

What is the optimal renovation scenario for residential buildings, considering its economic, thermal comfort and life cycle environmental impacts?

How to choose the most appropriate refurbishment strategy according to the location and the building type?

1 Characterisation and Parametrisation of Study Variables	Including multiple parameters in the model: climatic conditions, building geometry, materials and construction systems, envelope and systems performance,
2 Devising Renovation Scenarios	onsite renewable energy sources and energy mix.
3 Elaboration of the Dynamic Energy Model	Including time in the model, to compare single step and stepwise renovation, and consider the variation in climate and energy mix scenario, the replacement with more
4 Creation of the integrated decision-support system	energy-efficient systems and biobased insulation materials.
Validation and demonstration of the decision-support system through case studies	Coupling Life Cycle Assessment (LCA) and Building Performance Simulation (BPS). Introducing bottom-up and top-down approaches.
6 Dissemination	The effectiveness of the renovation strategies will be evaluated using three indicators:
Researchers (e.g., IEA 89); Future professionals; Government, Municipalities, Regulatory bodies; Homeowners and House tenants.	Operational energy [(kWh/m²)/year], GHG emissions (E+O) [(kgCO₂eq/m²)/year], Cost [€/m²]
METHODOLOGY	ORIGINALITY

Ahmed, A., Ge, T., Peng, J., Yan, W.-C., Tee, B. T., & You, S. (2022). Assessment of the renewable energy generation towards net-zero energy buildings: A review. Energy and Buildings, 256, 111755. https://doi.org/10.1016/j.enbuild.2021.111755 Fahlstedt, O., Temejlotv-Salaj, A., Lohne, J., & Bohne, R. A. (2022). Holistic assessment of carbon abatement strategies in building refurbishment. Ilterature—A scoping review. Renewable and Sustainable Energy Reviews, 167, 112636. https://doi.org/10.1016/j.rser.2022.112636 Saynäjoki, A., Heinonen, J., & Junnia, S. (2012). A scenario analysis of the life cycle greenhouse gas emissions of a new residential area. Environmental Research Letters, 7(3), 034037. Sharf, S. A., & Hammad, A. (2019). Simulation-based multi-objective optimization of institutional building renovation considering energy consumption, life-cycle assessment. Journal of Building Engineering, 21, 429-445.