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Abstract— This paper proposes a model for one of the most 

important cyber-attacks against an electric vehicle (EV) 

ecosystem. In the considered attack, the aim is to disrupt the 

normal operation of the transmission system (TS) by causing a 

spike in EV load demand in order to induce multiple branch 

overloads in the TS. We thus formulate a decision-making 

problem aiming at inducing line overloads by manipulating EV 

charging prices in different regions, while considering limited 

resources of the cyber-attacker and a simplified model of the TS. 

This problem is expressed from the attackers’ perspective as a 

mixed-integer linear programming (MILP) problem of 

maximizing the total magnitude of branch overloads. To illustrate 

the proposed model, it is applied to the Roy Billinton Test System. 

The simulation results show that this attack strategy could cause 

some problems in the TS. 

Keywords— Charging prices, cyber-attacks, electric vehicles, 

line overloads, transmission systems1 

Indices and Sets 

,    Index and set of regions. 

, dd   Index and set of DSs in region σ. 

, ijij   Index and set of transmission lines. 

, ii   Index and set of transmission nodes. 

, gg   Index and set of generating units. 

Parameters and Constants 

  The resources required to compromise all 

EVCS servers in region σ. 
max
  The maximum EV load demand that can be 

created by attackers in region σ. 
serN  Number of EVCS servers in region σ. 

  Attackers’ available resources in total. 

gP
 

Economic base point of unit g before attack 

occurrence. 

,g gP P 
 

Upward and downward reserve of unit g.   

gpf  Participation factor of generation unit g. 

 B  Susceptance matrix. 

 
1  This work has been prepared with the support of the Belgian Energy 

Transition Fund, project CYPRESS (https://cypress-project.be/). 

ijX  Reactance of line ij. 

M  A large positive number. 

ijf  
Transmission line capacity. 

dem
iP  Non-EV load demand at node i.  

ev
iP  EV load at node i just before cyber attacks. 

Variables  
ev
  EV load demand induced by cyber attackers 

in region σ. 
ser

  A non-negative integer variable representing 

the number of compromised EVCS servers 

in region σ. 

,ij ij   Non-negative continuous variable 

representing the magnitude of branch 

overloads caused by the cyber attacks for 

positive and negative flow direction, 

respectively.  

,ij ij   Binary variable representing whether 

transmission line ij has been respectively 

overloaded in positive or negative flow 

direction or not. 
gen

gP  
Output power of unit g.  

i  Node phase angel (in radians). 

line
ijf  

Power flow on transmission line ij.  

Symbols and Acronyms 

,TS DS  Transmission system and distribution 

system, respectively. 

 

I. INTRODUCTION  

In line with the de-carbonization of transportation systems, 

a rapid transition from internal-combustion-engine (ICE) 

vehicles to electric vehicles (EVs) is being made. As a result, 

the number of EVs is increasing rapidly. EVs are considered as 

a high-wattage demand-side appliance [1]. EVs are controllable 

https://cypress-project.be/


loads to some extent as well [2]. Thus, EV users can participate 

in vehicle-to-grid (V2G) or grid-to-vehicle (G2V) programs 

through managing the charging/discharging process of their 

EVs. Based on the travel needs of EV users, the V2G/G2V 

programs are implemented in such a way that EV owners are 

encouraged to charge their EVs in valley period of grid load and 

discharge the stored energy in EV batteries in peak periods [3]. 

In this context, EVs can be viewed as DERs [4]. In addition, the 

cyber space of the EV ecosystem is complex and consists of 

multiple entities which interact with each other through 

physical and/or cyber connections [5]. Furthermore, EVs 

typically have interfaces with communication and control 

networks. Consequently, the EVs can be considered as a cyber-

attack vector [6].  

However, EV users may themselves respond to changes in 

prices by modifying their charging behavior [7]. Indeed, EV 

users are willing to charge their EVs with low electricity prices 

during low-price periods. In this regard, cyber attackers may 

find the EV load profile ideal to disrupt power grids. Indeed, 

the distinguishing feature of EVs, high-wattage demand, could 

be exploited by cyber attackers to disrupt normal operation of 

transmission systems. To this end, the attackers could 

manipulate EV charging prices to encourage EV users to charge 

their EVs during high-demand periods. Actually, the EV users 

would benefit from low charging cost in this situation. When a 

large number of EVs are charged in an uncoordinated way, the 

imbalance between generation and demand can cause several 

problems, including overloads and frequency drop [5].  

In the literature, there are a few studies focused on the 

possible impacts caused by cyber-attacks against EVs on power 

systems. Most of these studies analyze the possible impacts on 

DSs. In contrast, the research works concerned with analyzing 

their impacts on TSs are scarce in the literature. In [8], the effect 

of cyber-attacks against EVs on the TS operation is studied. It 

is concluded that such attacks could cause line congestion in 

TSs, and the attack could even cause line tripping by triggering 

the protection system, if the increase in load is significant. The 

authors in [6] implied that a frequency drop can be caused by a 

surge in EV user demand. This might create subsequent impacts 

such as generation unit disconnection. This condition might 

lead to voltage collapse or even frequency instability. Although 

these studies provide valuable results, they do not incorporate 

the attackers’ perspective into the model for measuring the 

overloads induced by cyber-attacks on EV charging process. In 

other words, they consider the cyber-attacks aiming to increase 

EV load demand as a specific increase in loads, and then power 

flow analysis is deployed to measure the magnitude of 

overloads. 

On the above premises, this paper proposes a novel 

formulation that models the cyber-attackers’ decision-making 

problem of overloading transmission lines through 

manipulating EV charging prices. In this paper, the attackers 

conduct the cyber-attack during power-grid peak-load hours. In 

doing so, EV peak load would overlap with power system peak 

load, and additional stress is put on the system. The problem is 

formulated as a mixed-integer linear programming (MILP) 

optimization model. The model is presented from the attackers’ 

viewpoint. The cyber attackers control some decision variables, 

including the regions to be attacked and the resources to be 

allocated to targeted regions. These decisions are made by the 

attackers in such a way that the amount of transmission line 

overloads is maximized. In this regard, the main contributions 

of this paper are as follows: 

• Proposing a novel formulation for modeling the cyber-

attacker decision-making problem of causing overloads in 

TS through launching cyber-attacks against EV charging 

prices. 

• Modeling the problem as a MILP optimization model, 

while considering attack resources for compromising 

EVCS servers. 

The remainder of this paper is organized as follows: First, 

the problem under study and the hypothesized cyber-attack 

scenario are introduced in Section II. The rest of this section is 

devoted to DS modeling and the decision variables of cyber 

attackers. Section III formulates the problem as a MILP 

optimization model. The simulation results are presented and 

discussed in Section IV. Finally, Section V concludes the paper.  

II. COORDINATED CHARGING ATTACK ON TRANSMISSION 

NETWORKS 

A. Problem Definition 

Cyber attackers might target the EV charging process to 

impact TSs. To this end, the attackers could try to abruptly 

increase the load demanded by EV users through launching 

cyber-attacks against charging prices. In doing so, the 

transmission system is indirectly impacted, and significant 

stress may be put by cyber attackers on the transmission system. 

They may make the attack more impactful by launching the 

attack during on-peak periods. This type of cyber-attacks could 

lead to multiple transmission line overloads. In this regard, 

although the cyber-attacks are launched at distribution levels, 

they could impact both DS and TS. 

In this study, the problem is presented from the viewpoint 

of cyber attackers. In addition, the impact assessment is done at 

transmission levels. In this problem, the cyber attackers aim to 

launch cyber-attacks from DSs in a coordinated way to target 

TS lines. Using this strategy, they aim at causing overloads. In 

other words, the attackers’ goal is to overload some 

transmission lines during attack time. However, the resources 

used by the cyber attackers to target EV users in different 

regions are limited by a prespecified budget. Therefore, they 

could not target all regions simultaneously, and they should 

decide how to use the available attack resources. This decision-

making process is modeled as a MILP optimization problem. In 

this regard, the problem can be translated as locating and 

allocating the attack resources to the regions where the impacts 

of such attacks are amplified. It should be mentioned that each 

transmission node and its associated loads construct a region. 



In this sense, transmission nodes and regions are used 

interchangeably in the text. 

B. Hypothesized Cyber Attack Scenario 

Cyber attackers manipulate EV charging prices such that 

EV users show desire to charge their EVs. However, the EV 

ecosystem consists of multiple entities communicating with one 

another. In this study, cyber attackers target EV Charging 

Station (EVCS) servers to change EV charging prices. As can 

be traced in Fig. 1, EV users interact with EVCS servers via EV 

charging Apps, such as ChargePoint [1]. After successful 

intrusion into EVCS servers, the cyber attackers maliciously 

change EV charging prices for the attack interval. Thus, EV 

users see the manipulated prices on EV charging Apps [9].  

 

 
Fig. 1.  Schematic view of the cyber-attack scenario.  

 

It is assumed that time of use (ToU) price structure is 

deployed by EV charging providers. Under ToU pricing, three 

different charging prices are usually offered. In addition, based 

on the day and time, charging prices are given for on-peak, off-

peak, and early bird hours [10]. In this paper, it is assumed that 

on the attack day, the charging price ranges for the different 

periods and different locations, which are given Table I. It is 

worth mentioning that these prices are derived from the 

‘‘EVgo’’ company’s website [11].  
 

TABLE I 
True ToU Prices for EV charging on the Attack Day 
 Early bird Off-peak On-peak 

Hours 12am-8am 8am-4pm, 

9pm-12am 

4pm-9pm 

Price 

($/kWh) 

0.36 to 0.49 0.41 to 0.56 0.46 to 0.63 

 

In the hypothesized cyber-attack scenario, cyber attackers 

manipulate EV charging prices during peak-EV-load period. In 

doing so, it overlaps with the power grid peak-load period. In 

addition, the manipulated prices are set to 0.36 $/kWh. Thus, it 

cannot easily be detected, and EV users get it as a special offer. 

In addition, the targeted EV users are encouraged to charge 

their EVs. Furthermore, it is assumed that the number of 

responsive EV users receiving the offer in compromised 

regions is higher than that of charging outlets. So, all charging 

points are occupied by EV users.   

C. DS Modeling 

For analyzing the impacts of the cyber-attacks against EV 

charging prices, both the DS and the TS should be analyzed at 

once. In other words, a co-simulation framework is required. 

However, this could make the problem very complex. To tackle 

this issue, some simplifications can be made. For instance, each 

distribution system is modeled as lumped loads in the 

transmission system. In this study, each load point in TS 

consists of two main loads, namely non-EV loads and EV loads. 

However, the EV load at each transmission load point is 

considered as a variable. In other words, based on how cyber 

attackers allocate the attack resources to different regions, the 

amount of it can be changed.  

 
Fig. 2.  A power grid with a TSO and n regions hosting EVCSs. 

 

D. Attackers’ Decision Variables 

As shown in Fig. 2, the transmission grid is connected to n 

regions. Each region can host EV charging points. In this 

regard, the cyber attackers should answer this question: 

 

• Which EV-hosting regions should be compromised to 

maximize the total magnitude of overloads in the TS? 

• How many EVCS servers should be compromised in each 

region?  

• How available resources should be allocated to each 

region? 

Considering the above questions, cyber attackers have 

control of the independent decision variable 
ser



representing the number of compromised EVCS servers in 

each region. Additionally, there are two other dependent 

variables that are controlled by the attackers, namely 

attacker-induced EV demand and allocated resources to each 

region.  

III. PROBLEM FORMULATION 

In this section, the proposed formulation is presented. It is 

worth mentioning that the formulation models attackers’ 



decision-making problem. In addition, an approximation of 

DC-power flow is deployed by attackers to analyze the 

behavior of the targeted TS immediately after cyber-attacks. 

Thus, only the automatic response of generating units is taken 

into account. In other words, the response of transmission 

system operator (TSO) to the attacks is not incorporated into 

the model, and it is outside the scope of this paper.  

A. Attackers’ Objective 

The attackers’ objective is to maximize the total magnitude 

of transmission-line overloads caused by the cyber-attacks. 

Therefore, the objective function is expressed as follows:  

max ( )ij ij

ij

 + 

     

  (1) 

Two non-negative variables ij  and ij  represent the 

magnitude of overloads in positive and negative flow 

directions, respectively. 

B. Constraints 

This optimization problem has several equality and 

inequality constraints, which are given in (2)-(4j): 

( . )
ser

serN







 

     

  (2) 

The budget for performing the cyber-attacks against EVs is 

limited by  . This is imposed by constraint (2). As an 

approximation, it is assumed that the EV load induced by the 

cyber-attacks is proportional to the number of compromised 

EVCS servers in the region. This is given by (3).  

max.
ser

ev

serN


 




 =  

     

 (3) 

The extra EV load demand triggered by the cyber-attacks is 

upper bounded in each region by 
max
 . This value depends on 

the number of charging points as well as the charging levels of 

charging outlets. When the cyber attackers do not target the 

EVs of a region, the EV demand induced by the cyber-attacks 

must be equal to zero.  

[ ]
gen dem ev evB P P P = − − −

     
 (4a) 

gen d
g g g tot gP P pf P g= +   

     
 (4b) 
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 (4e) 

.ij ij ijM ij     

     
 (4f) 

.ij ij ijM ij       

     
 (4g) 

i jline
ij ij

ij

f ij
X

 −
=      

     

 (4h) 

1 0 =

     
 (4i) 

, 1i Ni i  −        

     
 (4j) 

Equation (4a) stands for the general representation of power 

balance at nodes. At each node, the load demand is split into 

non-EV loads (
dem

iP ) and EV loads. In addition, EV load 

demand consists of two terms: EV load demand in normal non-

attack condition (
ev

iP ) and the EV load demand induced by 

cyber attackers (
ev ). The former is taken as a parameter, 

while the latter is a variable in this model and depends on how 

cyber attackers use their resources. However, the generation 

units respond to changes in total system demand based on their 

participation factors, which is shown in (4b). Thus, the new 

value of generation for each unit is given by (4b). In this 

equation, gP  is the initial generation of unit g. It is calculated 

by solving the DC optimal power flow (OPF) problem [12]. In 

(4b), d
totP  represents the change in total system demand after 

the occurrence of the cyber-attacks. It is a variable in the 

proposed formulation. Additionally, its value is equal to the 

total EV load demand induced by the cyber-attacks in regions.  

In order to measure the magnitude of transmission line 

overloads, a set of constraints is proposed, which are given by 

(4c)-(4g) [13]. Two non-negative variables are defined for 

measuring the overloads for both power-flow directions. ij  

represents the overloads for positive power flow, while ij  

stands for the amount of line overloads in the negative flow 

direction. However, when the amount of power flow is within 

the bounds, both ij  and ij  must be equal to zero. If the 

power flow on transmission line ij hits its limit either in positive 

or in negative direction, ij  or ij  gets a positive value, 

respectively. This is ensured by (4d) and (4e). To this end, two 

binary variables are defined for each transmission line, namely 

ij  and ij . These variables flag overloaded lines in positive 

and negative follow direction, respectively. In addition, the 

amount of overloading in positive or negative flow direction is 

equal to the difference between power flow and line capacity. 



On this basis, the big-M method is utilized in (4d) and (4e) to 

ensure the abovementioned requirements. 

Constraints (4f) and (4g) ensure that when a line is 

overloaded, it is flagged as an overloaded line. Equation (4h) 

represents the relationship between the power flow on a 

transmission line and its both ending voltage angles. Voltage 

angle limits are imposed by constraints (4i) and (4j). 

 

 
Fig. 3.  Single-line diagram of the RBTS. 

 

IV. SIMULATION RESULTS 

In this section, a modified version of the Roy Billinton Test 

System (RBTS) is utilized as the test system [14]. The single-

line diagram of this test network is shown in Fig. 3. The 

proposed MILP model was implemented and solved in the 

GAMS environment.  

A. Main Assumptions 

There are charging levels 2 and 3 in the regions. Detailed 

information about them in terms of charging power and total 

number of charging outlets in each region is given in Tables II 

and III, respectively.  

 
TABLE II 

 Charging Power of Charging Outlets [15] 

 Level 2 Level 3 

Charging power 
(kW) 

11 to 24 50 to 360 

 
TABLE III 

Total Number of Charging Outlets and the Total EV Load under 

Simultaneous Charging in the Regions 

Region 

# 

Level 2 Level 3 Total Capacity 
(MW) 

N1 0 0 0 

N2 200 50 7 

N3 300 250 24 

N4 250 130 14 

N5 200 50 7 

N6 200 50 7 

 

Table IV lists the number of EVCS servers and the 

resources required for compromising them in each region. In 

addition, it represents the maximum EV load demand induced 

by the cyber-attacks ( max
 ) as well as the EV load demand in 

each region just before the cyber-attack occurrence (
ev

iP ). 
 

TABLE IV 

 Total Number of EVCS Servers, the Maximum Attack-Created EV Load 

Demand, and EV Load Before the Attacks in the Regions 

Region 

# 

serN    max
  (MW) ev

iP (MW) 

N1 0 0 0 0 

N2 2 2 6 1 

N3 5 5 20 4 

N4 3 3 12 2 

N5 2 2 6 1 

N6 2 2 6 1 

 

As can be traced in Table IV, the simultaneous charging of 

all charging points requires the power of 59 MW, while the total 

amount of non-EV peak load is 176 MW. It is assumed that an 

EV load of 9 MW was already at EV charging stations once the 

attack interval starts. In the simulations, the amount of 

attackers’ resources for targeting EVCS servers is set to 7. In 

the simulations, a unit of attack resources refers to a specific 

amount of money that cyber-attackers need to spend on the 

cyber-attack implementation. As realistic data on them are not 

publicly available, the resources are considered in this way. 

To simulate a stressed operational condition, the capacities 

of the transmission lines are changed, which are listed in Table 

V. In addition, it is assumed that the system is on-peak hours at 

the cyber-attack onset. In addition, the load demand connected 

to each transmission node in Fig. 3 consists of both non-EV 

load and EV load in attack time. Furthermore, the upward 

capacity of generation units 1 and 2 is assumed to be 15 percent 

of its generation capacity. The generation capacity of units 1 

and 2 is respectively 110 MW and 130 MW. Considering the 

upward reserve of generation units 1 and 2, the participation 

factors of units 1 and 2 are respectively equal to 0.458 and 

0.542.  
TABLE V 

Power Flow on Lines in Pre- and Post-Attack Conditions and Their 

Corresponding Overloads after the Occurrence of the Cyber Attacks  

Lines Capacity 
(MW) 

Initial Power 

Flow (MW) 

Power 

Flow (MW) 

Overload 
(%) 

1-3, L1 50 45.94 53.47 6.94 

2-4, L2 40 36.56 43.03 7.58 

1-2, L3 30 0.62 -1.616 0 

3-4, L4 20 -8.75 -12.05 0 

3-5, L5 30 15.62 13.98 0 

1-3, L6 50 45.94 53.47 6.94 

2-4, L7 40 36.56 43.03 7.58 

4-5, L8 30 24.37 26.02 0 

5-6, L9 25 20 20 0 

B. Results  

Under the assumed conditions, the cyber attackers would be 

able to cause four simultaneous line overloads. The power 

flows before and after the occurrence of the attacks are reported 



in Table V. In addition, the magnitude of each overloaded line 

is presented in this table. As can be traced in this table, line L2 

and L7 become overloaded by more than 7.5 percent of their 

capacity. The total amount of line overloads is 13 MW as well.  

However, to induce the four overloads, cyber attackers 

target two regions. Table VI lists the attacked region and the 

number of compromised EVCS servers in the regions. 

Additionally, it shows how they use the available resources to 

maximize the total magnitude of overloads. In this sense, the 

DSs connected to nodes 3 and 4 are selected as the target of the 

cyber-attacks. The attackers allocate five units of the available 

resources to N3. As a consequence, an EV load of 20MW is 

induced by the attackers in region N3. However, two units of 

the resources used for attacking region N4, thereby inducing the 

EV load demand of 8 MW.   
TABLE VI 

Cyber-Attack Resource Allocation to the Regions 

Region # ev
  

(MW) 

ser
  

Deployed 

Resources 

N1 0 0 0 

N2 0 0 0 

N3 20 5 5 

N4 8 2 2 

N5 0 0 0 

N6 0 0 0 

 

Pursuing the analysis from generation unit perspective, 

Table VII lists the output power of the generation units in two 

conditions: Before the start of the cyber-attacks and 

immediately after the attack onset. Before the occurrence of the 

cyber-attacks, the system is in normal condition. Therefore, the 

initial unit generations are obtained by solving the DC-OPF 

problem for the modified version of the RBTS. Immediately 

after the attacks, the total load is increased by 28 MW. 

Accordingly, the total generation is increased. However, the 

total change in generation is divided between the units based on 

the participation factors.  

 
TABLE VII 

Generation Dispatch before and after the Cyber Attacks 

Generation Before Attacks After Attacks 

1
gen

P  
92.49 105.31 

2
gen

P  
92.51 107.69 

V. CONCLUSION AND SUMMARY 

In this paper, we have modeled the cyber-attacker decision-

making problem for inducing overloads in transmission 

systems. They launch coordinated cyber-attacks against EV 

charging prices in different regions to encourage EV users to 

charge their EVs during the attack interval. However, as their 

resources are limited, they should decide how to use their 

available resources to maximize the amount of transmission 

line overloads.  

The proposed model was implemented in a modified 

version of RBTS. The results illustrate that such attacks could 

put significant stress on transmission lines and generation 

systems. The reason behind this lies in the fact that EVs are 

high-wattage assets. More specifically, the simulation results 

showed that the attacks that are launched during system peak 

times and on impactful targets can induce four branch overloads 

in the test system. Thus, this paper aims at not only proposing 

a new MILP optimization model for the problem, but also 

raising awareness about the impacts that can be caused by such 

attacks.  
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