to identify the méstaet at-
tributes for each problem. Our toy problem was too simple to illustrateféaire, but in
large-scale applications less than twenty percent of the candidate airidme typically se-
lected while growing a tree.

The last characteristic of decision trees is computational efficienmeg :growing computa-
tional complexity is practically linear in the number of candidate attribatesin the number of
learning states, allowing one to tackle easily problems with a few hundwmedidate attributes
and a few thousand learning states. The use of a tree as a classificatiothaigsultrafast,
compatible with any real-time constraints.

Computational efficiency together with interpretability enable the method toskd in
an interactive trial and error fashion, so as to discover interestiimgmation contained in a
database and thereby gain physical insight into a problem. Below, we describedsiethich
are essentially complementary to decision trees and may be combineth&nthin hybrid ap-
proaches.
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3.3.2 Linear and nonlinear regression

This type of method aims at building essentially smooth input/output models. Most of the
smooth regression techniques may be viewed as a parametric model-fittingcpdrothese
approaches the hypothesis space is defined as a set of functions

H={f(,wy)|w, € W}, (12)

wherew,, is anm—dimensional vector of parameters (or weights) &ids a subset oR™.
The objective of learning thus reduces to the search of an optimal ugjuef the parameter
vector which would minimize the empirical risk (typically the mean squarer)

Rmeyélijaf@hwm%%y (13)

If the function f(-,-) depends in a smooth way on the parameter values and if the deviance
measure is smooth (these two requirements generally hold true), then thecahsk (13)
is also a smooth function of the parameter values. Therefore, these techgenezally use
gradient descent type of search techniques so as to minifizeth respect to the parameters
W,

One of the main difficulties with these methods is to determine the appropaiaiéy fof
functions suitable for a given problem. This problem is generally solved by definingtadhe
family of hypothesis spaces

Ho CHy CHaC .. (14)

such that the complete superset of these hypothesis spaces has some kind of “Lappecsal
imation capability” in a large enough hypothesis space

This means that for areyand any functiory € H, there exists at least omand one function
f € H; which ise-close tog, i.e. such that

R(f.g) = E{d(g(z). f(z))} <€ (15)

where the expectations are taken with respect to the probability measureddefi the input
space. Below we will provide examples of such hypothesis spaces in the contexititdyaul
perceptrons and projection pursuit.

Once such a family of hypothesis spaces have been defined, the supervised learnérg probl
then amounts to the two following subproblems :

Choice of structure : choice of one of the hypothesis spaces in the family,7¢ay

Parameter optimization : for a given choice oft{;, choice of the correct parameter vector

*

w;,.
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Figure 12: Structure selection by cross-validation

Clearly, the empirical risk minimization principle can not be appliedgarsh directly for
a model in the complete hypothesis space, since this would systematically leaer-fitting.
However, what can be done (and what is usually done) is to build a sequence of nawdels f
growing values of by using the empirical risk minimization principle, and then to select among
these latter the one which yields the best performance on an independent test set.

Figure 12 shows the typical behavior of empirical risk and test set risk aszh@fsthe
hypothesis space increases. One observes that the larger the hypothesis spaa#iehthem
value of the empirical risk on the learning set, which is normal since the hypetpmesces are
nested. However, on an independent test set the risk increases significaralerly large
hypothesis spaces. For example, according to figure 12, the appropriate hypothesis would be
the one found ir#,;, since above this level performance starts to decrease on the takiset (
is similar to the cross-validation technique outlined earlier to séftecappropriate value ¢f
in the quality measure).

Nesting strategies. There are mainly two types of strategies to define a nested sequence of
hypothesis spaces : bounding the structure, or bounding the norm of the parameter vector. Both
may be best viewed as the truncation of an initially very large hypothesis $paceising a

very large number of parameters). They lead to the following definition of éqeience of
hypothesis spaces

H; 2 {F (-, w) Wi € Wi (16)

wherei < j = W; C W;.

Bounding the structure the hypothesis space consists of forcing some components of the
weight vector to zero, which would correspondi@ being a subset ab,,, vectors with at most
i non zero components. This turns out to be equivalent to using a penalized quality eneasur
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like in eqn. (7), where the complexity of the model is proportional to the number of non-zero
weights.
Bounding the norm of the parameter vector would consi$tpbeing a subset of the form

Wi 2 {wy, € R™ : [lwn|| < M) (17)

where); is an increasing sequence of real numbers. This latter strategy is eqtitealsing a
penalized quality measure as in egn. (7), where the complexity measure is ogioxt the

norm of the weight vector.

Notes.

1. The careful reader may have observed that the hypothesis space nesting principle that we
have described here is similar to the principle which underlies decision tneemmy.

2. In the remaining part of this section we assume that the input variables are numerical or
have been coded as real numbers.

Linear regression. Within the above framework, linear regression amounts to using the fol-
lowing model

f(z,w") 2 27w + wy. (18)

Since this model is linear in the parameters, using a quadratic deviance mézails to a
guadratic empirical risk measure. The components of the gradient of the empsicalith
respect to the weight vector are therefore linear functions of the weight vétios the optimal
weight vector may be found by a linear equation solver, by solving the setiokar equations
OR,
ow;
wherew; denotes theé-th component of the weight vector.

=0, Vi=1,...,m, (19)

In many applications linear models may provide very useful results. Alsoammy cases the
number of learning samples may be considered to be large with respect to the hygsjihes,
and no complexity tradeoff is necessary. If this is not the case, one may tesbage-wise
linear regression, which amounts to applying the above nesting strategies poabiem.

The two main advantages of linear regression are computational efficienictheafact that
it doesn’t need very large learning sets to be tuned. For example, on the OMIEadata
simple linear model provides actually a rather good approximation of the CCTnis tefr the
two input attributes:

CCT = —0.0004362Pu + 0.0000776Qu + 0.635 (20)

which yields a mean absolute error of 8ms. The total CPU time required to tleisrmodel

using the 3000 learning states is of 200ms. Notice that actually, using only 10(hipatates
would have been largely sufficient: this results in the same accuracy &@RU time reduced
to 10ms.
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Generalized linear models. Unfortunately, many automatic learning problems may not be
handled well by linear regression only. Hence, we will review a sequence ofajieations of
this idea, starting with so-called generalized linear models, whiehher most straightforward
enhancement of linear models.

A generalized linear model yields the following form of hypothesis

[z, w) = Zwifi(ﬂfji)a (21)

where thef;(-) are a priori defined (possibly nonlinear) functions of one variableyéraenote
particular input variables.

The main difference with respect to the basic linear model is that this neodet restricted
to be linear in terms of the input attributes. However, it remains ling#r respect to the
parameter vector. Thus the same learning algorithm (direct solution of Bog@tions) is also
applicable here.

The functionsf;(-) are generally called the basis functions of the generalized linear model.
The set of basis functions used by a specific version of this method is callecctiondiy of
this method. In analogy to the orthogonal decision trees, we call this an “orthogonaltieaml
model, because the nonlinearity acts only along the axes of the input space.

Generalized linear models are actually not at all restricted to orthogoesl They can be
generalized one step further by

fl@,w) = > wifi(@) (22)

where the basis functions are defined in the multidimensional input space. Thaisfdath
yields the orthogonal model as a particular case.

For example, in the case of our example data base, we may obtain by an approprizge choi
of these functions, the following quadratic model

CCT = 0.962 —2.69 107%(Qu)? + 3.35 1077 (Pu)? — 2.68 105 (Pu)(Qu)
—0.001102Pu + 0.0001Qu,

which is significantly more accurate than the previous linear model (mean absotot of
1ms).

Let us mention that generalized linear models provide actually a very broaly faf mod-
els, including trigonometric approximation and multidimensional spline approximaifibe.
main difficulty with these methods is related to the fact that in high dimea$input spaces,
they require prohibitively large dictionaries to yield good approximation progerfier exam-
ple, a full quadratic model requirég“;—” + 1 parameters (wheredenotes the number of input
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Figure 13: Perceptron (neuron) and multilayer perceptron (adapted from [21])

variables), which becomes prohibitive as soon as the number of input variablesdselenger
than say a few tens.

This main weakness is circumvented both by multilayer perceptrons and by thetiomje
pursuit regression technique, which we describe next.

Multilayer perceptrons. Artificial neural networks’ development started several decades ago
with the work on perceptrons. Figure 13 illustrates the perceptron; this isaligsacsimple
linear threshold unit, thus able to represent only linear functions. Its linnéptesentation
capabilities have motivated the consideration of more complex models composedtipie
interconnected layers of perceptrons (multilayer perceptrons), which provideydlexible
family of models.

Figure 13 illustrates a typical multilayer perceptron (MLP). Each neur@ngsrceptron :
input layer neurons are fed with the input attributes; hidden and output layer neurong rece
linear combinations of outputs from neurons in the preceding layers.

MLP learning. In the context of multilayer perceptrons, the learning stage consists of deter-
mining an appropriate structure of the MLP and of identifying appropriate values diftbieent
parameters (weights and thresholds).

Choosing the structure consists of defining the number of neurons, the topology of their
interconnection, and the type of activation functions they use. Usually, it isndieted by a
trial and error procedure. However, nowadays there exist various algorithdetdrmine the
structure automatically.

The parameter identification task amounts to a (complex) nonlinear numerigaizgiton
problem, which may be solved by various techniques. Historically, the firstodevhich was
proposed was the so called “back-propagation” algorithm, which is equivalentxedadiep
gradient descent technique. Itis interesting from a biological point of view, therratefficient
from a computational point of view. Nowadays, one uses generally second order quasiNew
methods.
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Figure 14: Single hidden layer perceptrons (adapted from [21])

MLP parameter identification. In our illustrative problem MLPs can be exploited interest-
ingly to approximate the CCT as a closed form function of Pu and Qu. Generallyhdor
approximation of a continuous function, MLPs with a single hidden layer may provide good
approximators. Thus, let us try to approximate the CCT with such a structureledimeng
set used will be the same 3000 input states that we used up to now, and as in ddngrec
examples, we associate as output information to each state its CCT, ttzdhethe security
class.

Figure 14 graphically sketches the MLP that we have used, containing 10 hidden neurons.
Each hidden neuroinhas an input/output relationship of the form

Output = tanh(a; 1 Pu + a; 2Qu + 6;), (23)

wherea; ; (resp.a; 2) is the connection weight between the neuron and the Pu (resp. Qu) input,
andé; its threshold.
The output of the MLP is a linear combination of the preceding functions, i.e.

CCT= > Bitanh(a;1Pu+ a;2Qu + 0;), (24)

i=1...10
wheref; represents the contribution of neuroim the overall output.
The parameter identification thus aims at choosing appropriate values of the d:pasa
(o 5, 0;, 3;) in order to fit, for each learning state, the MLP output to the CCT valuemiated
by numerical simulation. The empirical risk criterion we use is the mgaarg error

3000

1 - 2
Re= o505 Z ICCT, — CCT,J?, (25)

i=1
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which is a smooth, although complex and nonlinear function of the parameter valueb, whi
needs to be minimized.

Before starting the learning procedure the parameters are all inidaizandom, then they
are progressively adapted in order to minimize the empirical risk. In ounpbeawe used the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization method.

At initialization, the random initial parameter values of the MLP yieldecu® of R, =
0.0689568683, corresponding to a root mean square (RMS) approximation error of 0.2626 sec-
onds, which is three times larger than the standard deviation of CCT valuss ligeirning set.

In short, the initial output values are random.

After 46 iterations the algorithm stops at a local minimum, having reduced tle val
R. = 0.0000003136, which corresponds to a very small RMS approximation error of 0.00056
seconds. The mean absolute error in the learning set is equal to 0.4 millisecbiutisisv
actually smaller than the accuracy of the CCT values determined by narsnwlation. Thus,
we deem that we are close to the global minimum.

All'in all, the parameter adaptation process took about 200 CPU seconds on gpditra
workstation.

The resulting closed form approximation of the MLP input/output function corresponding
to the final parameter values is as follows

CCT= -0.602710 tanh(0.000194 Pu — 0.00034Qwu — 0.93219) (26)
—0.401320 tanh(0.000822 Pu — 0.00020Qu — 0.76681)
+0.318249 tanh(0.000239 Pu — 0.00050Qu — 0.29351)
—0.287230 tanh(0.002004 Pu — 0.00034Qu — 1.20080)
+0.184522 tanh(0.000131 Pu — 0.00057Qu — 0.03152)
+0.177701 tanh(0.001799 Pu — 0.00011Qu — 2.08190)
—0.150720 tanh(0.001530 Pu — 0.00056Qu — 1.68040)
+0.142678 tanh(0.002152 Pu — 0.00046Qu — 1.72280)
—0.067897 tanh(0.001910 Pu — 0.00051Qu — 1.71343)

( )

—0.056020 tanh(0.000202Pu — 0.00085Qu — 0.39876

MLP validation. In order to evaluate the reliability of this approximation, we have used the
MLP to predict the CCTs of the 2000 test states. Figure 15 shows the distrilofiteorors; it

is clear that in this simple example the MLP approximates the CCT with lmgly accuracy.
Furthermore, we observe that the mean absolute error in the test set (0.4qgspigo the
mean absolute error in the learning set. Thus, the MLP generalizes vdripwealseen states.
However, the improvement in accuracy is marginal with respect tolibeeaquadratic model.
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Figure 15: Distribution of MLP approximation errors (test set) (taken frai)[

Consequently, the MLP can be used in order to classify states with raspgthreshold.
For example, with respect to the threshold of 155ms used in the decision trelessifies 5
insecure states as secure (their CCT is however very close to thiedltre$ 155ms) and makes
no false alarms, i.e. its error rate is of 0.25%.

Note that since the MLP provides a very accurate closed form approximation 6iGhe
its sensitivities with respect to Pu and Qu may be computed analytiG&lgse could in turn be
used to find out preventive control actions to increase the value of the CCT whénsveund
to be too small.

Refinements. Although in many problems a single hidden layer is sufficient, it is straightfor-

ward to generalize the MLP by adding any number of further layers. It is alsibp®$s use

other activation functions than the hyperbolic tangent, e.g. Gaussian or trigoncimettions.
Another extension consists of growing the neural network by progressively adding neurons

and/or layers. Pruning techniques, with fancy names like “optimal brain danaage’optimal

brain surgeon”, were also designed to reduce over-fitting by removing usel@ssctions and

neurons. There are even techniques (e.g. the projection pursuit regression methededis

below) able to adapt automatically the shape of the activation functions todhkepr features.
Finally, let us mention that the MLP learning algorithm may be used in an agapiiline

scheme, so as to adapt parameters whenever new learning states bedlale ava

Salient features of MLPs. Notice that the very high accuracy obtained in our OMIB example
is due to the fact that we used a very large learning set in order to approametteer smooth
function of only two input parameters, and that we have used a moderate number oégasam
in the MLP. Further, our OMIB database is free of noise.

However, in many practical large scale applications the conditions arealigriess favor-
able and it is not possible to reach this level of accuracy. Neverthdlik$zs are often among
the most reliable automatic learning methods.

Thus, the main characteristic of MLPs is flexibility in approximating nonlirfeactions in

33



multi-dimensional spaces.

This flexibility is however obtained at the expense of high computational burderaltfes
problems, when the number of inputs and hidden neurons is large, training times aréiytypica
of several hours to several days. At the same time, it becomes ratheultiti@ppraise and
interpret the type of input/output relationship represented by such an MLP, whicheheases
like a black box.

Projection pursuit regression. Projection pursuit regression has been proposed by Friedman
in the early eighties [26]. It uses the following form of hypothesis

M
H(z) =Y g w) (27)

where the functiongi; belong to a one-dimensional hypothesis space. The learning algorithm,
which we will not describe here for the sake of space, selects the followiagheters” : M

(the order of the model), and for eackl M, 3; (the weights of individual directionsyy’ (the
individual directions), and?;(-) (the individual one-dimensional models).

Thus, the model is similar in structure to a single hidden layer perceptrontheitmportant
difference that the activation functions are learned rather than choseoridogrthe user. Itis
not astonishing that the main drawback of this very sophisticated method is higlutadianal
requirements.

However, the method is very flexible and has the main advantage with respeattilayer
perceptrons to provide more interpretable results. In particular, the meténpterdowngraded
into an orthogonal projection pursuit model, which is quite easy to interprete andhenian-
plemented in a very efficient way [27].

Let us mention that in the recent years, work in projection pursuit regresseomaenly
focussed on the definition of appropriate one-dimensional hypothesis spaces. For example,
references [27, 28] describe an efficient method to derive one-dimensionalvseclinear
modelsH;, and how to exploit them effectively in the multi-dimensional learning problem

3.3.3 Nearest neighbor methods

All the methods described up to now (decision trees, multilayer perceptrajscpon pursuit
... ) essentially compress detailed information contained in the learningtsegeneral, more
or less global models (rules or real-valued functions).

Additional information may however be provided in a case by case fashion, byimgemn
unseen situation with similar situations found in the database. This mayleyed by defining
generalized distances so as to evaluate similarities among obpgtthér with appropriate fast
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Figure 16: 3000 learning states and nearest neighbors of state 4984 (taken from [21])

database search algorithms. Let us briefly illustrate the so-callatEarest neighbors{NN)
method.

KNN consists of classifying a state into the majority class among iteearest neighbors
in the learning set. In its most simple version, the learning stage aktis method merely
consists of storing the learning states in a table. The actual work (comphértistances and
sorting out theK” nearest neighbors) is done when the method is used to make predictions for
unseen states.

For example, in our illustration let us consider the state no 4984 of our databast (a te
state). Its values of Pu and Qu are respectively of 1090 MW-&2tlMVAr. Figure 16 shows
in its left hand part the location of this state in the attribute space togefltie the learning
states. In the right hand part we have zoomed on the nearest neighbors of the stattal
the points on the borderline of the zoom region are equidistant (Euclidean distance xéstt
state? One may identify on figure 16 the nearest neighbor, i.e. the learning state clotest t
test state (state no 2276 : Pu=1090 MW, Q3% MVAr, and CCT=0.157s). Thus, according to
the 1 nearest neighbor (1NN) rule, the CCT of the test state will be approxinweets7s and
it would be classified into the secure class. Note that its actual CCJuisl €0 0.158s; hence
the state is correctly classified, in spite of being very close to therisgboundary.

Validation. Repeating this procedure for all 2000 test states yields an error rate of 0.9%.
Figure 17 shows the distribution of CCT approximation errors. Comparing with fithireve
notice that the 1NN approximation is slightly less accurate than the MLP apprioammn

the other hand, the 1NN provides additional information to that of the MLP and the DT : the
distance to the nearest neighbors, attribute values of the nearest neighborgrampgenerally

any type of information attached to the nearest neighbors, like, for exampleabptieventive

or emergency control strategies.
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Figure 17: Distribution of 1NN approximation errors (test set) (taken from)[21]

Refinements. The basic refinement consists of usiAgneighbors instead of a single one,
K being determined on the basis of the learning set to increase reliabilitgn, |Since the
nearest neighbor rule is quite sensitive to the distance chosen, in manygirpagtalems it is
necessary to reduce the weights of less relevant attributes with téepeore relevant ones.
Thus, distance learning algorithms have been devised so as to choose autbniladieetights
on the basis of a learning set. A further refinement consists of using differémcesdefinitions
in different regions of the attribute space.

Salient features of KNN. The main characteristics of this method are high simplicity but also
sensitivity to the type of distances used. In particular, to be practicdlpadglgorithms must
be used to choose the distances on the basis of the learning set.

The fact that thé{NN approach is quite similar to human reasoning (recalling similar situ-
ations seen in the past) makes it also interpretable by human operators.

Combined use and hybrid methods. Now that we have described so many methods, which
all seem to be in competition, what is our message ?

The first remark is that, in terms of accuracy, while the ranking shown onllastrative
problem is quite representative of many problems, there are also manyiersepthus, al-
though in general MLPs are among the more accurate methods, and decision oroegress
among the rougher ones, this is not always the case.

The second remark, is that the methods that we have presented are essmntiplymen-
tary in terms of functionalities : decision trees and simple linear matelgasy to interprete,
and can be used effectively on very large databases in an interadimme. On the other hand,
MLPs are slow at the learning time, and even though computers become fastiaseer, this
remains essentially a batch type of procedure, which is also true for fdddtprojection pur-
suit regression. In the same way KNN is complementary to both types of methddsther
slow in practice.

The third remark is that nothing prevents one from using all methods in parallel on a
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database, and to select (if accuracy is the main focus) the method whiclkdgedhe best
results on an independent test set.

Finally, it is also possible to combine the methods in hybrid approaches. For exarmpte
decision trees result in an intimate coupling of techniques from recursiti#éiggang and nu-
merical optimization a la MLP.

More simply, it is possible to use classical decision or regression ridgeciion in order
to identify the most relevant attributes and then use these attribuiepusvariables to the
computationally more laborious methods. This helps to increase interpretantityeduces
computational burden. It may even lead to improved performances in teracswfacy [21].

3.4 Unsupervised learning

Unsupervised learning aims at discovering interesting patterns in a databighout specify-
ing in advance which attributes should be considered as input variables and attnichtes
should be used as output variables. In the literature on automatic learning umsunpyervised
learning methods have been proposed, such as clustering techniques, mixturetidistfits
ting, correlation analysis, self-organizing feature maps, Bayesian rietwassociations rules,
etc.

In what follows we focus on some methods which may be used in order to identify-coher
ent groups of objects or variables. Before describing the methods, let us briefigsisame
potential practical uses of these applications in the context of power systeysianal

3.4.1 Potential uses of unsupervised learning methods

Correlation analysis. This aims at identifying among a set of candidate attributes, groups of
attributes which are strongly correlated (see the illustration inee8.4.3). In power systems
this is quite useful, since in large scale applications the number of attridesesibing power
system scenarios may easily reach several hundreds of variables (e.gltdgey at all the
buses of the system, the power flows in all the lines of the system, etc.).

Thus, unsupervised learning may be used in order to find coherent groups of variables,
i.e. variables which essentially provide the same information about thergzend his in
turn allows one to reduce significantly the number of attributes to consider tbefuanalysis,
which results in better interpretability, lower computational requirgisieand often increased
accuracy.

Similarity analysis. Here the objective is to identify groups of similar behaviors. For exam-
ple, considering the left hand part of figure 4, one can easily observe that in the @dtbase
there are mainly two types of rotor angle behaviors (bounded and unbounded) which actually
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Figure 18: Dendrogram : correlation analysis of OMIB database attributes

correspond to the secure and insecure classes. In section 4 we mention soplasticated
application of clustering techniques in the identification of blackout modes of targa scale
power system.

3.4.2 Unsupervised learning principles

In unsupervised learning there are essentially two basic principles.

The first principle is based on a probabilistic framework : it states that ungapd learning
is a matter of modeling (unconditional) joint probability distributions in thelaute space as a
mixture of basic parametric distributions. A well known representativ@isfapproach is the
AUTOCLASS method [29], which is based on a Bayesian approach to probahitistieling.
The principles behind mixture distribution fitting are essentially the sdrae those that we
discussed earlier in the context of conditional probability model learning.

The second principle (the one which we will illustrate in what follows) is pugeometric.
It starts by defining a distance measure between objects, and then consitlargrap is a
cluster of objects which are as close as possible to each other, and at gnéirsanfer away
from objects not belonging to the group. The unsupervised learning algorithms based on this
principle thus essentially consist of searching the data for a certain numbgoad™clusters.
Below we will describe two different search strategies which may kd.us

3.4.3 Hierarchical agglomerative clustering

This method is particularly attractive when the number of objects to group isaddrge.

Starting with a set of objects, the idea is to build the clustering in a botfefashion, by
grouping progressively the most similar objects (or groups of objects) until only a grajie
remains containing all objects.
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The application of this algorithm to the OMIB database is illustrated on figurevhigh
shows a dendrogram summarizing a correlation analysis among various astritheesix input
attributes, the CCT, rotor angle and speed at different time instants¢g(tfJeband “omega(t)”
denote the value at timein milliseconds).

The dendrogram was built in the following fashion :

e computation of the linear correlation coefficients among all pairs of vasalhe num-
bers on the diagram represent the absolute value of correlation coefficients);

e definition of the similarity of two variables as the absolute value of theretation;

e definition of the similarity of two groups of variables as the minimum correhatioeffi-
cient of pairs of variables across the two groups;

e iterative grouping : starting with one group for each variable, recursiyedyp the two
most similar groups of variables until all the variables belong to the same group.

Thus, figure 18 shows, in particular, three groups of strongly correlated atsidum top
to bottom

¢ the two voltages Vinf and VI (correlation coefficient of 0.98);
e rotor angles and CCT (minimum correlation coefficient of 0.978);

e rotor speeds and Pu (minimum correlation coefficient of 0.997).

3.4.4 K-means

While the agglomerative clustering method is quite attractive for inteapos purposes, it is
mainly useful in order to group a moderate number of objects. The K-means method, on the
other hand allows one to group a very large number of objects into a given number of groups.

The algorithm (see e.g. [21]) is basically an iterative optimization teglei For a fixed
number of groups (sa¥), it first divides the set of objects intb disjoint subsets (using a
random guess), then it iteratively moves objects from one group to another inoidgrove
the quality of the overall clustering. The latter quality is measured byataé within scatter of
thek clusters : the scatter of a cluster is the sum of the euclidian distancesHeoobjects of
this cluster to the cluster center. The algorithm stop at the first locahmimi, i.e. when it is
impossible to improve the quality by swapping any object.

Figure 19 illustrates how curve coloring can be useful to analyze the resulidustaring
algorithm. A random sample of the OMIB database was automatically partition¢ide K-
means method into 15 classes, according to the values taken by the temipitwateat(t), i.e.
rotor angle temporal behavior. Thét) curves of the scenarios belonging to three of these
clusters are shown in figure 19.
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Figure 19: Clustering of OMIB scenarios according to temporal behavior of rotor angle

3.4.5 Hybrid methods

One of the difficulties with the K-means method is due to the fact that the userd@ifirse in
advance the number of clusters to search for. But this number is usually not knowh |edds
to a trial and error procedure to determine the right number of clusters.

Another possibility consists of combining K-means and agglomerative clusteriogler
to identify a correct number of clusters in the database. This leads to tbeifodj procedure :

o first use the K-means algorithm with a rather large number of clusters, sagde?0
and 100 (depending on the database size);

e then use the hierarchical agglomerative clustering method in order to arthbyzbs-
tances among the resulting cluster centers and decide for a new value of

e run again the K-means algorithm with the new (smaller) value of
e iterate this one or two times.

In order to illustrate this approach we have applied it to our OMIB data basst, #we
used a set of 3000 objects of the first part of the data base, and used an initial number of
20 clusters for the K-means algorithm. Applying the agglomerative clustergayitdim to
the latter 20 clusters yielded the left hand dendrogram of figure 20, which suggesés that
appropriate number of clusters would be 9.

Then we applied the same approach to 3000 objects of the second part of the data base
(which is in principle richer, since more parameters are variable)inAgarting with 20 initial
clusters, the approach yields the right hand dendrogram of figure 20, which suggests that the
appropriate number of clusters is rather 10 for this part of the database.
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Figure 20: Dendrograms of K-means results

3.4.6 Similar episodes and time-series

As we have illustrated above, in our applications there are many situattzere the similarity
measure relates to similar dynamic behavior patterns. In some casessstlubse already
illustrated, it is possible to translate time series (curves) intbore of real numbers and then
to use the euclidian distance between these vectors as a measure aftginditds approach
was used above, and was possible, mainly because the curves are all syndrtbeizbave a
common origin of time and a common duration).

However, in many applications the data is not represented in such a syisteragain the
database. Thus, it is necessary to define more flexible criteria to comparedries among
each other. Techniques which might be used for that purpose are for example sigriaf-trans
mation techniques (fast Fourier transform, wavelets, etc.), signallabore or deformation
based curve matching [30, 31, 32].

3.5 Other data mining tools

In this section we have screened various complementary techniques ta etranation from
databases, focusing on nontrivial automatic learning algorithms. Our objecs¢onprovide
a comprehensive and self-contained description of the main useful techniquésanditoday
at our disposal.

Of course, to provide a complete description of existing automatic learningithlgsris
impossible and not very useful. We have provided some references for furtderged some
places of the text, but here also we have limited our references to eghgbasic ones or
pointers to very recent work which might not yet be known.

Of course, data mining does not only use automatic learning algorithms, even though they
are at the center of the process. Typically, data mining software contama &sge number
of auxiliary tools and fancy user interfaces. In particlar, they should prdeitities to select
subsets of scenarios and variables, to visualize them easily and to sheowiéng results
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to the user. Many of these features have been illustrated through the exdhgtlese have
provided. Other features which are necessary for data mining, and which we ditsooss
are :

Data transformation and cleaning techniques :replacement of missing values, normaliza-
tion, windowing, identification of outliers;

Interactive definition of attributes : in order to allow the user to combine different ground
attributes into more sophisticated ones;

Automatic learned models : automatic learning builds new functional attributes and creates
new objects from those contained in the initial database; these new variatlebjects
should be incorporated in the environment in such a way that one can use them in the
same way as the other variables and objects.

4  Applications in power systems

We now discuss more in detail the applications of automatic learning and datagrtorpower
system problems. We start, in section 4.1 with an overview of those appfisatshich can
use automatic learning in one way or another. Then, in section 4.2 we will discugsim
detail the “study” applications which may use the framework of Figure 1, combiningé4ont
Carlo simulation with automatic learning. In this latter part we withygde some references to
publications reporting different studies in detail.

4.1 Overview of main application fields

In this section we screen through the main applications of automatic leamihdeda mining
in the context of electric power systems. Our objective is to illusttaadiversity of possible
applications and to suggest new directions not yet explored in detail.

4.1.1 Dynamic Security Assessment

Power system security assessment has the special feature that thesgatareagenerated by

computer based simulation, and this because the actual experience of instabifitrtunately

very small for most power systems. This is a laborious task but in the sare@h advantage,

being possible to generate as many scenarios as are deemed necessegyatpadicular task.
Possible uses of automatic learning to security assessment would be:

e providing continuous security margins for a given scenario: CCTs, load powermaargi
severities, global stability limits;
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¢ identifying the relevant attributes for the security class prediction off@angpower sys-
tem;

e determining if an operating state is stable or not with respect to a givdtn éa to a set
of contingencies;

e determining which operating points lead to a voltage collapse for a given contyigenc
e determining for a given operating state the faults likely to createbiigta
e contingencies ranking in terms of their severity for a range of operating conditions;

¢ identifying conditions characterizing pre-fault attributes of stable opeyatiates for a
given set of possible faults;

e partitioning all the possible scenarios into families of dynamic behaviors:estaol fail-
ure modes; determining criteria to identify failure modes in real-time;

e partitioning the power system map into voltage coherent behavior regions;
e searching for a specific kind of scenario;

e early detection of voltage risks for a given scenario;

¢ inferring means for control if an incipient instability is detected eangugh;

e extracting if-then rules from all the problems solved by means of machinaiear

4.1.2 Controller and Protection Design

In power systems, design problems mainly concern the identification of appeojotations
for some devices, their dimensioning and the tuning of some of their parametersalBpic
plications are: study concerning a new static VAr compensator (SVC) (the hagtagical
location, type and capacity, possibly parameters tuning), re-tuning the pararoéfgower
system stabilizers equipping some plants, selecting the number and locatiowforaasure-
ment devices, defining pilot nodes for secondary voltage control systems, tuning artraersf
tap-changer blocking device.

There is a variety of control problems, concerning centralized/local consafgerating at
different time-frames and acting on different physical variables. Thes&ollers need to be
robust with respect to changing characteristics of a power system, dueatioraof load level
and topology. Since the latter are generally non-linear it is necessary tonusiatgon tools
in order to validate controller robustness and sometimes tune them. Autdeaatticng can be
used in order to make such studies more systematically, taking bettertaggaf simulations.
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A automatic learning process applied to the above SVC design problem shoulditttaine
identification of the electrically “coherent” regions in the system. A $mamber of voltage
coherent regions may be found out by means of unsupervised learning, analyzing correlations
among voltages at different nodes of the system. Then, a more refined analysisdivttrial
voltages in each region would allow to identify “central” buses where tlegadl behavior of
the zone is best observed. To study the best substation to place the SVC and to filicbut w
parameters of the operating point would influence most strongly the behavior of the device, a
new data base is generated by random sampling different possible locations,ngpeoatili-
tions, assumptions and modelings (steady state, small signal, large dists)bamckvarious
automatic learning tools may be implied. In order to finalize the design, a thoreé nefined
study could be carried out for fixing SVC parameters: several possible sidggsaaameters
could be screened out.

Adaptive (control and protection) systems are an alternative to robust desigisler to
cope with the variety of operating conditions under which such systems must op&uate.
matic learning would allow one to determine the parameters to which the aptontrol law
of a plant is most sensitive and then learn the scheduling rules to selegipttopaate control
law in real-time.

4.1.3 Modeling

In order to carry out simulations, be it for security assessment or desigmficburse neces-
sary to build up models; while many components in the power system may be moattied
accurately, by choosing model structure from first principles and using cassentification
techniques to determine parameters, some other parts are intrinsichtylditb model, ei-
ther because they need to be represented in a reduced way (this is tygeatigse of load
models and external system models), or because they change with time (due torabjorg a
modifications carried out during maintenance operations) or they vary signifidemthyone
geographical region to another (due to weather conditions). We believe that agttaaating
could be a very useful tool in order to improve the latter type of models, andafsortitor the
former ones in a systematic fashion in order to develop better models.

Data to be mined can be available in this case by recording information feairtime
measurement systems and disturbance records. By data mining tools, it would ibegoss
estimate how accurately their derived model approximates real-Bfehow much uncertainty
remains which is not explained by the model. And this information may be used iartkex¢t of
problems using data base generated by means of these models. For example) ateedard
deviation of the security margin in a generated data base, due to uncertahgymodeled load
distribution, translates into inevitable classification errors whemdryo assess the security
class of a scenario. Then we know that, for minimizing these errors we shguia tnodel
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more accurately the load, rather than to further search for improving datagmnethods.

4.1.4 Estimation, Identification, Forecasting

In order to build up and maintain statistical models about load patternsumeaent and sig-
naling errors, data gathered in control centers archives may be exploitedinyadiatlearning
tools.

Short-term load forecasting is one of the areas very investigated fropotheof view of
neural networks application (supervised and unsupervised). In this context, a datadas
be easily updated to contain past load demands and past data about some typical liactor
cal/global weather conditions (temperatures, winds, humidity), type of the hour, type of t
day, tariff strategies, social events like national days off, strikéeing this type of data gives
a better understanding about what parameters are more important for the loachaydloiy
different geographical regions act from the point of view of weather conditions and how this
influences the load, and accurately predict the load demand for a given nevosi{3ai.

An interesting area for research concerns very short teodal load forecasting, to be
used in enhancing real-time system monitoring and security assessmenpr8dicted values
would enrich the information exploited by state estimators, providing the esjpgdundancy
to detect topological errors. Further, obtaining a 30-minute prediction of the indiviaiaghl
demands would permit security assessment on predicted state rather tha iofopaation.

4.1.5 Monte-Carlo based Planning

In the off-line planning environment, engineers use Monte-Carlo simulations im toreesti-
mate expected values of quantities such as operating costs and load-cutt&lnfature op-
erating conditions. It consists of using random sampling to screen possibleigsetaording
to their probability, together with numerical methods to compute for each sodharoper-
ating cost and amount of load curtailed, and averaging the values for the sichstatearios.
Presently, most tools used within this context compute only global sampleistafasterages,
standard deviations, quantiles) of important quantities chosen by the engineerpbuatay
the details concerning each individual sample.

Preliminary investigations show that much richer information can be @etleby storing
the results from individual samples (simulated operating scenarios) in dasea and further
analyzing the latter by automatic learning. For example, this approach allows aletect
outliers (which are often responsible of high variance and bias in the estjratd lets the
engineer judge whether or not they must be taken into account. Also, by carrying outaystem
studies of relationships (correlations) between different output parambeégtsr insight into
the physical structure of costs and other decision variables can be gained, wdmtiedly will
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lead to better strategic decisions.

Automatic learning can also be used in order to compare the distributions ofaset
scenarios and those encountered in real life, which in turn leads to immpemnis in the proba-
bilistic models used in the Monte-Carlo simulations. Furthermore, by cayiut the analysis
of variance of output parameters, it is possible to find out in which region of thglsanspace
variance is higher, and thereby to define more efficient sampling schemdse &arne way,
regression techniques may be used in order to build automatically approxmpatéoutput
models which can then be used as control variates in order to further redisreced34, 35].

4.1.6 Monitoring

Monitoring is a very broad application field, ranging from the monitoring of the individual
devices and plants, to sophisticated system monitoring. The purpose is to deteclyass
possible when a system departs from its normal conditions. It includes many oftigesc
of a control-room, in particular security assessment. Power plant monitdmimger, reactor,
dam), transformer monitoring, and system oscillations monitoring are apphsatvhich can
make use of automatic learning.

In particular, recently temporal decision trees have been proposed as apragiprtool for
monitoring, given the dynamic time-varying nature of attributes and the abiltgngporal trees
to early predict modes of bad behavior (e.g. fast electromechanical transigiierm voltage
collapses, cascades of overloaded line tripping, etc.) [25].

Some of these applications have already received attention from ressatmitanany pos-
sibilities still remain to be explored. In particular, so as to respongdrésent un-bundling
trends, future system monitoring will mostly rely on hierarchical approadhehis hierarchy,
the lower levels will correspond to local monitoring of plants or sets of planiadividual
generating companies or load aggregators, and the higher levels will correspecdritysand
transaction monitoring at the system level. At the lower levels, the proll#l be to monitor
system changes which may impact the functioning of local plants, from local infamand
possibly global status information obtained from the upper level monitoring systeantheA
upper levels, the problem will be to use global information together with outputs dfrtowa-
toring systems in order to provide an overall picture of the system, and igémige abnormal
states which cannot be identified from local information only. Which inform&aboshare be-
tween lower and upper levels, and how to make the best use of it will be threquastions
to solve. We believe that probabilistic simulations, together with autaentedirning and other
intelligent information processing approaches may provide valuable tools irothtisxt.
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4.2 Application to power system design, analysis and control

Among the applications of automatic learning just discussed, we may distingwostideses
according to the nature of the databases used : (i) applications using dataeddilewst the field
(modeling, state-estimation and identification, monitoring); (ii) applkceirequiring numeri-
cal simulations in order to build databases (security assessment, tardedign, planning).

Here we focus on the latter class of applications. They are on the one hand morexgompl
since they need software and models developed for the generation of the dat@ebesother
hand, due to the fact that the database generation is under the control of the engimese in t
applications there is increased flexibility.

Below we will outline the overall approach used to study electric poweesys through
computer experiments. The main idea is to take advantage of existing compuotgatsin
tools and physical models together with automatic learning. The bridge betweentloese
techniques is provided by Monte-Carlo simulations, which exploit existing stroaltools in
order to produce information which may be exploited by automatic learning.

First of all let us discuss the nature of the different problems encountered irettieofi
power system design, analysis and control.

4.2.1 Introduction

Let us first recall that power systems are complex, large scale, highly nanine uncertain
systems. The satisfactory operation of a power system requires extetusliessvith highly
diverse horizons. To illustrate the complexity of the decision making procatsss focus on
security assessment and control, which is certainly one of the most diffredilatathe same
time important problems faced by power system engineers.

Security assessment and control aims at making decisions in differenhtnmns so
as to prevent the system to experience undesired situations, and in paticaiaid large
catastrophic outages. Traditionally, security control has been divided in i categories :
preventive and emergency control (EC).

In preventive security control, the objective is to prepare the system wissstill in normal
operation, so as to make it capable of facing future (uncertain) events tisiact@ry way. In
emergency control, the disturbing events have already occurred, and thus theeltjectimes
to control the dynamics of the system in such a way that consequences are minimized.

Security related decision making starts in (national or internatiorguijaéion bodies which
define security criteria and auditing principles, and ends by paying back custametsave
suffered economic loss due to insecurity. Let us briefly enumerate the sty agppear in a
logical sequence.

Security standards. The explicit definition of security standards is needed in order to set tar-
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gets for security control. Clearly, security standards will depend on theptajed by
the electric energy system in the overall economy, as well as on politicates. The
standards definition must comprise the specification of the desired levelbadility,
of the means associated to reach the stated objectives, the rulet@tiall resulting
costs and the auditing mechanism used for verification. Generally, at ¥Rigtlés also
decided which entities (private or public) are technically in charge ofimg#te security
standards.

Research. Research basically aims at understanding how electric power systemsepeha
order to provide predictive models which may be used at the different level<isiate
making. Today, the trend in research is clearly towards exploiting infeom&tchnol-
ogy (computation, database management, communications), which provides means for
improved modeling and security control. Let us notice that since the elpciwer sys-
tem is essentially stochastic, modeling should address both physical and pstizabili
aspects.

Long term investment. Formerly, in the integrated framework, investment decisions were gen-
erally taken in a coordinated way, combining expansion of generation and tssismi
subsystems in an optimal way. Today, in order to favor competition, in mostragst
the investment of generation is a matter of independent decision making basdyl onai
business opportunities. Hence, the transmission system investment mustifotrder
to maintain desired levels of security. Building new lines is for the fommg almost im-
possible in most developed countries, thus investment might probably focus on improving
power system monitoring and control, by exploiting modern communication possgilitie
and power electronics.

Maintenance planning. Decision making aims at choosing maintenance plans in such a way
that availability is maximized in periods where higher traffic on the sysseexpected.
Again, since the generation subsystem is operated independently by a certain number of
agents, there will be increased needs for probability methods in order to manage unce
tainties. Also, in order to reduce uncertainties it will be necessary todre reactive, in
order to adapt maintenance plans smoothly, as information becomes available.

Transaction planning. In short term (one day ahead, typically) transaction planning, the sys-
tem structure is essentially fixed and the objective is to arbitratengroonflicting trans-
actions without discrimination and while ensuring system security.

Operation. In the control room, the operator receives real-time information which id urse
order to coordinate the scheduled transactions, while reacting to unforessen (lis-
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turbances, outages, unexpected behavio). Part of the operators’ job will be to handle
‘slow’ emergencies, e.g. related to thermal overload problems or sittage collapses.

Emergency control. In this category we focus on automatic control actions such as generation
tripping, load-shedding, controlled islanding We will further elaborate on this in the
remaining part of the paper.

Restorative control. This aims at re-energizing the system after an event which has led to par-
tial or total blackout. Efficient restorative control is necessary in cierinimize outage
costs. Clearly, strategies for restorative control need to be coordingife@mergency
control schemes.

Post-mortem analysis. Generally, after a major blackout it is necessary to find out the main
causes and to evaluate the outage costs incurred by the users of the transsygtsion
Post-mortem analysis will be easier if the appropriate information has berea sluring
the disturbance and is made readily available to the analysts.

Financial compensation. After a major event, it is generally the case that some users should
be paid for the economic losses they have incurred due to the consequences of the outage
on their business. The inputs to these decisions are the results of post-mortgsisana
contractual agreements (possibly) and the rules for compensation defined inuhty sec
standards.

Thus the decision making process is by itself rather intricate. On the otherthargpes of
problems considered in power system security are essentially rare edifitult to model, dif-
ficult to predict, but they may potentially have very important human, ecologi@heconomic
consequences.

Given the complexity of the overall security problem, at each one of thessolesteps itis
generally decomposed into a number of simpler subproblems. Given the fact thatblens
are most often related to rare events, they generally require siobkaithniques (tailored to
the considered subproblem) to answer “what if” type of questions.

However, in spite of the uncertain character of power systems, the use obpisitzaap-
proaches was in the past essentially restricted to long term planningappis and even in
this context their use has been quite marginal. In most applications, problems lrgesiaived
by combining human expertise and systematic screening techniques. Howetier|ast few
years, the probabilistic framework described in this paper has receivemngrnumber of
practical applications.
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Figure 21: A priori information : probabilistic model and physical model

4.2.2 Computer experiments for power system analysis and design

The approach consists in two main steps : database generation using MotstQathtions
of dynamic behavior scenarios, and database analysis using automatic learning .[360t87]
that the Monte-Carlo approach is well suited to the intrinsically probaicilsiture of the prob-
lem (think about the random nature of external disturbances, failures of protectiaeslevi
mis-tuned settings, etc.). On the other hand, automatic learning techniquéy aefifition)
designed so as to separate predictable information from the random component.

As sketched generically in figure 21, the Monte-Carlo simulations requirenadels : the
probabilistic model (for random sampling), and the (dynamic) physical model (for nuatheric
simulation).

The probabilistic model (see figure 21) represents a priori knowledge about initiatiogera
points (OP), external disturbances and inputs (ED) and other modeling parameteits aisly-
namic simulation (MH). Notice that this scheme allows one to representlpifities of failures
of protection devices, ranges of possible model parameters of external systeguyseyaded
load areas, etc. All this information is symbolized by a parameter véktorfigure 21) which
defines a simulation scenario, and is fed later on into the physical model, intorsienulate
the corresponding trajectory.

In our discussion below, we refer to the design of defense plans (i.e. the desigewitjon
schemes against blackouts) in order to illustrate ideas. For a more det&@ission of this
problem, and of the actual study carried out on a real large scale systenfenthednterested
reader to reference [37].

4.2.3 A priori models.

The design of the probabilistic model is generally the most difficult and at the saradhe
most important modeling step in this approach. The chosen probability distributmarporate
all prior knowledge as well as the definition of the range of conditions which the studytaim
cover.
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Figure 22: Information extracted by AL : expected value of future severityngdest measure-
ments

As usually, the dynamic model is a set of differential and algebraic equations wéime
the analytical relationships among states, parameters, time, measisdjoienoted by(¢) in
figure 21) and scenario severity indicators (denoted(byin figure 21).

Since there is a large variety of problems in power systems which may bedsoyvthe
discussed approach, the a priori models (both probabilistic and physical) willlgatepend
strongly on the particular application under consideration.

For example in the context of defense plan design, both models would be rather detailed
[37]. Measurements would be all those variables which can be used as input rigeanye
control schemes, whereas indicators would denote the information which would beezbser
about the severity of the scenario under different hypotheses of control actions.

4.2.4 Database generation

In order to reduce the number of required simulation scenarios, the Monte-@andisg may
artificially increase the probabilities of various types of failures, amgota only combinations
of severe disturbances. In other words, the probabilistic model may be biasettim@sam-
ple predominantly those regions in the measurement space where the varianceevkttitg s
indicators is high. In the literature on Monte-Carlo simulations there areralewell known
variance reduction techniques which may be used for that purpose (see e.g. [4s@titkal
literature on optimal experiment design [38]).

However, the coupling of such techniques with automatic learning is moreatgrand
there is still much work to be done in this field (see also the literature orydpased learning
and reinforcement learning).

For the time being we used the approach by biasing the probability distributionsad an
hoc way, so as to concentrate the simulations in the regions where prior expditises that
most information can be gained. Note that without biasing the random sampling it would be
necessary to generate huge amounts of scenarios in order to gather somengtbtaskiout
situations. However, while biased probabilities were used for the randomplisgmtrack of
the “actual” probabilities may be kept while generating the database so asteecorrect
interpretation of the results.
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Figure 23: Parallel simulation of scenarios (taken from [21])

4.2.5 Numerical simulation tools

In principle the approach can be used with any numerical simulation tool desuffedently
accurate for the problem under consideration.

Note however that in the context of defense plan design, a rather detailed dynadet m
should be used, able to simulate both slow and fast dynamics and various pralegtoes, so
as to assess the performance of the system with good accuracy.

Thus, the database generation generally calls for parallel computations in@tikeable
to carry out several thousands of dynamic simulations with acceptable respoese th the
study on the EHV system of Electricité de France described in [37], 12 CRUsthwus used in
parallel for the simulations, using a master slave architecture dejictigdire 23.

4.2.6 Flexibility w.r.t. prior assumptions

Note that in traditional practice, in order to cope with the overall complexfi the problem,
the experts use a divide-and-conquer approach, where the problemrisri decomposed
into simpler subproblems on a geographical and/or phenomena-wise base. If the system is
undergoing changes this may be misleading, since expertise becomes more quickly obsolete
and the “chance” of missing some potential risks is increased.

In the proposed approach, the principle is quite different. The problem is addressed a pr
in a global way : the Monte-Carlo probabilistic model is designed in order to septaall
reasonably possible causes of collapse (together with their relative progamlil the dynamic
simulation model is designed so as to allow the study of both slow and fast phenoifena
geographical and phenomena-wise decomposition is carried pasteriori by looking at the
database of simulation results with the help of automatic learning. Thissaoe in principle
to study interactions among various phenomena, if they happen, and to identify thekelgst |
consequences in a more objective way.
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However, during the database generation it is not necessary to restrashthent of infor-
mation which will be stored and available later for analysis. Actudilys advisable to keep
trace of all variables which could be used either as real-time measutsifinputs to emergency
control device triggering criteria) or in order to define the scenario sgvérite data mining
tools offer the possibility to combine these variables in a very flexible wagrder to build
synthetic models. Note also that input and output variables may be either nursentalious
(analog states and measurements) or discrete events (fault occuréagetipping, breaker
opering/reclosure. . ).

4.2.7 Extraction of knowledge for practical applications

Engineers trying to solve power system related problems should look at the whddexadl
data mining methods, and not hesitate to combine different techniques to yield@dlical
solution. Data selection step may be performed with a decision treestechg approach, or a
correlation analysis and later on, the result may serve as input for other sguet@chniques,
possibly with the problem decomposed into simpler subproblems.

In order to show the interest of extracting synthetic information from a dag¢adfasmula-
tion scenarios, let us continue with our example of defense plan design.

The objective of a defense plan is to trigger control actions in real-time so avoid large
disturbances to spread throughout the power system and to result in total bladkewgbnirol
actions used by defense plans are generally heroic, and most often they regdbimecting
generators and customers for a certain duration in order to bring the systennmlmeckable
operation. Therefore, defense plans should be designed in such a way that they ivdinal
only if required, and it is of paramount importance to design effective triggetilesg, using
appropriate real-time information.

In order to design a triggering rule, it is necessary in some way to prédictture values
of the scenario severity, given present and past values of measurementt general,s
andy are random variables (actually random processes). Thus, at some, tangy/nthetic
model is used to predict at some future timet’ > t, using the already observed values of
measurementgz(7) }-<;. This is suggested in figure 22, where the estimate is provided by the
conditional expectation of this random variable given the already observed ehlugsotation
(") = Es:{S|{z(T}r<}})-

Such a prediction model provides normally only an approximation of this conditional ex-
pectation, which, because it can not be computed analytically in practice,bawestimated
from a random sample of input/output pairs. Thus, as it is suggested in figure 22, the design
of such prediction models is carried out in the presented approach applying acttEaating
to random samples generated by Monte-Carlo simulations. As we have alreatipmed, this
requires, for each variable which has to be predicted, the proper identificdtielevant mea-
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surements (those parts gfvhich carry indeed information about the future value pand the
design of a synthetic model which will estimate severity as precisgipssible.

Notice that in practical applications bothand s are vectors of variables which combine
discrete (breaker status, relay trip, etc.) and numerical informatatafe magnitudes, amount
of load shed, etc.).

In order to exploit a database such as the one used for the design of defense plans [37],
several automatic learning techniques can be used :

e correlation analysis, in order to reduce the dimensionality of the input vedtothe
study described in [37], the number of candidate (temporal) input variables was more
than 800, yielding a database of about 2 Gigabytes);

e clustering analysis, in order to find out the main modes of system breakdown (in the
study described in [37], about 40 modes were identified, by repetitive applicatidims of
K-means method);

e supervised learning in order to build models able to predict various modes obhtack
from real-time measurements (in the study described in [37], temporadioedrees
were grown in order to detect early enough voltage collapse in one part of thenyyste

4.3 Main contributions of the approach

The automatic learning based approach, combined with Monte-Carlo simuldtasiseen ap-
plied during last ten years to a number of large scale power system problernss. afiications
first started in the context of research collaborations between the Unyansl some electric
power utilities. Since a few years now, the approach is used by ElegtiieiErance in order to
carry out various operational studies.

Below we start by briefly enumerating the type of studies which have beerdaut, pro-
viding pointers to related publications. Then we will discuss the main compilmyefeatures
of this approach with respect to other techniques used in the context of power systalysis,
design and control.

4.3.1 Sample of large scale applications

Transient stability. The first large scale application was carried out in the context of transient
stability assessment of a large nuclear power plant of Electricité decEr[39]. This was
followed by a similar study to determine transient stability limitste lames’ Bay corridor of

the Hydro-Québec system [40].
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Neither of these early research projects has resulted in an actuahmaptation in the con-
trol center. However, they contributed to demonstrate the usefulness ofttadl onethodology,
to develop software tools and bring the methodology to a sufficiently mature stage.

Voltage stability. Applications to voltage stability have been carried out mainly in collabo-
ration with Electricité de France. The first study was carried out olWhastern part of this
system which experienced voltage collapse in the past. Most of the details oésleiarch can
be found in [41].

After this initial collaboration, Electricité de France started te tise method in various
studies, and in particular in order to define new operating rules [42] for the SosthrEgart
of their system : these new rules are in use in the control center since earlylh39& year,
they allowed Electricité de France to reduce operating costs by abouli@wdibllars.

Emergency control design. The early work in emergency control focused on voltage col-
lapse problems [43]. Later on, a long term collaboration between Eleetdeifrance and the
University of Liege started in order to apply the methodology to study poweemsystackout
modes and enhance the overall emergency control system [37]. More receetlyijdie de
France has used the approach to improve some of their emergency control schémes [

Under research. Presently there are other topics under investigation, in particular the design
of global security limits for the Belgian power system, in collaboratiom\iitectrabel, and the
analysis of operating costs structures, in collaboration with Ele@&rilgtFrance.

4.3.2 Main complementary features

Numerical simulation tools provide very detailed information for each ondefsimulated
scenarios. Up to now, power system engineers used these tools in a very faahigal. They
had to build up by hand each simulation scenario, run the simulation tool, theratabie
results in order to see how the system behaves in this particular simulztenmge the scenario
specification and input files and run the simulatore again to see the effect.

This iterative process has essentially the limitations of human expéesyumber of simu-
lations which can be run and exploited is quite limited, essentially by the hoayabilities to
analyse the results and synthesize them in a synthetic manner so as to defiloa deaisng
criteria. Also, in this process the conditions under which the system is sidudae not de-
fined explicitly : they depend on the successive steps and quite strongly on thesexpktihe
engineer in charge of the study. To make the whole process tractable, the engeresaly
decompose a large problem into simpler subproblems according to the prior knowledge about
the problem.
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Today, power system behaviors become more and more complex. Expertise is thus becom-
ing more quickly obsolete, and may very easily become misleading. On the otherthand,
complexification of the systems makes their propper design and control even messargc
than in the past. However, the classical way of conducting studies does nott@liocrease
significantly the number of simulations which may be carried out.

The approach presented in this paper makes studies more systematic, and videspro
an appropriate way to enhance the decision making process. It can eas#iyupctl very
large numbers of simulations, if required. Indeed, most of the laborious tasks arearrged c
out by the computer, or in parallel by several computers, if necessary. Mpaatantly, the
approach obliges the engineers to model the probabilistic nature of their problem g a ve
explicit fashion and to define precisely the scope of a study. Therefore, thesrelstdined are
more transparent, can be easily reproduced and updated if necessary. They atsguless
strong prior assumptions and are therefore liable to provide more objectiveodemiseria. At
the same time, using appropiate techniques to extract infromation from theionidcenarios,
the approach makes it possible to enhance human expertise.

Finally, the approach is intrinsically a probabilistic approach. It is tleeestble to take
into account the numerous uncertainties which make power system operation arad sontr
difficult.

5 Conclusions

This paper has presented a new approach to use computer experiments to study cgsaplex s
tems. This approach combines probabilistic modeling and reasoning, with alasstierminis-

tic simulation techniques in order to analyse, design and control complex systeensore of

the approach is provided by a toolbox of automatic learning methods which are usecath ext
information from databases generated by Monte-Carlo simulations.

The approach has been developed in the context of electric power system appudidating
the last 15 years. In this field it has already provided practical solutionartous difficult
problems.

Besides describing the main principles of the approach, one of the aims of this paper wa

to suggest that this approach could be applied to many problems in the general contert of
plex systems. Indeed, many other complex systems built by engineers leatdléo problems.
For example, the design, operation and control of telecommunication networks, comgter
works, chemical and mechanical plants, could take advantage of the combined imalaf s
tion, Monte-Carlo sampling, and automatic learning. We hope that this chapteowilibute
to raise interest in this methodology by experts of these application fields.

Nevertheless, although the approach has already evolved significantly durilagtew

56



years, there is still a lot of room for research. In particular, from the #teal viewpoint we
mention the combination of optimal experiment design ideas with automaticrigaand the
very broad area related to learning from temporal databases. From thiegirpoint of view,
we believe that one of the main outcomes of the approach will be to allow the use ob pisdiza
techniques in the context of non-linear complex system analysis, design and control.
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Figure and table legends

Table 1. Spreadsheet view of a small part of the OMIB database

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10

Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.

Overall probabilistic framework based on automatic learning.

Use of Monte-Carlo simulations instead of analytical derivations

Simple one-machine infinite-bus system (OMIB)

lllustration of OMIB database content

First 5000 random scenarios of the OMIB database (adapted from [21])
lllustration of bias and variance

Hypothetical decision tree and equivalent if-then rules (taken[2dn

Three first steps of decision tree growing (taken from [21])

“Orthogonal” decision tree (end result) (taken from [21])

. “Oblique” decision tree and classification boundaries (adapted frojn [21]
Regression tree (CCT functiormof))

Structure selection by cross-validation

Perceptron (neuron) and multilayer perceptron (adapted from [21])

Single hidden layer perceptrons (adapted from [21])

Distribution of MLP approximation errors (test set) (taken frabj)[

3000 learning states and nearest neighbors of state 4984 (taken from [21])
Distribution of 1NN approximation errors (test set) (taken frorj) [21
Dendrogram : correlation analysis of OMIB database attributes
Clustering of OMIB scenarios according to temporal behavior of rotor angle
Dendrograms of K-means results

A priori information : probabilistic model and physical model

Information extracted by AL : expected value of future severityngheest mea-

surements

Figure 23. Parallel simulation of scenarios (taken from [21])
Footnotes

1Often one uses the term “state of nature” to denote this concept. We prefertteusem
behavior, in order to avoid confusion with the classical notion of state usgdters theory.

2This completeness assumption is fully legitimate in the case of finite waser

3which verifies the axioms of a probability measure [45].

4We suppose that the measurement devices are part of the studied system.

SCPU times on a SUN UltraSparc 300MHz workstation.

5The equidistant region is slightly oval due to the fact that we have normalizeshé® Qu
by their standard deviation before computing the distance.
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