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Optimize shape and laminates

• Decrease fuel burn

Such that

• No failure

• No flutter

Aeroelastic tailoring
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Composite layup – Olhsson

Loads

Displacements



Preliminary aircraft design
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Numerical model

• Global design

• Optimization

• Performance

Results must be obtained quickly

Adequate models must be chosen

Conceptual Preliminary (9%) Detail



Unsteady aerodynamic modeling for aeroelasticity
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RANS

• Transonic

• Viscous

• Volume 

discretization

• Days

Euler

• Transonic

• Inviscid

• Volume 

discretization

• Hours

Isentropic

Full potential

• ~Transonic

• Inviscid

• Volume 

discretization

• Hours

Linear potential

• Transonic

• Inviscid

• Surface 

discretization

• Seconds

Inviscid Linear



Boundary element methods for linear potential
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Lattice methods Panel methods

Flat plate

Actual 

geometry

Panel methods only need to be corrected 

for nonlinear flow effects

Current 
industrial 

practice for
aeroelastic

computations



Overall methodology
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Unsteady source and doublet panel method

7

Panel discretization
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Transonic correction
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Linearized steady pressure coefficient derivative

𝑐𝑝 0 ≃
2

𝛽
𝜕𝑥

𝑆𝜇 0 +  𝑛𝑥𝜎 0

𝜕𝛼𝑐𝑝 0 ≃
2

𝛽
𝜕𝑁𝑥

𝑆𝐴−1𝐵 𝑛𝑧 +  𝑛𝑥  𝑛𝑧

𝜕𝛼𝑐𝑝
ref 0 ≃

2

𝛽
𝜕𝑁𝑥

𝑆𝐷corr𝐴−1𝐵 𝑛𝑧 +  𝑛𝑥  𝑛𝑧

Procedure

1. Compute pressure derivative 𝜕𝛼𝑐𝑝
ref 0 from steady CFD

2. Solve for diagonal correction matrix 𝐷corr

3. Compute doublets: 𝜇 𝜔 = 𝐴−1𝐵𝜎 𝜔, 𝑢𝑚𝑥,𝑦
+ 𝐷corr𝐴−1𝐵𝜎 𝜔, 𝑢𝑚𝑧



Viscous-inviscid interaction
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Normal direction

Tangent velocity

Boundary 

layer

Inviscid

Navier-

Stokes

Inviscid region

Boundary layer

Steady full potential eq.

Unsteady boundary layer eqs.

+approx. inviscid



Non-iterative p-k flutter solution method
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Algorithm

1. Compute 𝑄𝑖 𝑘𝑖 for a set of 𝑘𝑖

2. Solve eigenvalue problem for 𝑝𝑖

3. Interpolate 𝑘m such that ℑ 𝑝m − 𝑘m = 0

ℑ 𝑝

𝑘𝑘0 𝑘1𝑘m

Flutter equation

𝑢∞
2

𝑙ref
2 𝑝2𝑀 + 𝐾 −

1

2
𝜌∞𝑢∞

2 𝑄 𝑘 𝑞 = 0

𝑝 = 𝑔𝑘 + 𝑖𝑘
ℑ 𝑝1

ℑ 𝑝0



Aerodynamic case – LANN wing
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 𝛼 = 0.25°
𝑘 = 0.11

𝑀∞ = 0.77
𝑅𝑒 = 5.2 × 106

 𝛼 = 2.6°

ΛLE = 28°

𝑡/𝑐 = 0.12

𝐴𝑅 = 7.9



Steady pressure coefficient
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SDPM

Exp.

𝑦/𝑏 = 0.325

VII

RANS

𝑐𝑝 0

−1.5

+1.0



Unsteady pressure coefficient
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𝑦/𝑏 = 0.325

SDPM

Exp.

SDPM

+VII

SDPM

+RANS

ℜ 𝑐𝑝

ℑ 𝑐𝑝

0

−50

−2

12



Aeroelastic case – AGARD 445.6 wing
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𝑀∞,1 = 0.50

𝑀∞,2 = 0.68

𝑀∞,3 = 0.90
𝑀∞,4 = 0.96

𝛼 = 0°

ΛLE > 45°

𝑡/𝑐 = 0.04

Plain Mahogany



Modes shape
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𝑓1 = 9.7 Hz 𝑓2 = 40.2 Hz

𝑓3 = 50.5 Hz 𝑓4 = 97.2 Hz



Aeroelastic case – AGARD 445.6 wing
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Modes migration
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SDPM

1st bending

2nd torsion

2nd bending

1st torsion
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Conclusion
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Main points

• Developed correction methodology whereby steady viscous-

inviscid interaction is used to correct an unsteady panel 

method for nonlinear transonic and viscous flow effects

• Demonstrated the methodology on aerodynamic and 

aerostructural cases

• Discrepancies mainly due to quality of reference steady results

Next steps

• Integrate the methodology into optimization framework to

calculate flutter constraints


