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Abstract

This chapter describes a methodology based on the combination of probabilistic rea-

soning, automatic learning and Monte-Carlo simulations, which has been used extensively

for the study of electric power systems. The first part describes the generic approach to-

gether with the principles of the main classes of automatic learning methods. The second

part discusses a few real-life applications and some new research directions. The chapter

concludes with a discussion of the usefulness of the proposed approach and its applicability

to the study of complex systems, in general.

1 Context and statement of scope of the paper

This paper summarizes research and development work which started in the mid eighties.

The practical problem which has driven the research was electric power systems dynamic

security assessment. Electric power systems are essentially large, complex nonlinear systems

which have significantly grown in size and importance during the last 50 years. At the beginning

of this century, electric power systems were rather small isolated systems, connecting customers

and power plants inside small geographical areas. When the technology became mature, it

was realized that economies of scale and increased reliability would be possible if the small

systems were interconnected among each other. Indeed, interconnection made possible to share

very large power plants among different users, and reduced the amount of necessary stand-by

reserves to serve plant outages. This was the beginning of a long period of transmission systems

enhancement, resulting in bulk power systems stretching over whole continents. For example,
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the Western European interconnected system (UCPTE) covers a geographical area of about

2000 kilometers North to South by about 4000 kilometers West to East, and presently deserves

energy to about 300 million citizens through more than 10 countries.

The very large size of electric power systems makes their understanding andthe mastering

of their reliability a quite complex problem. An interconnected system is operated by a number

of independent companies which have to take decisions without knowing precisely what will

be the strategy of their neighbors. Thus, electric power systems are also a good example of

distributed decision making under uncertainties. Uncertainties are related to the external envi-

ronment of the system as well as to its internal behavior. The external environments acting on

the power system are both physical (e.g. meteorological effects) and socio-economic (demand

for electricity, social role of electric energy, ecological trends, etc.); both are quite uncertain

from the viewpoint of power engineers. For a decision maker, the internal behavior of the

electric power system is uncertain because of partial knowledge about the system, existence of

human factors, as well as because of the high system complexity.

Since the electric power systems are built by engineers, there has been a longtradition of

analytical modeling, of system theory applications to power systems, and, in the last 30 years,

of computer based numerical simulations.

In the late seventies and early eighties, it was believed thatArtificial Intelligence(AI) tech-

niques could provide solutions to help improve the performance of electric power systems. In

this period, many pioneering papers have been published proposing to apply expert system ap-

proaches to various problems in designing and operating the power system. Some of thiswork

has yielded actual applications in the mean-while. Pattern recognition, anotherAI technique,

was first proposed for dynamic security assessment by Tom DyLiacco, in the latesixties [1, 2],

and, since then, many researchers have worked on the topic, applying different techniques (sta-

tistical pattern recognition, neural networks and machine learning) to different power system

problems (load forecasting, system identification and state estimation, stability assessment and

control).

During the last ten years, an important amount of research work was also carried out in the

field of automatic learning per se. In particular, automatic learning theoryhas reached by now

a certain level of maturity and resulted in unifying the work carried out by different research

schools, such as statistics, connectionnist systems, computer science and artificial intelligence.

Data Mining is the most recent trend which contributed to render automatic learning popular

among non-specialists. Data mining has emerged in the mid nineties, as an interdisciplinary

field of applied research in response to the need for extracting meaningful information from

ever growing databases. It has already some success stories, at least enough to make the field

popular among practitioners.

Within this context, the research of the author of this contribution may be positionedas
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follows: in the mid eighties, we started to work on the application of machine learning to electric

power system transient stability assessment; in the early nineties, we started collaborating with

Electricité de France (a major utility in Europe) in order to find out how to apply the resulting

methods to practical problems of economic and technical significance. This collaboration is

still pursued at the time of writing this paper, almost ten years later. More importantly, a large

amount of the work done at the University has actually been transferred towardspractice and

is today used within Electricité de France. More recently, a certainnumber of other utilities

have started to consider the resulting approaches as valuable alternativesto their usual way of

working. On our side, we believe that the present trend in liberalization and un-bundling of

electric power systems will make the methodologies using automatic learningeven more useful

than in the past.

The methodology which is described in this paper is basically a “computer experiment”

type of method. For a given power system and for a given practical problem, it uses Monte-

Carlo simulations (coupled with existing power system simulators) to sample a large number of

relevant power system dynamic scenarios, together with automatic learning (and data mining

toolboxes) to extract synthetic information from the resulting databases.

Given the scope of the Academic Press Theme volumes within which this work ispublished,

we aim at describing to non-specialists the following aspects : the basic principles underlying

the approach; the main techniques which are used (with a stronger focus on those whichmay

be classified under the AI theme); the practical interest of this work in the context of electric

power systems; and the possible uses in a more general setting in order to makecomputer

experiments to study complex systems from simulations. The last objective ismotivated by

our feeling that many other fields could benefit from the approach : mechanical engineering,

chemical engineering, computer systems, telecommunications, etc.

The paper is organized as follows. Section 2 is a general description of the framework

in a sufficiently general language to make it clear that it can be applied to alarge number of

problems; it focuses on the framework description. Section 3 describes in somedetail a certain

number of complementary automatic learning methods of general interest. Section4 reviews

a certain number of practical applications in the context of electric power system engineering

and Section 5 provides general conclusions, directions for further research and discusses the

applicability of this work outside the field of electric power systems.

2 Framework

This section introduces a general framework for the study of complex systems. Theframework

combines system theory methods with probabilistic reasoning and automatic learning from ar-

tificial intelligence. The overall approach is able to build simple modelsand decision rules
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Figure 1: Overall probabilistic framework based on automatic learning

which may be used for the design, monitoring, and control of complex systems in uncertain

environments.

The principle of the framework is depicted in figure 1. It starts with the specification of

models (probabilistic and system theory type models), proceeds with the automaticgeneration

of a database of system behaviors by Monte-Carlo simulations, and further with theextraction

of synthetic information from this database by automatic learning. The last stepof the approach

consists in using the extracted information in order to acquire a better understanding of the

system behavior and to make decisions for design and control.

Note. Although we focus in this paper mainly on situations where, as depicted in figure

1, the databases are generated by Monte-carlo simulations, it is of course possible to apply

automatic learning to databases collected from actual measurements. This distinctionwill be

further illustrated in section 4.

2.1 Probabilistic reasoning

As we will see, the core of the framework is provided by probabilistic reasoning,which we

will introduce in an abstract although intuitive way. Probabilistic reasoninguses a probabilistic

model of the reality and probability theory (theorems and techniques) to exploit thismodel.

2.1.1 Probabilistic models

Probabilistic modeling starts with the definition of a set of possible objects called theuniverse.

These objects represent the possible behaviors1 of the physical world which is studied. To make

things as simple as possible, we will assume that the universe is finite (eventhough it may be

very large). This is justified by the fact that we will consider the modeling ofsystem behavior

using digital computers, which can only represent a finite number of possible behaviors.

Hence, in the context of the analysis and control of a given complex system, the universe

represents all the possible ways this system may behave during a certain timeperiod, taking

into account the possible external inputs and internal uncertainties. In the rest ofthis text we

will also use the termscenarioto denote such a hypothetical behavior of a given system.

The second step in probabilistic modeling consists in defining a family of subsetsof the
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universe which may be observed (these are calledeventsin the probabilistic literature). Again,

we will assume for the sake of simplicity that in our case this collection contains every possible

subset of the universe2.

The last step of probabilistic modeling consists of assuming a probability measure. This is a

function3 which assigns to each subset in the collection of observable subsets a number between

0 and 1 representing its probability, where 0 means impossibility and 1 certainty.

2.1.2 Conditioning

Conditioning is the basic tool in probability theory to exploit observations.

LetA be a event (a subset of the universe). Then ifA occurs (which means that the observed

or assumed system behavior belongs to this subset), the probabilities of all events are updated

in the following way : P (B)! P (BjA) = P (B \ A)P (A) ; (1)

whereP (BjA) denotes the probability of eventB given the fact that eventA has occurred.

Thus all events which are disjoint fromA become impossible. On the other hand, among

the events which intersect withA, some become more probable and some other less. The events

whose probability remains unchanged (P (B) = P (BjA)) are said to be independent ofA.

One can argue that this way of defining the conditional probability measure is actually the

only rational possibility, yielding completely consistent reasoning procedures [3]. Probability

theory thus provides a consistent and sound framework to model reasoning under uncertainties.

2.1.3 Interpretations

As such, probability calculus does not impose any particular physical interpretation. Actually,

several interpretations coexist and are used in practice. We will merely recall the classical and

the Bayesian views.

In the classical “objectivistic” interpretation, probabilities are viewed as limit values of ob-

served frequencies, and could be determined (up to certain level of accuracy) by observing the

physical system behaviors and counting the number of occurrences which belong to the different

subsets of the universe.

In the Bayesian “subjectivistic” interpretation, probabilities are used to model the state of

knowledge of a user. Thus, different users may use different probability measuresif they have

different knowledge about a system. Also, a given user may in principle revise hisprobability

measure, when his state of knowledge evolves. Thus, in the Bayesian interpretation, probability

theory is a tool (among other candidate tools which have been proposed in the literature) to

model reasoning under uncertainty.
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In addition, the Bayesian framework allows one to reason about probability measures (mod-

els) using meta-probabilities. Thus a user may start with a prior distribution of candidate prob-

ability measures, and update this as new observations come in. Eventually, after a sufficient

number of observations, this model will converge to the objectivistic frequency based model.

Although the Bayesian and classical views have been subject to very animated discussions

during a long period, we do not believe that in practice there is opposition between thetwo

approaches, and, in the context of this paper, ingredients of both paradigms will be used.

2.1.4 Random variables, time and random processes

In practice, the behavior of a complex system is generally not completely observable. What is

available to observations are measurements, alarms and events which occur during time. For

example, in an electric power system it is possible to measure the voltageat a node, or the power

flow through a line but normally one doesn’t have a full picture of the system behavior.

Such observations are random variables, i.e. real-valued or discrete valued functions defined

on the universe of system behaviors4. Since the system is dynamic, we assume that most random

variables are time tagged : when we talk about a measurement we actually talk about the value

assumed by this measurement at a certain time.

A random process is basically a collection of similar random variables taken at different

time steps (we will assume for simplicity that time is also discrete). For example, the successive

values of voltage at a given node of a power system would define a random process. Depending

on the particular scenario, a different realization (a time series) will be observed at the chosen

node.

Once a probabilistic model has been defined, it induces probabilistic models for any collec-

tion of random variables or processes which are defined on the universe of scenarios.

2.1.5 Reasoning

Probabilistic reasoning aims at exploiting information which may be observed ona system in

order to infer information about unobserved variables. Let us enumerate a number of practical

examples, in the context of electric power systems.

System identification. Given the values of measurements of voltages and power flows in the

system at different time steps, what are the most likely values of parameters of a linear

circuit theory model representing the system ?

State estimation. Given the values at timet of a certain number of measurements, and a linear

circuit theory model, what is the most likely value of voltages at each node of thesystem ?
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Load forecasting. Given the values of hourly consumptions at a certain node of the system

during the last two years, what is the expected value of hourly consumption during the

next two weeks ?

Stability prediction. Given the values of rotor angles during the last 300 milliseconds, what is

the probability that there will be a loss of synchronism within the next few seconds ?

Planning. Given the values of water inflows and temperatures during the last fifty years, as-

suming a certain economical growth and system structure, what is the expected cost of

operating the power system during the next five years ?

Thus, the standard pattern is “Given some observation, say something about some unob-

served (past, present or future) feature of the system”. The basic tool to answer these questions

is provided by conditioning, which allows to compute the conditional probability distributions

of the variables of interest. Indeed, having defined the basic probability model of system sce-

narios, it is in principle possible to compute the conditional probability model of any random

variable (or process) given any type of assumptions on some other random variables (or pro-

cesses).

Once the conditional distributions are available, it is possible to extract synthetic information

from them for decision making, such as expected values or most likely values.

2.1.6 Analytical computations versus Monte-Carlo simulations

In order to go one step further in our discussion, it is necessary to add some structure to our

model. This will be done more carefully in section 4.2.2, but for the time being we will start

with an intuitive discussion.

Let us suppose that our system scenarios may be described completely using a certain num-

ber of parameters together with some equations which allow to compute all random variables

and processes once the parameter values are given. Without any deep restriction, we may as-

sume that each parameter belongs to a finite set of possible values, and that the universe of

possible scenarios is merely the Cartesian product of these sets. The basic probability measure

may then be defined by assigning a positive number to each combination of parameter values,

in such a way that the total mass sums up to one.

Clearly, whatever the complexity of the functions which define our random variables, it

would in principle be possible to use analytical derivations in order to express their probability

distributions as a function of the ground probabilities.

Further, if an observation is made on a certain random variable (say, that the voltage at a

certain node and time assumes a given value), the basic probability measure may be replaced

by a conditional probability measure. Indeed, the observation (unless the random variable is
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Figure 2: Use of Monte-Carlo simulations instead of analytical derivations

constant over the universe) will correspond to a non-trivial event : the subset of the universe

where the random variable assumes the observed value. This event can then be used to define

the conditional probability measure and hence refresh all the induced probability measures of

all other random variables.

Clearly, for a real complex system, the above analytical procedure would quickly become

extremely cumbersome, to the extend to jeopardize feasibility. This is further complicated by

the fact that in decision making it is generally necessary to find decisions which are optimal in

some sense, which in turn requires the computation of conditional probability distributions with

respect to a potentially very large number of alternative events correspondingto the possible

decisions.

In situations where the analytical computations are intractable, one may use theMonte-

Carlo approach [4, 5]. This basically consists in sampling (subsets of) the universe of scenarios

according to the basic probability measure and to compute the values of each selected random

variable. The technique may be used in order to compute expected values of random variables

or values corresponding to some optimality criterion. It may also be used so asto generate sam-

ples which can then be compiled into conditional probability distribution models by automatic

learning.

Thus, using the Monte-Carlo approach one can pre-compute conditional probabilities of

some random variables given values of some others, by using sampling, then use the precom-

piled models later on for decision making. Figure 2 sketches the idea of using Monte-Carlo

simulations instead of analytical derivations to extract conditional probability models. This

approach is often economic for the following reasons:� most of the computations may be carried out in advance, while decision making may be

done efficiently in real-time;� the most heavy part of the Monte-Carlo approach may be easily carried out in parallel;� the conditional probability distributions may be approximated to the desired degree of

accuracy (using automatically learned models);
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� only the variables which actually influence each other need to be represented in the con-

ditional probability models derived by automatic learning;� the models extracted by automatic learning may be formulated in such a way that they

can be interpreted physically, which makes it possible to enrich human expertise and also

to use human expertise to validate the results.

The overall scheme, combining automatic learning with Monte-Carlo simulations will be

further discussed and illustrated in section 4.2.

2.2 Automatic learning and data mining

In this section we will focus on supervised learning, which aims at developing input/output

models from observed databases. From a theoretical viewpoint, automatic learning is essentially

a generalization of statistical estimation. Below we first formulatethis problem as a function

approximation problem, then we reformulate it as a problem of building probabilisticmodels,

so as to make explicit its relationship with the previous section. Then we will briefly discuss

the contributions of the recently emerged field called data mining. We postpone the discussion

of technical and theoretical details to section 3.

2.2.1 Supervised learning as function approximation

In a formal setting, and independently of any particular assumption, the supervisedautomatic

learning problem is generally formulated as follows.

Definition 1 Given a sample of input/output pairs, sayS = f(x1; y1); : : : ; (xn; yn)g, and a set

of candidate input/output models (or hypotheses)H, find an optimal modelH� 2 H, such thatŷi 4= H�(xi) is as close as possible toyi for the observed pairs, as well as for any other possible

input/output pair which may be observed.

In this general setting, bothx andy may be vectors of real numbers or discrete (symbolic)

attributes. Ify is symbolic, we will talk about classification problems, ify is a real number (or

a vector of real number) we will talk about regression problems.

In the automatic learning literature,H is called the hypothesis space. It is a set of mappings

from the input space towards the output space. Examples of hypothesis spaces are as follows :

the set of linear input/output functions defined by a set of matrices (parameters),the set of

decision trees of variable complexity, the set of neural networks of given structure, etc.

Thus, supervised learning aims at first choosing an appropriate hypothesis spaceH and then

selecting a predictive model inH which may be used in order to guess certain output variables

as afunctionof some other input variables.
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In order to make our definition more precise, it is necessary to define more precisely what

is meant by a good approximation. This will be further elaborated in the next subsection.Then

in section 3 we will discuss the main principles which allow one to identifya good hypothesis

from a learning sample.

As we will show in section 3, different automatic learning methods essentially differ in the

type of hypothesis space they use and in the search method they use in order to find the optimal

hypothesis. On the other hand, the criteria used to measure hypothesis quality are essentially

independent of the type of automatic learning method.

2.2.2 Learning as identification of probabilistic models

Let us make the link with the probabilistic models introduced in section 2.1.

We start by assuming that each observation corresponds to some object in the universe of

possible objects. Hence, input and output variables are actually random variablesdefined on

the universe, and function approximation aims at building an approximation of some random

variables (y) as a functional combination of some other random variables (x).

However, according to our discussion in section 2.1, all the information providedabout the

output variables by the input variables may be encoded appropriately in a conditional probability

model P (yjx): (2)

Now, let us choose a deviance criteriond(y; y0) in order to measure the difference between

two output values. The precise form of the deviance criterion is not relevant to ourpresent

discussion, but it should have properties similar to classical distance measures. Using any

such measure, any hypothesis may be compared to the target random variable by computing its

expected risk, defined as followsR(H) 4= Efd(y;H(x))g = Zx;y d(y;H(x))dP (x; y); (3)

where the expectation is taken along the joint probability distribution of input-outputpairs. The

lowerR, the more accurate the hypothesis according to the chosen deviance criterion.

Thus, it is straightforward to derive from the conditional probability distribution of eqn. (2)

an optimal input/output model by the following equation [6]yB(x) = argy minZy0 d(y; y0)dP (y0jx): (4)

This optimal model is called in the automatic learning literature theBayesmodel. For a given

choice of input and output variables, it depends of course on the deviance criterion used. The

expected risk of the Bayes model, defined byRB 4= Efd(y; yB(x))g; (5)
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is by definition the ultimate lower bound of the risk (it is usually called residual risk, or residual

error in the literature on automatic learning).

For example, in classification problems (discrete output), the conditional probability distri-

bution will be discrete. The usual deviance criterion is misclassification probability in this case.

Thus, the conditional probability ofy givenxmay be used in order to identify the most probable

value ofy givenx. This would correspond to using eqn. (4) with the discrete deviance measure,

i.e. d(y; y0) = 1 � �(y; y0), which is equal to zero ify = y0 and equal to one otherwise. The

resulting Bayes rule has a minimum error probability.

If the output variable is numerical, the usual deviance criterion is the euclidian norm, leading

to minimum square error learners, which essentially aim at approximatingy by its conditional

expectationEfyjxg. Various hypotheses (e.g. Gaussian noise) may be used in order to justify

such criteria, but this discussion would lead us too far from our topic.

If the input-output relationship is deterministic (i.e. if there exists a function f(�) such thaty = f(x)) then, with these deviance measures, it is also true thatyB(x) = f(x) andRB = 0: (6)

However, in general, the Bayes model, although it does provide an optimal guess for the outputs

in terms of the inputs, does not provide full information about the probabilistic relationship

among them. Thus, the point we would like to stress here is that rather than viewing automatic

learning as function approximation as in section 2.2.1, it is advantageous to see it as probabilistic

modeling. This leads to the following rephrasing of the automatic learning problem.

Definition 2 Given a database of input output/pairs, sayf(x1; y1); : : : ; (xn; yn)g, and a set

of candidate input/output probabilistic modelsP, find an optimal modelP � 2 P, such thatP �(yjx) is as close as possible in the average to the true conditional probabilityP (yjx).
Note that this definition is slightly more general than the first definition : the objective now

is not only to provide a good way to guess what would be the output given the inputs, but also

to describe the probabilistic nature of the input-output behavior of the system. However, as is

stated by eqn. (4), once a good probabilistic model of the system is available, it isstraightfor-

ward to derive a good approximation function from it.

In section 3.2 we will review the main principles which lead to the formulation of automatic

learning algorithms, i.e. algorithms which try to solve the learning problems stated by these two

definitions with the sole information provided by a sample (i.e. without knowing the conditional

probability distributions explicitely).
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2.2.3 Data mining

Anticipating on section 3.2, let us say that the two main lines of theoretical progress in automatic

learning in the last twenty years are, on the one hand, generalization of statistical estimation to

flexible families of models (decision trees, neural networks, projection pursuit regression), and

a better theoretical understanding of non-parametric (variable complexity) automatic learning

methods, in the small to medium sample size case, on the other hand.

From the practical point of view, automatic learning algorithms have been improved signifi-

cantly, which makes it possible to handle larger and larger databases. In thesame time database

and data collection technologies have progressed even more quickly, to such an extent that the

traditional tools (structured query languages) offered by database management systems are not

sufficiently powerful anymore to make the best use of the information contained in the existing

databases.

The need for smarter tools to extract synthetic information from databases hasled to the

development of so called data mining platforms. These are software environments which gen-

erally combine traditional database management systems with an automatic learning toolbox,

sophisticated user interfaces, and visualization techniques [7].

The same need has also led to a new research area called knowledge discovery in databases

(KDD), which aims at developing methods to extract and validate useful knowledge from very

large databases. In particular, the added value of KDD with respect to rawautomatic learning is

to help users to formulate more flexible criteria (automatic learning research generally focuses

on accuracy only) to extract useful information from databases.

On the other hand, under research is also the development of parallel automatic learning

algorithms, in order to be able to treat very large data sets with acceptable response times [8].

3 Automatic learning methods

The present section focuses on the description of a subset of complementary automatic learn-

ing methods. Throughout this section we will use simple hypothetical examples related to an

academic example database generated for power system stability assessment and control, which

we first introduce. Next we discuss the main theoretical considerations which lead to the prin-

ciples of many modern automatic learning methods. Then we review the three main families

of supervisedlearning methods, and their combination into hybrid techniques. Finally, we end

with a brief discussion ofunsupervisedlearning methods and principles.
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Table 1: Spreadsheet view of a small part of the OMIB database
Pu Qu Pl Vl Xinf Vinf CCT STATUS

SC5001 876.029 -193.660 -98.179 1.067 54.598 1.076 0.261 SECURE

SC5002 1110.880 -423.190 -119.300 1.119 58.228 1.112 0.162 SECURE

SC5003 980.132 79.722 -122.600 1.063 62.537 1.062 0.213 SECURE

SC5004 974.139 217.073 -100.520 1.015 64.428 1.010 0.190 SECURE

SC5005 927.198 -618.470 -100.000 1.020 42.557 1.017 0.174 SECURE

SC5006 1192.590 617.266 -103.460 1.073 51.230 1.065 0.199 SECURE

SC5007 1069.120 7.137 -109.460 1.016 66.446 1.010 0.129 INSECURE

SC5008 1189.200 905.121 -87.433 1.056 66.052 1.071 0.167 SECURE

SC5009 999.084 685.442 -107.870 1.109 59.726 1.110 0.272 SECURE

SC5010 1241.880 -442.250 -105.680 1.078 58.917 1.079 0.091 INSECURE

SC5011 845.574 816.962 -106.180 1.103 57.922 1.098 0.352 SECURE

SC5012 1151.250 10.003 -86.426 1.108 64.069 1.113 0.162 SECURE

SC5013 963.600 -312.430 -96.890 0.988 61.517 0.986 0.131 INSECURE

SC5014 721.150 155.468 -95.262 1.050 63.566 1.027 0.347 SECURE

SC5015 1135.190 320.912 -117.480 1.049 56.051 1.041 0.176 SECURE

SC5016 939.189 234.557 -109.450 1.100 49.913 1.110 0.293 SECURE

SC5017 923.754 294.472 -100.300 1.106 74.579 1.120 0.252 SECURE

SC5018 886.942 446.574 -87.805 0.950 57.044 0.950 0.230 SECURE

3.1 Academic example database

We will use an example of power system security assessment to illustrate automatic learning

methods. We will discuss this problem and its subproblems in section 4. Let us merely say that

the security of a power system denotes its capacity to react in a satisfactory way to unforeseen

events (short-circuits, outages, mis-operations, etc.). In preventive mode, power system security

assessment and control aims at taking decisions in order to obtain a satisfactory level of security

while reducing operating costs as much as possible. For a large power system, this activity is

quite complex. Below, we will use automatic learning in order to derive as simple as possible

rules for preventive security assessment and control. For illustration purposes, we will use a

very simple academic example, which is not at all representative of the complexity of real large

scale systems, but simple enough to make explanations easy.

Table 1 shows a spreadsheet view of a small part of a database related to power system

transient stability assessment. The lines of the table correspond to the different objects of the

database, which are representing different power system scenarios. Eachcolumn corresponds

to a variable characterizing the scenarios : the first six columns will be used in our illustrations

as input variables, and the last two as output variables.

Physically, the database corresponds to an academicone-machine infinite-bus (OMIB)power

system, composed of a generator, a load, and an equivalent transmission line connected to an

“infinite bus”. These latter two elements are a simplified representation of the remaining power

system to which the generator is connected (see figure 3). The first two variables measure the

active (Pu) and reactive (Qu) power generated, while the third and forth variable measure the

active power consumed locally (Pl) and the voltage magnitude at the load bus (Vl). The next

two variables represent the equivalent system strength in terms of voltage(Vinf) and transmis-
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Figure 3: Simple one-machine infinite-bus system (OMIB)
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 mu=  0.2537     sd=   6.5945E-2  

3029 etats INSECURE
 Mn=   7.0000E-4 Mx=  0.1548    
 mu=  0.1112     sd=   3.1814E-2  

Conditional histograms of CCT-SBS vs SECURITY

0.1 0.2 0.3 0.4
--- Cct-Sbs ---

0.0

100.

200.

300.

400.

500.
Nb.cas

A GDC 1.0 - 6/4/1998 at 14h35

Scenario 7305
Scenario 3254
Scenario 209
Scenario 6352
Scenario 1732
Scenario 6438

Scenario 3306
Scenario 2265
Scenario 8773
Scenario 7818
Scenario 6776
Scenario 4797

Scenario 9248
Scenario 308
Scenario 4953
Scenario 5569
Scenario 9229
Scenario 7869

Temporal attribute OMEGA(t) of data base OMIB (18 scenarios)

0.0 0.5 1. 1.5 2. 2.5 3.

--- Time ---

0.0

500.

1000.

1500.

2000.

2500.

3000.

C GDC 1.0 - 6/4/1998 at 12h29

Figure 4: Illustration of OMIB database content

sion system (Xinf). The last two variables shown in table 1 are measuring the degree of stability

of the system with respect to a given (fixed) fault at the generator bus: CCT denotes the critical

clearing time, which is the maximum duration of the fault without loss of synchronism; “Status”

denotes whether the system is sufficiently secure or not.

The complete database is composed of 10000 random scenarios simulated for this small

system. It is composed of two parts corresponding to two different assumptions : scenarios 1

to 5000 correspond to a specific hypothesis where variables Pl, Vl, Xinf and Vinf are constant;

scenarios 5001 to 10000 relax this hypothesis (see Table 1). Thus the first part of the database

corresponds to a simpler problem than the second part of the database : the input space actually

reduces to two dimensions, since only the first two parameters are variable.

Figure 4 shows two graphics illustrating the content of the whole database : left hand part

contains the histogram of the distribution of values of CCTs, and its right hand part shows

some temporal attributes (curves) related to the mechanical rotor speedof the generator when

submitted to a short-circuit (one can easily figure out the stable scenarios among those which

are shown as those which rotor speed remains bounded).

We will start by using parts of this simpler database in order to illustrateautomatic learning

methods. Figure 5 shows two and three dimensional scatterplots of these first 5000 scenarios

of the database. The left hand part of the figure shows the (simple) relationship between inputs

(Pu and Qu) and symbolic output (security status); we will use this output variableto illustrate

classification methods. The left hand part, shows the relationship between the inputs and the

continuous output CCT; we will use this output variable to illustrate regression techniques.
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Figure 5: First 5000 random scenarios of the OMIB database (adapted from [21])

In order to be able to evaluate the capability of the models derived by automaticlearning to

predict correctly unseen states, we split our sub-database in two parts : (i) as a learning sample

(LS) we use scenarios 1 to 3000 in order to build models; (ii) as a test sample (TS) we use the

scenarios 3001 to 5000 to evaluate accuracy of models on unseen states.

3.2 Theoretical considerations

In this section we will briefly discuss the main principles behind automatic learning. We rec-

ommend to read references [9, 10, 11] for a more comprehensive discussion of what isbriefly

sketched below.

3.2.1 Learning principles

Whether automatic learning is formulated as function approximation or as conditional prob-

ability distribution approximation, the main difficulty is to exploit correctly the information

provided in a learning sample so as to choose a correct approximation in the chosenhypothesis

space.

In this context, it is useful to distinguish among the situation where the hypothesis space is

small compared to the size of the sample, and the opposite situation where the hypothesis space

is very large. Actually, the former case is the usual situation consideredin standard parametric

asymptotic statistics. The latter case is the one generally considered inthe more recent theoret-

ical work on automatic learning, and has led to new learning principles, for example for neural

networks and decision trees.

In the large sample (and small hypothesis space) case, the prevailing principle in automatic

learning consists of minimizing the empirical risk. This amounts to choosing amongall candi-

date models the one which yields the smallest deviance in the learning set. It israther straight-

forward to show that, under the assumption of independent learning samples, this modelwill

converge towards the best choice (within the given hypothesis space) when the sample becomes

15



infinitely large. (See, for example, [11] for a precise discussion of the meaningof “small”

hypothesis space.)

In the small sample case (or when the hypothesis space is very large), it is generally advis-

able to tradeoff the empirical risk with a measure of the complexity of the chosen hypothesis.

For example, in the case of decision tree induction this leads to so called pruning methods, as

will be discussed later on. The necessity of this compromize is related to the so-called “overfit-

ting” problem : a small empirical risk measured on the learning set does not necessarily imply

a small actual risk, measured outside the training set. This will be furtherillustrated below for

various types of automatic learning methods.

Risk complexity tradeoff. The two above extreme cases may be combined using a general

quality measure for automatic learning, which is of the following formQ(H;S) = Re(H;S) + �C(H); (7)

whereRe(H;S) denotes the empirical risk as measured on the learning sampleS, C(H) is a

measure of the complexity of the hypothesisH, and� is a non-negative parameter depending on

the sought compromise. Typically,� would decrease when the learning sample size increases.

The objective of automatic learning is then to selectH� in H which minimizesQ, given the

learning sampleS.

The precise definition of the empirical risk will depend on the exact problem formulation.

For example, if the problem is seen as a function approximation problem, with a mean square

error criterion, then we would use the following definition of the empirical riskRe(H;S) = 1n nXi=1 jjH(xi)� yijj2: (8)

On the other hand, if the purpose is to develop a conditional probability model, the usual crite-

rion would be sample log-likelihood, i.e.Re(P; S) = 1n nXi=1 logP (yijxi): (9)

Bayesian principle. In the Bayesian framework, the hypothesis space is first “decorated”

with a prior probability distribution, and the Bayesian learning principle consists of computing,

from these priors and from the learning sample, the posterior probability of any hypothesis,

which serves as a criterion to evaluate candidate hypotheses. This turns out inthe following

formulation QB(H;S) = logP (HjS) = logP (SjH) + logP (H)� logP (S); (10)
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where the last term is usually dropped since is does not depend on the chosen hypothesisH.

The two first terms of this criterion are of similar nature than the two terms of equation (7): the

first term measures how well the sample is explained by the hypothesis, and the second term

depends only on the prior properties of the hypothesis (complexity in eqn. (7), probability in

eqn. (10)). Also, a closer look at criterion (10) shows that the smaller the learning sample, the

bigger the weight of this latter term, and thus the less complex (or the more a prioriprobable)

the optimal hypothesis.

Minimum description length principle (MDL). The MDL principle stems from information

theory, and more specifically, from data compression coding theory [12]. It states that the best

hypothesis is the one which allows to represent the output information of the learning states in

the most compact form, taking into account the coding of approximation errors in the learning

set and the cost of coding the hypothesis itself. Thus the description length of the data and a

model is expressed as followsDL(H;S) = DL(SjH) +DL(H); (11)

where the first term is the length of coding the errors of the model in the learning set (it is

equal to zero when the empirical risk is equal to zero) and the second term isthe number of bits

required to code the model itself (it is smaller for less complex models). The MDL principle

has been applied to many different automatic learning methods, and in particular in the context

of decision tree induction [13, 14, 15] and pruning [16, 17].

It is clear that all three criteria essentially try to reach the same type of compromise : choos-

ing more complex models only if the explanation they provide for the learning states is signifi-

cantly better.

3.2.2 Bias and variance

The recent work in automatic learning led to the rediscovery of a well knownphenomenon in

statistics, namely the “bias-variance tradeoff”.

The bias-variance tradeoff, which actually provides an interpretation forthe learning prin-

ciples described in section 3.2.1, may be simply stated as follows :� any automatic learning algorithm computes a hypothesis which is a function of the learn-

ing sample;� the learning sample is random in nature, hence also the result of the automatic learning

algorithm;� the prediction at a certain point of the input space by an hypothesis found by automatic

learning is thus a random variable;

17



Bias

Variance

y

Bayes model 

x

of predictions

Bayes model 
(optimal)

x

y

Average prediction

Bias

Variance

Average prediction

(optimal)

Small hypothesis complexity

Confidence interval
of predictions

High hypothesis complexity

Confidence interval

Figure 6: Illustration of bias and variance� the bias (at a certain location in the input space) is defined as the differencebetween the

desired value at this point (say the value predicted by the Bayes model), and the expected

prediction of the hypotheses produced by automatic learning for different samples of a

given size;� the variance (at a certain location in the input space) is the square difference between the

average predictions of hypotheses and individual ones;� both bias and variance contribute to sub-optimality, in the sense that both result in an

hypothesis being different in the average from the Bayes model;� for fixed hypothesis complexity, variance generally decreases when the samplesize in-

creases, whereas bias remains constant;� for fixed sample size, variance generally increases when the hypothesis complexity in-

creases, whereas bias will generally decrease.

This is further depicted in figure 6 using a simple example where both input and output

spaces are one-dimensional. The two graphs are drawn for identical conditions (same output

information, same learning sample size) except that in the left hand graph, the complexity of

the hypothesis is smaller than in the right hand graph.

The first observation which can be made from figure 6 is that bias and variance vary from

one input location to another. Thus, typically, variance is higher in regions where theprobability

to observe input variables is lower (e.g. close to the boundaries of the input space).On the other

hand, bias is higher in the regions where the Bayes rule has a higher curvature.

The comparison of the left and right graphs of figure 6 illustrates how variance and bias vary

in opposite direction when the complexity of the hypothesis is increased.

In the recent years, the improved understanding of the bias-variance tradeoff led to the

proposal of new algorithms aiming at fighting against bias with reduced variance models and
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fighting against variance with reduced bias models (see for example the literature on bagging

and boosting [18, 19, 20]).

Bias-variance tradeoff by cross-validation. Whatever the approach leading to the chosen

quality measure, in many practical situations it is difficult to define precisely the tradeoff be-

tween empirical risk and complexity. In other words, the form of the measure is known up to

the value of the parameter�, which is typically problem dependent : intuitively, if the problem

is more complex, the value of� should be larger, and vice-versa.

Thus the appropriate value of� must be identified from the available samples, using cross-

validation. In practice this leads to the following procedure :� divide the available sample in two parts;� using the first part of the sample and a sequence of candidate values of�, build a corre-

sponding sequence of hypotheses;� using the second part of the sample, evaluate the generalization capability of each hy-

pothesis and select the one which obtains the best performance.

This procedure will be illustrated below. Let us notice that it may be further refined in order to

make the best use of the available samples. Clearly, it results in a certain increase in compu-

tational burden since instead of building a single hypothesis it requires the buildingof several

ones.

3.2.3 Learning algorithms

Once the hypothesis space and quality measure have been defined, automatic learning merely

amounts to an optimization (or search) problem. Depending on the structure of the hypoth-

esis space, different optimization techniques may be used : direct solutions by linear equa-

tion solvers (linear models with quadratic quality measures), nonlinear optimization, heuristic

search, enumerative search, genetic algorithms, or any combination of these techniques.

It is also interesting to distinguish between incremental and batch learning strategies. In-

cremental learning proceeds by using the individual learning samples in a sequential manner in

order to progressively adapt the hypothesis. Batch learning methods proceed by using the whole

sample as was suggested in the preceding description. The advantage of incremental learning

is to avoid storage of learning samples, which may become cumbersome in some applications.

Its main disadvantage with respect to batch learning is sub-optimality interms of speed and

accuracy.

Part of the research work carried out in the recent years led to the development of efficient

optimization procedures, as we will outline below.
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3.3 Main classes of supervised learning methods

Let us recall the objective of supervised learning :

Given a set of examples(the learning set (LS)) of associated input/output pairs,

derive a general rule representing the underlying input/output relationship, which

may be used to explainthe observed pairs and/or predictoutput values for any new

unseen input.

In automatic learning we use the termattribute to denote the parameters (or variables) used to

describe the input information.

In the context of electric power system security assessment, anexamplewould thus corre-

spond to a state of a particular power system, or more generally to a simulated dynamic scenario.

The input attributes would be relevant parameters describing its electrical state and topology,

which can be either directly measured in real-time or can be computed in some way from real-

time measurements. Outputs could be information concerning its security, for example in the

form of a discrete classification (e.g. secure / insecure), or a numerical security margin such as

the CCT in our OMIB example.

Note. For the sake of simplicity, we will only describe the principles of the various automatic

learning methods. For precisions concerning technical details of the methods illustrated below,

we kindly refer the reader to [21] where all the information required to reproduce the results

shown here is provided.

3.3.1 Machine learning

Machine learning(ML) is a subfield of automatic learning concerned with the automatic design

of rules similar to those used by human experts (e.g. if-then rules). We will describe onlyTop

down induction of decision trees(TDIDT) and some of its variants, which form one of the most

successful classes of such methods [22, 23].

Decision trees. Before describing how TDIDT proceeds to build decision trees let us explain

what a decision tree is and how it is used to classify a state. Figure 7 shows a hypothetical binary

decision tree (DT) for our problem using the two attributes Pu and Qu. The bold arrows on the

tree suggest how a hypothetical state (Pu = 1000 MW and Qu=-500 MVAr) traverses the tree in

a top down fashion to reach a terminal node. One starts at the topnode and applies sequentially

the dichotomous tests encountered to select the appropriate successor. When a terminal node

is reached, the output information stored there is retrieved. Thus, for our hypothetical state the

conclusion is “insecure”. Note that the tree may be translated into an equivalent set of if-then

rules, one for each terminal node. E.g. the tree in figure 7 translates into the rules indicated

beneath it.
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Terminal nodeTerminal node

Terminal node

Topnode

Rule 2 : If (Pu > 950MW) and (Qu < 0Mvar) then Conclude Insecure

Rule 1 : If (Pu < 950MW) then Conclude Secure

Equivalent If-Then rules :

Hypothetical state

Qu=-500Mvar
Pu=1000MW

Figure 7: Hypothetical decision tree and equivalent if-then rules (taken from[21])

Decision tree growing. Now, let us illustrate on our example how the TDIDT method will

extract from our learning set a number of classification rules in the form of a decision tree.

Figure 8 illustrates the successive node splitting procedure. The procedure is initialized

by creating the topnode of the tree, which corresponds to the fullLS as shown in figure 8a.

Note that the relative size of the dark and light areas of the box used to represent the topnode

corresponds to the proportion of insecure and secure states in the full learning set(909 insecure

states vs 2091 secure states).

The method starts with a list of attributes (also calledcandidate attributes) in terms of which

it will formulate the tree tests. In our example we use only two candidate attributes (Pu and Qu)

since all other input parameters are constant in the first part of the database.

To develop the topnode, each candidate attribute (here Pu and Qu) is considered inturn, in

order to determine an appropriate threshold. To this end, the learning set is sorted by increasing

order of the considered attribute values, then for each successive attribute value, a dichotomic

test is formulated and the method determines how well this test separatessecure and insecure

states, using an information theoretic score measure. The score measure is normalized, between

0 (no separation at all) and 1 (perfect separation). Figure 8b shows how the score varies in

terms of the threshold both for Pu and Qu at the topnode. Thus, the optimal threshold for Puis

found to be 1096.2 MW (with a score of 0.36) and the optimal threshold for Qu is found to be�125MVAr (with a score of 0.09). Finally, the overall best test is identified atthe topnode to be

Pu>1096.2 MW.

Once the optimal test is found, the next step consists of creating two successor nodes cor-

responding to the two possible issues of the test; the learning set is then partitioned into corre-

sponding subsets by applying the test to its states. The result of this step is represented at figure

8c. Note that the number on the top of each node represents the number of corresponding learn-

ing states : 3000 at the topnode, 1026 at the first successor and 1974 at the second successor.

Note also that the first successor contains a strong majority of insecure states, while the second

successor contains a very strong majority of secure states.
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(d) Tree after the first successor was developed
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Figure 8: Three first steps of decision tree growing (taken from [21])
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Pe=2.3%

7 Deadends

Figure 9: “Orthogonal” decision tree (end result) (taken from [21])

Stopping to split criterion. As is illustrated on figure 8d, the procedure continues recursively

to split the recently created successors, gradually separating the secure and insecure states until a

stop splitting criterion is met. The stop splitting criterion decides whether a node should indeed

be further developed or not. There are two possible reasons to stop splitting a node, which yield

two types of terminal nodes :leavesanddeadends. A leaf is a node which corresponds to a

sufficiently pure subset (e.g. all states belong to the same class). A deadend is a node where

there is not enough statistical support for choosing an appropriate test. Stop splitting at deadend

nodes prevents the tree from over-fitting the learning set and hence allows themethod to reach

a good compromise between accuracy and simplicity.

The end result of this procedure is the tree shown at figure 9, which partitions the learning

set into subregions defined by line segments orthogonal to the Pu or Qu axes; this “orthogonal”
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tree is composed of 18 test nodes, 12 leaves and 7 deadends.

Validation. Since the tree is grown to reach a good compromise between simplicity and sep-

aration of secure and insecurelearningstates it provides a kind of summary of the relationship

observed in the learning set between Pu and Qu attributes and security class. But, how well

does it generalize to unseen states ? To answer this question, we use the test set of 2000 states

different from the learning states and compare the security class predicted by the tree with the

one derived from the CCT computed by numerical simulation.

Thus each test state is directed towards a terminal node on the basis of its input attribute

values (Pu and Qu) and applying sequentially the dichotomous tests encountered to select the

appropriate successor. When a terminal node is reached, the output majority classof the corre-

sponding learning subset stored there is retrieved and the test state is classified into this class.

E.g. states reaching terminal nodes L1, L2, D1, L4, D3, D5, D6, D7, L7 and L10 are predicted

to be insecure, while those reaching terminal nodes L3, D2, D4, L5, L6, L8, L9, L11 and L12

are predicted to be secure. Among the 2000 test states, this yields 1954 correct classifications,

15 insecure states declared erroneously secure, and 31 false alarms, i.e.an error rate Pe of 2.3%.

Refinements. There are many refinements of the TDIDT method of interest in the context

of security assessment. First of all, decision trees may exploit easily discrete attributes (e.g.

to represent power system topology, or events) together with numerical ones. Theymay also

be generalized to an arbitrary number of (security) classes and to tests with more than two

outcomes.

Another interesting extension consists of using linear combinations instead of single at-

tribute (orthogonal) splits, yielding so-called “oblique” decision trees. Theyare useful when

there are strong interactions among different candidate attributes. For example, in our illustra-

tive problem we could use linear combinations among Pu and Qu, which should provide a more

efficient separation between secure and insecure states.

Figure 10 shows a tree obtained in this fashion. During tree building, we search for splits in

the form of “Pu + Weight*Qu<Threshold” instead of searching for single attribute splits (in the

form of “Pu<Threshold” and “Qu<Threshold”). The optimal splitting procedure is modified in

order to determine automatically both an appropriate weight and the optimal threshold at each

test node.

The fact that the resulting “oblique” tree is significantly simpler than the “orthogonal” one

of figure 9 (only 6 test nodes, 6 leaves and 1 deadend) confirms our intuition. The tree is also

much more reliable (no non-detections and only two false alarms among the 2000 teststates,

i.e. an error rate of 0.1%).

Figure 10 further illustrates the difference between the two classification boundaries induced
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Figure 10: “Oblique” decision tree and classification boundaries (adapted from [21])

by the two trees : a rather rough staircase approximation for the “orthogonal” treevs a much

smoother boundary for the “oblique” one.

The only price to pay for this improvement is an increase in CPU time at the tree grow-

ing stage, since searching for linear combinations is more intricate than searching for optimal

thresholds. E.g. in our example it took 30 seconds5 to grow the “oblique” tree and only 3

seconds to grow the “orthogonal” one.

In addition to “oblique” trees, other interesting extensions areregressiontrees which infer

information about a numerical output variable, andfuzzytrees which use fuzzy logic instead

of crisp logic to represent output information in a smooth fashion [24]. Both approaches allow

us to infer information about security margins, similarly to the techniques discussed below inxx3.3.2 and 3.3.3.

For example, figure 11 shows a (partial view of a) regression tree which approximates the

CCT of the OMIB system as a piecewise constant function of the machine rotor angle in the

during fault period. Note that the shaded area and the number in each box provide information

about the mean and standard deviations of CCTs of the scenarios corresponding to each node.

The top-node corresponds to all possible scenarios, whereas the terminal nodes correspond to

a subset of scenarios falling within a certain range of�(t) values. For example, the lower left

node corresponds to scenarios such that�(150) > 54:2� and�(100) > 67:4�; for this kind of

scenarios the mean CCT value is 68ms and its standard deviation is equal to 19ms.Similarly, the

lower right node corresponds to scenarios such that�(150) � 39:5�; they have a mean CCT of

383ms and a standard deviation of 21ms. Thus, the regression tree allows one to approximate

the CCT from rotor angles in the during fault period; in our example this approximation is

actually quite accurate, the mean absolute error being about 2ms.

Finally, a recent research field in the context of decision tree induction consists of temporal
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Figure 11: Regression tree (CCT function of�(t))
trees [25]. These are decision trees which may exploit directly temporalattributes, in order to

classify a situation as early as possible in a certain class.

Salient features of decision trees. The main strength of decision trees is their interpretability.

By merely looking at the test nodes of a tree one can easily sort out the most salient attributes

(i.e. those which most strongly influence the output) and find out how they influence the output.

Furthermore, at the tree growing stage the method provides a great deal of additional infor-

mation, e.g. about scores of different candidate attributes, their correlations, and the overall

information they provide to the tree.

Another very important asset is the ability of the method to identify the most relevant at-

tributes for each problem. Our toy problem was too simple to illustrate thisfeature, but in

large-scale applications less than twenty percent of the candidate attributes are typically se-

lected while growing a tree.

The last characteristic of decision trees is computational efficiency : tree growing computa-

tional complexity is practically linear in the number of candidate attributesand in the number of

learning states, allowing one to tackle easily problems with a few hundred candidate attributes

and a few thousand learning states. The use of a tree as a classification algorithm is ultrafast,

compatible with any real-time constraints.

Computational efficiency together with interpretability enable the method to beused in

an interactive trial and error fashion, so as to discover interesting information contained in a

database and thereby gain physical insight into a problem. Below, we describe methods which

are essentially complementary to decision trees and may be combined withthem in hybrid ap-

proaches.
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3.3.2 Linear and nonlinear regression

This type of method aims at building essentially smooth input/output models. Most of the

smooth regression techniques may be viewed as a parametric model-fitting approach. In these

approaches the hypothesis space is defined as a set of functionsH = ff(�;wm)jwm 2 Wg; (12)

wherewm is anm�dimensional vector of parameters (or weights) andW is a subset ofRm .

The objective of learning thus reduces to the search of an optimal valuew�m of the parameter

vector which would minimize the empirical risk (typically the mean squareerror)Re(wm) 4= 1n nXi=1 d(f(xi;wm); yi): (13)

If the functionf(�; �) depends in a smooth way on the parameter values and if the deviance

measure is smooth (these two requirements generally hold true), then the empirical risk (13)

is also a smooth function of the parameter values. Therefore, these techniquesgenerally use

gradient descent type of search techniques so as to minimizeRe with respect to the parameterswm.

One of the main difficulties with these methods is to determine the appropriate family of

functions suitable for a given problem. This problem is generally solved by defining a nested

family of hypothesis spaces H0 � H1 � H2 � : : : (14)

such that the complete superset of these hypothesis spaces has some kind of “universalapprox-

imation capability” in a large enough hypothesis spaceH.

This means that for any� and any functiong 2 H, there exists at least onei and one functionf 2 Hi which is�-close tog, i.e. such thatR(f; g) = Exfd(g(x); f(x))g � � (15)

where the expectations are taken with respect to the probability measure defined on the input

space. Below we will provide examples of such hypothesis spaces in the context of multilayer

perceptrons and projection pursuit.

Once such a family of hypothesis spaces have been defined, the supervised learning problem

then amounts to the two following subproblems :

Choice of structure : choice of one of the hypothesis spaces in the family, sayHi�
Parameter optimization : for a given choice ofHi, choice of the correct parameter vectorw�m.
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Figure 12: Structure selection by cross-validation

Clearly, the empirical risk minimization principle can not be applied to search directly for

a model in the complete hypothesis space, since this would systematically leadto over-fitting.

However, what can be done (and what is usually done) is to build a sequence of models for

growing values ofi by using the empirical risk minimization principle, and then to select among

these latter the one which yields the best performance on an independent test set.

Figure 12 shows the typical behavior of empirical risk and test set risk as the size of the

hypothesis space increases. One observes that the larger the hypothesis space the smaller the

value of the empirical risk on the learning set, which is normal since the hypothesis spaces are

nested. However, on an independent test set the risk increases significantlyfor overly large

hypothesis spaces. For example, according to figure 12, the appropriate hypothesis would be

the one found inH11, since above this level performance starts to decrease on the test set (this

is similar to the cross-validation technique outlined earlier to selectthe appropriate value of�
in the quality measure).

Nesting strategies. There are mainly two types of strategies to define a nested sequence of

hypothesis spaces : bounding the structure, or bounding the norm of the parameter vector. Both

may be best viewed as the truncation of an initially very large hypothesis space(i.e. using a

very large number of parameters). They lead to the following definition of the sequence of

hypothesis spaces Hi 4= ff(�;wm)jwm 2 Wig (16)

wherei < j ) Wi � Wj.
Bounding the structure the hypothesis space consists of forcing some components of the

weight vector to zero, which would correspond toWi being a subset ofwm vectors with at mosti non zero components. This turns out to be equivalent to using a penalized quality measure
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like in eqn. (7), where the complexity of the model is proportional to the number of non-zero

weights.

Bounding the norm of the parameter vector would consist ofWi being a subset of the formWi 4= fwm 2 Rm : jjwmjj � �ig; (17)

where�i is an increasing sequence of real numbers. This latter strategy is equivalent to using a

penalized quality measure as in eqn. (7), where the complexity measure is proportional to the

norm of the weight vector.

Notes.

1. The careful reader may have observed that the hypothesis space nesting principle that we

have described here is similar to the principle which underlies decision tree pruning.

2. In the remaining part of this section we assume that the input variables are numerical or

have been coded as real numbers.

Linear regression. Within the above framework, linear regression amounts to using the fol-

lowing model f(x;w0) 4= xTw + w0: (18)

Since this model is linear in the parameters, using a quadratic deviance measure leads to a

quadratic empirical risk measure. The components of the gradient of the empiricalrisk with

respect to the weight vector are therefore linear functions of the weight vector. Thus the optimal

weight vector may be found by a linear equation solver, by solving the set ofm linear equations@Re@wi = 0; 8i = 1; : : : ; m; (19)

wherewi denotes thei-th component of the weight vector.

In many applications linear models may provide very useful results. Also, inmany cases the

number of learning samples may be considered to be large with respect to the hypothesis space,

and no complexity tradeoff is necessary. If this is not the case, one may resortto stage-wise

linear regression, which amounts to applying the above nesting strategies to this problem.

The two main advantages of linear regression are computational efficiency, and the fact that

it doesn’t need very large learning sets to be tuned. For example, on the OMIB database, a

simple linear model provides actually a rather good approximation of the CCT in terms of the

two input attributes: ^CCT = �0:0004362Pu+ 0:0000776Qu+ 0:635 (20)

which yields a mean absolute error of 8ms. The total CPU time required to learn this model

using the 3000 learning states is of 200ms. Notice that actually, using only 100 learning states

would have been largely sufficient: this results in the same accuracy but ina CPU time reduced

to 10ms.
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Generalized linear models. Unfortunately, many automatic learning problems may not be

handled well by linear regression only. Hence, we will review a sequence of generalizations of

this idea, starting with so-called generalized linear models, which are the most straightforward

enhancement of linear models.

A generalized linear model yields the following form of hypothesisf(x;w) 4= mXi=1 wifi(xji); (21)

where thefi(�) are a priori defined (possibly nonlinear) functions of one variable, andxji denote

particular input variables.

The main difference with respect to the basic linear model is that this modelis not restricted

to be linear in terms of the input attributes. However, it remains linearwith respect to the

parameter vector. Thus the same learning algorithm (direct solution of linearequations) is also

applicable here.

The functionsfi(�) are generally called the basis functions of the generalized linear model.

The set of basis functions used by a specific version of this method is called the dictionary of

this method. In analogy to the orthogonal decision trees, we call this an “orthogonal” nonlinear

model, because the nonlinearity acts only along the axes of the input space.

Generalized linear models are actually not at all restricted to orthogonalones. They can be

generalized one step further by f(x;w) 4= mXi=1 wifi(x); (22)

where the basis functions are defined in the multidimensional input space. This latter form

yields the orthogonal model as a particular case.

For example, in the case of our example data base, we may obtain by an appropriate choice

of these functions, the following quadratic model^CCT = 0:962� 2:69 10�8(Qu)2 + 3:35 10�7(Pu)2 � 2:68 10�8(Pu)(Qu)�0:001102Pu+ 0:0001Qu;
which is significantly more accurate than the previous linear model (mean absolute error of

1ms).

Let us mention that generalized linear models provide actually a very broad family of mod-

els, including trigonometric approximation and multidimensional spline approximation.The

main difficulty with these methods is related to the fact that in high dimensional input spaces,

they require prohibitively large dictionaries to yield good approximation properties. For exam-

ple, a full quadratic model requiresk(k+1)2 +1 parameters (wherek denotes the number of input
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Figure 13: Perceptron (neuron) and multilayer perceptron (adapted from [21])

variables), which becomes prohibitive as soon as the number of input variables becomes larger

than say a few tens.

This main weakness is circumvented both by multilayer perceptrons and by the projection

pursuit regression technique, which we describe next.

Multilayer perceptrons. Artificial neural networks’ development started several decades ago

with the work on perceptrons. Figure 13 illustrates the perceptron; this is basically a simple

linear threshold unit, thus able to represent only linear functions. Its limitedrepresentation

capabilities have motivated the consideration of more complex models composed ofmultiple

interconnected layers of perceptrons (multilayer perceptrons), which provide a very flexible

family of models.

Figure 13 illustrates a typical multilayer perceptron (MLP). Each neuron isa perceptron :

input layer neurons are fed with the input attributes; hidden and output layer neurons receive

linear combinations of outputs from neurons in the preceding layers.

MLP learning. In the context of multilayer perceptrons, the learning stage consists of deter-

mining an appropriate structure of the MLP and of identifying appropriate values of thedifferent

parameters (weights and thresholds).

Choosing the structure consists of defining the number of neurons, the topology of their

interconnection, and the type of activation functions they use. Usually, it is determined by a

trial and error procedure. However, nowadays there exist various algorithms to determine the

structure automatically.

The parameter identification task amounts to a (complex) nonlinear numerical optimization

problem, which may be solved by various techniques. Historically, the first method which was

proposed was the so called “back-propagation” algorithm, which is equivalent to a fixed step

gradient descent technique. It is interesting from a biological point of view, but rather inefficient

from a computational point of view. Nowadays, one uses generally second order quasi-Newton

methods.
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Figure 14: Single hidden layer perceptrons (adapted from [21])

MLP parameter identification. In our illustrative problem MLPs can be exploited interest-

ingly to approximate the CCT as a closed form function of Pu and Qu. Generally, forthe

approximation of a continuous function, MLPs with a single hidden layer may provide good

approximators. Thus, let us try to approximate the CCT with such a structure. Thelearning

set used will be the same 3000 input states that we used up to now, and as in the preceding

examples, we associate as output information to each state its CCT, rather than the security

class.

Figure 14 graphically sketches the MLP that we have used, containing 10 hidden neurons.

Each hidden neuroni has an input/output relationship of the form

Outputi = tanh(�i;1Pu+ �i;2Qu+ �i); (23)

where�i;1 (resp.�i;2) is the connection weight between the neuron and the Pu (resp. Qu) input,

and�i its threshold.

The output of the MLP is a linear combination of the preceding functions, i.e.^CCT= Xi=1:::10 �i tanh(�i;1Pu+ �i;2Qu+ �i); (24)

where�i represents the contribution of neuroni in the overall output.

The parameter identification thus aims at choosing appropriate values of the 40 parameters

(�i;j; �i; �i) in order to fit, for each learning state, the MLP output to the CCT value determined

by numerical simulation. The empirical risk criterion we use is the mean square errorRe = 13000 3000Xi=1 jCCTi � ^CCTij2; (25)
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which is a smooth, although complex and nonlinear function of the parameter values, which

needs to be minimized.

Before starting the learning procedure the parameters are all initialized at random, then they

are progressively adapted in order to minimize the empirical risk. In our example we used the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization method.

At initialization, the random initial parameter values of the MLP yielded a value ofRe =0:0689568683, corresponding to a root mean square (RMS) approximation error of 0.2626 sec-

onds, which is three times larger than the standard deviation of CCT values in the learning set.

In short, the initial output values are random.

After 46 iterations the algorithm stops at a local minimum, having reduced the value toRe = 0:0000003136, which corresponds to a very small RMS approximation error of 0.00056

seconds. The mean absolute error in the learning set is equal to 0.4 milliseconds which is

actually smaller than the accuracy of the CCT values determined by numerical simulation. Thus,

we deem that we are close to the global minimum.

All in all, the parameter adaptation process took about 200 CPU seconds on an UltraSparc

workstation.

The resulting closed form approximation of the MLP input/output function corresponding

to the final parameter values is as follows^CCT= �0:602710 tanh(0:000194Pu� 0:00034Qu� 0:93219) (26)�0:401320 tanh(0:000822Pu� 0:00020Qu� 0:76681)+0:318249 tanh(0:000239Pu� 0:00050Qu� 0:29351)�0:287230 tanh(0:002004Pu� 0:00034Qu� 1:20080)+0:184522 tanh(0:000131Pu� 0:00057Qu� 0:03152)+0:177701 tanh(0:001799Pu� 0:00011Qu� 2:08190)�0:150720 tanh(0:001530Pu� 0:00056Qu� 1:68040)+0:142678 tanh(0:002152Pu� 0:00046Qu� 1:72280)�0:067897 tanh(0:001910Pu� 0:00051Qu� 1:71343)�0:056020 tanh(0:000202Pu� 0:00085Qu� 0:39876)
MLP validation. In order to evaluate the reliability of this approximation, we have used the

MLP to predict the CCTs of the 2000 test states. Figure 15 shows the distributionof errors; it

is clear that in this simple example the MLP approximates the CCT with veryhigh accuracy.

Furthermore, we observe that the mean absolute error in the test set (0.4ms) isequal to the

mean absolute error in the learning set. Thus, the MLP generalizes very well to unseen states.

However, the improvement in accuracy is marginal with respect to the above quadratic model.
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Distribution of approximation errors

in the test set: CCT(SBS)-CCT(ANN) ms

Maximal absolute error = 3 ms
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Figure 15: Distribution of MLP approximation errors (test set) (taken from [21])

Consequently, the MLP can be used in order to classify states with respectto a threshold.

For example, with respect to the threshold of 155ms used in the decision trees, it classifies 5

insecure states as secure (their CCT is however very close to the threshold of 155ms) and makes

no false alarms, i.e. its error rate is of 0.25%.

Note that since the MLP provides a very accurate closed form approximation of theCCT,

its sensitivities with respect to Pu and Qu may be computed analytically. These could in turn be

used to find out preventive control actions to increase the value of the CCT whenever it is found

to be too small.

Refinements. Although in many problems a single hidden layer is sufficient, it is straightfor-

ward to generalize the MLP by adding any number of further layers. It is also possible to use

other activation functions than the hyperbolic tangent, e.g. Gaussian or trigonometricfunctions.

Another extension consists of growing the neural network by progressively adding neurons

and/or layers. Pruning techniques, with fancy names like “optimal brain damage”and “optimal

brain surgeon”, were also designed to reduce over-fitting by removing uselessconnections and

neurons. There are even techniques (e.g. the projection pursuit regression method discussed

below) able to adapt automatically the shape of the activation functions to the problem features.

Finally, let us mention that the MLP learning algorithm may be used in an adaptive on-line

scheme, so as to adapt parameters whenever new learning states become available.

Salient features of MLPs. Notice that the very high accuracy obtained in our OMIB example

is due to the fact that we used a very large learning set in order to approximatea rather smooth

function of only two input parameters, and that we have used a moderate number of parameters

in the MLP. Further, our OMIB database is free of noise.

However, in many practical large scale applications the conditions are generally less favor-

able and it is not possible to reach this level of accuracy. Nevertheless,MLPs are often among

the most reliable automatic learning methods.

Thus, the main characteristic of MLPs is flexibility in approximating nonlinear functions in
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multi-dimensional spaces.

This flexibility is however obtained at the expense of high computational burden. In real-life

problems, when the number of inputs and hidden neurons is large, training times are typically

of several hours to several days. At the same time, it becomes rather difficult to appraise and

interpret the type of input/output relationship represented by such an MLP, which thusbehaves

like a black box.

Projection pursuit regression. Projection pursuit regression has been proposed by Friedman

in the early eighties [26]. It uses the following form of hypothesisH(x) = MXi=1 �iHi(xTwi); (27)

where the functionsHi belong to a one-dimensional hypothesis space. The learning algorithm,

which we will not describe here for the sake of space, selects the following “parameters” : M

(the order of the model), and for eachi � M , �i (the weights of individual directions),wi (the

individual directions), andHi(�) (the individual one-dimensional models).

Thus, the model is similar in structure to a single hidden layer perceptron, withthe important

difference that the activation functions are learned rather than chosen a priori by the user. It is

not astonishing that the main drawback of this very sophisticated method is high computational

requirements.

However, the method is very flexible and has the main advantage with respectto multilayer

perceptrons to provide more interpretable results. In particular, the method may be downgraded

into an orthogonal projection pursuit model, which is quite easy to interprete and may be im-

plemented in a very efficient way [27].

Let us mention that in the recent years, work in projection pursuit regression has mainly

focussed on the definition of appropriate one-dimensional hypothesis spaces. For example,

references [27, 28] describe an efficient method to derive one-dimensional piecewise linear

modelsHi, and how to exploit them effectively in the multi-dimensional learning problem.

3.3.3 Nearest neighbor methods

All the methods described up to now (decision trees, multilayer perceptrons, projection pursuit: : : ) essentially compress detailed information contained in the learning setinto general, more

or less global models (rules or real-valued functions).

Additional information may however be provided in a case by case fashion, by matching an

unseen situation with similar situations found in the database. This may be achieved by defining

generalized distances so as to evaluate similarities among objects, together with appropriate fast
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Figure 16: 3000 learning states and nearest neighbors of state 4984 (taken from [21])

database search algorithms. Let us briefly illustrate the so-called “K nearest neighbors” (KNN)

method.KNN consists of classifying a state into the majority class among itsK nearest neighbors

in the learning set. In its most simple version, the learning stage of theKNN method merely

consists of storing the learning states in a table. The actual work (computing the distances and

sorting out theK nearest neighbors) is done when the method is used to make predictions for

unseen states.

For example, in our illustration let us consider the state no 4984 of our database (a test

state). Its values of Pu and Qu are respectively of 1090 MW and�20 MVAr. Figure 16 shows

in its left hand part the location of this state in the attribute space together with the learning

states. In the right hand part we have zoomed on the nearest neighbors of the state. Note that

the points on the borderline of the zoom region are equidistant (Euclidean distance) to the test

state.6 One may identify on figure 16 the nearest neighbor, i.e. the learning state closest to the

test state (state no 2276 : Pu=1090 MW, Qu=�31 MVAr, and CCT=0.157s). Thus, according to

the 1 nearest neighbor (1NN) rule, the CCT of the test state will be approximated to 0.157s and

it would be classified into the secure class. Note that its actual CCT is equal to 0.158s; hence

the state is correctly classified, in spite of being very close to the security boundary.

Validation. Repeating this procedure for all 2000 test states yields an error rate of 0.9%.

Figure 17 shows the distribution of CCT approximation errors. Comparing with figure15, we

notice that the 1NN approximation is slightly less accurate than the MLP approximation. On

the other hand, the 1NN provides additional information to that of the MLP and the DT : the

distance to the nearest neighbors, attribute values of the nearest neighbors, and more generally

any type of information attached to the nearest neighbors, like, for example, optimal preventive

or emergency control strategies.
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Distribution of approximation errors

Maximal absolute error = 10 ms

Mean absolute error = 2 ms
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Figure 17: Distribution of 1NN approximation errors (test set) (taken from [21])

Refinements. The basic refinement consists of usingK neighbors instead of a single one,K being determined on the basis of the learning set to increase reliability. Then, since the

nearest neighbor rule is quite sensitive to the distance chosen, in many practical problems it is

necessary to reduce the weights of less relevant attributes with respect to more relevant ones.

Thus, distance learning algorithms have been devised so as to choose automatically the weights

on the basis of a learning set. A further refinement consists of using different distance definitions

in different regions of the attribute space.

Salient features ofKNN. The main characteristics of this method are high simplicity but also

sensitivity to the type of distances used. In particular, to be practical, adhoc algorithms must

be used to choose the distances on the basis of the learning set.

The fact that theKNN approach is quite similar to human reasoning (recalling similar situ-

ations seen in the past) makes it also interpretable by human operators.

Combined use and hybrid methods. Now that we have described so many methods, which

all seem to be in competition, what is our message ?

The first remark is that, in terms of accuracy, while the ranking shown on our illustrative

problem is quite representative of many problems, there are also many exceptions. Thus, al-

though in general MLPs are among the more accurate methods, and decision or regression trees

among the rougher ones, this is not always the case.

The second remark, is that the methods that we have presented are essentiallycomplemen-

tary in terms of functionalities : decision trees and simple linear modelsare easy to interprete,

and can be used effectively on very large databases in an interactive scheme. On the other hand,

MLPs are slow at the learning time, and even though computers become faster and faster, this

remains essentially a batch type of procedure, which is also true for full-fledged projection pur-

suit regression. In the same way KNN is complementary to both types of methods, but rather

slow in practice.

The third remark is that nothing prevents one from using all methods in parallel on a
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database, and to select (if accuracy is the main focus) the method which provides the best

results on an independent test set.

Finally, it is also possible to combine the methods in hybrid approaches. For examplefuzzy

decision trees result in an intimate coupling of techniques from recursive partitioning and nu-

merical optimization à la MLP.

More simply, it is possible to use classical decision or regression tree induction in order

to identify the most relevant attributes and then use these attributes asinput variables to the

computationally more laborious methods. This helps to increase interpretabilityand reduces

computational burden. It may even lead to improved performances in terms ofaccuracy [21].

3.4 Unsupervised learning

Unsupervised learning aims at discovering interesting patterns in a database, without specify-

ing in advance which attributes should be considered as input variables and whichattributes

should be used as output variables. In the literature on automatic learning, manyunsupervised

learning methods have been proposed, such as clustering techniques, mixture distribution fit-

ting, correlation analysis, self-organizing feature maps, Bayesian networks, associations rules,

etc.

In what follows we focus on some methods which may be used in order to identify coher-

ent groups of objects or variables. Before describing the methods, let us briefly discuss some

potential practical uses of these applications in the context of power system analysis.

3.4.1 Potential uses of unsupervised learning methods

Correlation analysis. This aims at identifying among a set of candidate attributes, groups of

attributes which are strongly correlated (see the illustration in section 3.4.3). In power systems

this is quite useful, since in large scale applications the number of attributesdescribing power

system scenarios may easily reach several hundreds of variables (e.g. the voltages at all the

buses of the system, the power flows in all the lines of the system, etc.).

Thus, unsupervised learning may be used in order to find coherent groups of variables,

i.e. variables which essentially provide the same information about the scenarios. This in

turn allows one to reduce significantly the number of attributes to consider for further analysis,

which results in better interpretability, lower computational requirements, and often increased

accuracy.

Similarity analysis. Here the objective is to identify groups of similar behaviors. For exam-

ple, considering the left hand part of figure 4, one can easily observe that in the OMIB database

there are mainly two types of rotor angle behaviors (bounded and unbounded) which actually
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Figure 18: Dendrogram : correlation analysis of OMIB database attributes

correspond to the secure and insecure classes. In section 4 we mention a moresophisticated

application of clustering techniques in the identification of blackout modes of a real large scale

power system.

3.4.2 Unsupervised learning principles

In unsupervised learning there are essentially two basic principles.

The first principle is based on a probabilistic framework : it states that unsupervised learning

is a matter of modeling (unconditional) joint probability distributions in the attribute space as a

mixture of basic parametric distributions. A well known representative of this approach is the

AUTOCLASS method [29], which is based on a Bayesian approach to probabilisticmodeling.

The principles behind mixture distribution fitting are essentially the same than those that we

discussed earlier in the context of conditional probability model learning.

The second principle (the one which we will illustrate in what follows) is purely geometric.

It starts by defining a distance measure between objects, and then considers that a group is a

cluster of objects which are as close as possible to each other, and at the same time far away

from objects not belonging to the group. The unsupervised learning algorithms based on this

principle thus essentially consist of searching the data for a certain number of “good” clusters.

Below we will describe two different search strategies which may be used.

3.4.3 Hierarchical agglomerative clustering

This method is particularly attractive when the number of objects to group is not too large.

Starting with a set of objects, the idea is to build the clustering in a bottomup fashion, by

grouping progressively the most similar objects (or groups of objects) until only a singlegroup

remains containing all objects.

38



The application of this algorithm to the OMIB database is illustrated on figure 18,which

shows a dendrogram summarizing a correlation analysis among various attributes : the six input

attributes, the CCT, rotor angle and speed at different time instants (“delta(t)” and “omega(t)”

denote the value at timet in milliseconds).

The dendrogram was built in the following fashion :� computation of the linear correlation coefficients among all pairs of variables (the num-

bers on the diagram represent the absolute value of correlation coefficients);� definition of the similarity of two variables as the absolute value of their correlation;� definition of the similarity of two groups of variables as the minimum correlation coeffi-

cient of pairs of variables across the two groups;� iterative grouping : starting with one group for each variable, recursivelygroup the two

most similar groups of variables until all the variables belong to the same group.

Thus, figure 18 shows, in particular, three groups of strongly correlated attributes, from top

to bottom� the two voltages Vinf and Vl (correlation coefficient of 0.98);� rotor angles and CCT (minimum correlation coefficient of 0.978);� rotor speeds and Pu (minimum correlation coefficient of 0.997).

3.4.4 K-means

While the agglomerative clustering method is quite attractive for interpretation purposes, it is

mainly useful in order to group a moderate number of objects. The K-means method, on the

other hand allows one to group a very large number of objects into a given number of groups.

The algorithm (see e.g. [21]) is basically an iterative optimization technique. For a fixed

number of groups (sayk), it first divides the set of objects intok disjoint subsets (using a

random guess), then it iteratively moves objects from one group to another in orderto improve

the quality of the overall clustering. The latter quality is measured by the total within scatter of

thek clusters : the scatter of a cluster is the sum of the euclidian distances fromthe objects of

this cluster to the cluster center. The algorithm stop at the first local minimum, i.e. when it is

impossible to improve the quality by swapping any object.

Figure 19 illustrates how curve coloring can be useful to analyze the results of aclustering

algorithm. A random sample of the OMIB database was automatically partitionedby the K-

means method into 15 classes, according to the values taken by the temporal attribute�(t), i.e.

rotor angle temporal behavior. The�(t) curves of the scenarios belonging to three of these

clusters are shown in figure 19.
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Cluster number 2: 73 scenarios

Cluster number 12: 51 scenarios
Cluster number 15: 157 scenarios

Clustering according to temporal attribute DELTA(t) (data base OMIB)
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Figure 19: Clustering of OMIB scenarios according to temporal behavior of rotor angle

3.4.5 Hybrid methods

One of the difficulties with the K-means method is due to the fact that the user must define in

advance the number of clusters to search for. But this number is usually not known, which leads

to a trial and error procedure to determine the right number of clusters.

Another possibility consists of combining K-means and agglomerative clustering in order

to identify a correct number of clusters in the database. This leads to the following procedure :� first use the K-means algorithm with a rather large number of clusters, say between 20

and 100 (depending on the database size);� then use the hierarchical agglomerative clustering method in order to analyzethe dis-

tances among the resulting cluster centers and decide for a new value ofk;� run again the K-means algorithm with the new (smaller) value ofk;� iterate this one or two times.

In order to illustrate this approach we have applied it to our OMIB data base. First, we

used a set of 3000 objects of the first part of the data base, and used an initial number of

20 clusters for the K-means algorithm. Applying the agglomerative clustering algorithm to

the latter 20 clusters yielded the left hand dendrogram of figure 20, which suggests thatan

appropriate number of clusters would be 9.

Then we applied the same approach to 3000 objects of the second part of the data base

(which is in principle richer, since more parameters are variable). Again starting with 20 initial

clusters, the approach yields the right hand dendrogram of figure 20, which suggests that the

appropriate number of clusters is rather 10 for this part of the database.
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Figure 20: Dendrograms of K-means results

3.4.6 Similar episodes and time-series

As we have illustrated above, in our applications there are many situationswhere the similarity

measure relates to similar dynamic behavior patterns. In some cases, suchas those already

illustrated, it is possible to translate time series (curves) into vectors of real numbers and then

to use the euclidian distance between these vectors as a measure of similarity. This approach

was used above, and was possible, mainly because the curves are all synchronized (they have a

common origin of time and a common duration).

However, in many applications the data is not represented in such a systematic way in the

database. Thus, it is necessary to define more flexible criteria to compare time series among

each other. Techniques which might be used for that purpose are for example signal transfor-

mation techniques (fast Fourier transform, wavelets, etc.), signal correlation, or deformation

based curve matching [30, 31, 32].

3.5 Other data mining tools

In this section we have screened various complementary techniques to extract information from

databases, focusing on nontrivial automatic learning algorithms. Our objective was to provide

a comprehensive and self-contained description of the main useful techniques which are today

at our disposal.

Of course, to provide a complete description of existing automatic learning algorithms is

impossible and not very useful. We have provided some references for further reading at some

places of the text, but here also we have limited our references to either very basic ones or

pointers to very recent work which might not yet be known.

Of course, data mining does not only use automatic learning algorithms, even though they

are at the center of the process. Typically, data mining software contains also a large number

of auxiliary tools and fancy user interfaces. In particlar, they should providefacilities to select

subsets of scenarios and variables, to visualize them easily and to show data mining results
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to the user. Many of these features have been illustrated through the examplesthat we have

provided. Other features which are necessary for data mining, and which we did notdiscuss

are :

Data transformation and cleaning techniques :replacement of missing values, normaliza-

tion, windowing, identification of outliers;

Interactive definition of attributes : in order to allow the user to combine different ground

attributes into more sophisticated ones;

Automatic learned models : automatic learning builds new functional attributes and creates

new objects from those contained in the initial database; these new variables and objects

should be incorporated in the environment in such a way that one can use them in the

same way as the other variables and objects.

4 Applications in power systems

We now discuss more in detail the applications of automatic learning and data mining to power

system problems. We start, in section 4.1 with an overview of those applications which can

use automatic learning in one way or another. Then, in section 4.2 we will discuss more in

detail the “study” applications which may use the framework of Figure 1, combining Monte-

Carlo simulation with automatic learning. In this latter part we will provide some references to

publications reporting different studies in detail.

4.1 Overview of main application fields

In this section we screen through the main applications of automatic learning and data mining

in the context of electric power systems. Our objective is to illustrate the diversity of possible

applications and to suggest new directions not yet explored in detail.

4.1.1 Dynamic Security Assessment

Power system security assessment has the special feature that the data bases are generated by

computer based simulation, and this because the actual experience of instabilities is fortunately

very small for most power systems. This is a laborious task but in the same time an advantage,

being possible to generate as many scenarios as are deemed necessary to solve a particular task.

Possible uses of automatic learning to security assessment would be:� providing continuous security margins for a given scenario: CCTs, load power margins,

severities, global stability limits;
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� identifying the relevant attributes for the security class prediction of a given power sys-

tem;� determining if an operating state is stable or not with respect to a given fault, or to a set

of contingencies;� determining which operating points lead to a voltage collapse for a given contingency;� determining for a given operating state the faults likely to create instability;� contingencies ranking in terms of their severity for a range of operating conditions;� identifying conditions characterizing pre-fault attributes of stable operating states for a

given set of possible faults;� partitioning all the possible scenarios into families of dynamic behaviors: stable and fail-

ure modes; determining criteria to identify failure modes in real-time;� partitioning the power system map into voltage coherent behavior regions;� searching for a specific kind of scenario;� early detection of voltage risks for a given scenario;� inferring means for control if an incipient instability is detected early enough;� extracting if-then rules from all the problems solved by means of machine learning.

4.1.2 Controller and Protection Design

In power systems, design problems mainly concern the identification of appropriate locations

for some devices, their dimensioning and the tuning of some of their parameters. Typical ap-

plications are: study concerning a new static VAr compensator (SVC) (the best geographical

location, type and capacity, possibly parameters tuning), re-tuning the parameters of power

system stabilizers equipping some plants, selecting the number and location for new measure-

ment devices, defining pilot nodes for secondary voltage control systems, tuning a transformer

tap-changer blocking device.

There is a variety of control problems, concerning centralized/local controllers operating at

different time-frames and acting on different physical variables. Thesecontrollers need to be

robust with respect to changing characteristics of a power system, due to variation of load level

and topology. Since the latter are generally non-linear it is necessary to use simulation tools

in order to validate controller robustness and sometimes tune them. Automaticlearning can be

used in order to make such studies more systematically, taking better advantage of simulations.
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A automatic learning process applied to the above SVC design problem should startwith the

identification of the electrically “coherent” regions in the system. A small number of voltage

coherent regions may be found out by means of unsupervised learning, analyzing correlations

among voltages at different nodes of the system. Then, a more refined analysis of the individual

voltages in each region would allow to identify “central” buses where the overall behavior of

the zone is best observed. To study the best substation to place the SVC and to find out which

parameters of the operating point would influence most strongly the behavior of the device, a

new data base is generated by random sampling different possible locations, operating condi-

tions, assumptions and modelings (steady state, small signal, large disturbances), and various

automatic learning tools may be implied. In order to finalize the design, a third more refined

study could be carried out for fixing SVC parameters: several possible sizes and parameters

could be screened out.

Adaptive (control and protection) systems are an alternative to robust designs, in order to

cope with the variety of operating conditions under which such systems must operate.Auto-

matic learning would allow one to determine the parameters to which the optimal control law

of a plant is most sensitive and then learn the scheduling rules to select the appropriate control

law in real-time.

4.1.3 Modeling

In order to carry out simulations, be it for security assessment or design, it is of course neces-

sary to build up models; while many components in the power system may be modeledrather

accurately, by choosing model structure from first principles and using classical identification

techniques to determine parameters, some other parts are intrinsically difficult to model, ei-

ther because they need to be represented in a reduced way (this is typically the case of load

models and external system models), or because they change with time (due to aging and/or

modifications carried out during maintenance operations) or they vary significantlyfrom one

geographical region to another (due to weather conditions). We believe that automatic learning

could be a very useful tool in order to improve the latter type of models, and also to monitor the

former ones in a systematic fashion in order to develop better models.

Data to be mined can be available in this case by recording information from real-time

measurement systems and disturbance records. By data mining tools, it would be possible to

estimate how accurately their derived model approximates real-life, i.e. how much uncertainty

remains which is not explained by the model. And this information may be used in the context of

problems using data base generated by means of these models. For example, a certain standard

deviation of the security margin in a generated data base, due to uncertainty inthe modeled load

distribution, translates into inevitable classification errors when trying to assess the security

class of a scenario. Then we know that, for minimizing these errors we should try to model
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more accurately the load, rather than to further search for improving data mining methods.

4.1.4 Estimation, Identification, Forecasting

In order to build up and maintain statistical models about load patterns, measurement and sig-

naling errors, data gathered in control centers archives may be exploited by automatic learning

tools.

Short-term load forecasting is one of the areas very investigated from thepoint of view of

neural networks application (supervised and unsupervised). In this context, a data base may

be easily updated to contain past load demands and past data about some typical factors: lo-

cal/global weather conditions (temperatures, winds, humidity), type of the hour, type of the

day, tariff strategies, social events like national days off, strikes.Mining this type of data gives

a better understanding about what parameters are more important for the load evolution, how

different geographical regions act from the point of view of weather conditions and how this

influences the load, and accurately predict the load demand for a given new situation [33].

An interesting area for research concerns very short termnodal load forecasting, to be

used in enhancing real-time system monitoring and security assessment. Such predicted values

would enrich the information exploited by state estimators, providing the required redundancy

to detect topological errors. Further, obtaining a 30-minute prediction of the individualload

demands would permit security assessment on predicted state rather than on past information.

4.1.5 Monte-Carlo based Planning

In the off-line planning environment, engineers use Monte-Carlo simulations in order to esti-

mate expected values of quantities such as operating costs and load-curtailment for future op-

erating conditions. It consists of using random sampling to screen possible scenarios according

to their probability, together with numerical methods to compute for each scenario the oper-

ating cost and amount of load curtailed, and averaging the values for the simulated scenarios.

Presently, most tools used within this context compute only global sample statistics (averages,

standard deviations, quantiles) of important quantities chosen by the engineer, but throw away

the details concerning each individual sample.

Preliminary investigations show that much richer information can be extracted by storing

the results from individual samples (simulated operating scenarios) in a database, and further

analyzing the latter by automatic learning. For example, this approach allows oneto detect

outliers (which are often responsible of high variance and bias in the estimates) and lets the

engineer judge whether or not they must be taken into account. Also, by carrying out systematic

studies of relationships (correlations) between different output parameters,better insight into

the physical structure of costs and other decision variables can be gained, which eventually will
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lead to better strategic decisions.

Automatic learning can also be used in order to compare the distributions of simulated

scenarios and those encountered in real life, which in turn leads to improvements in the proba-

bilistic models used in the Monte-Carlo simulations. Furthermore, by carrying out the analysis

of variance of output parameters, it is possible to find out in which region of the sampling space

variance is higher, and thereby to define more efficient sampling schemes. In the same way,

regression techniques may be used in order to build automatically approximate input/output

models which can then be used as control variates in order to further reduce variance [34, 35].

4.1.6 Monitoring

Monitoring is a very broad application field, ranging from the monitoring of the individual

devices and plants, to sophisticated system monitoring. The purpose is to detect asearly as

possible when a system departs from its normal conditions. It includes many of the activities

of a control-room, in particular security assessment. Power plant monitoring(burner, reactor,

dam), transformer monitoring, and system oscillations monitoring are applications which can

make use of automatic learning.

In particular, recently temporal decision trees have been proposed as an appropriate tool for

monitoring, given the dynamic time-varying nature of attributes and the ability oftemporal trees

to early predict modes of bad behavior (e.g. fast electromechanical transients, mid-term voltage

collapses, cascades of overloaded line tripping, etc.) [25].

Some of these applications have already received attention from researchers, but many pos-

sibilities still remain to be explored. In particular, so as to respond topresent un-bundling

trends, future system monitoring will mostly rely on hierarchical approaches.In this hierarchy,

the lower levels will correspond to local monitoring of plants or sets of plants ofindividual

generating companies or load aggregators, and the higher levels will correspond to security and

transaction monitoring at the system level. At the lower levels, the problem will be to monitor

system changes which may impact the functioning of local plants, from local information and

possibly global status information obtained from the upper level monitoring system. At the

upper levels, the problem will be to use global information together with outputs of local moni-

toring systems in order to provide an overall picture of the system, and identify those abnormal

states which cannot be identified from local information only. Which informationto share be-

tween lower and upper levels, and how to make the best use of it will be the main questions

to solve. We believe that probabilistic simulations, together with automatic learning and other

intelligent information processing approaches may provide valuable tools in this context.
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4.2 Application to power system design, analysis and control

Among the applications of automatic learning just discussed, we may distinguish two classes

according to the nature of the databases used : (i) applications using data collected from the field

(modeling, state-estimation and identification, monitoring); (ii) applications requiring numeri-

cal simulations in order to build databases (security assessment, controller design, planning).

Here we focus on the latter class of applications. They are on the one hand more complex,

since they need software and models developed for the generation of the databases.On the other

hand, due to the fact that the database generation is under the control of the engineer, in these

applications there is increased flexibility.

Below we will outline the overall approach used to study electric power systems through

computer experiments. The main idea is to take advantage of existing computer simulation

tools and physical models together with automatic learning. The bridge between thesetwo

techniques is provided by Monte-Carlo simulations, which exploit existing simulation tools in

order to produce information which may be exploited by automatic learning.

First of all let us discuss the nature of the different problems encountered in the field of

power system design, analysis and control.

4.2.1 Introduction

Let us first recall that power systems are complex, large scale, highly nonlinear and uncertain

systems. The satisfactory operation of a power system requires extensive studies with highly

diverse horizons. To illustrate the complexity of the decision making process, let us focus on

security assessment and control, which is certainly one of the most difficult and at the same

time important problems faced by power system engineers.

Security assessment and control aims at making decisions in different timehorizons so

as to prevent the system to experience undesired situations, and in particularto avoid large

catastrophic outages. Traditionally, security control has been divided in two main categories :

preventive and emergency control (EC).

In preventive security control, the objective is to prepare the system when it is still in normal

operation, so as to make it capable of facing future (uncertain) events in a satisfactory way. In

emergency control, the disturbing events have already occurred, and thus the objective becomes

to control the dynamics of the system in such a way that consequences are minimized.

Security related decision making starts in (national or international) regulation bodies which

define security criteria and auditing principles, and ends by paying back customerswho have

suffered economic loss due to insecurity. Let us briefly enumerate the steps asthey appear in a

logical sequence.

Security standards. The explicit definition of security standards is needed in order to set tar-
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gets for security control. Clearly, security standards will depend on the roleplayed by

the electric energy system in the overall economy, as well as on politicalchoices. The

standards definition must comprise the specification of the desired levels of reliability,

of the means associated to reach the stated objectives, the rules for allocating resulting

costs and the auditing mechanism used for verification. Generally, at this level it is also

decided which entities (private or public) are technically in charge of meeting the security

standards.

Research.Research basically aims at understanding how electric power systems behave, in

order to provide predictive models which may be used at the different levels of decision

making. Today, the trend in research is clearly towards exploiting information technol-

ogy (computation, database management, communications), which provides means for

improved modeling and security control. Let us notice that since the electricpower sys-

tem is essentially stochastic, modeling should address both physical and probabilistic

aspects.

Long term investment. Formerly, in the integrated framework, investment decisions were gen-

erally taken in a coordinated way, combining expansion of generation and transmission

subsystems in an optimal way. Today, in order to favor competition, in most systems

the investment of generation is a matter of independent decision making based mainly on

business opportunities. Hence, the transmission system investment must follow in order

to maintain desired levels of security. Building new lines is for the timebeing almost im-

possible in most developed countries, thus investment might probably focus on improving

power system monitoring and control, by exploiting modern communication possibilities

and power electronics.

Maintenance planning. Decision making aims at choosing maintenance plans in such a way

that availability is maximized in periods where higher traffic on the systemis expected.

Again, since the generation subsystem is operated independently by a certain number of

agents, there will be increased needs for probability methods in order to manage uncer-

tainties. Also, in order to reduce uncertainties it will be necessary to bemore reactive, in

order to adapt maintenance plans smoothly, as information becomes available.

Transaction planning. In short term (one day ahead, typically) transaction planning, the sys-

tem structure is essentially fixed and the objective is to arbitrate among conflicting trans-

actions without discrimination and while ensuring system security.

Operation. In the control room, the operator receives real-time information which is used in

order to coordinate the scheduled transactions, while reacting to unforeseen events (dis-
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turbances, outages, unexpected behavior: : : ). Part of the operators’ job will be to handle

‘slow’ emergencies, e.g. related to thermal overload problems or slow voltage collapses.

Emergency control. In this category we focus on automatic control actions such as generation

tripping, load-shedding, controlled islanding: : : We will further elaborate on this in the

remaining part of the paper.

Restorative control. This aims at re-energizing the system after an event which has led to par-

tial or total blackout. Efficient restorative control is necessary in orderto minimize outage

costs. Clearly, strategies for restorative control need to be coordinatedwith emergency

control schemes.

Post-mortem analysis.Generally, after a major blackout it is necessary to find out the main

causes and to evaluate the outage costs incurred by the users of the transmissionsystem.

Post-mortem analysis will be easier if the appropriate information has been stored during

the disturbance and is made readily available to the analysts.

Financial compensation.After a major event, it is generally the case that some users should

be paid for the economic losses they have incurred due to the consequences of the outage

on their business. The inputs to these decisions are the results of post-mortem analysis,

contractual agreements (possibly) and the rules for compensation defined in the security

standards.

Thus the decision making process is by itself rather intricate. On the other hand,the types of

problems considered in power system security are essentially rare events, difficult to model, dif-

ficult to predict, but they may potentially have very important human, ecologicaland economic

consequences.

Given the complexity of the overall security problem, at each one of these decision steps it is

generally decomposed into a number of simpler subproblems. Given the fact that the problems

are most often related to rare events, they generally require simulation techniques (tailored to

the considered subproblem) to answer “what if” type of questions.

However, in spite of the uncertain character of power systems, the use of probabilistic ap-

proaches was in the past essentially restricted to long term planning applications, and even in

this context their use has been quite marginal. In most applications, problems used to be solved

by combining human expertise and systematic screening techniques. However, inthe last few

years, the probabilistic framework described in this paper has received a growing number of

practical applications.
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Figure 21: A priori information : probabilistic model and physical model

4.2.2 Computer experiments for power system analysis and design

The approach consists in two main steps : database generation using Monte-Carlo simulations

of dynamic behavior scenarios, and database analysis using automatic learning [36, 37]. Note

that the Monte-Carlo approach is well suited to the intrinsically probabilistic nature of the prob-

lem (think about the random nature of external disturbances, failures of protection devices,

mis-tuned settings, etc.). On the other hand, automatic learning techniques are (by definition)

designed so as to separate predictable information from the random component.

As sketched generically in figure 21, the Monte-Carlo simulations require twomodels : the

probabilistic model (for random sampling), and the (dynamic) physical model (for numerical

simulation).

The probabilistic model (see figure 21) represents a priori knowledge about initial operating

points (OP), external disturbances and inputs (ED) and other modeling parameters used in a dy-

namic simulation (MH). Notice that this scheme allows one to represent probabilities of failures

of protection devices, ranges of possible model parameters of external systems or aggregated

load areas, etc. All this information is symbolized by a parameter vector(� in figure 21) which

defines a simulation scenario, and is fed later on into the physical model, in order to simulate

the corresponding trajectory.

In our discussion below, we refer to the design of defense plans (i.e. the design of protection

schemes against blackouts) in order to illustrate ideas. For a more detailed discussion of this

problem, and of the actual study carried out on a real large scale system, we refer the interested

reader to reference [37].

4.2.3 A priori models.

The design of the probabilistic model is generally the most difficult and at the sametime the

most important modeling step in this approach. The chosen probability distributions incorporate

all prior knowledge as well as the definition of the range of conditions which the study aims to

cover.
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Figure 22: Information extracted by AL : expected value of future severity given past measure-

ments

As usually, the dynamic model is a set of differential and algebraic equations which define

the analytical relationships among states, parameters, time, measurements (denoted byz(t) in

figure 21) and scenario severity indicators (denoted bys(t) in figure 21).

Since there is a large variety of problems in power systems which may be solved by the

discussed approach, the a priori models (both probabilistic and physical) will actually depend

strongly on the particular application under consideration.

For example in the context of defense plan design, both models would be rather detailed

[37]. Measurements would be all those variables which can be used as input to emergency

control schemes, whereas indicators would denote the information which would be observed

about the severity of the scenario under different hypotheses of control actions.

4.2.4 Database generation

In order to reduce the number of required simulation scenarios, the Monte-Carlo sampling may

artificially increase the probabilities of various types of failures, and sample only combinations

of severe disturbances. In other words, the probabilistic model may be biased in order to sam-

ple predominantly those regions in the measurement space where the variance of the severity

indicators is high. In the literature on Monte-Carlo simulations there are several well known

variance reduction techniques which may be used for that purpose (see e.g. [4], and also the

literature on optimal experiment design [38]).

However, the coupling of such techniques with automatic learning is more intricate and

there is still much work to be done in this field (see also the literature on query based learning

and reinforcement learning).

For the time being we used the approach by biasing the probability distributions in anad

hoc way, so as to concentrate the simulations in the regions where prior expertisetells us that

most information can be gained. Note that without biasing the random sampling it would be

necessary to generate huge amounts of scenarios in order to gather some interesting blackout

situations. However, while biased probabilities were used for the random sampling, track of

the “actual” probabilities may be kept while generating the database so as to enable correct

interpretation of the results.
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4.2.5 Numerical simulation tools

In principle the approach can be used with any numerical simulation tool deemedsufficiently

accurate for the problem under consideration.

Note however that in the context of defense plan design, a rather detailed dynamic model

should be used, able to simulate both slow and fast dynamics and various protectivedevices, so

as to assess the performance of the system with good accuracy.

Thus, the database generation generally calls for parallel computations in orderto be able

to carry out several thousands of dynamic simulations with acceptable response times. In the

study on the EHV system of Electricité de France described in [37], 12 CPUs were thus used in

parallel for the simulations, using a master slave architecture depictedin figure 23.

4.2.6 Flexibility w.r.t. prior assumptions

Note that in traditional practice, in order to cope with the overall complexity of the problem,

the experts use a divide-and-conquer approach, where the problem isa priori decomposed

into simpler subproblems on a geographical and/or phenomena-wise base. If the system is

undergoing changes this may be misleading, since expertise becomes more quickly obsolete

and the “chance” of missing some potential risks is increased.

In the proposed approach, the principle is quite different. The problem is addressed a priori

in a global way : the Monte-Carlo probabilistic model is designed in order to represent all

reasonably possible causes of collapse (together with their relative probability) and the dynamic

simulation model is designed so as to allow the study of both slow and fast phenomena. The

geographical and phenomena-wise decomposition is carried outa posteriori by looking at the

database of simulation results with the help of automatic learning. This allows one in principle

to study interactions among various phenomena, if they happen, and to identify the most likely

consequences in a more objective way.
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However, during the database generation it is not necessary to restrict theamount of infor-

mation which will be stored and available later for analysis. Actually,it is advisable to keep

trace of all variables which could be used either as real-time measurements (inputs to emergency

control device triggering criteria) or in order to define the scenario severity. The data mining

tools offer the possibility to combine these variables in a very flexible way in order to build

synthetic models. Note also that input and output variables may be either numericalcontinuous

(analog states and measurements) or discrete events (fault occurence, relay tripping, breaker

opering/reclosure: : : ).

4.2.7 Extraction of knowledge for practical applications

Engineers trying to solve power system related problems should look at the whole toolbox of

data mining methods, and not hesitate to combine different techniques to yield a full, practical

solution. Data selection step may be performed with a decision tree, a clustering approach, or a

correlation analysis and later on, the result may serve as input for other supervised techniques,

possibly with the problem decomposed into simpler subproblems.

In order to show the interest of extracting synthetic information from a database of simula-

tion scenarios, let us continue with our example of defense plan design.

The objective of a defense plan is to trigger control actions in real-time so as to avoid large

disturbances to spread throughout the power system and to result in total blackout. The control

actions used by defense plans are generally heroic, and most often they result indisconnecting

generators and customers for a certain duration in order to bring the system backin a stable

operation. Therefore, defense plans should be designed in such a way that they will act if and

only if required, and it is of paramount importance to design effective triggeringrules, using

appropriate real-time information.

In order to design a triggering rule, it is necessary in some way to predict the future values

of the scenario severitys, given present and past values of measurementsz. In general,s
and y are random variables (actually random processes). Thus, at some timet, a synthetic

model is used to predicts at some future time,t0 � t, using the already observed values of

measurementsfz(�)g��t. This is suggested in figure 22, where the estimate is provided by the

conditional expectation of this random variable given the already observed valuesof z (notationŝ(t0) � ESjzfSjfz(�g��tgg).
Such a prediction model provides normally only an approximation of this conditional ex-

pectation, which, because it can not be computed analytically in practice, mustbe estimated

from a random sample of input/output pairs. Thus, as it is suggested in figure 22, the design

of such prediction models is carried out in the presented approach applying automatic learning

to random samples generated by Monte-Carlo simulations. As we have already mentioned, this

requires, for each variable which has to be predicted, the proper identificationof relevant mea-

53



surements (those parts ofy which carry indeed information about the future value ofz) and the

design of a synthetic model which will estimate severity as precisely aspossible.

Notice that in practical applications bothz ands are vectors of variables which combine

discrete (breaker status, relay trip, etc.) and numerical information (voltage magnitudes, amount

of load shed, etc.).

In order to exploit a database such as the one used for the design of defense plans [37],

several automatic learning techniques can be used :� correlation analysis, in order to reduce the dimensionality of the input vectors (in the

study described in [37], the number of candidate (temporal) input variables was more

than 800, yielding a database of about 2 Gigabytes);� clustering analysis, in order to find out the main modes of system breakdown (in the

study described in [37], about 40 modes were identified, by repetitive applications ofthe

K-means method);� supervised learning in order to build models able to predict various modes of blackout

from real-time measurements (in the study described in [37], temporal decision trees

were grown in order to detect early enough voltage collapse in one part of the system).

4.3 Main contributions of the approach

The automatic learning based approach, combined with Monte-Carlo simulations,has been ap-

plied during last ten years to a number of large scale power system problems. These applications

first started in the context of research collaborations between the University and some electric

power utilities. Since a few years now, the approach is used by Electricité de France in order to

carry out various operational studies.

Below we start by briefly enumerating the type of studies which have been carried out, pro-

viding pointers to related publications. Then we will discuss the main complementary features

of this approach with respect to other techniques used in the context of power systems analysis,

design and control.

4.3.1 Sample of large scale applications

Transient stability. The first large scale application was carried out in the context of transient

stability assessment of a large nuclear power plant of Electricité de France [39]. This was

followed by a similar study to determine transient stability limits of the James’ Bay corridor of

the Hydro-Québec system [40].

54



Neither of these early research projects has resulted in an actual implementation in the con-

trol center. However, they contributed to demonstrate the usefulness of the overall methodology,

to develop software tools and bring the methodology to a sufficiently mature stage.

Voltage stability. Applications to voltage stability have been carried out mainly in collabo-

ration with Electricité de France. The first study was carried out on theWestern part of this

system which experienced voltage collapse in the past. Most of the details of this research can

be found in [41].

After this initial collaboration, Electricité de France started to use the method in various

studies, and in particular in order to define new operating rules [42] for the South-Eastern part

of their system : these new rules are in use in the control center since early 1998.In one year,

they allowed Electricité de France to reduce operating costs by about 2 million dollars.

Emergency control design. The early work in emergency control focused on voltage col-

lapse problems [43]. Later on, a long term collaboration between Electricit´e de France and the

University of Liège started in order to apply the methodology to study power system blackout

modes and enhance the overall emergency control system [37]. More recently, Electricité de

France has used the approach to improve some of their emergency control schemes [44].

Under research. Presently there are other topics under investigation, in particular the design

of global security limits for the Belgian power system, in collaboration with Electrabel, and the

analysis of operating costs structures, in collaboration with Electricité de France.

4.3.2 Main complementary features

Numerical simulation tools provide very detailed information for each one of the simulated

scenarios. Up to now, power system engineers used these tools in a very manualfashion. They

had to build up by hand each simulation scenario, run the simulation tool, then lookat the

results in order to see how the system behaves in this particular simulation,change the scenario

specification and input files and run the simulatore again to see the effect.

This iterative process has essentially the limitations of human experts : the number of simu-

lations which can be run and exploited is quite limited, essentially by the humancapabilities to

analyse the results and synthesize them in a synthetic manner so as to define decision making

criteria. Also, in this process the conditions under which the system is simulated are not de-

fined explicitly : they depend on the successive steps and quite strongly on the expertise of the

engineer in charge of the study. To make the whole process tractable, the engineersgenerally

decompose a large problem into simpler subproblems according to the prior knowledge about

the problem.
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Today, power system behaviors become more and more complex. Expertise is thus becom-

ing more quickly obsolete, and may very easily become misleading. On the other hand,the

complexification of the systems makes their propper design and control even more necessary

than in the past. However, the classical way of conducting studies does not allow to increase

significantly the number of simulations which may be carried out.

The approach presented in this paper makes studies more systematic, and thus provides

an appropriate way to enhance the decision making process. It can easily scale up to very

large numbers of simulations, if required. Indeed, most of the laborious tasks are now carried

out by the computer, or in parallel by several computers, if necessary. More importantly, the

approach obliges the engineers to model the probabilistic nature of their problem in a very

explicit fashion and to define precisely the scope of a study. Therefore, the results obtained are

more transparent, can be easily reproduced and updated if necessary. They require also less

strong prior assumptions and are therefore liable to provide more objective decision criteria. At

the same time, using appropiate techniques to extract infromation from the simulation scenarios,

the approach makes it possible to enhance human expertise.

Finally, the approach is intrinsically a probabilistic approach. It is therefore able to take

into account the numerous uncertainties which make power system operation and control so

difficult.

5 Conclusions

This paper has presented a new approach to use computer experiments to study complex sys-

tems. This approach combines probabilistic modeling and reasoning, with classical determinis-

tic simulation techniques in order to analyse, design and control complex systems. The core of

the approach is provided by a toolbox of automatic learning methods which are used to extract

information from databases generated by Monte-Carlo simulations.

The approach has been developed in the context of electric power system applications during

the last 15 years. In this field it has already provided practical solutions tovarious difficult

problems.

Besides describing the main principles of the approach, one of the aims of this paper was

to suggest that this approach could be applied to many problems in the general context ofcom-

plex systems. Indeed, many other complex systems built by engineers lead to similar problems.

For example, the design, operation and control of telecommunication networks, computernet-

works, chemical and mechanical plants, could take advantage of the combined use of simula-

tion, Monte-Carlo sampling, and automatic learning. We hope that this chapter willcontribute

to raise interest in this methodology by experts of these application fields.

Nevertheless, although the approach has already evolved significantly during thelast few
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years, there is still a lot of room for research. In particular, from the theoretical viewpoint we

mention the combination of optimal experiment design ideas with automatic learning and the

very broad area related to learning from temporal databases. From the practical point of view,

we believe that one of the main outcomes of the approach will be to allow the use of probabilistic

techniques in the context of non-linear complex system analysis, design and control.
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Figure and table legends

Table 1. Spreadsheet view of a small part of the OMIB database

Figure 1. Overall probabilistic framework based on automatic learning.

Figure 2. Use of Monte-Carlo simulations instead of analytical derivations

Figure 3. Simple one-machine infinite-bus system (OMIB)

Figure 4. Illustration of OMIB database content

Figure 5. First 5000 random scenarios of the OMIB database (adapted from [21])

Figure 6. Illustration of bias and variance

Figure 7. Hypothetical decision tree and equivalent if-then rules (taken from[21])

Figure 8. Three first steps of decision tree growing (taken from [21])

Figure 9. “Orthogonal” decision tree (end result) (taken from [21])

Figure 10. “Oblique” decision tree and classification boundaries (adapted from [21])

Figure 11. Regression tree (CCT function of�(t))
Figure 12. Structure selection by cross-validation

Figure 13. Perceptron (neuron) and multilayer perceptron (adapted from [21])

Figure 14. Single hidden layer perceptrons (adapted from [21])

Figure 15. Distribution of MLP approximation errors (test set) (taken from [21])

Figure 16. 3000 learning states and nearest neighbors of state 4984 (taken from [21])

Figure 17. Distribution of 1NN approximation errors (test set) (taken from [21])

Figure 18. Dendrogram : correlation analysis of OMIB database attributes

Figure 19. Clustering of OMIB scenarios according to temporal behavior of rotor angle

Figure 20. Dendrograms of K-means results

Figure 21. A priori information : probabilistic model and physical model

Figure 22. Information extracted by AL : expected value of future severity given past mea-

surements

Figure 23. Parallel simulation of scenarios (taken from [21])

Footnotes
1Often one uses the term “state of nature” to denote this concept. We prefer to usethe term

behavior, in order to avoid confusion with the classical notion of state used in system theory.
2This completeness assumption is fully legitimate in the case of finite universes.
3which verifies the axioms of a probability measure [45].
4We suppose that the measurement devices are part of the studied system.
5CPU times on a SUN UltraSparc 300MHz workstation.
6The equidistant region is slightly oval due to the fact that we have normalized Pu and Qu

by their standard deviation before computing the distance.
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