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Soil microbes play a key role in shaping terrestrial ecosystems. It is therefore essential 
to understand what drives their distribution. While multivariate analyses have been 
used to characterise microbial communities and drivers of their spatial patterns, few 
studies have focused on predicting the distribution of amplicon sequence variants 
(ASVs). Here, we evaluate the potential of species distribution models (SDMs) to 
predict the presence–absence and relative abundance distribution of bacteria, archaea, 
fungi, and protist ASVs in the western Swiss Alps. Advanced automated selection of 
abiotic covariates was used to circumvent the lack of knowledge on the ecology of each 
ASV. Presence–absence SDMs could be fitted for most ASVs, yielding better predic-
tions than null models. Relative abundance SDMs performed less well, with low fit 
and predictive power overall, but displayed a good capacity to differentiate between 
sites with high and low relative abundance of the modelled ASV. SDMs for bacteria 
and archaea displayed better predictive power than for fungi and protists, suggesting 
a closer link of the former with the abiotic covariates used. Microorganism distribu-
tions were mostly related to edaphic covariates. In particular, pH was the most selected 
covariate across models. The study shows the potential of using SDM frameworks to 
predict the distribution of ASVs obtained from topsoil DNA. It also highlights the 
need for further development of precise edaphic mapping and scenario modelling to 
enhances prediction of microorganism distributions in the future.
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Introduction

Soil microbes play a key role in shaping terrestrial ecosystems 
and their responses to climate change and land degradation 
(Karhu et al. 2014, Cavicchioli et al. 2019) by driving soil 
functions such as carbon and nutrient cycling (Philippot et al. 
2013, Bardgett and Van Der Putten 2014, Jiao et al. 2021). 
For example, rising temperatures could enhance microbial 
activity, leading to increased carbon release from the soil to 
the atmosphere (Crowther et al. 2016, Ballantyne et al. 2017, 
Rocci  et  al. 2021), thereby further amplifying global tem-
perature rise. However, the mechanisms and rates of carbon 
and nutrient release depend on the composition and spatial 
distribution of the soil microbial communities present in the 
environment (Nottingham  et  al. 2015, 2019). Variations 
of these communities have been observed from micro- 
(Nunan et al. 2003) to regional (Yashiro et al. 2018, Pinto-
Figueroa et al. 2019, Mazel et al. 2021, Seppey et al. 2023) 
and global (Birkhofer et al. 2012, Bahram et al. 2018) scales. 
These distribution patterns could, in turn, be retroactively 
affected by future land-use and climatic changes (Guo et al. 
2018, Cavicchioli et al. 2019, Mod et al. 2021). 

To spatially characterise and quantify soil functions bet-
ter, there is a need to improve knowledge of the distribution 
patterns of soil microbial communities and their components 
(Bardgett and Van Der Putten 2014, Mod et al. 2020). Ferrier 
and Guisan (2006) identified three different modelling 
approaches to predict community characteristics in space and 
time. The first is ‘assemble first, predict later’, where one com-
putes summary metrics that characterise community-level 
properties, such as species richness or evenness, then model 
these properties against the environment. This approach is 
commonly used in microbial ecology, for example, to link soil 
microbial community characteristics, such as diversity met-
rics (Fierer and Jackson 2006, Griffiths et al. 2016, Ren et al. 
2018, Seppey  et  al. 2020), abundance patterns (Pinto-
Figueroa  et  al. 2019), dominance patterns (de Vries  et  al. 
2012), proportion of functional groups (Mazel et al. 2021), 
or total biomass (Serna-Chavez et al. 2013, Horrigue et al. 
2016) to environmental abiotic predictors, such as climatic 
and edaphic conditions. The second is ‘assemble and predict 
together’, which consists of an environmentally constrained 
ordination approach, sometimes used in microbial ecol-
ogy (Pellissier  et  al. 2014, Hugerth and Andersson 2017, 
Yashiro et al. 2018). The third is ‘predict first, assemble later’. 
It first models each component of the community indi-
vidually against the environment using species distribution 
models (SDMs) frameworks (Franklin 2010, Peterson 2011, 
Guisan  et  al. 2017) and is, so far, rarely used in microbial 
ecology. Because each species tends to respond individually 
to environmental changes (Williams and Jackson 2007), this 
approach is more meaningful when the modelling goal is to 
predict future changes in species assemblages (Guisan and 
Rahbek 2011). SDMs were first developed to relate pres-
ence–absence of species to environmental conditions (Austin 
1971, Guisan  et  al. 2017). When trained with presence–
absence, SDMs predict the probabilities of occurrence, but 

abundance models can also be developed (Guisan and Harrell 
2000, Waldock et al. 2022).

In most microbial ecology studies, the base components 
of communities are clusters of sequenced gene reads grouped 
in operational taxonomic units according to a set similarity 
threshold, e.g. amplicon sequence variants (ASVs) cluster 
sequences reads at 100% similarity after a denoising step 
(Callahan  et  al. 2017). Relating geographically referenced 
observations of such ASVs to local environmental conditions 
allows quantifying their environmental niche (i.e. the ASV–
environment relationships), from which the probability of 
presence of the ASVs can be predicted. Read counts per ASV 
are sometimes considered as an estimate of taxa abundance 
(Giner et al. 2016, Galazzo et al. 2020). However, the com-
positionality of sequencing data (Gloor et al. 2017, Greenacre 
2021) also means that the direct modelling of absolute abun-
dances (i.e. read counts) is not meaningful, leaving only the 
possibility to model relative abundance in addition to pres-
ence–absence (Mod et al. 2021). Such models could, in turn, 
provide predictive information in space and time about the 
status of microbial communities, with potential applications 
in microbial biodiversity conservation and land management 
(Averill et al. 2022, Redford 2023). To our knowledge, while 
some microbial studies fitted models of operational taxo-
nomic unit level to answer ecological questions (Merges et al. 
2018, Bay et al. 2020), very few studies have attempted to 
evaluate the quality of their models’ predictions on inde-
pendent data (as in Alzarhani et al. 2019, Mod et al. 2021). 
Hence, there is a need to develop SDM frameworks and 
test their predictions on microbial data to check: 1) if some 
taxa are better predicted than others, as observed for macro-
organisms, 2) how presence–absence and relative abundance 
modelling compare, and 3) if predictive performances can 
be linked to ASV properties (Guo et al. 2015, Collart et al. 
2023) such as taxonomic assignment and niche breadth, i.e. 
the amplitude of values where an ASV is observed in environ-
mental space (Thuiller et al. 2004), which is often reported 
to impact the predictive power of SDMs (Guisan and Hofer 
2003, Guisan et al. 2007a, Marshall et al. 2015, Regos et al. 
2019, Hallman and Robinson 2020, Tessarolo et al. 2021). 
Indeed, as with macro-organism species, microbial taxa may 
have different responses to environmental factors, which may 
not be captured by community-level analyses (Ferrier and 
Guisan 2006, Mod et al. 2021). If we want to successfully 
model and anticipate changes in the composition of future 
soil communities from changes in environmental conditions 
(e.g. to inform management and conservation of soils at large 
scales), we need to tackle the challenge of modelling the dis-
tribution of individual ASVs (Schröder 2008).

In this study, we take advantage of recent advances in com-
puting facilities, bioinformatics, and modelling frameworks 
to fit individual SDMs for every ASV from a comprehensive 
mountain soil DNA database (Yashiro  et  al. 2016, Pinto-
Figueroa et  al. 2019, Seppey et  al. 2020, Mazel  et  al. 2021, 
Malard et al. 2022). Our study specifically aims to test the pre-
dictive power of the SDM approach applied to a large number 
of ASVs using both presence–absence and relative abundance 
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data and to compare their predictive performance by cross-vali-
dation. To achieve this, we first generated SDMs for more than 
60  000 bacterial, archaeal, fungal, and protist ASVs across a 
wide elevational gradient in the western Swiss Alps. We then 
evaluated the predictive power of the models and explored dif-
ferences between the presence–absence and relative abundance 
SDMs among four microbial target groups (bacteria, fungi, 
archaea, and protists) and their constitutive phyla.

Material and methods

Study area and data collection

Soil samples were collected at a subset of sites from a larger set 
of grassland plots (Dubuis et al. 2011, 2013) in the western 
Swiss Alps (46°11′20ʺ–46°32′38ʺN, 6°52′05ʺ–7°14′54ʺE, 
http://rechalp.unil.ch (Von Däniken et al. 2014), Fig. 1). It 
is a mountainous region with an elevation range from 425 to 
3120 m a.s.l. and very heterogeneous climatic and edaphic 
conditions. To relate the soil microbiota to environmental 
values in the area, we used data from 250 sampling sites for 

bacteria and archaea (Yashiro et al. 2016, Mod et al. 2020), 
217 for fungi (Pinto-Figueroa et al. 2019, Mod et al. 2020), 
and 166 for protists (Seppey et al. 2020, Mazel et al. 2021). 
Details on the sampling and DNA sequencing for the three 
respective groups can be found in the references above; infor-
mation on assignment of sequenced reads to ASVs has been 
published in Malard et al. (2022). In brief, soil sampling was 
conducted from June to September (growing season) dur-
ing the summers of 2012 and 2013. At each selected sam-
pling site, a 2 × 2 m quadrat was used to sample the top 5 
cm of soil at each corner and at the middle of the quadrat, 
using sterilised tools. The five subsamples were then pooled 
and homogenised into a sample of 500 g representing the 
site. DNA extraction was done within 36 h after collection. 
Amplification was done targeting the V5 region of the 16S 
rRNA gene for bacteria and archaea (Lazarevic et al. 2009), 
the ITS1 rRNA gene operon region for fungi (Schmidt et al. 
2013), and the V4 region of the 18S rRNA gene for protists 
(Stoeck et al. 2010). PCR products were sequenced on the 
Illumina HiSeq 2500 for 16S and ITS1 amplicons and on the 
Illumina MiSeq for 18S amplicons (Supporting information). 
Demultiplexing, trimming, and merging of the sequences, as 
well as clustering of the sequences to obtain zero-radius ASVs 
(Edgar 2018), were performed using a custom-made pipeline 
(details in Mod et al. 2021, Malard et al. 2022). 

Proportional abundances (hereafter relative abundance) 
were obtained by dividing each ASV read count by sequenc-
ing depth. The presence–absence data were obtained for each 
ASV using counts superior or equal to one as presence and 
lack of detection as absence. Taxonomic assignment of ASVs 
was performed using the IDtaxa classifier (Murali et al. 2018) 
against the Silva v138 database for bacteria and archaea 
(Quast  et  al. 2012), the UNITE+INSD v9.0 database for 
fungi (Abarenkov  et  al. 2022), and the PR2 4.5 database 
for protists (Guillou  et  al. 2012). After conversion to pro-
portional abundance, ASVs not corresponding to bacteria, 
archaea, fungi, or protists for the corresponding markers were 
discarded (Supporting information). 

For each site, values representing a wide range of 78 
covariates covering climatic, edaphic, topographic, landuse–
landcover, and remote sensing conditions were obtained 
(Supporting information). For edaphic covariates (i.e. soil 
characteristics), data were measured from samples collected 
in situ as described in Yashiro et  al. (2016) and Buri  et  al. 
(2020). For other covariates, data were extracted from spatial 
layers available at 25 m resolution (Broennimann unpubl. in 
Külling et al. 2024).

Modelling framework

Presence–absence modelling was performed for every ASV 
present in more than 5% and less than 95% of the sites, lead-
ing to 47  520, 163, 17  318, and 2147 ASVs for bacteria, 
archaea, fungi, and protists, respectively. Relative abundance 
modelling was performed for every ASV present in more than 
5% of the sites, resulting in the modelling of 48  316 bacte-
rial, 163 archaeal, 17  345 fungal, and 2155 protist ASVs. 

Figure  1. Distribution of the sampling sites in the western Swiss 
Alps. DNA extraction was performed on samples from 250 sites, 
and amplification and sequencing were done on samples from all 
250 sites for the 16S rRNA gene (Bacteria: B + Archaea: A), from 
217 sites for ITS1 rRNA gene operon (Fungi: F), and from 166 
sites for 18S rRNA gene (Protist: P). Sites sharing data from differ-
ent microbial communities are referred to as a combination of the 
respective abbreviations; BAFD: all three markers were amplified; 
BAF: 16S and ITS1 were amplified; BAP: 16S and 18S were ampli-
fied; BA: 16S was amplified. 
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This selection was applied to have enough data points for 
model fitting (see the Supporting information for data about 
ASVs removed).

The following framework was applied to each selected 
ASV in R ver. 4.3.0 (www.r-project.org). Covariates used in 
model fitting were selected by applying a two-step procedure 
(Adde  et  al. 2023). This procedure circumvents the issue 
regarding the lack of a priori knowledge about the ecology of 
most of the taxa belonging to these ASVs. Hence, the proce-
dure treats all the selected ASVs equally relative to each other 
and optimises model predictive performances, after which 
variations observed among ASVs in the models can be associ-
ated with the underlying ecology.

The first step consists of a ‘data snooping’ approach 
(Dormann et  al. 2013). In other words, for each of the 78 
candidate covariates, univariate generalised linear models 
(GLM) with quadratic effect were fitted (Guisan et al. 2002). 
The models’ goodness-of-fit, estimated using the difference 
between the null deviance and the residual deviance, was used 
to select the 15 best non-correlated covariates recursively, 
while excluding covariates having a Pearson correlation greater 
than 0.7 with already selected covariates (Dormann  et  al. 
2013). The number of preselected covariates was capped at 15 
to limit the computing power needed for the subsequent step 
of the analysis, which further reduced the number of selected 
covariates using model-embedded regularisation techniques. 
We used two parametric methods: GLM (Guisan et al. 2002), 
generalised additive models (GAM; Guisan  et  al. 2002), 
and two machine learning methods, random forest (RF; 
Cutler  et  al. 2007), and gradient boosting machine (GBM; 
Elith  et  al. 2008). GLMs had quadratic terms, and a lasso 
secondary covariate selection and regularisation (‘glmnet’ 
package ver. 4.1-7; Tay et al. 2023). GAMs used null-space 
penalization for covariate selection (‘mgcv’ package ver. 1.8-
42; Wood 2017). For presence–absence models, parametric 
methods used a binomial probability distribution and a logit 
link function to model the probability of presence of each 
ASV (parameter ‘family=binomial’). For relative abundance 
models, we used Poisson distributions with log link functions 
to model the ratio of the number of read per sequencing depth 
(parameter ‘family=poisson’). For both presence–absence and 
relative abundance models, a regularised form of RF was built 
using the ‘RRF’ package ver. 1.9.4 (Deng and Runger 2013). 
For RF models, the number of trees was determined through 
hyper-parametrization as in Elith  et  al. (2008) in order to 
minimise the error rate of the model (Hastie et al. 2009). We 
tested four different values (‘ntree’ =10, 100, 1000 or 10 000). 
GBM models were built with the ‘gbm’ package ver. 2.1.8.1 
(Greenwell  et  al. 2022), in which a hyper-parametrization 
procedure was performed on the number of trees (10, 100, 
1000, or 10  000 trees) and the shrinkage value (0.001, 0.01 
or 0.1). We only tested a limited number of hyper-parameters 
to reduce computing costs.

Cross-validation evaluation of models’ predictive 
power

For each of the four algorithms’ best models, the predictive 
power was assessed using the ‘bootstrap .632+’ cross-validation 

procedure (Efron and Tibshirani 1997) with 100 iterations 
per model. Unlike classical cross-validations used to evaluate 
SDMs, which sample data without replacement (e.g. split-
sampling, k-fold, see Guisan et al. 2017), this approach uses 
a bootstrap sample (i.e. with replacement) allowing to obtain 
better estimates of model error rates (Efron 1983, Efron and 
Tibshirani 1997). For each bootstrap iteration of the pres-
ence–absence models, the difference between predictions and 
validation data was computed using the area under the ROC 
curve (AUC; Swets 1988), and maximised values of the true 
skill statistics and of Kappa (Allouche et al. 2006), i.e. maxTSS 
and maxKappa (Guisan  et  al. 2017). The values were then 
averaged across the 100 iterations. The difference between 
predictions and training data (model fit) was computed using 
the same metrics and compared to the averaged predictive 
power of the model. Results were compared to those obtained 
by using null models fitted with randomised data (Collart 
and Guisan 2023); for each number of presence points (i.e. 
prevalence) existing in the dataset, 100 randomised models 
were fitted (i.e. 100 models fitting ‘virtual randomly distrib-
uted ASVs’). These randomised data were used to rescale the 
maxTSS values for each of the real ASVs as follows:

maxTSS maxTSS maxTSS / maxTSSadj obs null null� � �� � � �1

with maxTSSadj being the adjusted maxTSS for the considered 
ASV model; maxTSSobs being the raw maxTSS value obtained 
for that ASV model; and maxTSSnull being the 95th percentile 
of the distribution of models fitted on random data with the 
same prevalence as the considered ASV. Models having a posi-
tive maxTSSadj were considered as having higher predictive 
power than expected by chance given the environmental data-
set specificities. By applying the reasoning of Thuiller  et  al. 
(2004) for AUC to our metric, models with maxTSSadj > 0.5 
were considered as having a high predictive power. 

The same procedure was applied to relative abundance 
models using Spearman correlation (rho) to check whether 
models were accurately ranking sites by their relative abun-
dance values, and coefficient of variation (CoV) to assess the 
difference between the predicted relative abundance values 
and validation values. The null model procedure could not be 
applied to relative abundance models due to the high com-
puting burden required to process the thousands of microbial 
ASVs in the dataset, as each ASV model would necessitate 
its own random distribution; in contrast, presence–absence 
models with the same prevalence could use the same random 
distribution. Hence, model qualities were classified as ‘fair’ 
when rho > 0.2 and as ‘moderate’ when rho > 0.4 (Landis 
and Koch 1977). 

After computing the predictive power of all ASV mod-
els, the differences among the four main organism groups 
and within each groups’ phyla were tested using ANOVA 
followed by Tukey tests with Bonferroni correction, and 
Cohen’s D effect size metrics. Additionally, to assess whether 
modelling frameworks that specifically account for composi-
tionality in relative abundance data would yield better pre-
dictions, models of read counts’ centered-log ratios with zero 
replacements (Lubbe  et  al. 2021, Bastiaanssen  et  al. 2023) 
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were constructed and evaluated for 100 random bacteria, 
fungi, and protist ASVs (Supporting information).

Covariate selection and importance

To get an insight on which covariates drive the presence–
absence and relative abundance of ASVs, an analysis was 
performed on each microorganism group. For each group 
and each environmental covariate, the proportion of mod-
els selecting that covariate was computed. For GLMs and 
GAMs, the importance of covariates was assessed using the 
coefficients of each covariate. For GBM and RF, covariate 
importance was assessed using Gini coefficients (Deng and 
Runger 2013, Greenwell  et  al. 2022). The values obtained 
were scaled so that the best covariate from each model had 
an importance of 1, and the other covariates were linearly 
rescaled from 1 to 0.

Results

The goodness-of-fit metrics were consistently higher than the 
predictive power metrics (see the Supporting information).

Predictive power of presence–absence models

Out of the 67  148 ASVs identified in the dataset, at least one 
‘presence–absence’ model algorithm could be fitted for all of 
the ASVs, and for 65  554 ASVs (98%), all four algorithms 
could be fitted (see the Supporting information). Overall, 
91% of the bacteria, 98% of the archaea, 81% of the fungi, 
and 60% of the protists had higher predictive power than null 
models (Fig. 2a–d; Supporting information). However, the 
proportion of ‘high predictive power’ models (i.e. maxTSSadj 
> 0.5) was relatively low in all groups (Fig. 2a–d); e.g. for 
GLMs, 15% of the bacteria, 15% of the archaea, 6% of the 
fungi, and 0.1% of the protists presented a maxTSSadj > 0.5. 
The presence–absence models for bacteria and archaea had 
the best predictive power, followed by the fungi and protist 
models, across all four modelling algorithms (Fig. 2a–d).

Differences in performance were observed among phyla. 
Within bacteria, phyla such as Chloroflexi, Acidobacteriota, 
and Planctomycetota displayed a higher proportion of high 
predictive power models (Fig. 3 for GLMs; see the Supporting 
information for other algorithms), with 34% (528/1537), 
23% (1171/5163), and 21% (576/2765), respectively. Within 
archaea, only some ASVs from Crenarchaeota had high pre-
dictive power models (20/131), while most phyla had only a 
few assigned ASVs and no high predictive power models. Few 
fungi and protists had good models, with Ascomycota and 
Mortierellomycota phyla having some high predictive power 
models (7%; 589/8631 and 8%; 89/1117, respectively).

Evaluation of relative abundance models’ predictive 
power

The relative abundance models of all 67  979 preselected 
ASVs could be fitted by at least one algorithm, while 64  732 

ASVs were fitted by all four algorithms (Supporting infor-
mation). Spearman correlation, which evaluates the ability of 
the models to discriminate sites by their relative abundance 
values, demonstrated consistent results with the presence–
absence model results (Fig. 2). We obtained numerous ‘fair 
quality’ models (Spearman’s rho > 0.2; e.g. for GLMs: 85% 
of the bacteria, 83% of the archaea, 63% of the fungi, and 
49% of the protist ASVs) and some ‘moderate quality’ models 
(Spearman’s rho > 0.4; e.g. for GLMs: 40% of the bacteria, 
40% of the archaea, 20% of the fungi, and 9% of the protist 
ASVs). The bacteria and archaea models had higher predictive 
power than the fungi and protist models (Fig. 2, Supporting 
information). Some phyla had a higher proportion of rela-
tive abundance models with moderate and higher quality (i.e. 
rho > 0.4), such as for the bacterial phyla Acidobacteriota 
(1887/5163), Chloroflexi (489/1537), and Planctomycetota 
(756/2755; Fig. 4). Among archaea, Crenarchaeota was the 
only phylum with moderate and higher predictive models 
(28/131). Among fungi, Mortierellomycota had a higher 
proportion of moderately and higher performing models 
(194/1117). For some phyla such as Nanoarchaeota and all 
protist phyla, the modelling pipeline could not produce rela-
tive abundance models with rho > 0.4. Their coefficients of 
variation between predicted relative abundance and valida-
tion values were high, with median prediction error between 
10 and 100% of the mean observed relative abundance among 
the four studied model algorithms (Supporting information).

Covariate selection and importance

Edaphic covariates were the most selected across all groups 
for both the presence–absence and relative abundance models 
(Fig. 5). For example, in GLMs, at least one edaphic covariate 
was selected in models for 95% of the bacteria ASVs, 97% 
of the archaea ASVs, 87% of the fungi ASVs, and 80% of 
the protist ASVs. In particular, pH was the most selected 
covariate in the models for all groups (Fig. 5, Supporting 
information). Climatic covariates were also highly selected in 
GLMs, with 56% of the bacteria, 67% of the archaea, 67% 
of the fungi, and 69% of the protist best models including at 
least one climatic covariate (Fig. 5). For bacteria and archaea, 
winter temperature was the most selected climatic covariate, 
while the fungi and protist models selected the set of covari-
ates corresponding to yearly average temperature, precipi-
tation, and elevation covariates (Supporting information). 
Surprisingly, for fungi, distance to roads appeared within the 
list of the most-selected covariates alongside the edaphic and 
some topographic covariates (Supporting information). For 
protists, the most selected covariates were found among dis-
tance to roads, climate, edaphic, topographic and land-use 
covariates (Fig. 5). 

Discussion

In this study, we estimated the ability of SDMs to predict 
the presence–absence and relative abundance of 67  148 soil 
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microbial ASVs (i.e. soil DNA-based operational taxa) based 
on associated environmental conditions in the western Swiss 
Alps. For almost all of these ASVs, prior knowledge of their 
ecology had been very sparse. Nevertheless, our SDM frame-
work allowed better presence–absence predictions than null 
models for more than 85% of the ASVs, and 23% had models 
that displayed a high predictive power. Our results confirm, 
in line with previous studies, that soil DNA sequences can 
be used in models of environmental niches of microbial taxa 
(Schröder 2008, King et  al. 2010, Lembrechts  et  al. 2020, 
Mod  et  al. 2020, 2021, Malard  et  al. 2022). For relative 
abundance models, 33% had moderate and higher predictive 
success of on-site values ranking. However, the prediction of 
the exact value of ASVs’ relative abundance per site yielded 
large errors. This result is consistent with SDM studies in 
macro-organisms that also showed lower predictive power 
in abundance models (Pearce and Ferrier 2001, Tôrres et al. 
2012) and a limited correlation of presence–absence SDM 
predictions with observed abundances (Lee-Yaw et al. 2022). 
Potential explanations could be spatial processes at the popula-
tion level (e.g. ‘mass effects’; Kunin 1998) or biases associated 

with relating the proportion of reads to the environment, 
such as inadequacies in the handling of the compositional 
nature of relative abundances during model construction 
(Greenacre 2021), intraspecific variations in the number of 
copies of the small ribosomal subunit, as observed for some 
microbial organisms (Stoddard et al. 2015, Lavrinienko et al. 
2021), or even primer biases (Vaulot et al. 2022). We there-
fore confirm here the difficulty in using SDM frameworks 
to predict abundance-based data (Van Couwenberghe et al. 
2013, Lee-Yaw et al. 2022, Waldock et al. 2022). Regarding 
our results, and given the complexity of soil DNA data, it is 
likely that a presence–absence approach depicts the situation 
in situ better than a relative abundance approach. 

Model performance might depend on how the environ-
mental covariates that are used reflect the true causal eco-
logical drivers of ASV distributions (Austin 2002, Mod et al. 
2016, Guisan  et  al. 2017, Scherrer and Guisan 2019). 
As previously reported, we observed edaphic covariates as 
being the most selected covariates across all groups, thereby 
emphasising the importance of soil properties in the spatial 
distribution of soil microorganisms(Birkhofer  et  al. 2012, 

Figure 2. Predictive power obtained for bacteria, archaea, fungi, and protists and evaluated using the adjusted maxTSS for presence–absence 
models (a–d) and Spearman’s rho (ρ) for relative abundance models (e–h). For each threshold, the proportion of individual amplicon 
sequence variant (ASV) models that obtained a greater value (x-axis) is shown. The x-axis labels are explained as follows. Fitted: the algo-
rithm was able to fit a model; TSS > TSSnull: the predictive power of a model evaluated against null models; TSSadj: predictive power metric 
rescaled so that TSSadj = 0 corresponds to a model with a predictive power equal to the 5% best null models. ρ: Spearman’s rho. Bacteria and 
archaea models were fitted with 250 sites, while fungi were fitted with 217 and protists with 166 sites. GAM: generalised additive models; 
GBM: gradient boosting machine; GLM: generalised linear models; RF: random forests.
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de Vries et al. 2012, Terrat et al. 2017, Malard et al. 2022). 
Notably, our results confirm that bacteria and archaea are 
highly dependent on soil pH (Yashiro  et  al. 2016, 2018, 
Malard et al. 2022, Liang et al. 2023). However, their model 
performance was not consistent across phyla. For example, 
Chloroflexi, which are mostly heterotrophic phototrophs 
(Bryant 2019), and Acidobacteriota, known to be strongly 
driven by pH and other edaphic properties (Jones et al. 2009, 
Lauber  et  al. 2009, Navarrete  et  al. 2013), performed bet-
ter than other phyla. The strong relationship between organ-
isms and the abiotic conditions that were directly measured 
at the field sites or from the collected soil samples, as opposed 
to covariates indirectly derived from models or unavailable 
covariates such as biotic interactions, may explain the bet-
ter performance obtained for these groups. The spatial and/
or temporal resolution of available covariates could also lack 
relevance for modelling the spatial patterns of soil microbes 
(Nunan  et  al. 2003). Even for macro-organisms, informa-
tion about micro-scale environmental conditions already 
improved the predictive power of models in several studies 
(Pradervand et al. 2014, Carter et al. 2016, Lembrechts et al. 
2019, 2020). In soil microbial communities, because 

important compositional changes can be observed at small 
spatial and temporal scales (Lauber et al. 2013, Degrune et al. 
2017), model quality could in theory also be improved by 
including covariates measured at finer spatial and temporal 
scales. For example, covariates representing landscape type 
and structure were present in the initial dataset of covari-
ates but only at a very coarse resolution, compared to the 
size and generation time of microorganisms. The selection 
and importance of these covariates were low in all models, 
despite reports of microorganisms being influenced by such 
landscape covariates (e.g. for protists, Seppey  et  al. 2023). 
Moreover, climatic covariates that summarise the state of the 
environment closer to the time of sampling than yearly aver-
ages might improve model quality (e.g. dynamics of edaphic 
conditions, Lipson et al. 1999). In addition, our modelling 
procedure did not include the possibility to consider inter-
actions between covariates in parametric models. This could 
potentially be implemented by testing all potential interac-
tions among the preselected covariates after the ‘data snoop-
ing’ step. Note, however, that tree-based approaches that 
automatically include covariate interactions (Guisan  et  al. 
2006) did not yield better modelling results.

Figure 3. Performance of presence–absence generalised linear models across phyla. The proportion of the amplicon sequence variant (ASV) 
models with better predictive power than null models (TSS > TSSnull) and the proportion of these models with high predictive capacities 
(TSSadj > 0.5) are shown. Corresponding figures for other modelling algorithms are available in the Supporting information.
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Modelled organism characteristics can influence model 
performance (Guisan et al. 2007a, b, McCune et al. 2020, 
Collart et al. 2023). Species presenting large niches (i.e. gener-
alists) tend to be harder to model than species presenting small 
ones (i.e. specialists; (Guisan and Hofer 2003, Regos  et  al. 
2019, Hallman and Robinson 2020, Tessarolo et al. 2021). 
Our results tend to suggest that niche breadth for the most 
important covariates (e.g. pH) may be a factor driving the 
predictive power of microbial models. 

Furthermore, the modelled distribution may be driven 
by biotic interactions that are not explicitly taken into 
account in our models, and potentially impacting the 
model’s performance (Wisz  et  al. 2013). For example, 
the Patescibacteria superphylum had a low proportion of 
ASVs with high-performing models compared to other 
bacterial phyla, and taxa within this superphylum were 
reported to have potential associations with autotrophic taxa 
(Tian et al. 2007, Herrmann et al. 2019). These results sug-
gest that Patescibacteria distribution is highly dependent 
on the resident bacterial community composition. In con-
trast, Planctomycetota, which is also documented to con-
tain many ASVs with highly dependent biotic associations 

(Kaboré et al. 2020), had a higher proportion of high-per-
forming models. However, given that biotic interactions are 
implicitly accounted for in the observed distributions of taxa, 
their further inclusion in correlative SDMs does not necessar-
ily improve the models (Dormann et al. 2018). Before using 
such interactions in predictive model frameworks, a formal 
theoretical setup would be needed to determine which biotic 
interactions are expected to contribute to the observed micro-
bial distributions (Wisz et al. 2013, Dormann et al. 2018).

In our presence–absence models, any lack of detection was 
considered as absence, which can result in the introduction 
of potential biases in predictions (Benoit  et  al. 2018). The 
inclusion of sampling effort differences among sites (e.g. as 
in Botella  et  al. 2021) within modelling frameworks may 
improve the predictive power for some ASVs. Alternatively 
presence-only modelling frameworks accounting for limited 
detection (Dorazio 2014) could yield better predictions. 
For relative abundance models, improved and finer-tuned 
approaches, such as negative binomials that better account 
for overdispersion in data (Gardner et al. 1995), or centered-
log ratio transformations (Aitchison 1982, Greenacre 2021) 
that accommodate for the compositionality of ASV data, may 

Figure 4. Performance of relative abundance generalised linear models across phyla. The proportion of amplicon sequence variants (ASVs) 
with models having a Spearman correlation coefficient (rho) between predictions and validation data above 0.2 and 0.4 are shown. See 
Supporting information for corresponding figures for other modelling algorithms.
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represent statistically more appropriate models. However, our 
preliminary tests using centered-log ratio on a randomly sam-
pled subset of ASVs did not show improvement (Supporting 
information). Additionally, zero-inflated models of semi-
quantitative data (Guisan and Harrell 2000), as proposed by 
Guisan et al. (1998) for abundance-dominance measures and 
Irvine et al. (2016) for plant cover, could be adapted to model 
ordinal classes of microbial ASVs that were transformed to 
centered-log ratios. Moreover, given the very large number 
of ASVs and the diversity in the distribution of their obser-
vation values, using a single pipeline on all the ASVs would 
imply the need to automate the fine tuning of each model 
to the statistical characteristics of each ASV, likely resulting 
in high computing time. Despite these constraints, increased 
accuracy could potentially be obtained by allowing models 
to test different statistical distributions and hyperparameters. 

A common application of species distribution models is 
predicting the distribution of modelled entities outside of 
sampling locations and time (i.e. ‘projections’; Guisan and 
Thuiller 2005). This kind of application could benefit micro-
bial biogeography by allowing spatial predictions and future 
projections of community composition based on environmen-
tal conditions. Our results showed that the presence–absence 
patterns of our soil-borne ASVs were highly dependent on 
the edaphic conditions in the soil. Consequently, projections 
in time and space of mountain soil-borne microorganisms 
would necessitate the development of edaphic maps and asso-
ciated scenarios of change (Mod et al. 2021). Yet, mapping 

soil properties is not an easy task, even under current con-
ditions (Cianfrani et al. 2018). SoilGrid maps (Hengl et al. 
2017) represent a possibility, but their resolution (250 m) 
is currently not precise enough for local study areas, espe-
cially in rugged mountain landscapes as in the western Swiss 
Alps (Buri et al. 2020). Moreover, deriving future predictions 
with models that include soil covariates will not be possible 
until scenarios of soil changes are also concurrently developed 
(as can be currently found for climate and land-use). Yet, 
soil evolution under global change is still rather uncertain 
(Mod et al. 2021, Rumpf et al. unpubl.). While some studies 
predict an acidification of mountain soils due to pollution 
(Hédl et al. 2011), others predict more mitigated responses 
of soil pH and carbon and nitrogen content (Davidson and 
Janssens 2006, Trumbore and Czimczik 2008, Rocci  et  al. 
2021), with a lag between climatic changes and edaphic 
changes (Ladau et al. 2018, Mod et al. 2021, Rumpf et al. 
unpubl.). Taken together, to make full use of soil microor-
ganism SDMs, we need to develop an ecologically relevant 
representation of covariates and their future scenarios. 

To conclude, we showed that SDMs can be used to predict 
the presence–absence of many microbial ASVs and the rela-
tive abundance for a far more limited number. Both presence–
absence and relative abundance approaches explore different 
aspects of the microbial ASV distribution patterns and can be 
helpful in ecological research on soil function and manage-
ment. However, care should be given to measures of uncer-
tainty in predictions, before giving too much credit to the 

Figure 5. Proportion of generalised linear models selecting covariates within edaphic, climatic, land cover, remote-sensing, and topographic 
groups of covariates for bacteria, archaea, fungi, and protist. See Supporting information for corresponding figures for other modelling 
algorithms.
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actual predicted values obtained from models, particularly for 
relative abundance. These models, at least presence–absence 
or presence-only ones, pave the way for the development of 
maps to predict the spatial distribution of soil ASVs in future 
soil and landscape scenarios. The value of these maps will lie 
in their ability to inform the public about microbial biodi-
versity conservation and land management. In this context, 
fine-scale maps of soil edaphic covariates, as well as future 
scenarios, should be generated, because of their importance 
as the main drivers of soil microbial ASV distribution.
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