Testing the microscopic teaching of entropy to undergraduates to promote conceptual change 29 August 2024

V. Natalis

L. Quinton, B. Leyh (supervisor)

SIG 03 – Munich

What's the context?

- Thesis work: improve the teaching of thermodynamics for undergraduates
 - Identification of alternative conceptions (AC) (previous Sig 03 meeting)
 - Try to curb them (this presentation)
- Mix of chemistry education and conceptual change

Why is this research important?

- Entropy is challenging to teach for many reasons
 - Asbtraction
 - Emergence
 - Disorder metaphor
 - ...
- Review shows that <10% of articles test their teaching method in chemistry/physics education
- Important conceptual « leap » of emergence

Fundamental concept in thermodynamics = the study of energy transfers

Disorder Chaos Energy spread, dispersal Energy quality

O_{2 (g)}

O_{2 (g)}

 $S_{total} = S_{translation} + S_{rotation} + S_{vibration}$

Our version of conceptual change

- Most influential: Vosniadou's framework theory & Potvin's conceptual prevalence
- ACs are underlying, robust rationales of students >< most use of ACs in chemistry education research
- Two competing, valid representations (submicro and macro) that
 - Have the same range of validity
 - But different practical utility

What we tested: introduce micro first

What is the impact on entropy AC of an early nearly mathematics-free introduction of submicroscopic concepts?

Research method

- Conceptual questionnaire: 2 MCQ + 5 MCQ with justification to identify AC
- Macroscopic first-year course for pharmacists, geologists, chemists
- Pre-post design, control-intervention design with baseline verification
- Complementary teaching (replacement)

The difference between test and control

	Control	Test
Lectures	30 hours	30 hours + 2 hours on entropy
Exercises tutorials	18-24 hours	18-24 hours with one modified session (2 hours)
Laboratories	36 hours	36 hours + one homework

What are the alternative conceptions of entropy?

	MCQ with no justification		MCQ with justification				
			Gases questions			Phase change questions	
	Definitions	Isolated	CO ₂ vs	Noble	Mixing	Seawater	Supercooled
		Closed	propane	gases	gases		liquid
AC-disorder	X		Х	Х	X	Х	Х
AC-spatial			Х	Х	X	Х	Х
AC-universe1		X					
AC-increase1		X					Х
AC-increase2		X					
AC-isolated		Х					
AC-pure					X	Х	
AC-energy	Х		Х	Х	X	Х	Х
AC-speed						Х	
AC-mixing					X		
AC-substance			Х	Х			
AC-levels			Х	Х			
AC-collisions			Х		X		
AC-freedom			Х	Х	Х		
AC-stability			Х	Х			
AC-ordering						Х	

Entropy is independent of the internal structure of the pure substance contained in a system

One example question

Carbon dioxide (CO_2) and propane (C_3H_8) have the same molecular weight. Assume two closed, nondeformable and identical chambers. One contains 1 mole of CO_2 and the other 1 mole of C_3H_8 . The two gases are at the same temperature. How do the entropies of the two gases compare? Assume the gases are ideal. Adapted from (Sözbilir & Bennett, 2007)

One example question

Correct answer

Results: baseline equivalence

Conceptual questionnaire score General chemistry, part 1 Socio-economic index Weekly science hours in secondary school Weekly latin hours in secondary school

Weekly math hours in secondary school

Indicators all non statistically different

Slighlty statistically different $M_C = 5.3$ hours/week $M_T = 5.9$ hours/week

Results: overview

• Quantitative: d_{ppc2} = **0.2**, small (indicative, unvalidated questionnaire)

• Qualitative: improvement of AC-substance without worsening other AC

Results: AC-substance

Discussion: impact on other ACs

	MCQ with no		MCQ with justification					
	justineation		Gases questions			Phase change questions		
	Definitions	Isolated	CO ₂ vs	Noble	Mixing	Seawater	Supercooled	
		Closed	propane	gases	gases		liquid	
AC-disorder	Χ		Х	X	Х	Х	X	
AC-spatial			Х	Х	Х	Х	Х	
AC-universe1		Х						
AC-increase1		Х					Х	
AC-increase2		Х						
AC-isolated		Х						
AC-pure					Х	Х		
AC-energy	Х		Х	Х	Х	Х	Х	
AC-speed						Х		
AC-mixing					Х			
AC-substance			Х	Х				
AC-levels			Х	Х				
AC-collisions			Х		Х			
AC-freedom			Х	Х	X			
AC-stability			X	Х				
AC-ordering						X		

Entropy is a form of energy

Discussion: impact on other ACs

Example: is AC-energy be impacted by microscopic teaching?

Limitations

• Addition and not replacement ightarrow needs further testing

• Convenience randomization (family names)

• Undesired transmission between control and test

Perspectives and conclusion

- Main result: use of micro elements in a macro course shows improvement on one micro AC and no worsening of other AC
- Next step: improve a full thermodynamics course using alternative conceptions knowledge (1st law + 2nd law)
- About the method: improve diversity of method, and try a controlintervention design with replacement
- About tertiary education CC research: complexity of high-level concepts & loads of teacher/course constraints

References

Atarés, L., Canet, M. J., Trujillo, M., Benlloch-Dualde, J. Vte., Paricio Royo, J., & Fernandez-March, A. (2021). Helping Pregraduate Students Reach Deep Understanding of the Second Law of Thermodynamics. Education Sciences, 11(9), 539-553. <u>https://doi.org/10.3390/educsci11090539</u>

Atarés, L., Canet, M. J., Pérez-Pascual, A., & Trujillo, M. (2024). Undergraduate Student Thinking on the Threshold Concept of Entropy. *Journal of Chemical Education*, *101*(5), 1798-1809. https://doi.org/10.1021/acs.jchemed.3c00381

Bain, K., Moon, A., Mack, M. R., & Towns, M. H. (2014). A review of research on the teaching and learning of thermodynamics at the university level. Chemistry Education Research and Practice, 15(3), 320-335. https://doi.org/10.1039/C4RP00011K

Bennett, J. M., & Sözbilir, M. (2007). A Study of Turkish Chemistry Undergraduates' Understanding of Entropy. *Journal of Chemical Education*, 84(7), 1204-1208. <u>https://doi.org/10.1021/ed084p1204</u>

Dreyfus, B. W., Geller, B. D., Meltzer, D. E., & Sawtelle, V. (2015). Resource Letter TTSM-1 : Teaching Thermodynamics and Statistical Mechanics in Introductory Physics, Chemistry, and Biology. American Journal of Physics, 83(1), 5-21. https://doi.org/10.1119/1.4891673

Leff, H. S. (2012). Removing the Mystery of Entropy and Thermodynamics—Part I. The Physics Teacher, 50(1), 28-31. https://doi.org/10.1119/1.3670080

Natalis, V., & Leyh, B. (2023). Improving the teaching of entropy and the second law of thermodynamics : A systematic review with meta-analysis [Submitted manuscript].

Potvin, P. (2013). Proposition for improving the classical models of conceptual change based on neuroeducational evidence : Conceptual prevalence. *Neuroeducation*, *2*(1), 16-43. <u>https://doi.org/10.24046/neuroed.20130201.16</u>

Potvin, P., Malenfant-Robichaud, G., Cormier, C., & Masson, S. (2020). Coexistence of Misconceptions and Scientific Conceptions in Chemistry Professors : A Mental Chronometry and fMRI Study. *Frontiers in Education*, 5, 542458. <u>https://doi.org/10.3389/feduc.2020.542458</u>

Sreenivasulu, B., & Subramaniam, R. (2013). University Students' Understanding of Chemical Thermodynamics. International Journal of Science Education, 35(4), 601-635. https://doi.org/10.1080/09500693.2012.683460

Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. *Learning and Instruction*, 4(1), 45-69. https://doi.org/10.1016/0959-4752(94)90018-3

For contact and/or questions vincent.natalis@uliege.be

To download this presentation in pdf, scan the following QR code

