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Background & Motivations
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Large-scale electric power systems are in rapid transition...
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... and they are more and more cyber-physical
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Electric power systems
have a highly variable topology

p(x)
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Electric power systems
have a highly variable topology

The topology changes significantly over time because of the following reasons:

I Exogenous: generator dispatch driven by weather conditions and market clearing
mechanisms; automatic protections that open breakers to clear faults induced by
weather storms, human errors, or adverse attacks; new generators and new
customers becoming connected to the grid

I Endogenous: planned grid component outages for maintenance activities;
operator actions aiming to improve system security; new grid components being
put in operation

NB: Together with the loading level of the different components and the settings of their

control devices, the topology defines the power system operating condition x .
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Electric power systems have
extremely high reliability requirements

I Avoid blackouts, maximise resilience, meet QoS standards

I Redundant system architecture, operated so as to be fully robust w.r.t. to the
failure of any single component

I Hierarchical control structure
I Primary: plant level, automatic, fast (milliseconds), protect equipment
I Secondary: zonal level, automatic, slower (seconds), coordinate primary controls
I Tertiary: system level, human operator in the loop, even slower (minutes), optimise

settings of secondary and/or primary controls, and modify grid topology

NB: in France 7 regional control centres and 1 national control centre; in Europe about 40

‘national’ control centres.
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Target of this work: leverage modern AI techniques
to support EPS operators (tertiary control)
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Building on available resources from the EPS world

I Rich and real (but private) observational datasets:
I Snapshots of actual operating conditions collected in real-time, e.g. every 5 seconds
I Forecasts of operating conditions used by operation planners, e.g. every 60 minutes

I Strong physical models:
I A variety of well documented static and dynamic physical models

I Tools:
I Simulation and optimisation software and high performance computers
I Simplified and artificial (but public) benchmark datasets

I Human expertise:
I Operators, planners, R&D
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Meeting actual needs

I Operator friendlyness

I Incorporation of all kinds of available physical knowledge, models, and data

I Proposing all kinds of suitable control decisions to operator

I Robustness w.r.t. all kinds of topology changes

I Adaptability to the profound changes induced by the energy transition

I Transportability to different classes of systems and decision and control problems
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Methodology & Implementation
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Data model: Hyper-Heterogenous Multi-Graphs (H2MG)

(c) H2MG(b) Standard Graph(a) Single Line Diagram

bus gen
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Standard graphs are made of nodes and edges, and require to aggregate together objects of
different natures, while our proposed H2MG formalism allows for a seamless representation of
power grid operating conditions; addresses are used to connect ports of hyper-edges.
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Inference model: H2MG-NN with NODE coupling layer
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The feature vectors of all hyper-edges are embedded into a latent space using class-specific
encoders Ξc

θ. All addresses are associated with latent coordinates initialised at zero, and then
follow a trajectory defined by a differential system whose second member involves couplings
born by hyper-edges and defined by neural networks. Addresses interact until τ = 1. Finally,
hyper-edges exploit the final locations of their addresses to produce a meaningful prediction
thanks to class-specific decoders Ψc

θ.
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Machine learning approach: REINFORCE algo

0.345
neural network

operating condition x
Stochastic control policy

Πθ(y |x)
control variable y cost c(x , y)

1.050.97

sampling simulation

A power grid operating condition x is passed as input to a H2MG-NN model which outputs a
probability distribution Πθ(y |x) for the vector y of control variables. Values for y can thus be
sampled, and passed to the cost function c(x , y) evaluated by a physical simulation.

At each iteration of the REINFORCE algo, several physical simulations with different

(x , y) combinations allow to estimate a gradient descent direction w.r.t. θ to improve

the control policy Πθ(y |x), i.e. to search for

θ∗ ∈ arg min
θ∈Θ

E x∼p(·)
y∼Πθ(·|x)

[c(x , y)] .
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Summary

The proposed machine learning framework has a strong physics-awareness:

I Rich data model, allowing to encode at the input and output of the H2MG-NN all
the physically relevant features for the problem under consideration

I ‘Near optimal’ control policy learning based on a sample of physically meaningful
operating conditions, representative of the life of the system in terms of
exogenous and endogenous sources of variability

I Learning and validation based on the use of already existing simulators faithfully
modelling the physical phenomena for the problem of concern

I The overall approach is free of any ‘smoothness’ assumptions (not explained in
this talk) and therefore applicable to discrete and continuous controls and
non-differentiable physics simulators
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Scientific Publication

For further details about the methodology and simulations results on a public
benchmark power system model, please see:

Topology-aware Reinforcement Learning for Tertiary Voltage Control
Donon, B.; Cubélier, F.; Karangelos, E. et al. Proc. of PSCC, 2024

https://hdl.handle.net/2268/315490
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Case study on the French transmission
system (RTE)
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Tertiary voltage control in the Toulouse Region

I South-West part of France

I About 1200 buses, 1600 branches

I Dataset of 15000 day-ahead planning
snapshots collected over 2 years

I Topology dependent continuous and
discrete control variables:
I up to 70 Shunts (on/off)
I up to 70 Transfo set-points (discrete)
I up to 7 Secondary Voltage Control

set-points (continuous)

I Use of cloud computing and RTE
in-house physics simulator

I First results are very promizing
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Ongoing work

I Strengthening the methodology and its implementation

I Application to other practical problems

I Towards industrialisation
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