Advancing exo-zodiacal dust research through improved thermal background subtraction

Hélène Rousseau

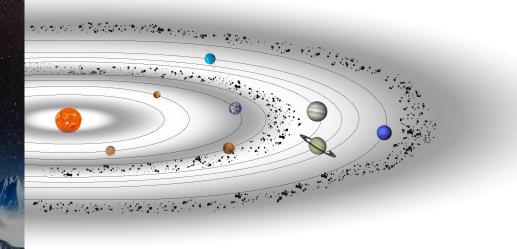
PhD student, University of Liège Research Technologist, LBT Observatory, University of Arizona

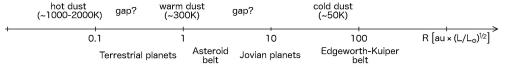
D

Working with: Steve Ertel, Denis Defrère, Virginie Faramaz, Germain Garreau, Kevin Wagner

LIÈGE universite

Zodiacal dust in the solar system


• Made of 10-300 µm sized grains


Emits in the mid and far-infrared

Outshines rocky planets

Originates from comets, asteroïds and Poynting-Robertson (PR) drag

Exozodis: Analogs in other systems

A particular type of debris disk

Usual removal processes: radiation pressure & collisional grinding

 Distinctive feature: Proximity to the star & Extremely short timescales

Survival of an underlying planetesimal population < 1 AU : ~100 yrs (Wyatt 2007, Kral 2017)

A particular type of debris disk

Usual removal processes: radiation pressure & collisional grinding

 Distinctive feature: Proximity to the star & Extremely short timescales

Survival of an underlying planetesimal population < 1 AU : ~100 yrs (Wyatt 2007, Kral 2017)

Need an alternative replenishment mechanism

PR-drag & Comets

Comet 67P - Rosetta Mission

NASA

In the Solar System, ~90% of the zodiacal dust thought to originate from evaporation/disruption of comets (Nesvorný+2010)

PR drag makes grains spiral inwards onto the star (Kennedy & Piette 2015, Rigley & Wyatt 2020)

Exozodis signs of material travelling from beyond the iceline into the Habitable Zone (volatiles, organics)

PR-drag & Comets

Comet 67P - Rosetta Mission

NASA

In the Solar System, ~90% of the zodiacal dust thought to originate from evaporation/disruption of comets (Nesvorný+2010)

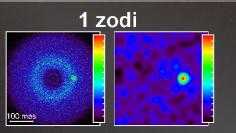
PR drag makes grains spiral inwards onto the star (Kennedy & Piette 2015, Rigley & Wyatt 2020)

Theoretical production of star-grazing orbits:

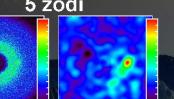
- Scattering by chains of planets, with or without migration (Bonsor+2012, 2014; Raymond+2014)
- Catastrophic LHB-like events (Bonsor+2013)
- Kozai resonance (Bailey+2012)
- Mean-motion resonances (Moons & Morbidelli 1995; Beust & Morbidelli 1996, 2000; Faramaz+2017)

Why are exozodis worthy of interest?

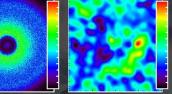
Why are exozodis worthy of interest?

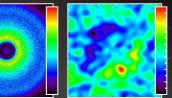

They can be problematic and hide exo-Earths targeted by future characterization mission (e.g., Habitable Worlds Observatory)

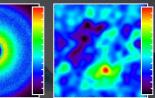
They can hide exoplanets in the HZ

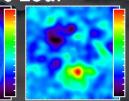

Defrère+2012 :

For a HabEx-like mission (4m primary mirror) and 1 Earth at 1 AU at 10 pc

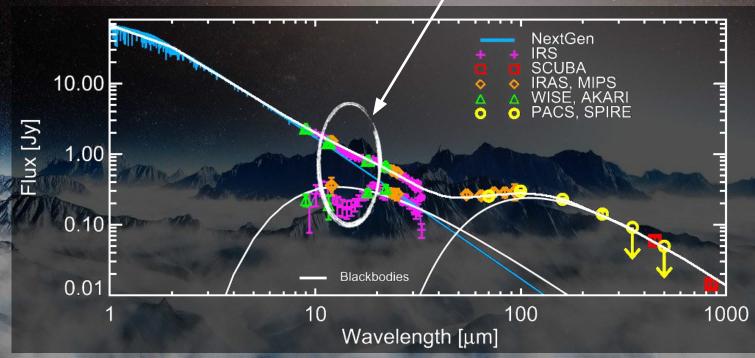

Problematic dust levels: 0-zodis (10 times the Solar System levels)


5 zodi

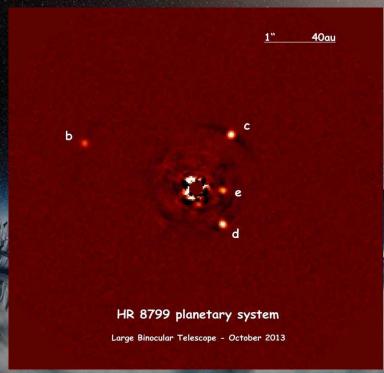

10 zodi


20 zodi

50 zodi

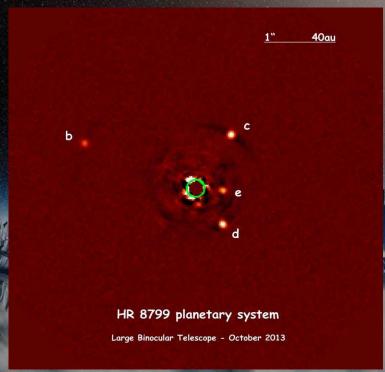


100 zodi



How to observe exozodis

~HZ dust, ~2500 x Solar system!


How to observe exozodis

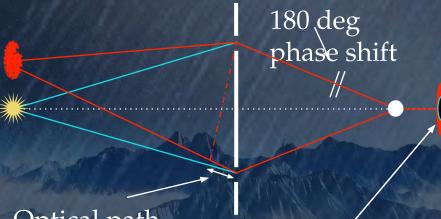
- Dust in the habitable zone
- Excess too faint to be detected with photometry or spectroscopy

 Need interferometry to resolve the habitable zone

How to observe exozodis

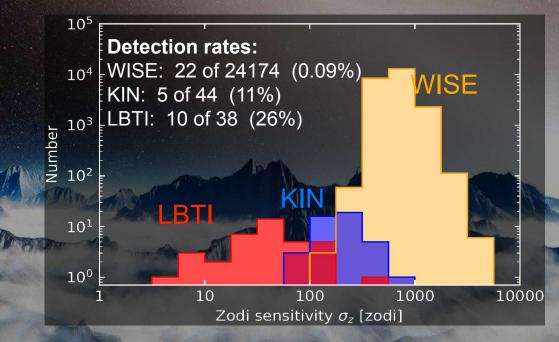
- Dust in the habitable zone
- Excess too faint to be detected with photometry or spectroscopy
- Need interferometry to
 resolve the habitable zone
 - Standard coronographs mask the region of interest

Nulling Interferometry


Constructive Interference

Nulling Interferometry

180 deg phase shift


Destructive Interference

Nulling Interferometry

Optical path difference **Extended emission** transmitted

Previous missions on exozodis

HOSTS/LBTI

Mount Graham, **Arizona, United States** Two 8.3 m primary mirrors On a single mount 23 m interferometric baseline

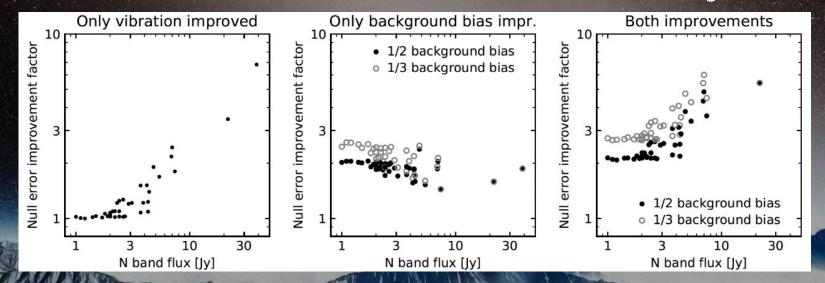
• Primary mission of the LBTI funded by NASA • N' band (11 microns) Nulling interferometry 38 nearby stars September 2016 -May 2018

HOSTS results & limits

η Crv

(1950 zodis)

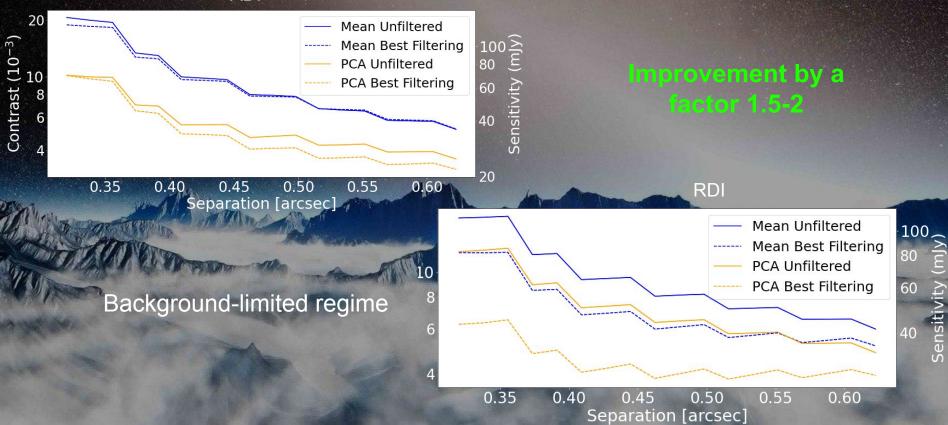
72 Her

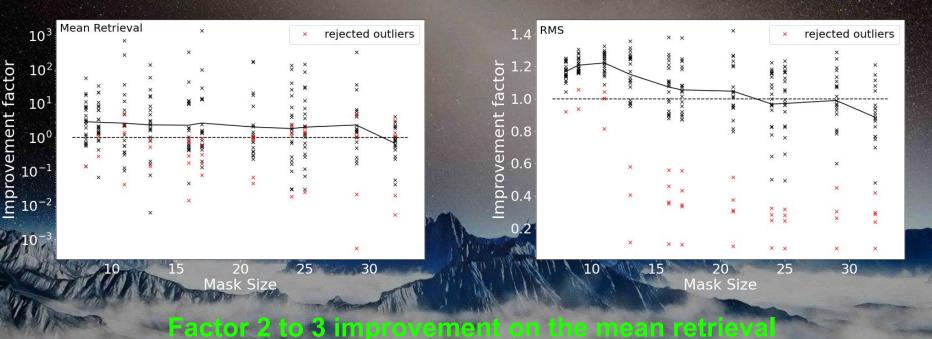

10 Her

3.0

10.0

 38 stars / 10 detections ζLep 600 1σ upper limit: 9 zodis Zodi level z [zodis] \mathbf{O} 400 Tε Eri 200 **β UMa τ**θ Boo zodis β Leo δ UMa itivity limited by measurements -200uncertainties 0.1 0.3 1.0 Age [Gyr]

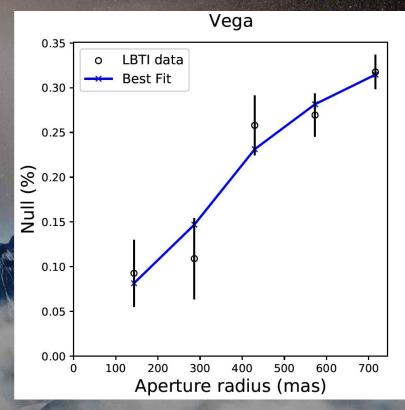

We need more sensitivity


Vajor limitation : Thermal Background Subtraction New PCA Background Subtraction

High Contrast Imaging (Rousseau et al. 2024)

ADI

Aperture Photometry (Rousseau et al. 2024)

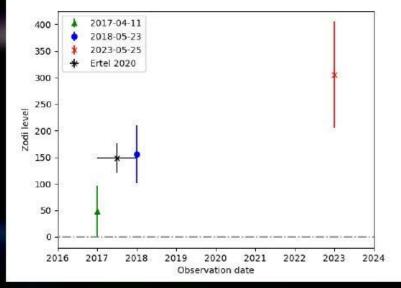


This improved sensitivity is essential to further studies of exozodis and HZ environments

Exozodis can show radial structures

- Null as a function of radius
- Radial break barely fitted by a wide disk.
 Could be induced by a planet.

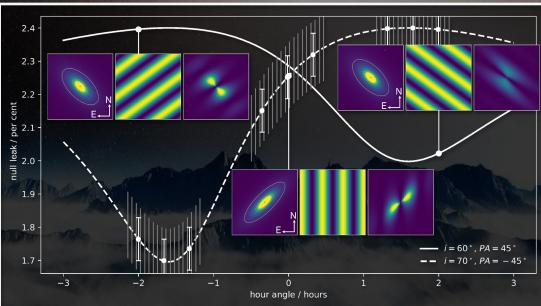
Improved sensitivity could break-degeneracy


Faramaz et al. (in prep)

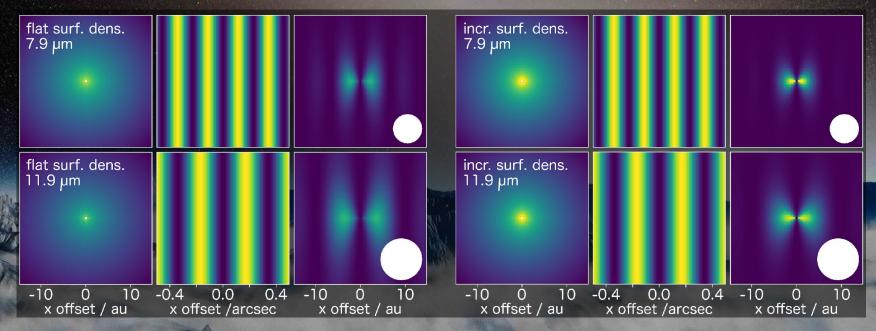
Exozodis can be variable

Zodis level estimation

- Estimation of dust density in zodi
 - Estimation at 8 pixels radius (Habitable zone of θ Boo)
 - Model from Kennedy 2015


- Increase in dust density
 - From ~150 to ~300 zodis between 2018 and 2023

Garreau et al. (in prep)


Exozodis can have diverse geometries

For the same dust levels, a puffy disk will pose less risks for HZ exoplanet characterization

Strategy: observation over large range of parallactic angles. Ongoing efforts with the LBTI (PI: V. Faramaz)

Exozodis can have various grain Sizes & Composition

Strategy: observations at different wavelengths. Ongoing efforts with the LBTI (PI: V. Faramaz)

VLTI/NOTT: new high-contrast nulling instrument for the VLTI

PCA background subtraction will be adapted to this instrument, and can be adapted for future ELT

Under development (ERC funded, 2020-2025; PI: D. Defrère) Thermal near-infrared: L-band (missing link between K-band CHARA/PIONIER and N-band LBTI/Keck) Access to Southern target inaccessible by the LBTI NASA Astrophysics Decadal Survey Precursor Science: Securing revolutionary exozodi research with VLTI/NOTT (PI: S. Ertel)

Conclusion & Perspectives

- Exozodiacal dust can easily outshine Earth-like planets
- HOSTS survey has shown exozodiacal dust is not necessarily preventing exo-Earth imaging.

Need further characterization of exozodiacal dust population for future direct imaging mission (HWO)

Conclusion & Perspectives

- Exozodiacal dust can easily outshine Earth-like planets
- HOSTS survey has shown exozodiacal dust is not necessarily preventing exo-Earth imaging.

Need further characterization of exozodiacal dust population for future direct imaging mission (HWO) Improved sensitivity with PCA background subtraction will help:

- Re-observe and/or re-analyze detections from the HOSTS survey
- Check for variability and obtain more sensitive observations
- Characterize the dust distribution
- Characterize the dust composition

Conclusion & Perspectives

- Exozodiacal dust can easily outshine Earth-like planets
- HOSTS survey has shown exozodiacal dust is not necessarily preventing exo-Earth imaging.

Need further characterization of exozodiacal dust population for future direct imaging mission (HWO) Improved sensitivity with PCA background subtraction will help:

- Re-observe and/or re-analyze detections from the HOSTS survey
- Check for variability and obtain more sensitive observations
- Characterize the dust distribution
- Characterize the dust composition

I will be on the job market in March 2025! Please get in touch if you have postdoc opportunities for me!