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Abstract 
Sub-Saharan Africa is a hotbed of remarkable terrestrial biodiversity, home to a 

unique diversity of mammals. Unfortunately, this richness is threatened by the 
growing impact of human activities. While wildlife populations are declining, 
livestock numbers have been increasing for decades. With significant population 
growth predicted for the region this century, the pressures on biodiversity are likely 
to intensify. It is therefore imperative to closely monitor wild and domestic mammal 
populations. The conventional method of aerial counting using systematic sampling 
is still widely used to census these populations in open areas. However, the use of on-
board photographic sensors on various remote sensing platforms offers the potential 
to improve and standardize traditional methods. However, processing the large 
quantities of data generated by these sensors remains a major challenge. In this 
context, the use of automatic approaches based on deep learning, a branch of artificial 
intelligence, appears to be a promising solution. The objective of this thesis is 
therefore to evaluate the effectiveness of the combined use of remote sensing and deep 
learning for the multi-species census of large African mammals. The research spans 
several protected areas and considers various mammal species, both wild and 
domestic. 

Firstly, I assessed the potential of pre-existing convolutional neural network 
architectures to automate the detection and identification of wild species in ultra-high 
resolution (UHR) images (Chapter 2). Three architectures were tested on a dataset 
comprising six large mammal species. The best model, achieving a mean Average 
Precision (mAP) of 80%, was applied to an independent dataset from Garamba 
National Park, Democratic Republic of Congo. It showed superior detection 
performance to previous studies in similar habitats, opening up promising prospects. 
However, detection limits were observed for the smallest species (warthog, 
Phacochoerus africanus), and a drop in precision was observed in herd situations for 
African elephant (Loxodonta africana) and buffalo (Syncerus caffer), due to a high 
number of false positives.  

Secondly, I developed a novel deep learning architecture named HerdNet in 
response to the limitations of pre-existing models (Chapter 3). HerdNet is a point-
based object detector inspired by crowd-counting techniques. It has been tested on 
oblique images of domestic herds of camel (Camelus dromedarius), donkey (Equus 

asinus), sheep (Ovis aries) and goat (Capra hircus) from the Ennedi Natural and 
Cultural Reserve in Chad. HerdNet demonstrated better detection and counting 
accuracy than previous methods, on both oblique (+26% of F1 score) and nadir UHR 
images (+32%). In addition, it solves the problem of false positives in dense herd 
situations, with proximity-invariant precision. Although species identification could 
be improved, the practical benefits and potential use of HerdNet were discussed, 
promising a significant reduction in the human interpretation time associated with 
aerial surveys. 
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Thirdly, I evaluated the contribution of oblique UHR imagery and deep learning on 
systematic aerial sample surveys, in a semi-automatic detection context (Chapter 4). 
I first quantified the reduction in human workload associated with the manual 
interpretation of oblique images acquired by an on-board camera system on light 
aircraft. HerdNet was used to detect, count and identify 12 animal species in the Queen 
Elizabeth Protected Area, Uganda, resulting in a 74% reduction in the number of 
images to be interpreted by humans. Next, I examined whether a semi-automated 
approach, incorporating HerdNet, combined with oblique image acquisition, improves 
the accuracy and precision of population estimates compared with the traditional 
method. This comparison was carried out for seven key species (e.g. elephant; 
waterbuck, Kobus ellipsiprymnus ssp. defassa; western hartebeest, Alcelaphus 

buselaphus ssp. major) in Comoé National Park, Côte d'Ivoire, covering 11,500 km². 
The semi-automatic approach showed significantly higher population estimates for 
smaller species, i.e. +241% for kob (Kobus kob spp. kob) and +163% for warthog 
(Phacochoerus africanus ssp. africanus), with tighter confidence intervals. However, 
the obstruction of animals by vegetation had a substantial impact on their detection in 
the images. Finally, human effort in the semi-automated approach was significantly 
reduced when compared to fully manual interpretation (estimated at -98%), resolving 
the major challenge of photographic methods. 

In conclusion, this thesis highlights the importance of using remote sensing and deep 
learning to standardize surveys of large African mammals and efficiently process the 
growing volume of images generated. Although the approach presented still requires 
further validation, the results obtained suggest a real potential to revolutionize 
traditional aerial survey methods. Consequently, the advancement of current aerial 
survey standards should be considered, as well as the use of other acquisition 
platforms (e.g. microlight aircrafts), less costly and less challenging to deploy than 
light aircraft. As for satellites, while recent advancements in image-based ecological 
monitoring have propelled their potential ahead of other methods, current constraints 
limit its viability as an immediate alternative. Nevertheless, the use of their images 
might serve as a valuable complement to organize and deploy other data acquisition 
platforms, rather than as a standalone survey solution. It is therefore crucial to foster 
interdisciplinary collaboration to promote these new technological approaches, which 
will help improve biodiversity monitoring and its long-term preservation. 
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Résumé 
L'Afrique subsaharienne est un foyer de biodiversité terrestre remarquable, abritant 

une diversité unique de mammifères. Malheureusement, cette richesse est menacée 
par l'impact grandissant des activités humaines. Alors que les populations d'espèces 
sauvages déclinent, le nombre de bétail augmente depuis des décennies. Avec la 
prévision d'une croissance démographique significative dans la région au cours du 
siècle, les pressions sur la biodiversité risquent de s'intensifier. Il est donc impératif 
de surveiller de près les populations de mammifères sauvages et domestiques. La 
méthode conventionnelle de comptage aérien par échantillonnage systématique reste 
largement utilisée pour inventorier ces populations en milieu ouvert. Cependant, 
l'utilisation de capteurs photographiques embarqués sur différentes plateformes de 
télédétection offre un potentiel d'amélioration et de standardisation des méthodes 
traditionnelles. Pourtant, le traitement de grandes quantités de données générées par 
ces capteurs reste un défi majeur. Dans ce contexte, l'utilisation d'approches 
automatiques basées sur l'apprentissage profond, une branche de l'intelligence 
artificielle, apparaît comme une solution prometteuse. L'objectif de cette thèse est 
donc d'évaluer l'efficacité de l'utilisation combinée de la télédétection et de 
l'apprentissage profond pour le recensement multi-espèces des grands mammifères 
africains. La recherche s’étend sur plusieurs aires protégées et en considère diverses 
espèces de mammifères, tant sauvages que domestiques. 

Premièrement, j'ai évalué le potentiel des architectures préexistantes de réseaux de 
neurones convolutifs pour automatiser la détection et l'identification des espèces 
sauvages dans des images à ultra-haute résolution (UHR) (Chapitre 2). Trois 
architectures ont été testées sur un jeu de données comprenant six espèces de grands 
mammifères. Le meilleur modèle, présentant un mean Average Precision (mAP) de 
80%, a été appliqué à un jeu de données indépendant provenant du Parc National de 
la Garamba, en République Démocratique du Congo. Il a montré des performances de 
détection supérieures à celles des études précédentes dans des habitats similaires, 
ouvrant ainsi des perspectives prometteuses. Cependant, des limites de détection ont 
été observées pour l’espèce de plus faible taille (le phacochère, Phacochoerus 

africanus), et une baisse de précision a été constatée en situation de troupeaux pour 
les éléphants (Loxodonta africana) et buffles d’Afrique (Syncerus caffer), en raison 
d'un nombre élevé de faux positifs. 

Deuxièmement, j'ai développé une architecture d’apprentissage profond appelée 
HerdNet en réponse aux limitations des modèles préexistants (Chapitre 3). HerdNet 
est un détecteur d'objets basé sur des points, inspiré des techniques de comptage de 
foule. Il a été testé sur des images obliques de troupeaux domestiques de dromadaires 
(Camelus dromedarius), ânes (Equus asinus), moutons (Ovis aries) and chèvres 
(Capra hircus) au sein de la Réserve Naturelle et Culturelle de l’Ennedi au Tchad. 
HerdNet a démontré une meilleure précision de détection et de comptage par rapport 
aux méthodes antérieures, tant sur des images à UHR obliques (+26% de F1 score) 
que nadir (+32%). De plus, il résout le problème des faux positifs en situation de 
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troupeau dense, avec une précision constante indépendamment de la proximité des 
individus. Bien que l'identification des espèces puisse être améliorée, les avantages 
pratiques et le potentiel d'utilisation de HerdNet ont été discutés, promettant une 
réduction significative du temps d'interprétation humaine associé aux inventaires 
aériens. 

Troisièmement, j'ai évalué la contribution de l'imagerie oblique à UHR et de 
l'apprentissage profond sur les inventaires aériens par échantillonnage systématique, 
dans un contexte de détection semi-automatique (Chapitre 4). Tout d'abord, j'ai 
quantifié la réduction de la charge de travail humain liée à l'interprétation manuelle 
d'images obliques acquises par un système de caméras embarqué sur avion léger. 
HerdNet a été utilisé pour détecter, compter et identifier 12 espèces d'animaux dans 
la réserve Queen Elizabeth, en Ouganda, entrainant une réduction de 74% du nombre 
d’images à interpréter manuellement. Ensuite, j'ai examiné si une approche semi-
automatique, intégrant HerdNet, associée à une acquisition d'images obliques, 
améliore l’exactitude et la précision des estimations de population par rapport à la 
méthode traditionnelle. Cette comparaison a été effectuée pour sept espèces clés, dont 
l’éléphant ; le cobe defassa, Kobus ellipsiprymnus ssp. defassa; le bubale, Alcelaphus 

buselaphus ssp. major, dans le Parc national de la Comoé, en Côte d’Ivoire, couvrant 
11 500 km². L'approche semi-automatique a montré des estimations de population 
significativement plus élevées pour les espèces de petite taille, soit +241% pour le 
cobe de Buffon (Kobus kob spp. kob) et +163% pour le phacochère (Phacochoerus 

africanus ssp. africanus), avec des intervalles de confiance plus étroits. L'obstruction 
des animaux par la végétation a cependant eu un impact important sur leur détection 
au sein des images. Enfin, l'effort humain dans l'approche semi-automatique a été 
significativement réduit par rapport à une interprétation entièrement manuelle (estimé 
à -98%), résolvant ainsi le défi majeur des méthodes photographiques. 

En conclusion, cette thèse met en lumière l'importance de l'utilisation de la 
télédétection et de l'apprentissage profond pour standardiser les inventaires des grands 
mammifères africains et traiter efficacement le volume croissant d'images générées. 
Bien que l’approche présentée nécessite encore des validations supplémentaires, les 
résultats obtenus suggèrent un véritable potentiel pour révolutionner les méthodes 
d'inventaire aérien traditionnelles. Par conséquent, la mise à jour des standards actuels 
d’inventaire aérien devrait être envisagée, ainsi que l’utilisation d’autres plateformes 
d’acquisition (comme l’ULM), moins coûteuse et moins difficile à mettre en place 
que les avions légers. Quant aux satellites, bien que les progrès récents en matière de 
surveillance écologique par imagerie aient propulsé leur potentiel devant d'autres 
méthodes, les contraintes actuelles limitent leur faisabilité en tant qu'alternative 
d’inventaire immédiate. Néanmoins, l’usage de leurs images pourrait servir de 
complément précieux pour organiser et déployer d'autres plateformes d'acquisition de 
données plutôt qu’une solution d’inventaire à part entière. Il est donc crucial de 
favoriser la collaboration interdisciplinaire pour promouvoir ces nouvelles approches 
technologiques, qui contribueront à améliorer la surveillance de la biodiversité et à sa 
préservation à long terme. 
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1. Biodiversity loss in an anthropogenic world 
 Biodiversity (or biological diversity) was defined in the text of the Convention on 

Biological Diversity as “the variability among living organisms from all sources 

including, inter alia, terrestrial, marine and other aquatic ecosystems and the 

ecological complexes of which they are part; this includes diversity within species, 

between species and of ecosystems” (CBD, 2011). Biodiversity is a fundamental 
component of the planet's ecological balance, providing a range of ecosystem services 
crucial for human well-being (Cardinale et al., 2012; Díaz et al., 2019). However, the 
global rate of biodiversity loss has accelerated significantly over the past century, 
raising concerns about its profound implications for ecosystem stability, resilience, 
and functioning (Ceballos and Ehrlich, 2023; Dirzo et al., 2014).  

Number of biologists and ecologists agreed to say that we have entered into a 
human-driven sixth major episode of biodiversity extinction since life on earth arose 
(Cowie et al., 2022). Causes of biodiversity loss are complex, encompassing both 
indirect and direct anthropogenic drivers of change. Indirect drivers are underpinned 
by societal values and behaviors, such as demography, economy or conflicts, leading 
to direct drivers related to human consumption, such as habitat 
destruction/conversion, climate change or pollution (Ceballos and Ehrlich, 2023; Díaz 
et al., 2019; Foley et al., 2005; Johnson et al., 2017; Weiskopf et al., 2020). The loss 
of biodiversity has far-reaching consequences for ecosystem functioning and the 
services they provide. Biodiversity loss can lead to decreased ecosystem stability, 
reduced resistance to disturbances, and diminished resilience in the face of 
environmental changes (Hooper et al., 2005). Human activities have led to the 
extinction of numerous species, with current genera extinction rates estimated to be 
354 times higher than the background rate for vertebrates (Ceballos and Ehrlich, 
2023). Moreover, climate change further exacerbates the vulnerability of many 
species and ecosystems (Parmesan, 2006; Weiskopf et al., 2020). 

Most land vertebrate genera and monotypic ones are concentrated in tropical and 
subtropical regions of the Earth, where extinct and endangered species were 
unfortunately mainly observed (Ceballos and Ehrlich, 2023). Among these regions, 
sub-Saharan Africa open and semi-open ecosystems show one of the highest mammal 
species richness with multiple richness hotspots (Ceballos and Ehrlich, 2006), 
containing some of Africa’s iconic species, like the African elephant (Loxodonta 

africana), the white rhinoceros (Ceratotherium simum) or the northern giraffe 
(Giraffa camelopardalis). While large wild mammals populations are declining since 
1970 (Craigie et al., 2010), livestock population densities have dramatically increased 
in sub-Saharan Africa during the last decades, following rapid growth of human 
population and effective sanitary actions on herds (Richard et al., 2019). Eastern 
Africa has the highest density of livestock and pastoralists in Africa, occupying about 
two-third of the area (Jenet et al., 2016). Excessive livestock density may have 
negative effects on ecosystems, such as degradation, resource competition with 
wildlife and disease spreading (Bengis et al., 2004; Butt and Turner, 2012; De Leeuw 
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et al., 2001; Georgiadis et al., 2007; Scholte et al., 2022a, 2022b; Vandermeer, 2002), 
but livestock is also a major source of income for rural populations (Herrero et al., 
2013; Jenet et al., 2016). 

As a result, conservation actions are essential to avoid further biodiversity loss. An 
important initiative for biodiversity conservation has been the establishment of 
protected areas (PAs), which aim to preserve ecological sanctuaries while respecting 
local communities (United Nations Environment Programme, 1992). PAs are defined 
by the International Union for Conservation of Nature (IUCN) as: “clearly defined 

geographical spaces, recognized, dedicated and managed, through legal or other 

effective means, to achieve the long-term conservation of nature with associated 

ecosystem services and cultural values” (Stolton et al., 2013). There are several 
categories of PAs, each with its own management objectives, features and role in the 
landscape. These categories are seen as an important global standard for the planning 
and management of PAs, which facilitate data collection, help reporting on 
conservation efforts and facilitate comparison between countries (Stolton et al., 2013). 
As PAs cover 14% of Africa’s land (UNEP-WCMC and IUCN, 2024), their effective 
management is crucial for biodiversity conservation (Riggio et al., 2019; Watson et 
al., 2018). Even more so considering the impacts of the expected strong growth of 
sub-Saharan demography during this century (Ezeh et al., 2020) which will represent 
a real threat for African wildlife by exacerbating current causes of biodiversity loss. 
The future of PAs, in an increasingly crowded world, may well lie in our ability to 
maintain sustainable use of natural resources. 

2. Vital contribution of aerial surveys for wildlife 
conservation 
 Establishing PAs alone is not sufficient to preserve the biodiversity; there is a 

crucial need for continuous biodiversity monitoring within these regions. Effective 
biodiversity monitoring should allow for the assessment of conservation strategies, 
help in identifying emerging threats, and ensure management practices are 
implemented (Jachmann, 2001; Stolton et al., 2013). By systematically tracking 
biodiversity variables, such as wildlife abundance, livestock densities or human illegal 
activities, conservationists can make informed decisions to protect and restore 
ecosystems. Such information is usually obtained through ecological monitoring 
programs integrated into an adaptive management process during which system states 
and variables are estimated through time with repeated sequences of ‘monitoring - 
assessment - decision making’ (Nichols and Williams, 2006). In order to provide an 
harmonized observation system that could form the basis of monitoring programs 
worldwide, the Essential Biodiversity Variables (EBVs) framework was developed 
by the Group on Earth Observations Biodiversity Observation Network (GEO BON) 
in 2013 (Pereira et al., 2013). In the EBVs, species population data recorded in a 
standardized and systematic way are seen as essential for biodiversity monitoring 
(Brummitt et al., 2017; Jetz et al., 2019) and are further actively encouraged by the 
IUCN within the framework of PA management (Stolton et al., 2013).  
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In the context of a wildlife conservation management objective, regular and periodic 
counts need to be carried out to obtain at least precise species population estimates, 
used as an indicator of the state of the system and as a feedback of conservation actions 
(Jachmann, 2001). For large African mammals, multiple counting methods exist for 
estimating their populations, depending on the area to survey and the available 
financial, logistical and human resources (Jachmann, 2001; Norton-Griffiths, 1978). 
Some use indirect methods, such as the count of indicators of presence, like dung 
(Barnes et al., 1997) or carcasses (Chase et al., 2016). Others use direct counting 
methods, using on-sight observations while moving on foot (Waltert et al., 2008), 
terrestrial vehicle (Ogutu et al., 2006) or aircraft (Schlossberg et al., 2016); or digital 
observations obtained from sensors like camera traps (Fonteyn et al., 2021), drones 
(Linchant et al., 2018; Vermeulen et al., 2013), or microphones (Thompson et al., 
2010). 

For many decades, the most commonly used technique for estimating large mammal 
populations in African open and semi-open areas is the traditional systematic aerial 
sample count, using piloted light aircraft and human observers (Grimsdell and 
Westley, 1981; Jachmann, 2001; Norton-Griffiths, 1978). In this thesis, the term 
aerial survey refers to this technique. The next subsections present the principle of the 
technique, its source of bias and challenges, and the established standards. 

2.1. Systematic aerial sample counting: Principles and 

practicalities 

In this subsection, the main principles of systematic aerial sample counting and its 
practicalities are described to provide a basic understanding of the method. Extensive 
details are provided in the reference book of Norton-Griffiths (1978), on which the 
following text is mainly based. First and foremost, it is important to discern and define 
the terms census and survey. The term census refers to the entire area, in which the 
number of animals need to be estimated. During a census, also called a total count, 
the total number of animals is counted. As for the term survey, it refers to the use of 
sample units from which animal counts are extrapolated to cover the census area. A 
survey is equivalent to a sample count. It is therefore based on sample units dispersed 
randomly or systematically over the census area, the systematic transect scheme being 
the most popular and commonly used method for covering vast and open areas in 
Africa.  

In systematic aerial sample counting, the transects represent the sample units and 
are parallel, equidistant, and usually of the same strip width to minimize associated 
counting bias. Since animals tend to be distributed along major rivers, transects need 
to be oriented perpendicularly to a baseline that follows the main river (Figure 1.1a). 
In case of vast census areas or uneven animal density, it may be preferred to divide 
the area into strata to obtain subareas of manageable size and/or to reduce the variance 
of sample units. However, this method may entail constructing a different baseline 
within each stratum and implies prior information on animal density. The proportion 
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of the census area to be surveyed, called the sampling effort, depends on the precision 
of population estimates desired whilst being often combined with other factors (e.g. 
costs and logistics). An increased sampling effort implies a larger sample size, i.e. 
more units need to be counted, but provide a lower sample error and thus more precise 
estimates. Nevertheless, the relation between sample size and sample error is not 
linear; sample error tends to decay in strength with increased sample size. 
Consequently, from a certain point, the effort and money to be invested in the survey 
for the slight increase in precision of the population estimates becomes meaningless. 
Knowing an estimate of the sample variance (from a previous survey for instance), it 
is then possible to plot this curve and determine the sample size required to achieve 
the desired precision. However, this information is not always available. In such cases, 
it is preferable to have a sampling effort around a common value of 15-20% (Norton-
Griffiths, 1978) but which may be adapted according to the size of the area (CITES-
MIKE, 2020). 

On the logistical and practical side, systematic aerial surveys are usually carried out 
during the dry season, to avoid thick vegetation cover and thus minimize counting 
bias, and when weather conditions are favorable for flying. Generally, a four- or six-
seat light aircraft, an experienced pilot and at least 2 rear-seat human observers are 
needed. The latter are instructed to count predefined species, usually medium and 
large mammals, between two streamers attached to the wing struts on each side of the 
aircraft (Figure 1.1b). These streamers theoretically define the desired strip width on 
the ground at a fixed flight altitude above ground level, following a crucial calibration 
step. It should be noted that altitude and strip width have an impact on the ability of 
observers to count animals, with wide strips being more prone to counting bias than 
narrow ones. In a multispecies survey in open areas, common values are 92 meters 
(300 feet) for the flight altitude and 200 meters for the strip width (Figure 1.1c). 
During the flight, observers must at least record the species name, the count, the side 
and the geographic position of the observations they make between the streamers, any 
additional information being useful (e.g. out-of-strip animals, male:female ratio, 
proportions of calves, yearlings and sub-adults). It is a common practice to equip 
observers with single-lens cameras to photograph any group of animal larger than 10 
(CITES-MIKE, 2020; Grimsdell and Westley, 1981; Norton-Griffiths, 1978), for later 
count correction to minimize counting bias. Moreover, it is not rare for an additional 
front-seat observer (FSO) to join the flight to assist the rear-seat observers (RSOs). 
The FSO may provide valuable assistance by announcing incoming groups and 
recording count and position data. 

To obtain population estimates and associated standard errors across the census area, 
the resulting observations are processed using the Jolly’s method for unequal sized 
sampling units (Jolly, 1969). It is also known as the ratio method as it is based on the 
density of animals per sample. It integrates the ratio of animals counted to the total 
sample unit areas, the variances between animals counted and between sample unit 
areas, and the covariance between animals counted and the area of each unit. 
Additionally, 95% confidence limits are usually further calculated (Norton-Griffiths, 
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1978), simply by multiplying the population standard error by 1.96, for a number of 
sample units greater than 30. The results of the Jolly’s method are very informative 
as they obviously provide information about population sizes and distribution, but the 
data could also serve for designing better census. 

 

Figure 1.1: Principles of a systematic aerial sample count: (a) Typical parallel flight plan 
with transects perpendicular to the major river, (b) Rear-seat observer (RSO) visual counting 
in the sample strip delimited by two streamers, (c) View of the ground strip widths in which 

the animals are counted by left and right RSOs.  

2.2. Source of bias and challenges 

Aerial surveys suffer from multiple errors and biases, the latter being errors in a 
systematic direction. They should be anticipated and minimized, or measurable to be 
corrected. Biases may originate from survey and environmental factors, both 
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influencing the most potent source of bias: the observer. Main survey factors include 
altitude, flying speed, sample strip width or observer experience, positioning in the 
aircraft and fatigue (Beasom et al., 1981; Caughley, 1974; Jachmann, 2001; Norton-
Griffiths, 1978, 1976; Pennycuick and Western, 1972; Schlossberg et al., 2016). 
Generally, the higher and the faster the aircraft is flying, or the wider the sample strip 
width, the more animals are missed by the observers. This is intrinsically linked to the 
human ability to detect animals on the move. Environmental factors cover, among 
other, the season during which the survey is carried out, time of day, animal size, color 
and behavior, group size, vegetation type, thickness, and density (Fleming et al., 2008; 
Goodenough et al., 2024; Griffin et al., 2013; Jachmann, 2002; Norton-Griffiths, 
1978; Schlossberg et al., 2016; Wal et al., 2011). These factors influence the visibility 
and behavior of animals in their habitat and may therefore further complicate the work 
of observers. Nevertheless, most of these bias factors can be mitigated when planning 
the survey period and designing the flight plan. 

Conventional aerial surveys thus highly depend on crewed aircraft, which poses a 
whole range of associated challenges. The involvement of human pilots and observers 
in aerial survey missions exposes individuals to potential risks. The very low flight 
altitude represents a real life-threatening risk for the flying crew, as the slightest error 
can be fatal. Aviation accidents were indeed the most significant cause of deaths for 
wildlife biologists in the United States during the last century (Sasse, 2003). In 
addition, the fluctuating socio-political context around many PAs in Africa may 
provoke conflicts, thus increasing the risks for the flying crew. The latter may 
represent a vulnerable target for armed fighters hidden or inhabiting these areas, often 
engaging in illegal activities for money (Mulero-Pázmány et al., 2014). Aircraft 
requirements are also challenging. Four- to six-seat fixed wing aircrafts require 
appropriate fuel, maintenance and qualified pilots (Bouché et al., 2012), which 
represent a substantial part of a survey budget (Grimsdell and Westley, 1981). An 
experienced pilot with a particular interest for wildlife conservation is often 
recommended (Norton-Griffiths, 1978). He should be able to maintain a stable flight 
altitude to avoid any sample bias, but this is a hard task that further accentuates the 
risks. Due to high costs engaged with aerial survey, from material acquisition to 
salaries, financial support from donors is usually required, making frequent 
monitoring missions hard to sustain in the long-term (Bouché et al., 2012; Dunham, 
2012; Watts et al., 2010). Another challenge is to dispose of trained observers which 
can provide reliable counts during the flights (Norton-Griffiths, 1978). Counting 
animals on the move for a substantial amount of time is a hard task. Observers may 
then under- or overcount large herds, miss or confuse species, or lose attention during 
long flights (Bouché et al., 2012; Fleming et al., 2008; Grimsdell and Westley, 1981; 
Jachmann, 2001; Norton-Griffiths, 1976). For these reasons, the use of cameras has 
been indispensable for decades (Norton-Griffiths, 1974), but continuous image 
acquisition along transects has received little attention because it generates too much 
analysis work. It is indeed a time-consuming exercise which may generate 
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considerable costs, making the approach too expensive for a broader use at the 
moment (Bröker et al., 2019; Lamprey et al., 2020b). 

2.3. Standards and guidelines 

In order to produce comparable and uniform results, standards and guidelines were 
established in 2012 by the Monitoring the Illegal Killing of Elephants (MIKE) system, 
under the supervision of the Convention on International Trade of Endangered Species 
(CITES) (Craig, 2012). The document provides suggestions for choice of method and 
survey design (i.e. guidelines) and minimum requirements for funding contracts (i.e. 
standards). Initially, these standards were established as a basis for surveying and 
monitoring elephant trends, but they can and are being used for other species too. The 
document was discussed and supplemented during the 2014 Pan-African Elephant 
Aerial Survey (PAEAS) meeting (PAEAS, 2014) and revised in 2019 by the CITES-
MIKE program (CITES-MIKE, 2020). It details all the required equipment, the 
expectations of FSO and RSOs, the parameters to consider when implementing a 
survey, the observations to record, data analysis, data archiving and advice based on 
past experience. These standards are a true reference guide in the field, particularly 
important for guaranteeing the quality of an aerial survey. 

3. Remote sensing imagery for improved wildlife 
monitoring 
As detailed in Section 2.2, the most potent source of bias in an aerial survey is 

counting bias, inherent in a human observer's ability to count animals at a distance 
while moving. The use of on-board cameras thus rapidly proved indispensable for 
correcting the observers’ animal counts (Grimsdell and Westley, 1981; Norton-
Griffiths, 1978, 1974) and is even included in the standards (CITES-MIKE, 2020; 
PAEAS, 2014), showing that remote sensing has been an integral part of aerial surveys 
for many decades. Moreover, for several years now, alternatives based on other 
remote sensing platforms have been proposed to address the risks and challenges 
associated with traditional aerial surveys, such as the use of drones (Jiménez López 
and Mulero-Pázmány, 2019; Linchant et al., 2015b; Linchant, 2021) or high-
resolution satellites (Sánchez-Díaz and Mata-Zayas, 2019; Wang et al., 2019). 
Remote sensing is seen as a great tool for ecology and conservation, enabling EBVs 
to be characterized on a global scale, at high frequency, and in a uniform way (Jetz et 
al., 2019; Sánchez-Díaz and Mata-Zayas, 2019; Turner et al., 2015). This section aims 
to define remote sensing, present its different systems and platforms, its potential for 
wildlife survey and the associated challenges. 

3.1. Definition, systems and platforms 

The term remote sensing gathers all the techniques that involve the collection and 
interpretation of information about the Earth's surface or atmosphere without direct 
physical contact. These techniques therefore use various sensors and platforms to 
acquire data from a distance. The information provided in this section is mainly based 
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on the books of Campbell and Wynne (2011) and Lillesand et al. (2015). There are 
several types of remote sensing systems, each designed to capture specific 
wavelengths of electromagnetic radiation. Electromagnetic radiation is the energy that 
travels through space in the form of waves, including visible light, infrared radiation, 
or microwave radiation. These systems can be broadly categorized into active and 
passive remote sensing (Figure 1.2a). Passive remote sensing relies on naturally 
occurring radiation, such as sunlight radiation, to illuminate the target area. Passive 
sensors thus detect and record the reflected (e.g. visible) or emitted (e.g. thermal 
infrared) energy from the Earth's surface. An example of such a sensor is an optical 
camera, which captures and records visible light to generate images. Active remote 
sensing involves the emission of radiation by a sensor, which then measures the 
reflected or scattered signals. Radar (Radio Detection and Ranging) is a typical 
example of an active remote sensing system, employing microwave frequencies to 
determine surface characteristics. Another active system worth mentioning is LiDAR 
(Light Detection and Ranging) that employs laser beams to measure distances and 
generate detailed topographic information. 

Remote sensing platforms refer to the structures that carry the sensors, facilitating 
data collection from the target area. These platforms can be classified into ground-
based, aerial and space-based systems. Ground-based remote sensing involves 
deploying sensors on the Earth's surface to collect data at a local scale, the most 
common platforms being hand-held devices, tripods, towers and cranes. Aerial 
platforms, such as aircraft or drones, operate at higher altitudes and are suitable for 
high-resolution imaging. Space-based platforms, notably satellites, orbit the Earth at 
various high altitudes, offering global coverage and the ability to monitor large-scale 
environments, but often at the expense of lower-resolution imaging (Figure 1.2a). 

Most of the sensors now produce digital photography/images that can be 
numerically interpreted, through the use of a two-dimensional array of silicon 
semiconductor detectors, composed of billions of photosites. The latter convert the 
electromagnetic radiation into an analog signal being finally digitized and processed 
to obtain a two-dimensional array of cells (i.e. pixels) with numeric values, i.e. the 
digital image. The different wavelengths of the receiving radiation may be separated 
by specific filters (e.g. red, green, and blue for true color images) to obtain images 
with multiple bands, i.e. multiple two-dimensional arrays of numeric values, each 
corresponding to a specific range of the electromagnetic spectrum (Figure 1.2b). For 
remote sensing applications, it is usually important to know the size of one pixel on 
the ground, to assess the spatial resolution of the acquired image. This is given by the 
Ground Sampling Distance (GSD), representing the distance between the centers of 
two adjacent pixels in the image, measured in SI units, such as meters or centimeters. 
GSD is a crucial parameter in remote sensing and digital image interpretation, as it 
directly influences the level of detail in the imagery. It is determined and influenced 
by the remote sensing system characteristics, such as the sensor size and the altitude 
of the platform. A smaller GSD indicates higher spatial resolution, allowing for more 
detailed features to be captured in the image. 
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Figure 1.2: Basic concepts of remote sensing: (a) Passive system, active system, and typical 
altitude range of the aerial platforms, (b) Usual spectra and resulting image bands. 

3.2. Potential for large mammal survey 

In recent years, advancements in remote sensing technologies, particularly through 
the utilization of drones and very-high resolution (VHR) satellites (i.e. producing 
image with sub-meter pixel size), showed great prospects and increasing attention for 
revolutionizing large mammal survey methodologies (Chabot, 2018; Hodgson et al., 
2018; Kuenzer et al., 2014; LaRue et al., 2017; Linchant et al., 2015b; Linchant, 2021; 
Ocholla et al., 2024; Pettorelli et al., 2014; Vermeulen et al., 2013; Wang et al., 2019). 
These platforms offer opportunities for monitoring and studying wildlife populations 
(LaRue et al., 2021; LaRue and Stapleton, 2018; Linchant et al., 2018), habitats 
(Fretwell and Trathan, 2009; Olsoy et al., 2018; Swinbourne et al., 2018; Wang et al., 
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2020), and behaviors (Petso et al., 2021; Wu et al., 2023). In addition, they offer the 
advantage of accessing remote or challenging terrains that may be difficult or 
dangerous for researchers to reach (Barber‐Meyer et al., 2007; Christie et al., 2016; 
Krause and Hinke, 2021; Stapleton et al., 2014). This enhances the efficiency and 
safety of wildlife surveys, especially in areas with rugged topography or dense 
vegetation. The non-intrusive nature of drones and satellites minimizes disturbance to 
wildlife during surveys (Christie et al., 2016; Ivosevic et al., 2017; Wang et al., 2019), 
which may be crucial when studying sensitive or elusive species, as traditional survey 
methods might cause stress or alter natural behaviors (Efroymson and Suter II, 2001). 
As regards aircraft platform, the use of on-board cameras taking continuous oblique 
images has proved particularly effective in producing more precise and accurate 
population estimates of terrestrial mammals in eastern Africa (Lamprey et al., 2020b, 
2020a), and Australia (Lethbridge et al., 2019)  

Remote sensing sensors consistently provide standardized data records, ensuring a 
reliable and reproducible source for wildlife surveys, that can be properly archived 
and further reviewed or certified by other parties (Lamprey et al., 2020b; Linchant et 
al., 2015b). In addition, regular and standardized remote sensing imagery allows 
researchers to track changes in habitats (Wilschut et al., 2018) and species over time 
(LaRue et al., 2011; Naveen et al., 2012), thus participating in better EBVs monitoring 
(Brummitt et al., 2017; Jetz et al., 2019; Turner et al., 2015). 

3.3. Challenges 

While remote sensing shows great potential for wildlife survey, it also faces a series 
of challenges in this context. The effectiveness of remote sensing may be impacted by 
adverse weather conditions such as cloud cover, precipitation, and wind. While cloud 
cover has little impact on aerial platforms, i.e. aircraft or drones (Anderson and 
Gaston, 2013), it is particularly restrictive for satellite platforms with sensors 
intercepting the visible spectrum (Asner, 2001; LaRue et al., 2011; LaRue and 
Stapleton, 2018). Conversely, wind has no impact on satellite acquisitions, has limited 
impact on drone acquisitions (Goebel et al., 2015; Hodgson et al., 2013), whereas it 
increases flight risks for crewed aircraft (Sasse, 2003; Watts et al., 2010). The 
acquisition of VHR remote sensing imagery may incur substantial costs, especially 
when a large area needs to be covered. It is complicated to assess whether aerial 
surveys with on-board cameras are more costly than a satellite approach, as this 
depends on many factors such as the aircraft availability, size of the study area, the 
sample effort (Norton-Griffiths, 1978) or the human effort required to analyze the 
images (Lamprey et al., 2020b). Furthermore, aerial surveys may provide much finer 
and more precise information than satellite imagery, and enable species to be 
identified (Lamprey et al., 2020b), which is not necessarily yet the case with VHR 
satellite imagery (Wu et al., 2023). As for the drone, it is presented as a less logistical 
and less expensive approach (Anderson and Gaston, 2013; Christie et al., 2016; 
Linchant et al., 2015b; Wang et al., 2019). However, its low endurance remains an 
obstacle for surveys of large PAs (Christie et al., 2016; Linchant, 2021).  
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Depending on the platform and sensor, images may be produced at different 
temporal and spatial resolutions. In general, drones may provide images with ultra-
high spatial (GSD < 10 cm) and temporal resolution, with the GSD and acquisition 
frequency defined by the user (Anderson and Gaston, 2013; Chabot and Bird, 2015; 
Linchant et al., 2015b). Light aircraft with onboard cameras may also produce ultra-
high spatial resolution images and cover large areas (Lamprey et al., 2020a, 2020b). 
Nevertheless, the temporal resolution is heavily dependent on the available budget, 
which usually does not permit yearly surveys as a result of the high costs involved 
(Bouché et al., 2012; Dunham, 2012; Wang et al., 2019; Watts et al., 2010). As for 
satellites, they may provide images covering very large areas, at a submeter spatial 
resolution, allowing the detection and counting of large species but not their 
identification (Wang et al., 2019; Wu et al., 2023). Their temporal resolution may also 
be high (e.g. 1-2 days) but strongly depends on a commercial system that cannot 
guarantee the delivery of an image when tasked to a specific location, not to mention 
the current high cost of images (Wang et al., 2019). Finally, the choice of platform 
depends on the species studied, the spatial and temporal resolution required, and the 
available budget.  

Regardless of the remote sensing platform, on-board sensors produce large volumes 
of data, i.e. large numbers of images or huge numbers of pixels. The manual analysis 
of these images is perhaps the biggest challenge of remote sensing for wildlife 
surveys, as it is very time-consuming, tedious and involves the assistance of experts 
(Cubaynes et al., 2019; Lamprey et al., 2020b; Linchant et al., 2015b; Lynch and 
LaRue, 2014). Although the analysis time depends on a number of factors, such as the 
experience of the interpreter, the resolution of the image or the degree of heterogeneity 
of the environment, manual analysis of ultra-high resolution (UHR) aerial imagery 
(GSD < 10cm) can be carried out at a speed between 0.5 and 2 km²/hour (Lamprey et 
al., 2020b; Peng et al., 2020), whereas it can be much faster for satellite imagery, i.e. 
> 5 km²/hour (Corrêa et al., 2022; Cubaynes et al., 2019). While being essential for 
rapidly validating or establishing conservation actions, results from remote sensing 
surveys of PAs covering thousands of square kilometers and generating thousands of 
images can therefore be delayed by several months. 

4. The advent of deep learning 
Recent advances in machine learning have propelled the perspectives of remotely 

sensed imagery for wildlife conservation (Tuia et al., 2022). In fact, partial or total 
automation of image processing will address the main challenge of remote sensing 
images: the substantial volume of data to be managed. The benefits of such 
developments would be twofold. First, it will sustain and reinforce the need to use 
remote sensing for conservation. Second, it will considerably reduce the costs 
associated with manual analysis. 

The aim of this section is to introduce the theoretical elements associated with deep 
learning (DL), a subfield of artificial intelligence (AI) that has been particularly 
targeted as promising for animal counting applications. It should be noted that most 
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of the technical information provided was derived from the book of Goodfellow et al. 
(2016), the book of Elgendy (2020) and the review paper of LeCun et al. (2015). 
Furthermore, the potential of DL for remote sensing image processing in the context 
of large mammal surveys is presented and discussed. 

4.1. Definition and principles 

Deep learning is a subfield of machine learning methods which are able of 
automatically extracting patterns from data and making predictions, through the use 
of computer systems (Goodfellow et al., 2016). Conventional machine learning 
methods often required hand-engineering to design a feature extractor that transforms 
the raw data into a suitable representation (i.e. a feature vector) to be finally used in 
the learning algorithm. DL involves the construction and training of artificial neural 
networks (ANNs) with multiple layers, each composed by non-linear modules that 
each transform the representation at one level into a higher one (LeCun et al., 2015). 
These networks were inspired by the functioning of biological brains. In contrast to 
conventional machine learning methods, ANNs are designed to automatically learn 
and represent hierarchical features and patterns from natural data in their raw form, 
enabling the extraction of abstract representations. The depth of these networks (i.e. 
the high number of layers) facilitates the modeling of complex relationships within 
the data, allowing for the discovery of representations that may be challenging to 
capture with conventional machine learning approaches (Goodfellow et al., 2016; 
LeCun et al., 2015). 

In its simplest form, an ANN is made up of interconnected neurons, each of which 
processes the input information and outputs another, called a feature. The whole 
interconnected system is commonly called the ‘architecture’. The simplest one being 
the perceptron, composed by a single neuron (Figure 1.3a), while the most complex 
ones are multilayer perceptron (MLP) for processing fixed-dimension structured data 
(Figure 1.3b), or Convolutional Neural Network (CNN) for processing grid-like data 
(Figure 1.4), both composed by multiple layers of neurons. Layers between the first 
and last layers are commonly called hidden layers, and this is where complex features 
are learned. Mathematically, a perceptron is the weighted sum of the multiple input 
variable values, plus a bias, followed by an activation function. The latter allows to 
induce non-linearity of the output, by transforming the weighted sum value. A typical 
activation function example is the step function that produces a binary output: if the 
weighted sum value is positive then it outputs 1, else it outputs 0. The size of an 
ANN’s architecture is given by its number of parameters, which consists of its number 
of weights and biases.  
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Figure 1.3: Components, architecture and training principle of an Artificial Neural Network 
(ANN): (a) one neuron called ‘perceptron’, (b) a simple ANN, the multi-layer perceptron 

(MLP), (c) training process of an ANN. 

One of the most common forms of learning process is supervised learning, which 
consists of training an ANN using labeled data. For instance, in an image classification 
context, this means having labeled images, i.e. a dataset where the input variable, X 
(i.e. the image) and the desired output, Y (i.e. the label) are known. Supervised 
learning relies on a process called backpropagation for training the ANNs. During 
training, the ANN is presented with input data (X), and its initial predictions (Ŷ) are 
compared to the actual outcomes (Y). The error (i.e. the loss) between the two is 
estimated using a loss function (Figure 1.3c). This error is then backpropagated 
through the network, and the weights between the neurons are adjusted to minimize 
this error, using an optimizer. The latter calculates gradients to properly modify the 
ANN’s weights. These gradients indicate how much the error would change with a 
slight increase or decrease in each weight. The weights are then adjusted in the 
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opposite direction to the gradients. This iterative process continues with multiple 
rounds of presenting data, calculating errors, and updating weights, optimizing the 
network's ability to make accurate predictions (Figure 1.3c). The objective is for the 
ANN to generalize patterns and learn complex representations from the training data, 
enabling it to make accurate predictions on new, unseen data, commonly called the 
test set. In the context of this thesis, the term architecture refers to the whole structure 
of an ANN, and the term model to the trained version of an architecture, including 
post-processes. 

4.2. Convolutional Neural Networks 

Convolutional Neural Networks (CNNs), also known as ConvNets (LeCun et al., 
1989), are a type of ANN designed to process structured grid-like data, such as 
images. Thanks to the increased capacity of computer systems in the last decade, 
CNNs are now a valuable resource for processing remote sensing images (Hoeser and 
Kuenzer, 2020; Kattenborn et al., 2021; Zhu et al., 2017). CNNs are composed of 
multiple convolutional layers that, as their name suggests, use a mathematical 
operation other than the multiplication used in MLPs: the convolution. To put it 
simply, a convolution is an operation that combines two functions to produce a third, 
capturing the relationship between them. In the context of CNNs, convolution is 
discrete and refers to the process of applying a two-dimensional array of weights, i.e. 
a typical filter (or kernel) of 3x3 pixels, to an array of input data (e.g. an image), 
resulting in an output called feature map (Figure 1.4a). This involves sliding the filter 
across the input, element-wise multiplying the filter values with the overlapping input 
values, and summing the results. 

A convolutional layer typically consists of three main stages (Figure 1.4a). First, 
the convolution stage, in which a set of learnable filters is applied to the input data to 
produce a set of linear activations capturing local patterns and features. Second, the 
activation stage, during which a non-linear activation function, commonly the 
Rectified Linear Unit (ReLU) (Fukushima, 1969), takes as input the linear activations 
to produce a set of non-linear activations. By introducing non-linearity, this stage 
helps the network to learn more complex representations in a much faster way (Glorot 
et al., 2011). Third, the pooling stage, in which the spatial dimension of the non-linear 
activations is reduced. Max pooling (Zhou and Chellappa, 1988) is commonly used, 
and consists of dividing the input into small regions (e.g. 2x2 pixel window) and 
retaining only the maximum value within each region. This last stage helps to merge 
semantically similar features, to reduce the number of parameters of the architecture, 
and to make the representation invariant to small translations of the input. These 
stages, directly inspired by the notions issued from visual neuroscience (Hubel and 
Wiesel, 1968, 1962), are repeated in multiple layers to create a hierarchical 
representation of features in the input data, in which higher-level features are obtained 
by composing lower-level ones (Figure 1.4b). This enables the CNN to learn and 
recognize complex patterns and structures. For instance, in images, the lower-level 
features represent edges, the combination of the latter shape motifs then motifs form 
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parts in the mid-level features, and finally the combination of multiple parts reveals 
objects in higher-level features (LeCun et al., 2015). CNNs have proved particularly 
useful in the field of computer vision for capturing spatial patterns that have eluded 
conventional image analysis algorithms. Using CNNs or combining them with MLPs 
to form DL architecture, complex tasks can be achieved, such as image classification 
or object detection. 

 

Figure 1.4: Mathematical operations behind a Convolutional Neural Network (CNN) and 
basic architecture: (a) main stages of a CNN, i.e. convolution, activation and pooling, (b) a 

simple CNN architecture with multi-level feature representations. 

4.3. Object detection using CNNs 

In the field of computer vision, object detection (Fischler and Elschlager, 1973) is a 
task that involves the localization and the category recognition of multiple objects 
within an image. Traditionally, object detectors used to rely on three main steps (Zou 
et al., 2023) (Figure 1.5a). First, the generation of region proposals, using formerly 
sliding windows approaches (Viola and Jones, 2001, 2004) to obtain regions of 
interest (RoI) which potentially contain objects. Second, the features extraction from 
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RoI, based traditionally on various algorithms like Scale-Invariant Feature Transform 
(SIFT) (Lowe, 1999), Haar (Lienhart and Maydt, 2002), Histogram of Gradients 
(HOG) (Dalal and Triggs, 2005), or Speed Up Robust Features (SURF) (Bay et al., 
2006). This step served to produce fixed-length features vectors capturing the 
semantic information of the RoIs. Third, the RoI classification, using formerly 
Support Vector Machine (SVM) (Hearst et al., 1998), adaboost (Freund and Schapire, 
1996) or cascade learning (Viola and Jones, 2004) to decide whether the RoI is an 
object or not, and/or to associate a category. 

As for other computer vision tasks, CNNs have emerged as the cornerstone for 
object detection, due to their ability to automatically learn hierarchical features from 
a set of raw images (Zou et al., 2023). The milestone was initiated by Girshick et al. 
in 2014 (Girshick et al., 2014), with the introduction of the Region-based CNN (R-
CNN) (Girshick et al., 2016). Since then, the evolution of DL architectures based on 
CNNs has accelerated at an unprecedented speed. CNN-based object detectors are 
now mainly grouped into two categories (Zhao et al., 2019; Zou et al., 2023). First, 
the two-stage detectors, which nearly follow the traditional object detection pipeline, 
i.e. region proposal generation, feature extraction then classification, but using mainly 
CNNs (Figure 1.5b). Second, the one-stage detectors, which regard object detection 
as a regression/classification task, generating objects in a single step. For both 
categories, the feature extractor is commonly called a backbone, while the other 
blocks built on top of it are called heads. One-stage object detectors achieve detection 
at high processing rate (in real-time for some applications), but their performance is 
usually poorer than two-stage detectors and may suffer when detecting dense and 
small objects (Zhao et al., 2019; Zou et al., 2023). In recent years, well-known and 
commonly used architectures have included Faster R-CNN (Ren et al., 2015), Cascade 
R-CNN (Cai and Vasconcelos, 2021, 2018) or Libra R-CNN (Pang et al., 2019) for 
the two-stage detectors, and YOLO (Redmon et al., 2016), RetinaNet (Lin et al., 
2017b), or SSD (Liu et al., 2016) for the one-stage detectors. During inference, all 
these detectors make predictions in the form of labeled rectangles encompassing the 
detected objects, called bounding boxes. While this type of annotation and predictions 
is the most common one for object detection, other CNN-based architectures 
promoted the use of points to detect objects (Ribera et al., 2019; Zhou et al., 2019). It 
has been highlighted as a more suitable and faster approach for annotation, and has 
already been used for some time to annotate human crowds (Gao et al., 2020; Li et 
al., 2021), a particular case of detection where the object density makes it quite 
challenging. 

DL has truly revolutionized object detection and is now the dominant method in the 
field. However, the imbalance problems associated with its use, but not limited to it, 
may have a non-negligible impact on performance. Imbalance problems even 
constitute a research area and are receiving particular attention from researchers. For 
CNN-based object detectors, imbalance occurs at different levels of the whole 
detection pipeline. This can range from object number imbalance in classes, to task 
imbalance in the training objective (e.g. regression, classification), as well as 
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variations in object scale or position in the image (Oksuz et al., 2021). These problems 
may be particularly acute in applications where remote sensing imagery is used, 
making the development of object detectors even more challenging. 

 

Figure 1.5: Basic principles of object detection: (a) traditional pipeline of object detectors, 
(b) the two main architectures of CNN-based object detectors. 

4.4. Potential of deep learning for surveys of large mammals in 

Africa 

While this was not a priority when cameras were first used intermittently in crewed 
aircraft, the growing use and interest in drone systems for wildlife conservation has 
naturally led to the need to automate the processing of the large volume of images 
generated (Corcoran et al., 2021; Linchant et al., 2015b). The first papers dealing with 
the (semi-)automated detection of large African mammals on remote sensing imagery 
using DL were published in the last decade. Pioneer works were the one of Yang et 
al. (2014) for space-based platforms, Eikelboom et al. (2019) for aerial-based piloted 
systems, and Kellenberger et al. (2018, 2017) for aerial-based unoccupied systems. 
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Since then, multiple research studies have been conducted covering different 
architectures, techniques, camera orientations and species. 

Various DL approaches have been used in the literature to count animals on remote 
sensing imagery, each with its own benefits and limits. A first 'simple' approach was 
to use image classification architecture to detect the presence of animals within 
patches cropped from whole images (Barbedo et al., 2020, 2019; Borowicz et al., 
2019; Guirado et al., 2019; Moreni et al., 2021; Rahnemoonfar et al., 2019; Rivas et 
al., 2018; Zhou et al., 2021). This approach can yield good detection results but cannot 
provide proper counting results (Barbedo et al., 2020; Moreni et al., 2021). Image 
classification may then be used to remove background areas to substantially reduce 
the pixel area to analyze. In cases where counting is important, other approaches 
should be used, such as models producing two-dimensional probability maps (Bowler 
et al., 2020; Kellenberger et al., 2018, 2019a; Wu et al., 2023) or CNN-based single- 
or two-stage object detectors (Duporge et al., 2021; Eikelboom et al., 2019; Green et 
al., 2023; Guirado et al., 2019; Lema et al., 2021; Peng et al., 2020; Sarwar et al., 
2021; Torney et al., 2019), from which precise animal positions and counts can be 
obtained. Other authors have experimented with density-based CNN architectures 
(Kellenberger et al., 2019a; Padubidri et al., 2021; Qian et al., 2023; Rahnemoonfar 
et al., 2019). The latter produces density maps of which the integral gives the number 
of objects within the input image. This approach was initiated by Lempitsky and 
Zisserman (2010) and is trained using point annotation and a density function 
convolved over each point, typically a normalized two-dimensional Gaussian. While 
density-based CNN architectures showed to be particularly efficient for counting 
dense and small objects, e.g., crowds (Gao et al., 2020; Li et al., 2021), precise object 
location is lost, especially for close-by objects where the density functions strongly 
overlap. Eventually, some authors developed point-based CNNs to avoid the use of 
bounding boxes (Bowler et al., 2020; Gonçalves et al., 2020; Kellenberger et al., 2021; 
Mücher et al., 2022; Naudé and Joubert, 2019; Sarwar et al., 2021; Wu et al., 2023) 
that may be challenging to draw and post-process for very small objects or dense 
object scenes. These architectures typically consist of a fully CNN with an encoding 
and decoding phase, trained to regressively learn a mapping between the input image 
and a two-dimensional pixel map from which point positions and labels are extracted. 
Point-based CNNs then benefit from the advantages of both CNN-based object 
detectors and point annotation. 

Concerning large African mammals, several authors have already studied the use of 
DL to automate animal detection and counting from remote sensing imagery. To the 
best of our knowledge, except for Padubidri et al. (2021), all the previous studies 
addressed the task through the use of object detectors, whether based on CNNs 
(Duporge et al., 2021; Eikelboom et al., 2019; Fang et al., 2021; Kellenberger et al., 
2018, 2019a, 2019b; Mou et al., 2023b; Naudé and Joubert, 2019; Peng et al., 2020; 
Petso et al., 2021; Torney et al., 2019; Wu et al., 2023) or more primary ANNs (Xue 
et al., 2017; Yang et al., 2014). Most of the papers have focused on a single species 
or on a binary detection case, i.e. animal (all species combined) versus background, 
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but have produced promising performances with some achieving around 90% of 
detection metrics (e.g., Naudé and Joubert, 2019; Peng et al., 2020). Others have 
experimented the multispecies configuration and thus incorporated the additional 
recognition dimension (Eikelboom et al., 2019; Fang et al., 2021; Mou et al., 2023b; 
Petso et al., 2021), obtaining multilabel detection metrics ranging from 59% to 98%. 

The object detection approach therefore appears to be a suitable solution for 
processing survey images of large African mammals. However, this particular use-
case raises or accentuates challenges little or not encountered in conventional 
computer vision applications. The biggest challenge is to avoid the massive 
production of false alarms (i.e. false positives) while detecting the maximum number 
of individuals. False alarms are usually raised by the natural heterogeneity particularly 
present in African landscapes, which contain many confounding elements such as 
rocks, tree trunks or shadows (Kellenberger et al., 2018). Another challenge is the 
imbalance inherent in remote sensing images covering natural scenes. In the case of 
large mammal detection in wild and vast environments, this imbalance mainly occurs 
on two levels. First, the so-called foreground-background imbalance, which here 
refers to the imbalance between the pixel surface covered by the animals (i.e. the 
foreground) and the one covered by the landscape (i.e. the background). Large 
mammals indeed systematically cover just a tiny fraction of the total pixel area of an 
image (Fang et al., 2021). Training an object detector roughly on such an unbalanced 
data configuration will inevitably make it miss most animals (Kellenberger et al., 
2018). Second, the foreground-foreground imbalance, which refers to the imbalance 
in the number of instances per animal category (or class). This imbalance problem is 
intrinsically linked to the natural uneven distribution of animal species in their 
environments. The risk here is that minority species (i.e. those in smaller numbers) 
are not correctly identified by the detector. Finally, another challenge that is worth 
mentioning is the uneven distribution of animals within an image. This may lead to a 
drop in detector performance between sample images containing scattered animals 
and those containing clumped groups or close-by individuals (Han et al., 2019; Peng 
et al., 2020; Rivas et al., 2018). The future of large African mammal surveys using 
remote sensing imagery therefore relies on the development of DL methods that 
address these challenges. 

5. Research strategy 
The ultimate goal of fusioning remote sensing and DL is to enhance the accuracy 

and precision of traditional aerial surveys, while reducing the risks and costs 
associated with the latter. Imagery would avoid any observer bias and (semi)automatic 
models would alleviate the burden of manual image interpretation. The benefits of 
such approaches would, on the one hand, reduce the costs associated with this task 
which may be a major stumbling block for conservation agencies (Bröker et al., 2019; 
Lamprey et al., 2020b). On the other hand, such automatic models and data acquisition 
would enable standardization of survey results against recorded data. The accuracy 
and precision of surveys would only improve, and changes in population size would 
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be more easily perceptible over time. This would enable conservation actions to be 
taken more promptly and eventually, biodiversity to be better preserved. 

There are still many research gaps before an acceptable and reliable solution 
emerges, not to mention the challenges posed by the modernization of traditional 
approaches. This section therefore presents the research gaps in this domain as well 
as the research objectives of this thesis, which started in 2020. 

5.1. Research gaps 

Although many species have been studied using remote sensing and DL, the case of 
large African mammals has been little studied. It was not until 2018 that interest grew, 
with the publication of the paper by Kellenberger et al. (2018). Since then, number of 
articles have been published, many of them after 2020, but mostly on ‘proof-of-
concept’ cases and ‘limited’ datasets that are not representative of the real scale 
involved in a complete survey covering thousands of square kilometers. This is 
certainly linked to the research that has mainly focused on the drone as an acquisition 
platform over the last decade. Although promising, their low endurance does not 
currently meet the needs of surveys of vast open savannahs (Linchant, 2021) and thus 
covered limited areas. Most of the studies concentrated their research on the 
development of DL models for the processing of drone and satellite images, rather 
than aerial images acquired using light aircraft (Wang et al., 2019). Therefore, most 
of the models were developed to detect large mammals on images acquired with a 
vertical view (i.e. nadir), and few to be applied on oblique view (Barbedo et al., 2020; 
Eikelboom et al., 2019; Fang et al., 2021; Torney et al., 2019), although the latter may 
be particularly useful for avoiding tree occlusion, proper species identification and 
maximizing ground coverage (Lamprey et al., 2020b). To the best of our knowledge, 
before 2020, only Eikelboom et al. (2019) had considered species recognition in 
addition to detection and localization in the image. Fang et al. (2021) and Petso et al. 
(2021) closely followed the next year. Although more challenging than the binary case 
(i.e. animal versus background), the multi-species case is therefore a little-studied case 
for large African mammals, whereas species recognition may represent a particular 
benefit for the processing of survey images. In addition, previous research has focused 
mainly on wildlife in PAs, leaving the automatic detection and counting of free-
ranging livestock in these regions an unexplored subject. When studying livestock in 
these environments, individuals can range from the scattered to the densely clumped. 
This can also be the case with certain wild species (e.g. the buffalo), but is particularly 
more frequent with livestock like goats, sheep, or cattle. Current DL architectures for 
object detection (e.g. Faster R-CNN) are basically not developed to handle such 
diverse cases, and even show trouble precisely counting scenes of very dense objects 
(Zou et al., 2023). Pending the emergence of long-endurance drones or the broader 
use of microlight aircraft in PAs, there is a real need to develop multi-species counting 
methods for automatic processing of oblique aircraft images (Lamprey et al., 2020b, 
2020a, 2023). 



Chapter 1 | General introduction 

23 
 

5.2. Objectives and structure of the thesis 

Following the challenges and research gaps described above, the general objective 
of this thesis is to evaluate the combined use of remote sensing and DL for large 
African mammal multi-species survey through automated methods of detection, 
counting and recognition. In the context of this thesis, large African mammals refers 
here as wild or domestic terrestrial mammals over 40kg living in or passing through 
PAs in sub-Saharan Africa.  

The core of the thesis is structured into three main chapters (Chapter 2 to 4), 
consisting of 4 published research articles, and concluded by a discussion chapter 
(Chapter 5), drawing partly on a fifth published review article available in the Annex 
(Figure 1.6). The research focuses on passive systems embedded on aerial platforms, 
in particular aircraft. Although the use of drone is discussed in Chapter 2, the main 
focus of the research was on the use of light aircraft in Chapter 3 and Chapter 4. 
There are two reasons for this. Firstly, as previously stated, the use of drones in a 
wildlife monitoring context is a field that has already been extensively researched over 
the last decade. Secondly, given the current disadvantages of drones, I believe that 
light aircraft seem to be the most suitable platform for the practical implementation 
of the developed approaches in the near future. Concerning the sensor used and target 
spectrum, only optical sensors detecting the visible spectrum are considered, i.e. 
sensors producing images in the Red-Green-Blue (RGB) bands. 

The thesis therefore revolves around UHR aerial imagery (GSD < 10 cm/pixel), and 
aims to answer the following research question: 

“Does the association of aerial imagery and DL models increase the accuracy and 

precision of population estimates for large mammals in sub-Saharan protected 

areas?” 

Thanks to key and growing collaborations since the early stages of the thesis, the 
latter is fortunate to cover several protected areas with varied, substantial and 
representative datasets. This variability and large amount of data has been a valuable 
resource for practical discussion of the approaches developed, in different 
environments and with different species. The study areas therefore covered multiple 
open to semi-open savannas from western to eastern Africa, more specifically: the 
Garamba and Virunga National Parks in Democratic Republic of Congo (DRC), the 
Ennedi Natural and Cultural Reserve (ENCR) in Chad, the Queen Elizabeth National 
Park (QENP) in Uganda, and the Comoé National Park (CNP) in Côte d’Ivoire. 
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Figure 1.6: General framework and research strategy of the thesis. 

To answer the research question, a DL model was developed and evaluated, and 
then applied in the context of a whole aerial survey. First, in Chapter 2, pre-existing 
CNN-based object detection models that have shown good performance in other 
computer vision tasks (e.g. Faster R-CNN) were evaluated for multi-species counting 
of large African mammals on drone imagery. Then, Chapter 3 describes a DL 
architecture developed as part of the thesis, named HerdNet, designed to precisely 
count and recognize both scattered and dense herds of large African mammals. It has 
been first developed and validated at small scale on both nadir images acquired by 
drone and oblique images acquired by aircraft. Finally, Chapter 4 presents the results 
of applying the HerdNet model to oblique images of photographic aerial surveys. The 
first sub-chapter presents the performance comparison between the model and manual 
counting for wild species in Uganda. The second sub-chapter presents, to our 
knowledge, the very first comparison between population estimates obtained via 
observer data and those via verified detections of a DL model. This was done on the 
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scale of a PA of around 11,500 km², the Comoé National Park, in which a hybrid aerial 
survey (i.e. continuous camera and human observers) was conducted in 2022. 

In Chapter 5, the main findings are presented and discussed, along with the 
practical implications and limitations of the approaches developed. In addition, the 
remaining challenges are presented and accompanied by research perspectives, and 
one section is dedicated to the potential use of satellite imagery for African mammals 
monitoring. Suggestions for enhancing HerdNet performance are provided and 
discussed, as well as for upgrading aerial survey standards, integrating continuous 
imaging and the use of AI for processing the images. Prospects for microlight aircrafts 
are also put forward, the complementarity of remote sensing platforms for wildlife 
monitoring and survey is discussed, as well as the development of foundational DL 
models. The chapter ends with the main conclusions of the thesis. 
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Preamble 
In this chapter, I focused on the training and application of pre-existing CNN-based 

object detectors developed within the expansive domain of computer vision. This 
study specifically targeted their suitability for deployment in the task of wildlife aerial 
counting. Three distinctive architectures were pre-selected for evaluation, and their 
performance was compared using aerial imagery obtained from both drone and 
aircraft, encompassing diverse species of large African mammals. The comparative 
analysis of the best model’s outputs on images acquired from a distinct PA provided 
an opportunity to discuss its potential for species counting and recognition, as well as 
highlighting its limits in herd contexts. 
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Paper 1 | Published 

Multispecies detection and identification of African 
mammals in aerial imagery using convolutional neural 
networks 
Alexandre Delplanque, Samuel Foucher, Philippe Lejeune, Julie Linchant & Jérôme 
Théau 

This paper is published in Remote Sensing in Ecology and Conservation (IF=3.9), 
8(2), 166-179. DOI: 10.1002/rse2.234 

Abstract 
Survey and monitoring of wildlife populations are among the key elements in nature 

conservation. The use of unmanned aerial vehicles and light aircrafts as aerial image 
acquisition systems is growing, as they are cheaper alternatives to traditional census 
methods. However, the manual localization and identification of species within 
imagery can be time-consuming and complex. Object detection algorithms, based on 
convolutional neural networks (CNNs), have shown a good capacity for animal 
detection. Nevertheless, most of the work has focused on binary detection cases 
(animal vs. background). The main objective of this study is to compare three recent 
detection algorithms to detect and identify African mammal species based on high-
resolution aerial images. We evaluated the performance of three multi-class CNN 
algorithms: Faster-RCNN, Libra-RCNN and RetinaNet. Six species were targeted: 
topis (Damaliscus lunatus jimela), buffalos (Syncerus caffer), elephants (Loxodonta 

africana), kobs (Kobus kob), warthogs (Phacochoerus africanus) and waterbucks 
(Kobus ellipsiprymnus). The best model was then applied to a case study using an 
independent dataset. The best model was the Libra-RCNN, with the best mean average 
precision (0.80 ± 0.02), the lowest degree of interspecies confusion (3.5 ± 1.4%) and 
the lowest false positive per true positive ratio (1.7 ± 0.2) on the test set. This model 
was able to detect and correctly identify 73% of all individuals (1115), find 43 
individuals of species other than those targeted and detect 84 missed individuals on 
our independent UAV dataset, with an average processing speed of 12 s/image. This 
model showed better detection performance than previous studies dealing with similar 
habitats. It was able to differentiate six animal species in nadir aerial images. Although 
limitations were observed with warthog identification and individual detection in 
herds, this model can save time and can perform precise surveys in open savanna. 

Keywords: African mammals, CNNs, deep learning, multispecies, UAV, wildlife 
monitoring 
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1. Introduction 
Survey and monitoring of animal populations are key management tools in nature 

conservation and are essential to help fight the pressures they suffer. Anthropogenic 
pressures, such as poaching, are encountered mainly in developing countries 
(including most in Africa) where the pressure on biodiversity is very high (Linchant 
et al., 2015b). While large African mammals, such as buffaloes (Syncerus caffer) or 
hippopotamuses (Hippopotamus amphibius), play an important role in the dispersion 
and migration of macro-nutrients within landscapes (Lacher et al., 2019), the average 
abundance of these populations declined by 59% between 1970 and 2005 (Craigie et 
al., 2010). Moreover, the latest estimated Living Planet Index indicates a 65% decline 
in the overall African vertebrate populations between 1970 and 2016 (WWF, 2020). 
Even though humans are dependent on biodiversity (Isbell et al., 2017; WWF, 2020), 
their impact on the environment is leading us into a period of mass extinction 
(Ceballos et al., 2015). Moreover, in view of the disruption of future climate 
conditions (Pachauri et al., 2014), species not able to adapt rapidly could see their 
populations decline even further (Hetem et al., 2014; Thuiller et al., 2006). 

Most of the time, the size of an animal population is estimated through sample 
counts which consist of estimating the animal density in sample units selected at 
random or following a systematic scheme. The size of the population corresponds to 
the product of the mean density inside sample units per surveyed area surface (Norton-
Griffiths, 1978). Unfortunately, counting campaigns of this type can rapidly become 
expensive (Gaidet-Drapier et al., 2006), particularly for large mammal surveys for 
which the use of a light aircraft is almost indispensable (Jachmann, 1991). Moreover, 
these aerial campaigns can become dangerous, and their logistics are very complex 
for operators (Watts et al., 2010; Witmer, 2005). 

Although they cannot cover large areas, the use of UAVs (unmanned aircraft 
vehicles) is presented as a cheaper, more suitable and safer alternative (Chabot and 
Bird, 2015; Linchant et al., 2015b; Vermeulen et al., 2013). In addition, there are 
sensors that can be embedded and which offer the possibility of acquiring very high-
resolution images (Linchant et al., 2015b). 

Several species of large African mammals have already been studied using UAVs, 
such as the African elephants (Loxodonta africana) (Vermeulen et al., 2013), black 
(Diceros bicornis) and white (Ceratotherium simum) rhinos (Mulero-Pázmány et al., 
2014), the hippopotamus (Linchant et al., 2018) and many other species (Kellenberger 
et al., 2018; Rey et al., 2017). 

However, counting and identification are not carried out simultaneously and must 
be deferred when using UAVs. Due to the large amount of data to be analyzed, the 
size of the study area and the static nature of the animals on the images, counting can 
become very complex and time-consuming. This problem can be alleviated by 
utilizing object detection, which finds, locates and classifies objects in images (Zhao 
et al., 2019). Convolutional neural networks (CNNs) have become the basic elements 
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of most computer vision processes and have also proven to be extremely effective in 
the field of remote sensing (Zhu et al., 2017). These networks have been applied to 
animal detection in aerial and UAV images and have shown encouraging results 
(Barbedo et al., 2019; Eikelboom et al., 2019; Kellenberger et al., 2018; Moreni et al., 
2021; Naudé and Joubert, 2019; Peng et al., 2020). However, almost all of these 
studies did not distinguish between species nor were they focused on the case of a 
single species. It would therefore be interesting to develop a multi-species approach 
in order to further minimize human resources required for the processing of survey 
data. To our knowledge, only one study of multispecies animal detection on aerial 
images using object detection has been conducted to date, Eikelboom et al. (2019), 
who worked on detecting and identifying three African animal species using aerial 
oblique images and CNN. 

The objective of this study is to compare the performances of three object detection 
algorithms, based on CNNs, to automatically detect and identify six African mammal 
species in nadir aerial images: African buffalo, kob (Kobus kob), topi (Damaliscus 

lunatus jimela), African warthog (Phacochoerus africanus), waterbuck (Kobus 

ellipsiprymnus) and African elephant. The best model is then put into a practical 
perspective on an independent set of UAV images acquired in a different study area. 

2. Materials and Methods 
2.1. Dataset 

2.1.1. Data collection 

We used three different aerial datasets to conduct our study (see details in 
Table 2.1). The 'Virunga' and 'Garamba' are two UAV datasets that were taken from 
a database maintained by the University of Liège, Gembloux Agro-Bio Tech 
(Belgium). The Aerial Elephant Dataset (AED) is a free dataset provided by Naudé 
and Joubert (2019). 

The Virunga and AED datasets were merged and used as the 'general dataset' to 
develop the models (training, validation and test), while the Garamba dataset was used 
as a 'case study' to test the performance of the best model on a complete independent 
dataset. This was done in order to evaluate the model on a practical use case that did 
not include all the targeted species and which contained other species. 

The species selection was based on the availability of at least 100 individuals in the 
general dataset to ensure minimal model configurations. In addition, to optimize the 
speed of model development, images that did not contain animals were not used. 
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Table 2.1: Dataset specifications and details. 

Dataset Virunga AED (Naudé and 
Joubert, 2019) 

Garamba 

Location DRC (Virunga 
national park) 

Parks, games, and 
reserves in 
Botswana, Namibia 
and South Africa 

DRC (Garamba 
national park) 

Land cover 
(Mayaux et al., 
2004) 

Savanna Deciduous 
woodland, open 
deciduous 
shrubland, closed 
grasslands 

Savanna 

Dates April-June 2016 2014 to 2018 May 2015 

Time of day Early morning Full day Early morning 

System Falcon (UAV) SkyReach BushCar 
(A/C) 

Falcon (UAV) 

Camera(s) Sony-A6000, Sony-
Nex7 

Canon 6D Sony-Nex7 

Flight altitude 100 m 220 to 2270 m 90 m 

Number of flights 9 8 6 

Image dimension 6,000 x 4,000 pixels Various (5,472 x 
3,648 pixels; 5,496 
x 3,670 pixels; 
5,521 x 3,687 
pixels; 5,525 x 3690 
pixels) 

6,000 x 4,000 pixels 

GSD 2.4 cm 2.4 to 13.0 cm 2.0 cm 

Species hippopotamus, 
buffalo, kob, topi, 
warthog, waterbuck 

elephant hartebeest 
(Alcelaphus 

buselaphus), 
hippopotamus, 
buffalo, kob, 
warthog, waterbuck, 
giraffe (Giraffa 

camelopardalis) 

Images selected 897 400 All (7034) 

GSD, Ground Sampling Distance ; AED, Aerial Elephant Dataset ; DRC, Democratic 
Republic of Congo ; UAV, Unmanned Aerial Vehicle ; A/C, Aircraft. 
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2.1.2. General dataset data splitting 

The distribution of individuals of each species according to training, validation and 
test sets is given in Table 2.2. The approximate targets of distribution were 70% of 
the individuals in the training, 10% in the validation and 20% in the test datasets. 

Table 2.2: Number of individuals according to species, training, validation, and test sets. 

Species Training Validation Test Total 

Buffalo 1058 (70%) 102 (7%) 349 (23%) 1509 

Elephant 2012 (68%) 264 (9%) 688 (23%) 2964 

Kob 1732 (73%) 161 (7%) 477 (20%) 2370 

Topi 1678 (62%) 369 (13%) 675 (25%) 2722 

Warthog 316 (73%) 43 (10%) 74 (17%) 433 

Waterbuck 166 (69%) 39 (16%) 36 (15%) 241 

Total 6962 (68%) 978 (10%) 2299 (22%) 10239 

The different rows show the distribution of individuals in each set and the relative percentage 
(in parentheses). 

The distribution of the number of individuals by species and by flight was 
considered in performing the split. This step was required in order to avoid the 
splitting of some consecutive images containing the same individuals and to thereby 
maintain the independence of the three sets. 

2.1.3. Ground truth 

For the Virunga and Garamba datasets, the annotations (points and labels) were 
provided with the images. The individuals were previously located and identified 
manually by two operators on the UAV images using the software WIMUAS 
(Linchant et al., 2015a). The AED dataset also provided annotations (points) with the 
images (Naudé and Joubert, 2019). We assumed that all pre-identifications were 
correct. Bounding boxes were manually defined by a co-author of this study using the 
Colabeler AI annotation tool (http://www.colabeler.com/). 

2.2. Methodology 

2.2.1. Detection algorithms and implementation on the general dataset 

Three object detection algorithms were tested: Faster-RCNN (Ren et al., 2017), 
Libra-RCNN (Pang et al., 2019) and RetinaNet (Lin et al., 2017b). These algorithms 
were selected based on their performance on the benchmark datasets and on the 
availability of the code at the time of the study. 
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Faster-RCNN 

This object detection algorithm (Ren et al., 2017) takes images as input and 
constructs feature maps using a CNN (also called backbone). Based on these features 
maps, a region proposal network generates region proposals and assigns a probability 
of containing an object to each region. The predicted region proposals are then 
reshaped and eventually, classification and bounding box regression is performed to 
predict the presence and location of objects in the input images. These types of 
networks are commonly called 'two-stage detectors' due to their two-step process 
(Soviany and Ionescu, 2018). Faster-RCNN was chosen because it is used in many 
studies as a baseline. 

Libra-RCNN 

This algorithm, developed by Pang et al. (2019), is also a two-stage detector that 
does basically the same thing as Faster-RCNN. Its particularity is that it balances the 
training process at three levels which initially limit the detection performance: 

1) the sample level, by balancing the distribution of training samples close to that 
of challenging samples (called hard negatives). This addresses the problem of 
the random sampling scheme that often results in selected samples dominated 
by the easy ones (Pang et al., 2019); 

2) the feature level, by balancing the low-level and high-level features of each 
layer in the backbone, which are complementary for object detection; 

3) the objective level, by balancing the tasks of localization and classification, thus 
avoiding one of the two tasks being overwhelmed by the other. 

Thanks to its multi-level balanced approach to training, Libra-RCNN allows for 
greater precision and recall than Faster-RCNN, which is why it has been selected for 
comparison. 

RetinaNet 

This third algorithm is a 'single-stage detector', unlike the first two algorithms 
presented above. Algorithms of this type treat object detection as a simple regression 
problem by taking an input image and learning the class probabilities and bounding 
box coordinates directly (Soviany and Ionescu, 2018). Its architecture is composed of 
a backbone that takes input images, builds feature maps at different scales and 
generates region proposals for each scale in the form of anchors (Lin et al., 2017b). 
These anchors are then used as inputs for two sub-networks, the first one classifies the 
object and the second one simultaneously performs the regression of the bounding 
boxes. RetinaNet was used by Eikelboom et al. (2019) for the detection and 
identification of three African mammal species based on oblique aerial images. This 
algorithm was therefore chosen to evaluate its performance on nadir UAV images. 

 

For all three algorithms, the backbone consists of a ResNet-101 (He et al., 2016) 
connected to a feature pyramid network (Lin et al., 2017a). These algorithms were 
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used through their implementation in the adapted mmdetection toolbox version 1.0.0 
(Chen et al., 2019) with PyTorch 1.4.0, TorchVision 0.5.0, OpenCV 4.4.0, MMCV 
0.6.0, CuDNN 7.6.3 and Magma 2.5.1 libraries. All the codes and libraries were 
implemented and transcribed into Jupyter notebooks to run on Google Colaboratory. 
Training and detection runs were then performed with an NVIDIA Tesla P100-PCIE 
16GB GPU running on an Ubuntu 18.04 LTS Colab Linux platform, with CUDA 
10.1.243. These were followed by statistical tests conducted using Python's SciPy 
1.5.4 library. 

2.2.2. Image subdivision and stitching algorithm on the general dataset 

All the images were cut into sub-frames of 2000 × 2000 pixels, the maximum size 
that can be supported by the GPU memory. During the subdivision process, some 
individuals were cut into several parts and some of them no longer appeared in their 
entirety. Only individuals whose partial bounding box represented more than 25% of 
the original surface area were kept. This limit was chosen because below this 
threshold, individuals are difficult to identify manually. 

Only sub-frames containing animals were kept for training (Figure 2.1). For the 
validation and the test sets, the cutting was done with an overlap of 50% on each edge 
of the sub-frames, and all sub-frames were kept. These steps were taken in order to 
avoid missing any individuals and to ensure that each individual would appear in its 
entirety in at least one sub-frame. Moreover, this approach allowed the predictions to 
be stitched into the initial image frame. 

To both eliminate unnecessary partial bounding boxes and to reassemble the sub-
frames, a stitching algorithm was constructed. Each image first undergoes a 
subdivision into overlapped sub-frames of 2000 × 2000 pixels. These sub-frames are 
then passed through the trained algorithm (i.e. model) to obtain predictions that 
contain bounding boxes, species names and confidence scores. The coordinates of the 
predicted bounding boxes of each sub-frame are then modified to be placed in the 
initial image plan. Next, the NMS (non-maximum suppression) algorithm is applied 
to a filter the predicted bounding boxes based on the IoU criteria (Everingham et al., 
2010): 

��� =  	
�	�
�� � ∩ 
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Here, a threshold of 0.5 was chosen. This high threshold was deliberately chosen in 
order to avoid missing some individuals in herds or some juveniles that are very close 
to their mothers (Appendix A2). 
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Figure 2.1: Flowchart of the methodology used to train, validate and test each of the three 
object detection algorithms, using the general dataset. The results after evaluation were then 

used for comparison. 
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2.2.3. Training on the general dataset 

Because of the imbalance of the different classes, it is possible that during training, 
the majority species in terms of numbers dominate the others, leading to a decrease in 
the performance for minority species. Moreover, since the size of the training dataset 
is relatively small, training the different algorithms from scratch could lead to serious 
overfitting problems. To overcome these problems, four techniques were used: fine-
tuning, data augmentation, class weighting and the hard negative class. 

Fine-tuning 

Each algorithm's backbone was initialized by pre-trained parameters (Figure 2.1) 
on the ImageNet training dataset (Russakovsky et al., 2015). Next, all the parameters, 
except the first layer of the backbone, were trained on our dataset, with an adjustment 
of the number of classes at the head of the network. 

Data augmentation 

In addition to common strategies (i.e. rotation, mirroring and flipping, horizontal 
and vertical views), we used other strategies to detect animals in the various situations 
that can be encountered in aerial images: random blur, random contrast and random 
brightness. 

Class weighting 

Used by Kellenberger et al. (2018), this technique led to an improvement in animal 
detection performance. In our study, satisfactory results were obtained by weighting 
the species-related terms in the class loss function according to 

�� = min����, … , ��, … , ������  

where ni is the number of annotations within a class i in the sub-frames training set, 
and k is the number of classes. 

Hard negative class 

The hard negative class (Peng et al., 2020) was used to limit the number of false 
positives (FP) (Figure 2.1). This method treats hard negatives (high-scoring FPs) as 
foreground objects to make the model more sensitive to them. The score threshold 
was chosen to have a class size of between 2000 and 2200 to avoid a too-high class 
imbalance. Note that for the validation and test sets, the hard negative class-predicted 
bounding boxes were discarded and only species classes were maintained. Preliminary 
analysis showed that the inclusion of the hard negative class increased the models' 
performance (Appendix A3). 

The training for the first training phase was done during 30 epochs with the Stochastic 
Gradient Descent as an optimizer (a momentum of 0.9 and a weight decay of 10−3), 
and with a learning rate decreasing from 10−3 to 10−5 by steps of 10 epochs. The hard 
negative class was included from the 31st epoch (second training phase, Figure 2.1, 
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Appendix A4) and training continued for 10 more epochs with a learning rate of 
10−4 for the first five epochs and 10−5 for the last five epochs. 

2.2.4. Evaluation of CNN models 

For each complete image, a comparison between ground truth and predictions was 
performed in order to determine the true positives (TP), FP and false negatives (FN). 

A detection was then considered as a TP if the labels between the predicted bounding 
box and the ground-truth bounding box correspond and if the IoU between these boxes 
exceed 0.30. When several detections overlapped the same ground truth, the one with 
the maximum IoU was selected and the others were then considered as FP. Finally, if 
the labels did not match or if the ground truth was not detected by the model, the 
ground truth was considered as FN. 

Precision/recall curves for each species were constructed to evaluate the performance 
of each model. These curves were calculated by varying the confidence score 
threshold associated with each predicted bounding box, between 0 and 1: 

 �!� = �"#�!��"#�!� + �%#�!� 


�!� = �"#�!��"#�!� + �%&�!� 

where p is the precision and r the recall, k is the confidence score threshold, and nTP, 
nFP and nFN are the numbers of the TP, FP and FN, respectively. 

F1 scores are usually used to define the combination of precision and recall that 
produces an optimal compromise between the number of FP and FN. An F1 score 
essentially represents the harmonic mean of precision and recall: 

'1 )*�
� = 2 ∗  ∗ 
 + 
  

where p and r are the precision and recall, respectively. 

In this study, we used a mean F1 score (mF1): F1 scores were calculated for each 
species and then the whole was averaged. This metric was used because it gives an 
overall idea of the compromise between the FP and the FN. 

The average precision (AP) (Everingham et al., 2010), representing the area under the 
precision/recall curve, was then calculated for each animal species in order to evaluate 
the performance of the detection algorithm in detecting a particular species. Finally, 
the mean average precision (mAP) was calculated to quantify the overall performance 
of each detection algorithm and thus allow their comparison. The mAP represents the 
average AP of all the species. 

Each algorithm was trained for five runs with different fixed seeds. This step allowed 
us to control the stochastic aspect related to the training of an object detection 
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algorithm. From these five runs, paired sample t-Student tests and confidence 
intervals were computed to compare the models and determine if the differences in 
performance were significantly different. 

After each epoch, each trained algorithm (i.e. each model) was saved and tested on 
the stitched validation image set to verify that it was not falling into overfitting. In 
addition, for the last five epochs of each three algorithms of interest, the model with 
the best performance on the validation set was selected for testing (Figure 2.1). To 
determine the best performance, the epoch with the maximum mF1 score was first 
selected. Next, the mAP corresponding to the epochs that presented an equivalent mF1 
value (i.e. with two significant digits retained) was analyzed. From among these, the 
epoch with the highest mAP was finally selected for testing. This method enabled the 
selection of a globally efficient model (i.e. a high mAP) with a good compromise 
between FP and FN (i.e. a high mF1 value). 

2.2.5. Processing of the case study dataset 

To choose the model to apply to the case study (the Garamba dataset), we first selected 
the algorithm that showed the best performances on the test set. Then, we selected the 
best model based on the five tested runs, using the same selection method as in the 
validation set. The Garamba dataset's images were previously cut into sub-frames 
according to the same methodology as the validation and test sets (see Section 2.2.2). 
Detections were then stitched together according to an inference approach using the 
same stitching algorithm and evaluated using the same evaluation methodology as for 
the general dataset (see Section 2.2.3). Note that due to the high similarity between 
the two species (see Appendix A1) and the impossibility to distinguish them on UAV 
images, hartebeests and topis were merged into the same class during the inference 
step. 

3. Results 
3.1. Species detection 

Topi, buffalo and kob were very well detected by all the trained algorithms (i.e. the 
three models) studied, with only slightly poorer results for elephants (Figure 2.2). 
Given the results, warthogs and waterbucks appear to be more difficult to detect. 
Nevertheless, waterbucks were very well detected by Libra-RCNN (AP = 0.89) but 
very poorly detected by RetinaNet (AP = 0.01). RetinaNet was the model that had the 
most difficulty in detecting minority species (warthogs and waterbucks). 

False positives were particularly high for elephants and warthogs, for all the models, 
as indicated by the poor precision at the highest recall value of these species 
(Figure 2.2). 

Libra-RCNN was the model that presented the highest AP for each of the species, 
except for elephants, where it equalled the AP of the Faster-RCNN model. 
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Figure 2.2: Precision/Recall curves of the three detection algorithms for the six targeted 
species on the test set. Axis legend represents the average precision (AP) of the 

corresponding curve. These curves were calculated for each of the algorithms using the 
model with the best mean average precision (mAP) among the five seeds. 

3.2. Model comparison 

The results of the independent t-Student tests showed a significant difference in 
performance on the test set between the three models for mAP, mF1 and mean 
interspecies confusion, but not for recall. There was a significant difference in the 
FP/TP ratio for Faster-RCNN and Libra-RCNN with RetinaNet but not between 
Faster-RCNN and Libra-RCNN (see Appendix A5 for details). 

The Libra-RCNN model produced the best mAP, the best mF1 score and the lowest 
average level of interspecies confusion in the test set (Figure 2.3). In contrast, the 
RetinaNet model had the lowest mAP and mF1 values, along with the highest average 
interspecies confusion score. Finally, Faster-RCNN's performance ranks it between 
the other two. 
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Figure 2.3: Bar plots of mAP (A), mF1 (B) and average interspecies confusion (C) 
calculated from the detection results of the test set. The error bars represent the 95% t-

Student confidence interval (4 d.f.), computed from the results of the five seeds. mAP, mean 
average precision. 

Regarding the percentage of animals detected, all three models detected on average 
the same percentage of animals (true detection rate), with 94.5% (±0.5%) for Faster-
RCNN, 94.3% (±0.5%) for Libra-RCNN and 94.6% (±0.3%) for RetinaNet, where 
the confidence intervals represent the 95% t-Student confidence interval (4 d.f.), 
computed from the results of the five seeds. 

Finally, in terms of the FP/TP ratio (binary case), Libra-RCNN presented the lowest 
value (1.7 ± 0.2), closely followed by Faster-RCNN (1.8 ± 0.1). RetinaNet had the 
highest ratio with an average of nearly nine FN per TP (9.0 ± 0.7), a very high number 
of false alarms. 

These results suggest that the Libra-RCNN model is more suitable for multi-species 
animal detection than the other two, with superior detection performance compared to 
Faster-RCNN and RetinaNet. Therefore, Libra-RCNN was selected and applied to the 
case study dataset. 

3.3. Case study (Garamba dataset) 

To evaluate the performance of the best developed model, the Libra-RCNN model 
was applied on the Garamba dataset. The total processing time (with a single GPU) 
was 23h26 for all the flight images, with an average of 12 seconds/image. Detections 
were present in 9% of the images (607/7034 ≈ 0.09), and among the 180 images 
containing ground truths, 9% were missed by the model (16/180 ≈ 0.09). However, 
no or almost no images were missed for some species (Table 2.3). For all six targeted 
species, 73% were correctly identified, with a relatively wide variation between the 
species. Furthermore, 64 individuals were correctly detected but misidentified. The 
same trend in species detection as observed on the test set results can be observed here 
as well: the majority species are better detected and identified than the minority 
species (Table 2.3). 
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Among the 305 individuals of other species initially identified during the annotation 
step, 43 were found by the model: 29 hippopotamuses out of 196, 13 giraffes out of 
43 and 1 undetermined species out of 7. In addition, all false positives with an IoU of 
0 with the ground truths were reviewed; among these 945 FP detections, 133 were in 
fact individuals of our six targeted species that were missed during the annotation 
phase. Of these, 55 were correctly identified by the model (Table 2.3). 

4. Discussion 
The Libra-RCNN model showed better detection performance on the test set than 

other published models dealing with the detection of mammals in similar habitats and 
landscapes (Eikelboom et al., 2019; Kellenberger et al., 2018; Rey et al., 2017). 
Moreover, the models presented here were able to differentiate six animal species on 
nadir aerial images, which to the best of our knowledge has never been tried before in 
the literature. The performance of our best model (Libra-RCNN) on the test set 
surpasses that of the latest multi-species model published (Eikelboom et al., 2019) in 
terms of global recall, global FP/TP ratios, mAP and F1 scores. Finally, it showed 
good performance on a complete independent raw dataset from another park (i.e. 
Garamba) and was able to detect additional individuals, some belonging to other 
species. 

4.1. Species detection 

Our best model, the Libra RCNN, showed very good detection, identification and 
generalization results for the majority species (topi, buffalo and kob) and was even 
surprisingly good at detecting one minority species, the waterbuck. For topi, buffalo 
and elephant detection, we observed that all three models were less precise for herds. 
The lower precision was mainly due to the overlap of the bounding boxes within the 
herds (Figure 2.4). Indeed, this box overlap probably made it more difficult for the 
algorithms to converge during training. In images containing herds, a large number of 
boxes were therefore created during the inference step, but despite the application of 
the NMS, some detections persisted and were therefore qualified as FP, as several 
boxes defined the same individual. After revision, herding represented about 40% of 
the FPs for the Libra-RCNN model on the test set, and about 41% for that model on 
the Garamba dataset. 

In addition, for elephants, the images were taken at any time of the day, unlike the 
other datasets. This led to greater variability of shadows, colours and brightness within 
the images, and thus to poorer detection results, as observed in Rey et al. (2017). 
Moreover, this dataset (AED) comes from parks and reserves with varying landscapes 
and terrain features that differ from those of Virunga, such as denser tree cover in 
some images. However, training the models on these field variations normally made 
them more robust to heterogeneous terrain features (Kellenberger et al., 2018). 
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Figure 2.4: Detections examples of the Libra-RCNN model, on partial test images showing 
the major cause of the high number of false positives. Note that ground truths are in green 

(first row) and detections are in red (second row). 

This difference in the landscape also explains the lower percentage of animals 
detected by Libra-RCNN on the Garamba dataset. In addition, we observed that these 
differences in terrain features were also the cause of many FPs within the Garamba 
images. For example, the model detected a large number of termite mounds as 
animals. This terrain characteristic was indeed much less present in the training set. 

Despite the class weighting during training, the models struggled to correctly 
identify warthogs, most probably due to a lack of training samples. Furthermore, this 
animal was the smallest mammal in this study. Its small size generated a large number 
of FP due to insufficient pixel resolution and because some acquisition drawbacks 
(blur, contrast) did not allow the model to distinguish some of this small mammal's 
attributes. It could therefore easily be mistaken for small rocks, common in the 
African landscapes where this species is found. 

The surprisingly high number of the Garamba dataset's FPs (133) that were in fact 
real animals can be explained by the overlap of the images and the initial methodology 
of annotating the individuals. Indeed, only 84 individuals were actually real human-
missed animals. The other animals had already been tagged during the manual 
annotation phase in the previous frame or would be in the next frame within a 
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succession of overlapping images. Annotating everything was not required, although 
recommended for the purpose of that specific survey, as double counting was not 
desired at the time of the census, despite the possibilities to differentiate between first 
observation and double counting in the software. Consequently, attention was focused 
on the individuals that had not yet been tagged, and so sometimes the individuals 
present in the periphery were not tagged again. From these 84 new individuals, 55 
were correctly identified by the model. 

4.2. Model comparison 

Two-stage detection models (Faster-RCNN and Libra-RCNN) seemed to detect 
animal species more precisely than a single-stage model (RetinaNet). This difference 
in performance was as expected (Soviany and Ionescu, 2018). 

The Faster-RCNN and Libra-RCNN models were very similar in terms of their 
detection performance. The differences that we observed between these two models 
on the test set (Figure 2.3) were probably due to the Libra-RCNN L1-balanced loss 
and its rebalancing at the training sample distribution level. These components caused 
the algorithm to focus on difficult cases during training, which leads to better detection 
and classification performances (Pang et al., 2019). 

4.3. Operational implications 

The Libra-RCNN model presents interesting perspectives as a good semi-automatic 
detection and identification tool for African mammal species. It could be used in 
practice to save human time, create new training data and establish initial, rapid 
population counts, with human verification of detected individuals as post-processing. 
However, our experience in reviewing the FPs shows that this screening must 
necessarily be performed with the animals' surrounding context, which is crucial for 
decision making by the human eye. 

The model developed here can mainly be applied in open savanna or sparsely 
wooded areas and for the detection of our six studied species. Indeed, our results show 
that in order to develop a model that can be used in various ecosystems, it would be 
necessary to have a training set with a large variability of landscapes and terrain 
features. 

Generally, detection performance improves when more training data are used. 
Unfortunately, the acquisition and pre-processing of aerial animal training data are 
costly. Developing a semi-automatic animal detection tool, such as those presented 
here, requires significant upstream work. From the manual identification and location 
of animals to the dataset training, the workload is quite large and requires significant 
human resources with highly technical skills. Moreover, as with any deep-learning 
application, training an algorithm requires a large computing capacity and a huge 
amount of data. Luckily, more and more open-source data (images and annotations) 
are being made available (Eikelboom et al., 2019; Kellenberger et al., 2018; Naudé 
and Joubert, 2019). 
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Finally, in an attempt to automate the counting of individuals, the thorny problem 
of images overlap remains an obstacle. Our results from Garamba were presented here 
without accounting for multiple detections. We observed that this overlap is crucial to 
detect all possible individuals. Indeed, in Garamba, some individuals were only 
detected in a few images thanks to a slight change in the viewing angle (Figure 2.5). 
This need for overlap leads the model to slightly overestimate the number of real FN. 

 

Figure 2.5: Kob detections of the Libra-RCNN model on consecutive Garamba's partial 
images, showing that the images overlap made it possible to detect a maximum of 

individuals thanks to the slight viewing angle changes. Note that ground truths are in green 
(first row) and detections are in red (second row). 
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4.4. Research perspectives 

In surveying animal species, the problem of class imbalance will always be present 
due to the natural distribution of species within ecosystems. Nevertheless, more and 
more studies are looking into this recurrent problem in multi-class object detection 
(Oksuz et al., 2021). There is also the challenging problem of the large number of FP. 
Newer methods, such as synthetic data generation, could help to address this problem 
by generating images with heterogenous backgrounds (Beery et al., 2020). In addition, 
it could be beneficial to consider switching from boxes to points (Ribera et al., 2019) 
or masks (Xu et al., 2020) to avoid the problems of overlapping boxes in herds and in 
an attempt to automate the counting. These solutions should be investigated in future 
works. 
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5. Appendices 
A1: Image samples of the six targeted species 

A few samples of each of the six targeted species from the general dataset are shown 
in Figure 2.6. In addition, a few samples of hartebeest from Garamba have been added 
to the last column to show their similarity with the topis (from Virunga). This 
illustrates the need to group these two species in the same class when analyzing the 
Garamba results. 

 

Figure 2.6: Image samples of each of the six targeted species from the general dataset, and a 
few samples of hartebeest from the case study (Garamba) in the last column. 
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A2: Preliminary tests for NMS (Non-Maximum Suppression) 

threshold 

To retain a maximum number of individuals, especially close-by animals (i.e. 
juveniles and herds), the IoU (Intersect-Over-Union) threshold giving the maximum 
recall on the validation set was selected for NMS during preliminary tests, while 
keeping an eye on mAP to avoid a too large drop of its value (Figure 2.7). In a semi-
automated survey context, it was therefore preferred to detect a maximum number of 
individuals at the expense of a very slight drop in mAP. This IoU threshold was 0.5 
for all three models. 

 

Figure 2.7: Evolution of recall and mAP values obtained on the validation set, according to 
different IoU thresholds used for the NMS process. The maximum recall value is shown in 
red. It was obtained with a threshold of 0.5 for each model. The mAP curve shows that this 

threshold selection did not have much impact on the global performances of the models 
(slight decrease of mAP values). 
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A3: Comparison of models’ performances with and without the 

inclusion of the hard negative class 

The value of mF1 was significantly higher with the hard negative class for each 
model, while the average confusion between species was not significantly impacted 
by this class inclusion (Figure 2.8A-B). If the detection is considered as a binary case 
(animal vs. background), it is clear that the ratio of false positives to true positives 
was significantly lower for each model (Figure 2.8C). However, the percentage of 
animals detected decreased significantly from 96.6 to 95.7% for Faster-RCNN 
(t(4)=9.02, p=0.001), from 97.5 to 96.4% for Libra-RCNN (t(4)=4.78, p=0.009) and 
from 97.8 to 97.1% for RetinaNet (t(4)=5.04, p=0.007). The results of the validation 
therefore show that the hard negative class significantly improved the results for each 
of the models studied without a decrease in interspecies average confusion, but at the 
expense of detecting slightly fewer individuals. 

 

Figure 2.8: Bar plots of mF1 values for (A) average interspecies confusion, (B) the false 
positives-true positives ratio, and (C) showing the effect of the hard negative class (NC) on 
the validation set for the three models tested. The stars indicate the level of significance of 

the paired sample t-Student test (***, p < 0.001; **, p < 0.01; *, p < 0.05, and 'n.s', p > 0.05) 
and the error bars represent the 95% t-student confidence interval (4 d.f.) computed from the 

results of the five seeds. Note that the difference distribution of each metric underwent a 
Shapiro-Wilk test for normality, and each difference distribution accepted the null hypothesis 

(p > 0.05). 
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A4: Detection algorithms’ training details 

Table 2.4 gives the details of the training parameters for each of the detection 
algorithms used. The training was done over 40 epochs with a batch size of one sub-
frame. Class weighting was applied to all the algorithms. The reduction of the learning 
rate (10-3 to 10-5) was made by steps of 10 epochs for the first 30 epochs. The data 
augmentation consists of a horizontal flip with a probability of 0.5, a vertical flip 
(prob=0.5), a 90-degree rotation (prob=0.5), a random blur with a maximum kernel 
size of 15 pixels (prob=0.2), and a random adjustment of contrast and brightness 
(prob=0.2). 

Table 2.4: Training details of the detection algorithms. 

 Faster-RCNN Libra-RCNN RetinaNet 

Backbone ResNet-101-FPN ResNet-101-FPN ResNet-101-FPN 

Class loss Cross entropy Cross entropy Focal 

Bounding box loss Smooth-L1 Balanced-L1 Smooth-L1 

 

The hard negative class was applied from epoch 31 with a learning rate of 10-4 for 
the first five epochs, and 10-5 for the last five epochs. The method of Peng et al. (2020) 
has been slightly modified here. Instead of harvesting FPs at each iteration, we 
harvested FPs only once at the end of the first training step, and then trained the model 
on them for 10 epochs to minimize disruption of the algorithm during training. Finally, 
the optimizer is the well-known stochastic gradient descent (SGD), with a momentum 
of 0.9 and a weight decay of 10-3. 
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A5: Independent t-Student test results on the test set (general 

dataset) 

The results of the t-Student tests performed on the test set, as well as the verification 
of the conditions of application (i.e., the normality of the samples and the equality of 
variances) are presented in Tables 2.5 and 2.6. These tests were conducted using the 
Python’s SciPy 1.5.4 library. 

The results showed that the difference in performance between the three models was 
significant for most of the metrics (Table 2.5). Only recall values were insignificantly 
different, as well as the binary ratio (animal vs. background) of false positives to true 
positives (FP/TP) between Faster-RCNN and Libra-RCNN. 

Table 2.5: Model results of the Shapiro-Wilk tests on the values of each of the metrics, 
obtained following the five runs performed on the test set. The “sign.” column indicates the 

level of significance of the test (***, p < 0.001; **, p < 0.01; *, p < 0.05, and 'n.s.', p > 0.05). 
Each test was non-significant, meaning that the null hypothesis was accepted (H0: the values 

follow a normal distribution. 

Model Metric df statistic p-value sign. 

Faster-RCNN 

mAP 4 0.90 0.436 n.s. 

mF1 4 0.82 0.118 n.s. 

confusion 4 0.94 0.689 n.s. 

recall 4 0.96 0.824 n.s. 

FP/TP 4 0.84 0.153 n.s. 

Libra-RCNN 

mAP 4 0.86 0.232 n.s. 

mF1 4 0.89 0.333 n.s. 

confusion 4 0.82 0.111 n.s. 

recall 4 0.83 0.135 n.s. 

FP/TP 4 0.84 0.177 n.s. 

RetinaNet 

mAP 4 0.93 0.563 n.s. 

mF1 4 0.98 0.910 n.s. 

confusion 4 0.92 0.534 n.s. 

recall 4 0.94 0.679 n.s. 

FP/TP 4 0.89 0.381 n.s. 
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Table 2.6: Results of Levene and independent t-Student tests for model comparison. The 
“sign.” column indicates the level of significance of the test (***, p < 0.001; **, p < 0.01; *, 

p < 0.05, and 'n.s.', p > 0.05). Note that nearly all the Levene tests were non-significant, 
meaning the null hypothesis was accepted (H0: the variances of the two group are equal). 
Since the “Faster-RCNN vs RetinaNet – FP/TP” Levene test was significant (p < 0.05), a 

Welch t-test was performed for this case, instead of the standard two-sample t-Student test 
performed for all the other cases. 

Comparison Metric df 

Levene test Independent t-Student 
test 

statistic p-value sign. statistic p-value sign. 

Faster-
RCNN vs 
Libra-RCNN 

mAP 4 1.75 0.222 n.s. -9.91 < 0.001 *** 

mF1 4 1.94 0.201 n.s. -9.68 < 0.001 *** 

confusion 4 1.55 0.248 n.s. 7.36 < 0.001 *** 

recall 4 0.02 0.899 n.s. 0.80 0.449 n.s. 

FP/TP 4 0.88 0.377 n.s. 2.07 0.072 n.s. 

Faster-
RCNN vs 
RetinaNet 

mAP 4 2.57 0.147 n.s. 25.06 < 0.001 *** 

mF1 4 2.36 0.163 n.s. 85.42 < 0.001 *** 

confusion 4 1.76 0.221 n.s. -25.09 < 0.001 *** 

recall 4 1.18 0.309 n.s. -0.71 0.496 n.s. 

FP/TP 4 8.11 0.022 * 
-29.45 

(Welch) 

< 0.001 

(Welch) 
*** 

Libra-RCNN 
vs RetinaNet 

mAP 4 0.01 0.942 n.s. 25.81 < 0.001 *** 

mF1 4 0.32 0.588 n.s. 52.58 < 0.001 *** 

confusion 4 0.00 0.955 n.s. -24.48 < 0.001 *** 

recall 4 0.66 0.439 n.s. -1.57 0.156 n.s. 

FP/TP 4 5.12 0.053 n.s. -29.00 < 0.001 *** 
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Preamble 
In Chapter 2, I showed that pre-existing CNN-based object detectors have good 

detection potential but also have certain limits, particularly when it comes to precisely 
counting animals in densely clumped herds. In response, there was a need to design 
and develop a DL architecture adapted to the challenges experienced in the context of 
counting African mammals using aerial imagery, which can be further accentuated 
with oblique cameras. In this chapter, I thus present the proposed architecture, named 
HerdNet, which was inspired by advances made in the field of crowd counting that 
bear many similarities to our application case. Its advantages are highlighted, and 
limitations are discussed. Outperforming alternative CNN-based counting approaches 
in terms of location, count and processing speed, regardless of proximity between 
animals, HerdNet is finally being discussed for its practical implications in the realm 
of aerial surveys. 
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From crowd to herd counting: How to precisely detect 
and count African mammals using aerial imagery and 
deep learning? 
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Vermeulen & Philippe Lejeune 
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Abstract 
Rapid growth of human populations in sub-Saharan Africa has led to a simultaneous 

increase in the number of livestock, often leading to conflicts of use with wildlife in 
protected areas. To minimize these conflicts, and to meet both communities’ and 
conservation goals, it is therefore essential to monitor livestock density and their land 
use. This is usually done by conducting aerial surveys during which aerial images are 
taken for later counting. Although this approach appears to reduce counting bias, the 
manual processing of images is time-consuming. The use of dense convolutional 
neural networks (CNNs) has emerged as a very promising avenue for processing such 
datasets. However, typical CNN architectures have detection limits for dense herds 
and close-by animals. To tackle this problem, this study introduces a new point-
based CNN architecture, HerdNet, inspired by crowd counting. It was optimized on 
challenging oblique aerial images containing herds of camels (Camelus dromedarius), 
donkeys (Equus asinus), sheep (Ovis aries) and goats (Capra hircus), acquired over 
heterogeneous arid landscapes of the Ennedi reserve (Chad). This approach was 
compared to an anchor-based architecture, Faster-RCNN, and a density-based, 
adapted version of DLA-34 that is typically used in crowd counting. HerdNet 
achieved a global F1 score of 73.6 % on 24 megapixels images, with a root mean 
square error of 9.8 animals and at a processing speed of 3.6 s, outperforming the two 
baselines in terms of localization, counting and speed. It showed better proximity-
invariant precision while maintaining equivalent recall to that of Faster-RCNN, thus 
demonstrating that it is the most suitable approach for detecting and counting large 
mammals at close range. The only limitation of HerdNet was the slightly weaker 
identification of species, with an average confusion rate approximately 4 % higher 
than that of Faster-RCNN. This study provides a new CNN architecture that could be 
used to develop an automatic livestock counting tool in aerial imagery. The reduced 
image analysis time could motivate more frequent flights, thus allowing a much finer 
monitoring of livestock and their land use. 

Keywords: Deep learning, Livestock, Herd, Convolutional neural networks, Aerial 
survey, Protected area 
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1. Introduction 
In sub-Saharan Africa, the rapid growth of the human population over the last 

decades, combined with very effective sanitary actions on herds, has led to a 
significant increase in the number of heads of different livestock species (Richard et 
al., 2019). On the one hand, excessive livestock density can have several adverse 
effects on the environment, such as soil and vegetation degradation, space and grazing 
competition with wildlife or spread of diseases (Bengis et al., 2004; Butt and Turner, 
2012; De Leeuw et al., 2001; Georgiadis et al., 2007; Vandermeer, 2002). On the other 
hand, livestock is a major source of income and a livelihood strategy for rural 
populations (Herrero et al., 2013), and it can enhance agricultural sustainability 
(Ayantunde et al., 2018) and habitat quality for wildlife if well managed (Fynn et al., 
2016). Too-high density of livestock may prompt conflicts over important natural 
resources within a protected area, such as pastures used for grazing by wild and 
domestic herbivores (Scholte et al., 2022a, 2022b; Toutain et al., 2004). Knowledge 
of livestock density and land use in these areas is therefore necessary to reach both 
conservation and local communities’ goals. 

In large open African areas, livestock and wildlife counting are often carried out by 
a piloted aircraft, flying at low altitude and following systematic transects while 
observers count animals in sample strips defined on each side of the aircraft 
(Caughley, 1977; Grimsdell and Westley, 1981; Norton-Griffiths, 1978). 
Unfortunately, observers tend to fail to detect and accurately count the true number of 
animals in the strips, especially when encountering large and dense herds, resulting in 
biased population estimates (Caughley, 1974; Grimsdell and Westley, 1981; 
Jachmann, 2002). 

For most observers, remote counting from an aircraft becomes inaccurate for groups 
of 15 or more individuals (Grimsdell and Westley, 1981; Norton-Griffiths, 1978). 
Photographing large herds has thus become a common practice to improve group size 
estimates by subsequent counting (Bouché et al., 2012; Craig, 2012; Grimsdell and 
Westley, 1981; Norton-Griffiths, 1978; Schlossberg et al., 2016). Recently, the use of 
oblique cameras has been shown to improve wildlife counts, especially for smaller 
species such as warthog (Phacochoerus africanus), Uganda kob (Kobus kob), or oribi 
(Ourebia ourebi) (Lamprey et al., 2020b, 2020a). Although nadir imagery is 
increasingly used for aerial survey of wildlife since the growing interest for drones 
(Linchant et al., 2015b), oblique imagery remains a relevant and particularly attractive 
solution for managers of large protected areas. Oblique imagery has the following 
advantages over nadir imagery, making it a key research area: the better detection of 
animals under trees, the better identification of species (side view), the larger sampling 
area at a same flight height, and the similar viewing configuration with onboard 
observers (facilitation of detection validation). However, the main drawbacks of this 
method are: 1) the high volume of imagery generated; and 2) the associated intensive 
photo-interpretation workload. For instance, Lamprey et al. (2020a) acquired 24,000 
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images for a survey of a 5037 km2 reserve in Uganda, and it took 6 weeks for 4 people 
to interpret the images. 

Deep learning architectures, through the use of Convolutional Neural 
Networks (CNNs), now offer the possibility to semi-automatically detect and identify 
species in aerial images acquired in heterogeneous landscapes using object detection 
approaches (Delplanque et al., 2022; Eikelboom et al., 2019; Kellenberger et al., 
2019a, 2018, 2017; Naudé and Joubert, 2019; Peng et al., 2020; Torney et al., 2019). 
These recent approaches allow partially-automated processing of the large volumes 
of images generated during acquisition campaigns. While these seem to work 
relatively well for isolated individuals or sparse herds, the case of dense herds remains 
a complex and challenging task (Delplanque et al., 2022). 

In oblique images containing dense herds, factors such as mutual occlusions, close-
by bodies, complex background, varying scales, and non-uniform distribution of 
individuals make common object detection approaches cumbersome if not impossible 
to accurately locate and count the individuals. Common object detectors are usually 
anchor-based, meaning that they use anchors during the training process, which are a 
set of prior box proposals with different scales and aspects centered on potential object 
locations (Ren et al., 2015). Usually, anchors help the network to converge faster and 
to obtain better detection performance (Lin et al., 2017b; Liu et al., 2016; Redmon 
and Farhadi, 2017; Ren et al., 2015). However, they are suspected to be the cause of 
decreased precision in dense herd situations (Delplanque et al., 2022). 

The factors mentioned above (i.e., occlusion, complex background, scale variation 
and non-uniform distribution) are also encountered in crowd detection (Gao et al., 
2020), making the task of herd counting very similar to that of crowd counting. While 
the CNN architectures developed in crowd counting have shown very good results for 
human counting in densely populated scenes, their transposition to dense terrestrial 
mammal herd counting in oblique imagery has not yet been explored. 

Density-map-based architectures, first proposed by Lempitsky and Zisserman 
(2010), are popular in crowd counting, due mainly to their improved counting 
performance compared to detection-based and anchor-based architectures, and for the 
practicality of dot annotations (Li et al., 2021). Padubidri et al. (2021) have recently 
shown that density maps can be used to precisely count Steller sea lions (Eumetopias 

jubatus) and African bush elephants (Loxodonta africana) in nadir aerial 
images. Kellenberger et al. (2019a) also proposed density-based approaches that 
showed great performances using only image-level annotations. However, density-
based approaches did not precisely locate individuals in the images, especially in 
herds; such location capability could be valuable for creating new annotations from 
unseen images. 

This paper presents “HerdNet”, a new dense herd CNN-based counting approach, 
inspired and adapted from crowd counting approaches, which was compared with an 
anchor-based and density-based baselines. 
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2. Background 
2.1. Pointing, a more natural and efficient way for herd 

counting 

In addition to being a natural way to count objects for humans, pointing is faster 
than drawing bounding boxes, especially when large numbers of objects are 
encountered, as in the case of animal herds. Pointing was first proposed by Lempitsky 
and Zisserman (2010), who presented it as a very attractive and understudied case. 
Since then, point annotations have been largely used for labeling crowds in images 
(Li et al., 2021). In recent years, some CNN point-based approaches have also 
emerged with promising results. While crowd counting CNN architectures generally 
use points for density map regression, CNN point-based object detectors are often 
trained to produce a high-resolution map in an encoder-decoder fashion, where points 
can then be extracted (Ribera et al., 2019; Zhou et al., 2019). An encoder-decoder 
framework outputs features over the input image’s pixel space to obtain precise 
localization. The encoder block encodes the images into multi-level features’ maps of 
different resolution (i.e., the down-sampling phase), and then the decoder block 
decodes the encoded features’ map while keeping their spatial information (i.e., the 
up-sampling phase). Other methods also showed that point detection can be achieved 
on lower-resolution outputs using a simple encoder (i.e., a CNN) but at the expense 
of a lower position accuracy (Kellenberger et al., 2021, 2019b, 2018). 

2.2. Similarities between crowd and herd counting tasks 

In crowd counting, there are some challenges that make the task complex, including 
occlusion, complex background, scale variation, and non-uniform distribution (Gao 
et al., 2020). These issues are also encountered in herd counting within oblique aerial 
imagery, which makes the task of herd counting very similar to that of crowd counting 
(see Figure 3.1): 

Occlusion (Figure 3.1a) - As the herd density increases, the animals will appear to 
partially occlude each other. This situation is often observed for gregarious and 
migratory animals which can be grouped around particular places such as watering 
holes and resource points, and during some practices such as “tightly bunched 
herding” (Odadi et al., 2018). Such occlusions could limit the performance of 
traditional object detection architectures. 

Complex background (Figure 3.1b) - Aerial survey imagery contains 
mainly background regions that can include many confusing objects (e.g. shadows, 
rocks). These can lead to a high number of false alarms and bias the counting result. 

Scale variation (Figure 3.1c) - In oblique aerial images, the size of animals varies 
both within the same species by the distance from the camera (i.e., intraspecies 
variation) and between different species (i.e., interspecies variation), increasing the 
difficulty for accurate detection and identification. 
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Non-uniform distribution (Figure 3.1d) - Diverse herd distributions and densities 
may be encountered. The difficulty is further accentuated by the fact that the dataset 
is dominated by samples containing few individuals, following the patch generation 
(see Section 3.4.1). 

 

Figure 3.1: Examples of challenges faced by crowd counting (top row), extracted from the 
Shanghaitech dataset (Zhang et al., 2016) and their equivalents in herd counting (bottom 

row), extracted from the Ennedi dataset. 

These similarities make crowd counting CNN architectures an interesting approach 
to tackle the challenges of counting dense herds in oblique aerial imagery. However, 
unlike crowd counting where the problem is binary (human vs. background), herd 
counting could be a multi-class problem as several species may be targeted in the same 
area. The original crowd counting CNN architectures must therefore be adapted 
accordingly. 

2.3. Combining detection and counting tasks 

Creating an architecture that can accurately locate individuals in a herd could be 
valuable. It could be used as a tool for obtaining pre-annotations from new data. 
However, as mentioned above, while traditional CNN-based object detectors can 
output object locations, they often fail to detect occluded objects. Density-based 
architectures could then be used, but at the cost of losing precise location 
information in dense herd regions. The ideal solution would be one that provides both 
a relatively accurate count of the herd (as usually given by density map approaches) 
and the position of the individuals in the herd (as given by detectors). Liang et al. 
(2023) recently proposed such a solution for crowd counting by using a novel Focal 
Inverse Distance Transform (FIDT) map which replaced the traditional density map. 
Their experiments demonstrated that this approach outperforms state-of-the-art 
localization-based methods and showed competitive counting performances while 
presenting a strong robustness to background and dense scenes samples. Such 
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robustness is particularly interesting for counting herds in images with a 
heterogeneous background. 

3. Materials and Methods 
This section describes the datasets used, the proposed deep learning architecture 

(called “HerdNet”) as well as two standard baselines (anchor-based and density-
based), and some details on the data processing utilized in this work. The baselines 
were used to compare the detection and counting capacity of HerdNet, which was 
optimized on a dataset that contains challenging herds (Ennedi). 

3.1. Study area and dataset 

The proposed Deep Learning architecture, HerdNet, was developed on a dataset 
acquired over the Ennedi Natural and Cultural Reserve (ENCR) located in north-
eastern Chad during a 2019 aerial survey (Wacher, 2019). The ENCR covers nearly 
50,000 km2 of arid sandstone landscape surrounded by sandy plains. According to the 
map of Olson et al. (2001), the ENCR encompasses the following biomes: tropical 
and subtropical grasslands, savannas, and shrublands; deserts and xeric shrublands. It 
is managed by the African Parks Network (APN), in partnership with the Government 
of the Republic of Chad. The ENCR is a vital resource for local semi-nomadic groups 
who need grazing and water for their camels (Camelus dromedarius), goats (Capra 

hircus), sheep (Ovis aries), donkeys (Equus asinus), and rare cattle (Bos taurus). The 
APN’s long-term goal is to get all stakeholders, including local communities that 
depend on natural resources, to work together to conserve the Sahelo-Saharan heritage 
of the ENCR, including its archaeological value, while respecting traditions and 
allowing key species to thrive. 

The data were acquired during aerial flights over the ENCR from December 20, 
2019 to January 1, 2020. A Cessna 182 equipped with a laser altimeter and external 
metal strut rod markers calibrated at the observers' eye level to indicate a 200 m band 
on each side of the aircraft at survey altitudes of 300 and 350 feet captured the images. 
Two Nikon D5000 SLR cameras, observer-operated by remote release cable and 
mounted by suction pads on left and right rear windows, were set up to match each 
observer’s view of the strut-mounted sample rods and the ground between them. A 
total of 19 flights were conducted, covering the core of the reserve (i.e., most of the 
Ennedi massif and the southwestern plains, representing around 23,000 km2). Flights 
were conducted at 350 feet (∼107 m) along transects spaced 4 km apart over the 
massif, and at 300 feet (∼91 m) along transects spaced 10 km apart in the south-
western plains. Any groups of livestock (camels, donkeys, sheep, and goats) greater 
than 10 in number were photographed and the images were later used to provide 
‘corrected’ counts. The date and time of image acquisitions were used to match the 
temporal and spatial data (altitude and GNSS coordinates) acquired by the altimeter 
during the flights. Thus, the images were associated with their respective transect and 
flight numbers. 
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‘Corrected’ count and observers’ group identification were used when establishing 
the ground truth. The annotations were made on Label Studio 1.3 (Tkachenko et al., 
2020) by an expert, and consisted of 22,807 body-centered points in a subset of 914 
images at 24 megapixels (6,000 × 4,000 pixels), containing major livestock species, 
i.e., camels, donkeys, and sheep and goats. Sheep and goats have been grouped in a 
single class (“sheep/goats”) since these two species are not distinguishable and often 
mixed within herds. 

The dataset was split into training, validation and test sets following an allocation 
of 70, 10 and 20 %, respectively, while considering the species’ distribution, the flight 
and transect number. Dataset independence is thus ensured, whether the same herd is 
present in several images, and the species distribution is maintained, which is 
important in a severely unbalanced class distribution like ours. One transect from each 
flight was selected to construct the test set, resulting in a set of images containing a 
wide heterogeneity of landscapes from across the reserve. The images and species 
distribution for each set are given in Table 3.1. 

Table 3.1: Details of the Ennedi dataset split. The data was split into training (∼70 % of all 
images), validation (∼10 %) and test (∼20 %) sets while accounting for data 

heterogeneity (i.e., species distribution, flight and transect) to maintain independence. The 
numbers in brackets indicate the relative percentage of data in each set. The last row gives 

the number of patches containing animals extracted from the 24-megapixel images. 

Number of Training Validation Test Total 

Camel 2,608 (69.7%) 380 (10.2%) 753 (20.1%) 3,741 

Donkey 861 (70.2%) 127 (10.3%) 239 (19.5%) 1,227 

Sheep/Goat 12,486 (70.0%) 1,774 (9.9%) 3,579 (20.1%) 17,839 

24 MP images 619 (67.7%) 122 (13.4%) 173 (18.9%) 914 

512x512 pixel patches 5,826 (75.3%) 1,039 (13.4%) 869 (11.3%) 7,734 

MP, megapixel. 

3.2. Deep learning architectures 

This sub-section provides details about the different deep learning architectures 
used in this study. These architectures include the following: an anchor-based baseline 
(Faster-RCNN), a density-based baseline (DLA-34), and the proposed architecture 
(HerdNet). 

3.2.1. Anchor-based Baseline: Faster-RCNN 

A naive way to count objects in an image would be to sum the number of detections 
provided by an object detector. A generic deep learning object detection framework 
locates and classifies objects within an image through the use of rectangular boxes 
encompassing the objects, called ‘bounding boxes’. Traditional pipelines are anchor-
based (Zhao et al., 2019), which means that they rely on anchors, a set of box 
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proposals with different scales and aspects centered on potential object locations. 
These were first introduced in Faster-RCNN (Ren et al., 2015) and then used by a 
number of well-known object detectors like SSD (Liu et al., 2016), YOLOv2 
(Redmon and Farhadi, 2017) or RetinaNet (Lin et al., 2017b) because they improved 
their detection performance. 

While anchor-based object detectors have given good detection performances for 
large mammals detection in aerial images (Eikelboom et al., 2019; Peng et al., 2020; 
Torney et al., 2019), Delplanque et al. (2022) recently observed a precision drop in 
herds and close-by animals resulting in overestimated counts. 

In crowd counting, the use of anchor-based or even detection-based frameworks is 
not recommended because of the expensive labeling cost of bounding boxes and the 
difficulty of training detectors on heavily occluded objects (Li et al., 2021; Liu et al., 
2018). Instead, most crowd counting approaches have relied on point annotations 
since the study of Lempitsky and Zisserman (2010). Nevertheless, anchor-based 
detectors are widely used in animal detection on aerial images, and thus remain 
relevant baselines. As it is one of the most-cited object detectors and the most common 
baseline, Faster-RCNN was chosen as the anchor-based baseline. 

Faster-RCNN (Ren et al., 2015) is a two-stage object detector that: 

 Generates region proposals using a Region Proposal Network (RPN), which 
predicts objects’ bounds and objectness scores at each position by utilizing 
anchors; and 

 Uses the refinement head of Fast R-CNN (Girshick, 2015) for regions of interest 
(RoIs) classification and bounding box offset regression. 

A RPN is a deep fully convolutional network, and Fast R-CNN is composed of a 
RoI pooling layer and several fully-connected layers. Both share the same CNN 
features. For architecture comparison consistency, ResNet-34 (He et al., 2016) has 
been chosen for feature extraction because it has similar numbers of layers and the 
same convolutional blocks as the proposed architecture encoder (see Section 3.2.3). 
This choice will minimize any bias that might be caused by the use of a deeper feature 
extractor. 

3.2.2. Density-based Baseline: Adapted DLA-34 

Another way to count objects in an image is to estimate a density map whose integral 
would give the number of objects within that image. This ‘density-based’ approach 
was proposed by Lempitsky and Zisserman (2010) and was a real milestone for crowd 
counting, thanks to its simple framework for object counting and the introduction of 
point annotation. Since then, numerous Counting CNN (CCNN) architectures have 
been deployed and have shown excellent crowd counting performances on benchmark 
datasets (Gao et al., 2020; Li et al., 2021). Density-based CCNNs use CNN as a feature 
extractor and are trained to regressively learn a mapping between an image and the 
density map. Ground truth is produced using a density function, typically a normalized 
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2D Gaussian, convolved over each annotated point (Lempitsky and Zisserman, 2010). 
When properly trained, density-based CCNNs estimate the object count by integrating 
the density map they produce, and they provide spatial information about the objects. 

Kellenberger et al. (2019a), Padubidri et al. (2021) have recently shown that density 
maps can be used for animal counting in nadir aerial images. The former trained an 
adapted ResNet-18 architecture (He et al., 2016), while the latter trained a U-
Net semantic segmentation CNN architecture (Ronneberger et al., 2015) to produce 
density maps. Unfortunately, precise object location is difficult to obtain from density 
maps, especially for close-by and occluded objects where 2D Gaussians strongly 
overlap. 

While density-based architectures tend to provide precise object counts in high-
density scenes, precise localization is lost. Although the primary goal of aerial surveys 
is to establish accurate population count, obtaining the precise position of animals in 
images could be valuable for creating annotations from new data for further model 
training. 

A density-based baseline was therefore established to assess the counting 
performance of the proposed approach. For comparison consistency, the same feature 
extractor and decoder as the proposed architecture (i.e., adapted DLA-34, Yu et al., 
2018) was selected. In fact, the architecture is that of HerdNet (Figure 3.2), except 
that the classification head has been removed and the main head generates three 
density maps (one for each species) instead of one localization map. During the test 
time, for each species, only the pixels with the maximum value among the three 
predicted density maps were retained. This process prevents the same individuals 
from being counted as several species. An adaptive threshold of 0.07 was then applied 
to the density values to eliminate background noise. 

 

Figure 3.2: HerdNet architecture details. 
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3.2.3. Proposed Architecture: HerdNet 

Since the objective was to develop an architecture to accurately locate and count 
dense herds, the proposed deep learning architecture, HerdNet, is inspired by both 
point-based object detectors and crowd counting architectures. 

The core of HerdNet is derived from CenterNet, except that only the branch which 
estimates the objects’ center has been retained. This branch corresponds to the 
localization head. The adapted DLA-34 (Yu et al., 2018) was used as encoder-decoder 
(Figure 3.2) because it gave the best speed vs. accuracy trade-off on the MS COCO 
(Lin et al., 2014) dataset (Zhou et al., 2019), which is convenient for our application 
case. As in Zhou et al. (2019), a 3 × 3 convolutional layer was added on top to obtain 
specialized features maps for each head, and early experiments showed that 64 
channels were adequate to obtain good results. A 1 × 1 convolution, preceded by a 
ReLU activation and followed by a sigmoid activation produces the desired 
localization map. Early experiments showed that a reduction factor of 2 between input 
and output sizes gives similar results with fewer network parameters than those 
obtained by keeping the original patch resolution. 

For classification, a second low-resolution head was added onto the deep features 
layer, with one 3 × 3 convolutional layer with 64 channels on top, as for the location 
head. Eventually, a 1 × 1 convolution, preceded by a ReLU activation, produces 
the - classification maps, - being the number of classes including background 
(Figure 3.2). Ablation studies showed that 16 × 16 pixel classification maps were 
sufficient for species identification, and that including the background class in the 
training objective helped to better learn the landscape heterogeneity (see Appendix 
A1). 

During the testing time, the Local Maxima Detection Strategy (LMDS) proposed 
by Liang et al. (2023) was used to extract points from the predicted localization map. 
The LMDS utilizes a 3 × 3 max-pooling operation to obtain candidate points, which 
are then filtered using an adaptive threshold, set here at 0.3 times the 
maximum candidate value. An input patch is considered a negative sample when the 
maximum candidate value is below 0.1, as in the original paper. Next, the 
classification maps were used to classify the selected points. The softmax 
function was used on all classes to obtain classification scores. Then, the most 
confident class was selected among the foreground classes. With this procedure, a 
selected point could never be classified as background. Finally, the selected points 
were used to pin the foreground classes to equivalent locations and the class labels 
and scores were retrieved. 

3.3. Data processing 

This sub-section describes all the processes implemented for developing the models. 
Operations were performed on a Windows-10 workstation using Python 3.8.10. The 
workstation contained a 64 GB AMD Ryzen 9 5900X central processing unit (CPU) 
and an 8 GB NVIDIA GeForce RTX 3070 graphics processing unit (GPU). All 
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architectures were implemented in PyTorch 1.11 (Paszke et al., 2019) and 
experiments were tracked with Weights & Biases 0.10.33 (Biewald, 2020). 

3.3.1. Patch generation and stitching 

Original 24-megapixel images were cut into patches of 512 × 512 pixels to maintain 
initial resolution and because experimenting with original-size images exceeds the 
memory capacity of current GPUs. To ensure that every animal appears in its entirety 
during training, a patch overlap was used. After manually measuring the largest 
individuals in the dataset (i.e., camels close to the lower stream bar), it was concluded 
that a 160-pixel overlap was a good value, as the widest of these was 156 pixels long. 

During the testing, the original-size images were scanned with a sliding window to 
harvest predictions and then stitch them together. To do so, each patch of 512 × 512 
pixels was evaluated independently and overlapped region predictions were filtered 
out. Specifically, the common Non-Maximum Suppression (NMS) method was 
adopted with an Intersection-over-Union (IoU) threshold (Everingham et al., 2015) of 
0.5 (as Delplanque et al., 2022; Peng et al., 2020) and a score threshold of 0.4 for 
Faster-RCNN predictions (Appendix A2). For the adapted DLA-34, predicted density 
maps were filtered and stitched using Hann windows to reduce the edge-effect, as 
proposed by Pielawski and Wählby (2020). Next, an adaptive threshold of 0.07 was 
applied on the stitched image pixel values to eliminate background noise (Appendix 
A3). Finally, overlapped predicted grid values were averaged before using LMDS for 
HerdNet. 

3.3.2. Model training 

Hard negative patch mining 

Hard negative mining is a training technique used to treat the hard negative samples 
severely during training (Kellenberger et al., 2018; Liu et al., 2016; Shrivastava et al., 
2016). In the animal detection domain, hard negative samples correspond to 
background elements detected as animals with a high confidence score. A Hard 
Negative Patch (HNP) mining method was adopted here, following the hard negative 
mining concept, to further reduce the number of false positives produced by the 
model. After a first training session where the architecture was trained exclusively on 
animal patches, the model was run on the 24-megapixel training images. HNPs were 
then mined from the stitched predictions, which are the patches that contain hard 
negative instances. These HNPs were eventually used to retrain the model a second 
time to force it to develop more robust features regarding the most confusing 
background elements. With this method, only the most complex background patches 
were selected, which makes the task more efficient and less tedious than training on 
all the patches, as proposed by Kellenberger et al. (2018). 

Faster-RCNN 

For the anchor-based baseline (i.e. Faster-RCNN), bounding boxes were generated 
from annotated points. For this purpose, a subset of the Ennedi dataset was annotated 
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as bounding boxes. Then, for each species, median height and width were computed 
per a 200-pixel horizontal strip in the image, and the maximums of each were selected 
to create square bounding boxes centered on each annotated point. 

Training data was augmented artificially using Albumentations’ (Buslaev et al., 
2020) random horizontal flip and motion blur data augmentations. 

During the first training step, the parameters of the features extractor were initialized 
using ImageNet (Russakovsky et al., 2015) pretrained parameters. The architecture 
was then trained and validated on animal-only patches for 100 epochs with a batch 
size of 4 and a weight decay of 0.005 using the Adam optimizer (Kingma and Ba, 
2017). Concerning the learning rate, PyTorch's ‘ReduceLROnPlateau’ learning rate 
scheduler was used because it made it possible to automatically decrease the learning 
rate at the most appropriate time during training. The initial learning rate was set to 
10−5 after a linear warmup of 100 iterations and could then decrease by a factor of 0.1 
until 10−6 when no improvement was observed on the validation set over a period of 
10 epochs. After a reduction, a delay of 10 epochs was imposed to let the architecture 
adapt to the new learning rate. 

At the end of this first training step, the network’s parameters that yielded the best 
performances on the validation set were selected for initializing the second training 
step. During the latter, we added the HNPs to the training set and validated on 24-
megapixel validation images using the same hyperparameters as the first step, except 
for the number of epochs and the initial learning rate, which were set at 50 and 
10−6 respectively. 24-megapixel images were used for validation to focus on both 
localization and counting within real case scenes during this second training step. 

Due to the substantial imbalance in species instances, class weighting was used in 
the bounding boxes’ classification loss. Satisfactory results were found by setting the 
class weights’ values to 0.1 for background class, and to the unit rounded value of the 
ratio of the majority class instances to that of the actual class. All other 
hyperparameters were left at their default values specified in PyTorch. The parameters 
of the network that yielded the best performances on the full images of the validation 
set were then selected for testing. 

Adapted DLA-34 

The density-based baseline (i.e., adapted DLA-34) ground truth density maps were 
generated using a 2D Gaussian function, convolved over each annotated point, for 
each species class, as in Lempitsky and Zisserman (2010): ./012�34,5�6, 7� = 8 9�6, 7 ;  , ;<�=∈#  

where ./012�34,5 �6, 7� is the density map of a class * ,   denotes an equivalent low-
resolution annotated point ��′/2, A′/2� within the low-resolution image 2D points set B, and 9�6, 7 ;  , ;<� represents a normalized 2D Gaussian kernel evaluated at pixel 
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�6, 7�, with the mean centered on  , and an isotropic covariance matrix with spread 
parameter ;, set at 5 pixels. With this definition, integrating each density map 
produced gives the total count of each species class C5: C5 = 8 ./012�34,5�6, 7���,D�  

The architecture was then trained using the Structural Similarity Index (SSIM) 
(Wang et al., 2004) loss between the predicted density maps and the ground truth 
density maps: 

ℒ/012�34�FG, F� = 1- 8 �5�1 − II�.5�5  

with: 

II�.5�AJ5 , A5� = �2K4JLK4L + M���2;4JL4L + M<��K4JL< + K4L< + M���;4JL< + ;4L< + M<� 

where F and FG are the ground truth and the predicted density maps, respectively, 
with A5 and AJ5 their respective class-specific values, - is the number of species 
classes, �5 is the class weight, K and ; are the local mean and variance values, 
respectively, and M� and M< are set to 10-4 and 9x10-4, respectively. 

As for Faster-RCNN, the architecture was trained and validated using the same data 
augmentations, parameter initialization, hyperparameters, and optimizer. A fixed 
learning rate of 10-5 was used here as a learning rate scheduler gave poorer 
performances. The HNP mining procedure was discarded here because using it 
showed an increase in the counting errors. 

Class weighting was also applied on the SSIM loss using the same class weights. 
All other hyperparameters were left at their default values, specified in PyTorch. 

 HerdNet 

Low-resolution FIDT maps (Liang et al., 2023) were adopted as ground truth for 
training the HerdNet’s localization branch: 

.NO5�6, 7� = 1P�6, 7��Q×S��,D�TU� + ! 

where .NO5�6, 7� is the FIDT map, P�6, 7� represents the euclidean distance between 
the pixel �6, 7� and its nearest equivalent low-resolution animal location �xW/2, yW/2�, Y and Z are FIDT hyper-parameters, set as 0.02 and 0.75 respectively, following 
Liang et al. (2023), and ! is a constant, set to 1 to avoid division by zero. FIDT maps 
produce local maxima of 1 at each animal’s center, with a slow response decay and a 
background response close to 0. 
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This branch was trained using the unnormalized penalty-reduced pixel-wise logistic 
regression with focal loss (Lin et al., 2017b), as proposed by Zhou et al. (2019): 

ℒNO5[FGN , FN\ = − 8 8 ] [1 − AJN,�D\Q log�AJN,�D� , if AN,�D = 1[1 − AN,�D\U[AJN,�D\Q log�1 − AJN,�D� , otherwiseD�  

where FN and FGN are the ground truth and the predicted localization grids, 
respectively, and AN,�D and AJN,�D their values at a specific pixel location �6, 7�, and Y and Z are focal loss hyper-parameters, set at 2 and 4, respectively, as indicated in Zhou et 
al. (2019). 

For the classification branch, low-resolution classification maps were produced 
from equivalent low-resolution animal locations ��W/32, yW/32�. Practically, at each 
equivalent animal location, a 1-pixel border was added and the whole region was 
defined as the species identifier. This was to ensure a sufficient point coverage area 
given the low resolution of the classification branch output (16 x 16 pixel). The 
common cross-entropy loss was used for training this branch: ℒ5Ni22[FG5 , F5\ = − 8 8 8 �5A�D5 log�AJ�D5�5D�  

where F5 and FG5 are the one-hot encoded ground truth and the predicted 
classification grids, respectively, A�D5 and AJ�D5  their values at a specific pixel location �6, 7� for a particular class *, and �5 is the class weight. 

The overall training objective is then: ℒ = ℒNO5[FGN , FN\ + ℒ5Ni22[FG5 , F5\ 

During the first and second training steps, HerdNet followed the same training 
procedure and hyperparameters as Faster-RCNN, except that the initial learning was 
set to 10-4. Again, the best network’s parameters were kept based on the performances 
obtained on the full images of the validation set. 

3.3.3. Model evaluation 

The trained architectures (or models) were evaluated using both localization and 
counting metrics. A prediction was defined as a true positive (TP) if there was a match 
with a ground truth and if the animal identification was correct. In the case where 
several predictions met the two rules, the best one was selected and the others were 
considered as false positives (FP). Finally, if no matches were found or if the 
identification was incorrect, the ground truth was considered as false negative (FN). 
To define a match, we used the IoU for Faster-RCNN and set a minimum threshold 
of 0.3, where the best prediction is the one with the highest IoU. In the HerdNet 
approach, we used the Euclidean distance between points, with a maximum threshold 
of 5 pixels, where the best prediction is the one with the minimum Euclidean distance. 
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Recall, precision and F1 score were then computed for each class (i.e. for each 
species), as well as for the binary case (animal vs. background): 

recall = ∑mB∑mB + ∑'C 

precision = ∑mB∑mB + ∑'B 

F1 score = 2 × recall × precisionrecall + precision  

As it represents the harmonic mean of recall and precision, the F1 score is a good 
metric with which to assess the compromise between the number of FPs and FNs. 
Therefore, the binary F1 score was used as the performance metric during validation. 
In addition to these metrics, we also compute, for each species, the foreground 
interclass confusion, which is equal to 0 when all the predictions are correctly 
classified: confusion�*� = 1 − �5∑ �5q�r�  

where �5 is the number of predictions identified as class *, and C is the number of 
foreground classes (i.e., the number of species).  

Note that localization metrics could not be applied to the adapted DLA-34 due to 
the loss of localization information caused by the overlap of the 2D Gaussians in dense 
herd areas. 

The Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) are used 
as counting metrics, again computed for each class and for the binary case: 

MAE = 1� 8|�J� − ��|w
�r�  

RMSE = z1� 8��J� − ���²w
�r�  

 

where � is the number of images, and �|}  and �� are the predicted and ground truth 
count of the i-th image, respectively. 

Finally, an individual proximity metric was derived by calculating the Minimum 
Spanning Tree (MST) (Gower and Ross, 1969) on C annotated points in 512 x 512 
pixel patches of the test set (Figure 3.3). The MST computes a set of C − 1 straight 
line segments joining pairs of points with no loops, forming a tree of minimum length. 
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MiSTree Python’s package version 1.2.0 was used (Naidoo, 2019). In this package, 
the MST was initially constructed using a k-nearest neighbor graph, here set at C − 1, 
which was then fed to Kruskal’s algorithm (Kruskal, 1956). To obtain a metric 
representative of the proximity of individuals in the patch, we used the median of 
segment length values instead of the sum. This value was then divided by the threshold 
value defined above (i.e. 5 pixels) to normalize the metric. Thus, a value close to 1 
means a very dense herd where individuals are tightly grouped. Based on this, three 
proximity classes were defined: 

1) High density: patches where the proximity metric varied between 0 and 3; 
2) Medium density: patches where the proximity metric varied between 4 and 

20; and 
3) Low density: patches where the proximity metric was above 20. 

 

Figure 3.3: Conceptual representation of the Minimum Spanning Tree and proximity metric 
calculation on a schematic herd. � represents a circular distance threshold (defined here at 5 

pixels) and � represents the Euclidean distance between two individuals. 
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4. Results 
4.1. Hard negative patch mining 

The addition of HNPs to the training set increased the precision of Faster-RCNN 
and HerdNet by more than 18 % and 30 % respectively, despite a decrease in recall 
of about 8 % and 7 % respectively (Table 3.2). This resulted in a better counting 
performance, with a lower average confusion between species. Consequently, for each 
of these models, the version trained with HNPs was retained for further analysis on 
the test set. In contrast, the counting performance of the adapted DLA-34 decreased 
with the use of this technique (Table 3.2). Therefore, the version of the adapted DLA-
34 using HNP mining was discarded and only the version without this technique was 
used for the analyses on the test set. This is to compare the best version of each model. 

Table 3.2: Binary (animal vs. background) performances of the three approaches on 24-
megapixel images of the validation set, using Hard Negative Patch mining procedure or not. 

Values in bold indicate the best performance between the two modalities. 

Approach Anchor-based Density-based Point-based 

Architecture Faster-RCNN DLA-34 HerdNet 

HNP1 No Yes No Yes No Yes 

Recall 64.1% 56.0% n/a n/a 72.1% 64.4% 

Precision 20.4% 38.5% n/a n/a 43.5% 75.4% 

F1 score 30.9% 45.7% n/a n/a 54.3% 69.4% 

MAE2 40.1 11.3 12.3 12.3 14.3 6.1 

RMSE3 51.7 16.5 19.1 23.0 19.4 10.5 

Average confusion 15.0% 13.7% n/a n/a 22.4% 17.8% 

Total counting error 214.4% 45.4% -0.2% -40.8% 65.5% -14.6% 
1HNP, Hard Negative Patch; 2MAE, Mean Average Error; 3RMSE, Root Mean Square 
Error. 

 

4.2. Model comparison 

Overall, HerdNet outperformed the detection and counting performance of the two 
baselines, Faster-RCNN and the adapted DLA-34, in addition to having a faster 
processing time (Table 3.3). However, Faster-RCNN had a lower average confusion 
level, and the adapted DLA-34 had a lower absolute total counting error. 
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Table 3.3: Binary (animal vs. background) performances of the three approaches on 24-
megapixel images of the test set. Values in bold indicate the best performance among the 

architectures. 

Approach Anchor-based Density-based Point-based 

Architecture Faster-RCNN DLA-34 HerdNet 

Recall 59.5% n/a 70.2% 

Precision 39.4% n/a 77.5% 

F1 score 47.4% n/a 73.6% 

MAE1 15.2 15.9 6.1 

RMSE2 26.2 30.4 9.8 

Average confusion 11.1% n/a 15.8% 

Total counting error 51.2% 7.6% -9.4% 

Processing time (seconds) 5.0 5.5 3.6 

¹MAE, Mean Average Error; ²RMSE, Root Mean Square Error. 

HerdNet showed a counting performance that was close to true counts while Faster-
RCNN tends to overestimate the true number of animals (Figure 3.4). As for the 
adapted DLA-34, it tends to underestimate large groups, and overestimate very small 
groups. 

 

Figure 3.4: Estimated counts produced by each architecture versus the true counts in 24-
megapixel images of the test set. 

Regarding species identification, HerdNet outperformed Faster-RCNN for all three 
target species (Table 3.4). For camels and donkeys, however, Faster-RCNN showed 
less confusion between species. The adapted DLA-34 showed 
lower MAE and RMSE values for donkeys than HerdNet, but higher values for 
camels and sheep/goats. 
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Taking into consideration both overall and per-species results, HerdNet is the 
architecture with the best detection and counting performances, especially for 
sheep/goats, which represent especially challenging herds (Figure 3.5). 

 

Figure 3.5: Predictions of the three trained architectures on a 24-megapixel image containing 
the three target species (camel, donkey, and sheep/goat). White points correspond to the 

annotations, red bounding boxes to Faster-RCNN predictions, density maps to the 
predictions of adapted DLA-34, and red points indicate the HerdNet predictions. 
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4.3. Robustness of HerdNet towards animals proximity 

Recall and precision were computed for each class of animal proximity defined in 
section 3.3.3 to assess the robustness of HerdNet towards animal proximity in 
512 × 512 pixel patches of test set images. The results indicate that the mean precision 
of HerdNet was systematically higher than that of Faster-RCNN for each proximity 
class, while keeping equivalent mean recall values (Figure 3.6). This reveals the 
ability of HerdNet to generate few false positives in both dense (Figure 3.7) and 
sparse herd patterns. 

 

Figure 3.6: Recall and precision mean values of Faster-RCNN and HerdNet, computed on 
512 × 512 pixel patches for each class of animal proximity metric based on a minimum 

spanning tree. The error bars correspond to the 95 % confidence interval. 
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Figure 3.7: Examples of HerdNet predictions for challenging dense sheep/goat herds. The 
first row contains sample patches selected from 24-megapixel images, while the second row 

shows the respective predicted points in red. 

5. Discussion 
5.1. Best approach for counting dense herds 

Three different approaches were compared to precisely detect and/or count animals 
in herds within oblique aerial imagery: 1) a CNN-anchor-based object detector 
(Faster-RCNN); 2) a CNN-density-based detector (an adapted version of DLA-34); 
and 3) a CNN-point-based object detector (called HerdNet). The first two approaches 
served as baselines because they have already proved their worth in the field of 
wildlife detection/counting within aerial imagery. 

As previously observed (Delplanque et al., 2022; Peng et al., 2020), the anchor-
based architecture showed its limitations in precisely detecting close-by individuals. 
It produced here a high number of false positives in dense herds, even using score 
thresholding, resulting in systematic over-counting. This raises questions about the 
use of such models in entire aerial surveys where it is expected to get images with 
both remote individuals and dense herds. 

The CNN-density-based detector (DLA-34) provided better total counting 
performance but struggled to correctly count large and dense herds. The counting 
errors are higher than those obtained by Kellenberger et al. (2019a) and Padubidri et 
al. (2021) on their nadir datasets. In fact, the DLA-34′s counting errors are low for 
minority species (i.e., camels and donkeys), but much higher for sheep/goats, which 
are far more gregarious. This could be explained by the change in scale within the 
image due to the oblique viewing angle, the higher variance in the number of 
individuals and the greater heterogeneity of the background. These factors can also 
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limit the performance of crowd counting using density maps (Gao et al., 2020). A 
solution would be to design a multi-scale architecture such as MCNN, a multi-column 
architecture that uses different kernel sizes to capture images at different scales 
(Zhang et al., 2016). 

Our CNN-point-based object detector (HerdNet) gave the best detection and 
counting performances while also being the fastest approach, suggesting that it seems 
best suited for locating and counting animals in dense herds. Estimating the number 
of livestock in protected areas is sometimes a politically sensitive issue, as a livestock 
invasion is detrimental to the biomass of wildlife (Scholte et al., 2022b). Moreover, 
livestock invasions directly show that the responsible authorities or supporting 
international non-governmental organizations have failed in their conservation 
mission. A method that overestimates this figure is therefore undesirable. Hence, 
HerdNet is the most appropriate and preferred approach for herd counting. 

5.2. Species identification limits 

In terms of species identification, HerdNet was slightly better than Faster-RCNN 
for sheep/goats but was about 7–8 % worse for minority species, i.e., camels and 
donkeys. Thus, the class imbalance seems to impact HerdNet more than Faster-
RCNN. After manually analyzing the images with the most significant cases of 
confusion, overall trends were deduced. First, the size and often the low resolution of 
the individuals were source of confusion for the model, especially for donkeys 
(Figure 3.8). The latter were usually well identified in the higher resolution areas (i.e., 
near the lower stream bar), but that the identification degraded with the distance to the 
aircraft. Regarding camels, the lighter ones located in the low-resolution regions of 
the image (i.e., near the upper stream bar) were often confused with sheep/goats. 
Furthermore, identification was sometimes incorrect when the animal was positioned 
to the side (Figure 3.8). 

This may be explained in part by the fact that the image resolution and high flight 
height in the massif sometimes did not allow the species to be accurately distinguished 
during annotation, especially those far from the aircraft. In such cases, identification 
was solely based on the observers' survey records. However, as the livestock in this 
study are typically found in single-species groups, identification of individuals is a 
bonus and not strictly necessary. Indeed, having a model capable of precisely locating 
and counting individuals is already a very real help in processing images containing 
large and dense herds. Identification could be further enhanced by a quick review by 
the human eye of the surrounding individuals. 
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Figure 3.8: Examples of HerdNet predictions for challenging dense sheep/goat herds. The 
first row contains sample patches selected from 24-megapixel images, while the second row 

shows the respective predicted points in red. 

5.3. Potential use of HerdNet 

The use of HerdNet on other datasets requires prior training on similar data, i.e., 
with the same viewing angle, the same mammal species, and similar spectral and 
spatial resolutions. To assess the potential use of HerdNet architecture, it was trained 
and evaluated on the wildlife nadir aerial images of Delplanque et al. (2022). Results 
showed that HerdNet produced far fewer false positives than the state-of-the-art 
model, which was Libra-RCNN (Pang et al., 2019), while maintaining a high recall 
value, hence showing better counting performances (see Appendix A4 for details). 
This suggests that this architecture is not limited to its use on oblique imagery only 
but has good potential for various types of aerial image, acquired under different 
acquisition conditions. 

However, HerdNet may need to be modified in the case of dense mixed herds. 
Despite the results of the sensitivity study (see Appendix A1), the low resolution of 
the classification head could indeed be problematic if different species are within 32 
pixels of each other in the input patch. This distance corresponds to one pixel in the 
16 × 16-pixel classification maps. This case did not occur in the dataset of this study, 
as the dense herds were systematically homogeneous in species. Nevertheless, we 
believe that this should not be an issue for training and using HerdNet on oblique 
imagery taken with good quality reflex cameras (e.g., 24 MP of resolution), at 
common camera tilt values (30-45° off nadir) and survey flight heights (300–350 ft). 
In such case, the ground sampling distance usually does not exceed 3–4 cm/pixel and 
6–8 cm/pixel near the lower and upper stream bars, respectively. This means that the 
low resolution of the classification head could become a concern when two different 
species would be less than 2–3 m apart in reality, which is rather rare for large wild 
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terrestrial mammals. However, if such a case arises, the architecture can simply be 
adapted by adding a decoder at the beginning of the classification head, whose depth 
will depend on the desired output resolution. 

Finally, we observed that applying the model on a too-different dataset without re-
training led to poor performance, probably due to a data domain gap. This could be 
solved by using transductive transfer learning techniques, which allow the transfer of 
knowledge learned from a source domain to a different target domain, considering the 
same learning task (Pan and Yang, 2010). Kellenberger et al. (2019b) have already 
proposed such a solution for wildlife detection using a Transfer Sampling criterion, 
allowing their model to be reused for repeated nadir drone image acquisitions. 
However, the transfer learning from oblique to nadir animal detection does not seem 
to have been studied and should be explored in future research. At this stage, we can 
only suggest that future users of HerdNet re-train the architecture on a data domain 
close to their own to obtain more satisfactory results. 

5.4. Model precision practical implications 

Precise counts of large mammals within sampling strips are important to obtain 
minimum-biased population estimates. Since undercounting is one of the major biases 
of aerial surveys (Caughley, 1974; Grimsdell and Westley, 1981; Jachmann, 2002), 
the main expectation of automatic approaches is to obtain a model with a high 
detection rate (i.e. high recall) and few false positives (i.e. high precision). However, 
recall and precision are often antagonistic: improving the precision of a model usually 
reduces its recall and vice-versa. When developing tools to assist protected area 
managers, the recall/precision trade-off depends on the goal. As a semi-automatic 
model for background image rejection, recall should be preferred, as the detections 
will be reviewed by humans afterwards. However, protected area managers do not 
always have dedicated office staff for such specific tasks. For a fully automatic 
system, the optimal trade-off should be preferred, and a prior estimation of the 
possible bias is necessary to correct the counts. In this study, we optimized the model 
on the F1 score to automate the counting of herds and minimize the error in individual 
images. In view of the results obtained, the model proved to be a good tool for the 
automatic counting of individuals in individual oblique images from arid 
environments containing livestock herds. 

5.5. Future work 

Three aspects for future research can be identified. First, the species identification 
capacity of HerdNet, which could be augmented by confronting it with data sets 
composed of a large number of species and with some that would be very similar but 
identifiable by humans from the aircraft (e.g. antelopes). This process would assess 
the limits of HerdNet regarding the human species’ identification ability. Future 
challenges would involve the adaptation of the model for wildlife species living in 
herds (elephants, buffaloes, wildebeest, giraffes, etc.), and among those of small size 
living in small groups (kobs, warthogs, etc.). The use of this approach on complete 
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chains of transect images could then be investigated by automating the management 
of overlapped images with the aim of obtaining population estimates. Encouraging 
results will bring us closer to the full automation of aerial surveys. Finally, 
the generalizability of HerdNet should be further developed by studying its response 
to background, viewing angle, and species variability, and possible generalization 
solutions (e.g. using domain adaptation techniques). A general model or an adaptation 
approach, that should be simple and require limited technical and human resources, 
would allow its practical use by protected area managers. That sort of approach would 
enable them to easily adapt the model for use in the savanna, for example, during both 
the dry and rainy seasons. 

6. Conclusion 
In large protected areas in Africa, large mammals are usually surveyed by human 

observers using aircraft. Unfortunately, the difficulty of observers to precisely count 
large groups has led to the use of aerial imagery. In such images, the manual counting 
of individuals is time consuming and the latest Deep Learning approaches have shown 
their limitations in detecting dense herds. Inspired by crowd counting, the point-based 
Deep Learning architecture proposed in this study, HerdNet, addresses this problem 
by precisely detecting and counting animals regardless of individual proximity. 
Outperforming both anchor-based and density-based baselines, the proposed model 
has proven to be the fastest and the most suitable approach for detecting and counting 
closed-by large mammals. It could therefore be used as an automatic livestock 
counting tool on oblique aerial images acquired in arid areas, and it could be extended 
to other areas and wildlife species after prior retraining. 
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7. Appendices 
A1: HerdNet Classification Head Ablation Studies 

Resolution of the Classification Maps 

Increasing the resolution of HerdNet’s classification head maps resulted in an 
increase in the number of network parameters (weights and bias). To determine the 
optimal resolution to obtain reliable identification results of the target species (i.e. 
camel, donkey, and sheep/goat), three modalities were tested: 

1) 16x16 pixel, which is the resolution of the deepest features for an input image 
of 512x512 pixel; 

2) 32x32 pixel; and 
3) 64x64 pixel. 

A decoder of the same type as for the localization head was added at the beginning 
of the classification head to increase the resolution of the output classification maps. 
Each model was trained, validated, and evaluated according to the methodology 
presented in the paper. 

The results showed that the 16x16 pixel resolution gave the best overall 
identification performance (lowest average confusion) for fewer model parameters 
and for similar counting and detection performances (Table 3.5). 

Table 3.5: Binary (animal vs. background) performances of HerdNet on full images of the 
Ennedi validation at different classification map resolution. Values in bold indicate the best 

performance between the two experiments. 

Size #parameters Recall Precision 
F1 

score 
Average 

confusion 
MAE1 RMSE2 

16x16 
pixel 

18670685 59.5% 76.1% 66.8% 16.4% 6.5 11.7 

32x32 
pixel 

19839069 61.2% 73.0% 66.6% 20.2% 6.6 11.5 

64x64 
pixel 

20425821 59.7% 73.1% 65.7% 23.4% 6.7 12.0 

1MAE, Mean Absolute Error; 2RMSE, Root Mean Square Error. 
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Moreover, better counting, detection, and identification performance were obtained 
for minority species (i.e. camels and donkeys) despite slightly worse performance for 
sheep/goats (Table 3.6). 

Table 3.6: Identification performances of HerdNet on full images of the Ennedi validation at 
different classification map resolution. Values in bold indicate the best performance among 

the three resolutions. 

Species Resolution Recall Precision 
F1 

score 
Confusion MAE1 RMSE2 

Camel 16x16 pixel 68.7% 68.5% 68.6% 5.1% 1.8 3.3 

 32x32 pixel 64.2% 65.9% 65.1% 6.2% 2.1 4.2 

 64x64 pixel 61.3% 68.1% 64.5% 9.3% 2.1 4.4 

Donkey 16x16 pixel 29.1% 41.1% 34.1% 40.3% 2.3 3.2 

 32x32 pixel 25.2% 41.0% 31.2% 52.2% 2.4 3.5 

 64x64 pixel 22.0% 34.6% 26.9% 57.6% 2.5 3.4 

Sheep/ 

Goat 

16x16 pixel 55.4% 74.7% 63.6% 3.8% 9.5 14.9 

32x32 pixel 59.0% 71.4% 64.6% 2.2% 8.8 13.8 

64x64 pixel 56.5% 69.7% 62.4% 3.4% 8.3 13.7 
1MAE, Mean Absolute Error; 2RMSE, Root Mean Square Error. 

Including the Background Class 

To evaluate whether the addition of the background class to the training objective 
had an impact on HerdNet performance, two modalities were tested on the full images 
of the validation set:  

1) excluding the background class, i.e., ignoring the background cells in the loss 
calculation; and  

2) including the background class in the loss calculation. 

The results showed that including the background class in the training objective led 
to better counting, detection, and identification performance (Table 3.7). 

Table 3.7: Binary (animal vs. background) performances of HerdNet on full images of the 
Ennedi validation set. Values in bold indicate the best performance between the two 

experiments. 

Background 
included 

Recall Precision F1 score 
Average 

confusion 
MAE1 RMSE2 

No 69.9% 35.0% 46.7% 25.1% 19.7 26.7 

Yes 72.1% 43.6% 54.3% 22.4% 14.3 19.4 

1MAE, Mean Absolute Error; 2RMSE, Root Mean Square Error. 



Integrating remote sensing and deep learning into aerial survey of African mammals 

86 
 

A2: Faster-RCNN Hyperparameters Optimization 

Optimal Non-Maximum Suppression (NMS) Threshold 

 

Figure 3.9: Evolution of the F1 score according to different NMS’ Intersect-over-Union 
(IoU) thresholds, calculated on the full images of the validation dataset prior to score 

thresholding. The best F1 score obtained (19.6%) among the thresholds is indicated as a 
black square, the corresponding IoU threshold being 0.5. 

Optimal Confidence Score Threshold 

 

Figure 3.10: Evolution of the F1 score according to different confidence score thresholds, 
calculated on the full images of the validation dataset. The best F1 score obtained (45.7%) 
among the thresholds is indicated as a black square, the corresponding confidence score 

threshold being 0.4. 
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A3: Adapted DLA-34 Hyperparameters Optimization 

Hann Windows for Edge-effect Reduction 

 

Figure 3.11: Bar plot representing the Root Mean Square Error (RMSE) value obtained on 
the full image of the validation set before background noise reduction, depending on the use 

of Hann windows or not. The use of the latter decreased the RMSE by more than half. 

Optimal Adaptive Threshold for Background Noise Elimination 

 

Figure 3.12: Evolution of the Root Mean Square Error (RMSE) according to different 
adaptive thresholds, calculated on the full images of the validation dataset. The lowest 

RMSE obtained (19.1) among the thresholds is indicated as a black square, the 
corresponding adaptive threshold being 0.07. 
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A4: Performance of HerdNet on Wildlife Nadir Aerial Images 

The nadir open-source dataset of Delplanque et al. (2022) was selected to assess the 
HerdNet architecture on other species, under different African landscapes and from 
another viewing angle (Table 3.8). As the annotations were provided as bounding 
boxes, points were defined by simply selecting the centers of the boxes. 

HerdNet was trained, validated, and tested independently on the dataset of 
Delplanque et al. (2022) to assess the potential of this architecture to detect and count 
wildlife in nadir aerial imagery. Training followed the same procedure of HerdNet as 
presented in section 3.3.2 of the paper, using the same hyperparameter values. 
Localization and counting metrics were computed as presented in section 3.3.3 of the 
paper, except that a larger threshold of 20 pixels was used due to the fine ground 
sampling distance (Table 3.8).  

HerdNet was then compared to the state-of-the-art model of the dataset, which was 
the version of Libra-RCNN, a multilevel balanced anchor-based object detector (Pang 
et al., 2019), that showed the best performance among the five seeds tested by 
Delplanque et al. (2022). Despite a decrease in overall recall of about 10%, HerdNet’s 
precision was more than twice that of Libra-RCNN, giving much lower count errors 
(Table 3.9) and far fewer false positives, especially for herds (Figure 3.13). However, 
HerdNet was more confusing for species identification, leading to a higher average 
confusion score. 
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Table 3.8: Wildlife nadir dataset details. Note that the ‘Annotations’ row provides the 
number of annotations per species, in the order in which they are listed in the ‘Species’ row. 

Country Democratic Republic of Congo, Botswana, Namibia, South Africa 

Park/Reserve Virunga National Park, Hluhluwe-iMfolozi Park, Phinda Private 
Game Reserve, The Northern Tuli Game Reserve, NG26 concession, 
Bwabwata National Park, Mudumu National Park, Madikwe Game 
Reserve 

Biome (Olson et 

al., 2001) 
Tropical and subtropical moist broadleaf forests, Montane grasslands 
and shrublands; Tropical and subtropical grasslands, savannas, and 
shrublands 

Aerial vehicle Unmanned Aerial Vehicle (Falcon) and Aircraft (SkyReach BushCat) 

Camera Sony-A6000, Sony-Nex7, Canon 6D 

Orientation Nadir 

Altitude 100, 220-2270 m 

Images 1297 

Image 
dimension 

6000 x 4000 pixels, 5472 x 3648 pixels, 5496 x 3670 pixels, 5521 x 
3687 pixels, 5525 x 3690 pixels 

GSD 2.4-13.0 cm 

Species African buffalo (Syncerus caffer), kob (Kobus kob), topi (Damaliscus 

lunatus jimela), warthog (Phacochoerus africanus), waterbuck 
(Kobus ellipsiprymnus), African bush elephant (Loxodonta africana) 

Annotations 1509/2370/2722/433/241/2964 

Type Bounding boxes 

n/a, not available; GSD, ground sampling distance 
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Table 3.9: Binary (animal vs. background) performances of the state-of-the-art model 
(Libra-RCNN) and HerdNet on full images of the Delplanque et al. (2022) test set. Values in 

bold indicate the best performance among the two architectures. 

Architecture Libra-RCNN HerdNet 

Recall 94.6% 84.4% 

Precision 35.4% 82.5% 

F1 score 51.5% 83.5% 

MAE1 14.9 1.9 

RMSE2 24.4 3.6 

Average confusion 2.9% 7.8% 

Total counting error 167.1% 2.3% 

Processing time (seconds) 12.0 3.4 
1MAE, Mean Absolute Error; 2RMSE, Root Mean Square Error. 

 

Figure 3.13: Original ground truth (bounding boxes, first column), detection examples of the 
state-of-the-art model (Libra-RCNN, second column) of Delplanque et al. (2022), and 

detections of HerdNet (third column) on test patch image samples containing herds 
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Preamble 
In Chapter 3, I designed a novel DL architecture for precise counting of large 

African mammals, in response to the limits observed in Chapter 2 with the use of 
pre-existing CNN-based object detectors. Across these chapters, the practical 
implications of such automatic models for species detection, counting and recognition 
were discussed, prompting considerations regarding their broader applicability and 
performance in scenarios involving a substantial number of negative images (i.e. 
images devoid of animals). This fourth chapter thus aims to evaluate and quantify the 
contribution of continuous imaging and DL to the traditional systematic aerial survey 
protocol. It is organized into two subchapters. The first subchapter focuses on 
quantifying the reduction in human workload associated with the manual 
interpretation of aerial images. The second subchapter investigates whether a semi-
automatic model, coupled with continuous oblique imaging, increases the accuracy 
and/or precision of wildlife population estimates compared to the traditional observer 
method. 
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Subchapter 1: Quantifying the reduction of 
human interpretation 

Paper 3 | Published 

Surveying wildlife and livestock in Uganda with aerial 
cameras: Deep Learning reduces the workload of 
human interpretation by over 70% 
Alexandre Delplanque, Richard Lamprey, Samuel Foucher, Jérôme Théau & Philippe 
Lejeune 

This paper is published in Frontiers in Ecology and Evolution (IF=2.4), 11, 1270857. 
DOI: 10.3389/fevo.2023.1270857 

Abstract 
As the need to accurately monitor key-species populations grows amid increasing 

pressures on global biodiversity, the counting of large mammals in savannas has 
traditionally relied on the Systematic-Reconnaissance-Flight (SRF) technique using 
light aircrafts and human observers. However, this method has limitations, including 
non-systematic human errors. In recent years, the Oblique-Camera-Count (OCC) 
approach developed in East Africa has utilized cameras to capture high-resolution 
imagery replicating aircraft observers’ oblique view. Whilst demonstrating that 
human observers have missed many animals, OCC relies on labor-intensive human 
interpretation of thousands of images. This study explores the potential of Deep 
Learning (DL) to reduce the interpretation workload associated with OCC surveys. 
Using oblique aerial imagery of 2.1 hectares footprint collected during an SRF-OCC 
survey of Queen Elizabeth Protected Area in Uganda, a DL model (HerdNet) was 
trained and evaluated to detect and count 12 wildlife and livestock mammal species. 
The model’s performance was assessed both at the animal instance-based and image-
based levels, achieving accurate detection performance (F1 score of 85%) in positive 
images (i.e. containing animals) and reducing manual interpretation workload by 74% 
on a realistic dataset showing less than 10% of positive images. However, it struggled 
to differentiate visually related species and overestimated animal counts due to false 
positives generated by landscape items resembling animals. These challenges may be 
addressed through improved training and verification processes. The results highlight 
DL’s potential to semi-automate processing of aerial survey wildlife imagery, 
reducing manual interpretation burden. By incorporating DL models into existing 
counting standards, future surveys may increase sampling efforts, improve accuracy, 
and enhance aerial survey safety. 

Keywords: wildlife, aerial survey, Deep Learning, remote sensing, convolutional 
neural networks, animal conservation, livestock, object detection 
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1. Introduction 
As pressures on biodiversity increase across the globe, accurately determining key-

species populations is seen as critical in the ‘Essential Biodiversity Variables’ (EBV) 
approach to monitoring ecosystem health (Brummitt et al., 2017; Jetz et al., 2019). 
For over 60 years, the counting of large wildlife species in the expansive savannas of 
eastern and southern Africa has been addressed using light aircrafts and human 
counting crews (Gwynne and Croze, 1975; Jachmann, 2001; Norton-Griffiths, 1978). 
The ‘Systematic Reconnaissance Flight’ (SRF) technique involves flying an aircraft 
at low altitude along transects, whilst Rear-Seat-Observers (RSOs) count animals to 
left and right in strips of terrain defined by markers on the aircraft (Caughley, 1977; 
Grimsdell and Westley, 1981; Norton-Griffiths, 1978; Stelfox and Peden, 1981). The 
transects are the sample units, and analysis to derive estimates and margins of error is 
conducted using the Jolly II Method (Caughley, 1977; Jolly, 1969). 

SRF ‘counting standards’ have been adopted by many eastern and southern African 
countries to ensure that data meet minimum quality requirements for national and 
continental-wide trend-analysis of critical flagship such as elephants (CITES-MIKE, 
2020; Craig, 2012; Norton-Griffiths, 1978; PAEAS, 2014). These standards 
define inter alia the flying heights and strip-widths for counting, the sampling 
intensities that should be used, the length of time that RSOs should count animals 
before rest-breaks, the recording methods and the statistical analysis techniques used. 
Although these standards can ensure that important technical criteria are met, they 
cannot account for all human counting bias. Observers may miss cryptic animals, 
become overstretched when faced with large herds or multi-species groups, and lose 
concentration in long hot, turbulent flights over monotonous landscapes (Caughley, 
1974; Fleming et al., 2008; Jachmann, 2002; Schlossberg et al., 2016). In regard to 
detection, they have very little time to search and record animals; as the aircraft moves 
at a ground-speed of 170–180 km.hr−1 along the transect, the RSO can hold any 
particular feature in view for 5–7 seconds (Fleming et al., 2008). For this reason, an 
optimum RSO strip width of 150 m on each side of the aircraft was derived from 
experimental studies in the 1970s, and this metric was subsequently embedded within 
counting standards (Caughley and Goddard, 1975; Norton-Griffiths, 1978; Ottichilo 
and Khaemba, 2001; Pennycuick and Western, 1972; Stelfox and Peden, 1981). 

Despite the long-recognized constraints of RSO-viewing, consistency of method 
over decades is seen as key in determining trends (Ogutu et al., 2006). Therefore, 
advances in methods will need to be made incrementally to ensure harmonization with 
previous surveys. A recent SRF advance in East Africa, known as the ‘Oblique-
Camera-Count’ (OCC), uses digital cameras to record the counting strips to left and 
right of the aircraft (Lamprey et al., 2020a, 2020b). This replicates the oblique view 
of the RSOs where animals can be detected under tree canopies. With OCC the 
observers are not in the aircraft but in the laboratory, and their job is to interpret the 
many thousands of images obtained in a flight mission. 
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In recent years, multiple RSO-OCC comparisons have been conducted. Bröker et 
al. (2019) showed that the abundance estimate of narwhal in Greenland (Monodon 

monoceros) based on oblique-imaging was not significantly different from RSO one. 
However, Lethbridge et al. (2019) found 30% higher oblique-imaging estimates than 
RSO ones when surveying Kangaroos in Australia. OCC counts in Kenya and Uganda 
over the last decade revealed that RSOs had been missing up to 70% of large mammal 
species, including key cryptic species such as giraffe (Lamprey et al., 2020b). 
Estimates for smaller animals were greatly increased. In Murchison Falls National 
Park in Uganda for example, an RSO-based survey estimated 600 oribi (Ourebia 

ourebi ssp. cottoni), whilst an OCC survey the following year estimated 12,000 
(Lamprey et al., 2020a). Thus the use of cameras is important in resetting baseline 
population estimates. 

The primary advantage of camera-based counts is that time can be spent in the lab 
to carefully study each image for animals, and that interpreters can cross-check scenes 
for verification. Conversely, the primary constraint of aerial imaging methods is that 
thousands of images are acquired that need to be visually interpreted. This is a time-
consuming and costly exercise. For example, a standard counting flight transect, 
involving just 30 minutes of RSO time for detection and recording, would obtain 900 
OCC images taken each side of the aircraft. These images will take 4 days to interpret 
by two interpreters (left and right cameras). It is therefore not surprising that 
conservation agencies balk at the time and labour costs of OCC counts and other 
imaging exercises (Bröker et al., 2019; Peng et al., 2020). 

Another limitation of the OCC approach is that a very high percentage of aerial 
images will have no animals. In the arid Tsavo NP in Kenya for example, just 2% of 
the 160,000 images acquired had animals present (Lamprey et al., 2020b). In 
Uganda’s sub-humid national parks with higher density of wildlife, some 10% of 
images are positive (Lamprey et al., 2020a). In general, therefore, over 90% of the 
time of OCC image interpretation is spent on True Negative (TN) images – images 
with no animals – and if these can be identified and eliminated then there can be 
significant reductions in human labor. 

The next incremental step up from RSO to image-based counting is therefore to 
accelerate the detection of animals on images. Deep Learning (DL) offers this 
possibility (Tuia et al., 2022). DL is a subgroup of artificial intelligence approach 
regrouping machine learning methods based on artificial neural networks, capable of 
learning and integrating multi-level representation from large datasets (LeCun et al., 
2015). Significant progress has already been made in identifying a range of key 
species in Africa using DL-based object detectors and aerial imagery (Delplanque et 
al., 2022, 2023a; Eikelboom et al., 2019; Kellenberger et al., 2018; Naudé and Joubert, 
2019; Torney et al., 2019). However, DL models produced biased counts because of 
their current high false positive rate, usually generated by animal-look-alike 
background objects. Thus, detections still need to be reviewed by humans. 
Furthermore, the field of animal detection in oblique aerial imagery is not yet as well 
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developed as that of camera traps, where models trained on large and varied datasets 
are available for image (pre-)processing (Shepley et al., 2021; Tabak et al., 2019). At 
the moment, it is therefore often necessary to develop one’s own model for application 
in a given protected area. 

Being aware that current DL models need humans for prediction verification, we 
conducted a study to determine the potential of DL for reducing the interpretation 
workload of OCC surveys. We asked two specific questions: 

1) When the model detects animals in an image that we know are present, how 
well does it locate, count and identify them? 

2) For a ‘practical’ evaluation to reduce interpretation, can the model discriminate 
correctly the images which do not contain animals? 

2. Methods 
We trained a DL model using annotations of a sample of images obtained in an SRF-

OCC survey of Queen Elizabeth Protected Area in Uganda. These images had been 
previously visually interpreted to count animals, with the counts entered into a meta-
database. An image could contain nothing and be a TN, or it could be a True Positive 
(TP) image with (for example) a single warthog, and/or 20 elephants and/or 100 
Uganda kob. Having trained the DL model on a range of species from the annotated 
samples, we then tested the model on a realistic dataset, i.e. visually interpreted 
images that had not been used in the DL training, which contains both positive and 
negative images. 

2.1. Study area and dataset 

The study area is the Queen Elizabeth Protected Area (QEPA) located in 
southwestern Uganda. The census zone included the Queen Elizabeth National Park 
and the contiguous Kyambura and Kigezi Wildlife Reserves, covering 2,560 km² of 
bushed grassland, thicket, open woodlands and forest. Our study is based on aerial 
imagery acquired for a previous study of wildlife populations of QEPA, conducted in 
2018. Only the information necessary for the understanding of the present paper is 
provided here, for more details the reader is referred to the study of Lamprey et al. 
(2023). 

High-resolution images were acquired using two 24-megapixel Nikon DSLR 
cameras obliquely mounted at 45° through a camera hatch of a Cessna 182 aircraft. 
At 600 ft (183 m) above ground level coupled with an aircraft ground speed of 105 
knots (194 km.hr−1), a 2 second timing interval on cameras provided a continuous 
sample-strip of 150 m width on the ground (‘strip-width’) with a 40% overlap between 
sequential images and frame footprint of 2.1 hectares. The cameras generated 
sequentially numbered images, stored in incremental folders on the camera cards. 
Flight transects were spaced at 1 km intervals and a total of 37,000 images were 
collected with Ground-Sampling Distance (GSD) 2.4 cm at the inner edge and 5.0 cm 
at the outer edge. These were manually interpreted by a team of four Ugandan 
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interpreters during a six-week period. For each image, species name and numbers 
were recorded into a data spreadsheet. Where large herds spanned overlapping 
images, animals in the overlap area were counted into Even-Number Images (ENIs), 
while animals were counted in the center portion of Odd-Number Images (ONIs) to 
avoid any possibility of double counting. Therefore, ENIs contained total counts while 
ONIs contained partial counts (i.e. only the animals within the gaps between ENIs). 

From the manual photo-interpretation, 12 wildlife and livestock species were 
detected: elephant (Loxodonta africana), buffalo (Syncerus caffer), topi (Damaliscus 

lunatus ssp. jimela), Uganda kob (Kobus kob ssp. thomasi), waterbuck (Kobus 

ellipsiprymnus ssp. defassa), warthog (Phacochoerus africanus ssp. massaicus), 
giant forest hog (Hylochoerus meinertzhageni), hippopotamus (Hippopotamus 

amphibius), crocodile (Crocodylus niloticus), cow (Bos taurus), sheep (Ovis aries) 
and goat (Capra hircus). Since the management of double counting is beyond the 
scope of this paper, only ENIs were selected. From all ENIs (18,833), approximately 
70% (12,806) were randomly selected for creating annotations, used for training, 
validation and animal instance-based testing of the DL model, keeping the remaining 
30% (6,027) for image-based model testing. Therefore two test sets were established 
to answer the 2 research questions: 1) the ‘animal instance-based’ test set, where the 
annotated points are the ground truth; it was used to answer the first question, and 2) 
the ‘image-based’ test set, containing less than 10% of positive images and more than 
90% of negative images, where the species counts are the ground truth. This second 
test set served as a case study and was used to answer the second question. 

The animal instance-based dataset was initially annotated as bounding boxes by a 
team of 4 experienced Ugandan interpreters, using VGG Image Annotator (Dutta and 
Zisserman, 2019). However, since point annotation has emerged as a faster and better 
alternative for the detection of animals with DL-based object detectors (Delplanque 
et al., 2022, 2023a), pseudo-points were created by selecting the center of the 
bounding boxes. These pseudo-points were finally reviewed by an experienced 
annotator to obtain body-centered points, as the camera’s viewing angle, animal pose 
or tightness of bounding box drawn may result in a point being outside the animal’s 
body. This has been done using Label Studio software (Tkachenko et al., 2020). The 
images and points of the animal instance-based dataset were randomly split into 
training, validation and testing sets following a common allocation of 70%–10%–20% 
respectively, while taking the species numbers distribution into account (Table 4.1). 
Sheep and goat were amalgamated as a single class due to their great similarity in 
shape and color given the image resolution. 
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Table 4.1: Details of the dataset split. 

 Animal instance-based dataset Image-based 
dataset 

 

Number of Training Validation Test Total Test Prob.² 

Elephant 406 58 116 580 299 7.6% 

Buffalo 1,258 180 359 1,797 858 23.0% 

Topi 172 10 43 225 118 3.0% 

Kob 1,526 218 436 2,180 1,137 28.8% 

Waterbuck 504 72 143 719 335 9.1% 

Warthog 196 28 56 280 172 3.9% 

Giant Forest 
Hog 

27 5 8 40 25 0.6% 

Hippopotamus 497 71 142 710 351 9.2% 

Crocodile 14 2 4 20 16 0.3% 

Cow 376 38 227 641 441 9.4% 

Sheep/Goat 353 51 100 504 81 5.1% 

24MP1 positive 
images 

717 95 200 1,012 494 - 

24MP1 negative 
images 

0 0 0 11,778 5,533 - 

1MP, Megapixel; ²Probability of occurrence in the dataset. 

2.2. Deep Learning model 

Given its better performances in detecting and counting animals in oblique aerial 
imagery compared to common DL models, HerdNet (Delplanque et al., 2023a) was 
chosen to process the dataset. Briefly, HerdNet is a single-stage point-based CNN 
consisting of two heads, one dedicated to the accurate localization of animals in the 
image (i.e., points), and the other to their classification, both trained in a pixel-wise 
manner using the Focal and the Cross-Entropy losses respectively. The training 
scheme was the same as that presented in Delplanque et al. (2023a) and consisted of 
two steps: 1) training the architecture using positive patches only, and 2) harvesting 
and including Hard Negative Patches (HNPs) to further train the model in order to 
reduce the number of false positives. The patch size was set to 1,024 × 1,024 pixels 
and following original paper values and early ablation studies, the hyperparameters 
were set as follows: the learning rate to 10−5, the batch size to 2 and the number of 
epochs to 100. Horizontal flipping was used for data augmentation, using a 50% 
probability of occurrence and the Adam optimizer was used for neural network’s 
parameters optimization. During testing, points were obtained by extracting local 
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maxima from the pixel map produced by the localization head, in which a pixel value 
close to 1 indicates the presence of an animal. Each point was then used to pin the 
classification maps and obtain the associated class and confidence score. An image 
was considered as negative if the maximum pixel value of the localization map did 
not exceed 0.1. Each full-resolution test image was scanned in a moving-window 
fashion with a patch overlap was set to 256 pixels. A radial distance threshold of 20 
pixels was used to compare ground truths and detections during animal instance-based 
evaluation. Finally, only detections with confidence score above 50% were retained 
for image-based evaluation. For more details, the reader is referred to the reference 
paper. Operations were performed on a Windows-10 workstation using a 64 GB AMD 
Ryzen 9 5900X central processing unit (CPU) and an 8 GB NVIDIA GeForce RTX 
3070 graphics processing unit (GPU). 

HerdNet was evaluated in two ways: 1) The ‘standard’ machine learning way, by 
calculating common detection metrics on the animal instance-based test set, 
containing positive images only; and 2) The ‘practical’ way, by running the model on 
unseen images of the image-based test set, containing both negative and positive 
images, and comparing the DL model’s counts with interpreters’ visual counts. Recall, 
precision, and F1 score were calculated for each species on the animal instance-based 
test set for the standard evaluation: 

recall = #mB#mB + #'C 

precision = #mB#mB + #'B 

F1 score = 2 × recall × precisionrecall + precision  

where #TP, #FN, and #FP are the number of true positives (i.e., exact detection and 
identification), false negatives (i.e., missed animals) and false positives (i.e., wrong 
detections) respectively. 

Recall, also referred to as ‘true positive rate’, measures the proportion of animals 
correctly detected and identified by the model, while precision measures the 
proportion of true animals among all detections. The F1 score is the harmonic mean 
of these two metrics and is higher when recall and precision are balanced. 

Concerning the practical evaluation on the image-based test set, only counting 
comparisons were made as no annotated points were available for calculating the 
above metrics. The true counting rate, representing the proportion of the human count 
found by the DL model, and the counting precision, representing the ratio of human 
count by DL model count, were calculated for each species. 
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3. Results 
3.1. Animal instance-based performance 

All species combined, HerdNet reached 85% for both recall, precision and F1 score 
with little variation in performance according to distance from the aircraft 
(Figures 4.1A-B). Kob, buffalo, waterbuck and elephant were particularly well 
detected and located, as expressed by recall above 80% in Figure 4.1C. 
Hippopotamus and topi stood just after with a recall close to 60%, and the other 
species were much less detected. Except for the crocodile and the giant forest hog 
(i.e., minority species), the precision varied from 44 to 90%, meaning that the model 
produced respectively between 1.3 and 0.1 false positives per true positive. The least 
confused species were elephant, hippo and kob while the most confused were cow, 
warthog and topi. The highest confusions were between cow and buffalo and between 
topi and kob (Figure 4.2). 

3.2. Image-based performance 

From the image-based test set of 6,027 images, the DL model correctly identified 
81.1% of the negative images (4,486/5,533), thus reducing the manual interpretation 
workload by 74.4% (4,486/6,027). The same tendency was observed when applying 
the model to the whole set of ENIs: HerdNet identified 80.1% of the negative images 
(9,487/11,778), reducing the workload by 74.1% (9,487/12,806). In addition, it is 
worth mentioning that the DL model processed images on the workstation at a rate of 
about 2.8 seconds per 24-megapixel image, which corresponded to around 10 hours 
for the entire ENI dataset. 

Focusing on detection by species, the model guides the interpreters to 95% or more 
of the animals for almost all the species studied except warthog, as expressed by the 
high detection rate in Table 4.2. Overall, the model detected 98.2% of animals 
previously identified in the original 2018 count by interpreters. Meanwhile, the 
counting precision of the model was low overall at< 50%, but was reasonable for 
elephant (50.1%) and buffalo (54.1%), and high for topi (92.9%) and cow (90%). 
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Figure 4.1: Animal instance-based detection performance of the DL model 
(HerdNet): (A) Example of model detection on a full oblique image, (B) model performance 

relative to the horizontal distance to the aircraft, and (C) species precision-recall curves. 
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Figure 4.2: Animal instance-based identification performance of the DL model (HerdNet). 
Each species was assigned a letter for referencing in the confusion matrix (bottom 

right): (A) Elephant, (B) buffalo, (C) topi, (D) kob, (E) waterbuck, (F) warthog, (G) giant 
forest hog, (H) hippopotamus, (I) crocodile, (J) cow, and (K) sheep/goat. The confusion 

matrix shows the comparison between the identification assigned during annotation by the 
human (‘Ground truth’) and that predicted by the DL model (‘Model prediction’). 

  



Integrating remote sensing and deep learning into aerial survey of African mammals 

104 
 

Table 4.2: Results of the DL model (HerdNet) on the image-based test images (N=6,027). 

Species NH
1 NH|M

2 NM
3 NH|M / NH

4 NH / NM
5 

Elephant 299 (65) 292 (58) 597 (313) 97.7% 50.1% 

Buffalo 858 (51) 852 (46) 1,587 (527) 99.3% 54.1% 

Topi 118 (16) 117 (15) 127 (44) 99.0% 92.9% 

Kob 1,137 (152) 1,137 (152) 4,092 (1,706) 100.0% 27.8% 

Waterbuck 335 (100) 329 (96) 1,348 (841) 98.2% 24.9% 

Warthog 172 (61) 143 (46) 701 (514) 83.1% 24.5% 

Giant Forest 
Hog 

25 (8) 25 (8) 55 (45) 100.0% 45.5% 

Hippopotamus 351 (60) 332 (49) 1,468 (508) 94.6% 23.9% 

Crocodile 16 (3) 16 (3) 97 (85) 100.0% 16.5% 

Cow 441 (19) 440 (18) 490 (109) 99.8% 90.0% 

Sheep/Goat 81 (14) 81 (14) 994 (515) 100.0% 8.1% 
1Animal numbers in images as determined by human counts (‘interpretation’) in survey year 
2018. 
2Animal numbers in images from 2018 interpretation, where these images were later 
classified as animal-positive by the DL model. 
3Numbers estimated by the DL model; indicating the ‘overcount’ by the DL model. 
4True counting rate of the model; the proportion of the 2018 count found by the DL model. 
5Counting precision of the DL model, where 1/precision is the ratio of the overcount. 
The absolute numbers indicated correspond to the number of animals detected, followed by 
the number of images that contained the species in parentheses. 

4. Discussion 
In the context of improving multi-species SRF surveys in Africa, we trained a DL 

model based on aerial imagery of a Ugandan protected area acquired under 
standardized criteria for OCC surveys, specifically pixel density, camera angles, 
image footprint size and ground-sampling distance. Our DL model detected human-
identified wildlife in positive images at high recall and precision rates (85%). It 
showed equivalent or better performance than previous DL models developed in 
similar conditions or habitats (Delplanque et al., 2022, 2023a; Eikelboom et al., 2019; 
Kellenberger et al., 2018). The CNN used here (i.e., HerdNet) revealed better 
performance than the study of the original paper (Delplanque et al., 2023a). This may 
be explained by the higher resolution of current images and their more controlled and 
standardized acquisition, which should allow for better differentiation of animals in 
the landscape and within herds and reduced scale variation among individuals. 

As previously observed, our model struggles to detect minority species (i.e., 
crocodile and giant forest hog) certainly due to a lack of training samples for the CNN 
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to develop robust features. In addition, the inherently small test sample sizes for these 
species reduce the statistical credibility of the performance. Some of the species 
showed a low recall while they do not seem more challenging to detect at first sight. 
This is explained by the difficulty for the model to differentiate visually related 
species, causing confusion between detected animals. As an example, cow and topi 
seemed to be poorly detected, but their recall may rise from 47% to 83%, and from 
63% to 100% respectively, considering the entire group of confused detected animals 
(i.e. amalgamated cow and topi). Thus, majority species weighting appears to confuse 
identification of look-alike species (e.g., cow-to-buffalo confusion). In fact, this 
phenomenon is common in object detection tasks and is related to ‘foreground–
foreground class imbalance’ (Oksuz et al., 2021), inherent to the imbalance of objects 
frequencies in nature. Future research should investigate other approaches such as 
efficient sampling strategies, progressive fine tuning or generative methods 
(e.g., Wang et al., 2017) to reduce such bias. 

We were surprised by the low detection performance of sheep/goat, considering the 
good results of previous studies involving these species (Delplanque et al., 2023a; 
Sarwar et al., 2021). We suspect that the use of the HNP mining method during 
training degraded the sheep/goat detection ability of the model. In this area in Uganda, 
sheep and goats were mostly found in the villages, where they are not herded (as in 
arid lands) but roam in small groups around households; villages were an major source 
of false positives due to the particular bright items found in them, appearing as ‘white 
shapes’ of various sizes. Training the model to discard these sheep- or goat-like 
objects certainly confused the model, as expressed by the 25% drop of recall obtained 
on the validation set after the second training step. 

HerdNet thus correctly detects and counts our studied species in positive images, 
but what about its performance on a realistic dataset, i.e. containing less than 10% of 
positive images and more than 90% of negative images? We observed that our DL 
model succeeded in guiding interpreters to 98.2% of the animals (all species 
combined). It discriminated more than 80% of negative images, reducing the 
workload of manual interpretation by 74%. Nevertheless, the counting performance 
is not yet satisfactory as the model tended to overestimate the true number of animals. 
This is the result of a high number of false positives, typically generated by unknown 
or animal-like landscape items such as particular shapes of trunks, shadows, rocks, 
termite mounds and mud. This model behavior was expected as such landscape items 
have previously shown to be the main cause of false positives (Delplanque et al., 2022; 
Kellenberger et al., 2018). Precision could be improved by properly re-training the 
DL model on these particular landscape items, following a short-time human 
verification session. 

At this time, a sufficient annotated wildlife training dataset acquired of the target 
area, or of areas with the same wildlife species is required to process all the image 
data. This training and verification can be accelerated by using point detections, 
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because adding, deleting or moving points is much faster than adjusting bounding 
boxes, which makes our model more appropriate for processing aerial surveys images. 

Our results confirm and validate that we have entered the era of using DL as a tool 
to semi-automatically process aerial survey wildlife imagery acquired under standard 
SRF conditions, with demonstrated effectiveness to reduce human interpretation 
workloads by over 70%. Humans must remain in the process to study positive images, 
as filtered by the DL model. Annotated image databases and models will also improve 
with each new acquisition, and we can therefore anticipate a growing improvement in 
DL models. Current counting standards such as CITES-MIKE V3 (CITES-MIKE, 
2020) can now evolve further to prescribe image-based animal detection based on a 
combination of manual interpretation and high-performance DL models. Following 
surveys can invest in increased sampling effort, as the DL model is insensitive to 
fatigue unlike humans. This can be effected by increasing sampling strip widths, 
flying higher and using higher resolution cameras, such as the new generation of 40–
60 MP mirrorless cameras (Lamprey et al., 2020a, p. 20). On one hand, this would 
allow for the transfer of the observers’ real-time visual counting work to the 
verification of the model detections. On the other hand, this would decrease the 
human-life risks associated with traditional aerial surveys while increasing the 
sampling effort at no extra costs. 

In our study we have emphasized the potential use of DL for detection in strip 
transects. However, the method also has potential for detection in line transects where 
the population is calculated from a function of the drop-off of observations with 
distance from a line defined to the side of the aircraft (Buckland et al., 2004; 
Eberhardt, 1978). To date, problems in measuring distance to aircraft, together with 
meeting a key assumption of 100% animal detection by observers on the line itself, 
have precluded the wide use of line transects in Africa (Kruger et al., 2008). However, 
where pixel position can define the distance from the aircraft, and detection through 
DL is improved, our approach has the capability to greatly enhance line-transect 
counts. 

Next work will consist of manually verifying detections and producing population 
estimates. This will enable us to assess the performance of our semi-automated 
detection model at the scale of an entire aerial survey. On a more general scale, it 
would be important to develop efficient semi-automated approaches to process large 
volumes of aerial survey images, integrating Deep Learning and humans with minimal 
verification time investment, to ensure accurate and precise derived estimates. 
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Abstract 
Large African mammal populations are traditionally estimated using the systematic 

reconnaissance flights (SRF) with rear-seat observers (RSOs). The oblique-camera-
count (OCC) approach, utilizing digital cameras on aircraft sides, proved to provide 
more reliable population estimates but incurs high manual processing costs. 
Addressing the urgent need for efficiency, the research explores whether a semi-
automated deep learning (SADL) model coupled with OCC improves wildlife 
population estimates compared to the SRF-RSO method. The study area was the 
Comoé National Park, in Ivory Coast, spanning 11,488 km² of savannas and open 
forests. It was surveyed following both SRF-RSO standards and OCC method. Key 
species included the elephant, western hartebeest, roan antelope, buffalo, kob, 
waterbuck and warthog. The deep learning model HerdNet, priorly pre-trained on 
images from Uganda, was incorporated in the SADL pipeline to process the 190,686 
images. It involved three human verification steps to ensure quality of detections and 
to avoid overestimating counts. The entire pipeline aims to balance efficiency and 
human effort in wildlife population estimation. RSO and SADL-OCC approaches 
were compared using the Jolly II analysis and a verification of 200 random RSO 
observations. Jolly II analysis revealed SADL-OCC estimates significantly higher for 
small-sized species (kob, warthog) and comparable for other key species. Counting 
differences were mainly attributed to vegetation obstruction, RSO observations not 
found in the images, and suspected RSO counting errors. Human effort in the SADL-
OCC approach totaled 111 hours, representing a significant time savings compared to 
a fully manual interpretation. Introducing the SADL approach for aerial surveys in 
Comoé National Park enabled us to address the OCC's time-intensive image 
interpretation. Achieving a significant reduction in human workload, our method 
provided population estimates comparable to or better than SRF-RSO counts. 
Vegetation obstruction was a key factor explaining differences, highlighting the OCC 
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method's limitation in vegetated areas. Method comparisons emphasized SADL-
OCC's advantages in spotting isolated, small and static animals, reducing count 
variance between sample units. Despite limitations, the SADL-OCC approach offers 
transformative potential, suggesting a shift towards DL-assisted aerial surveys for 
increased efficiency and affordability, especially using microlight aircraft and drones 
in future wildlife monitoring initiatives. 

Keywords: wildlife, population estimation, aerial surveys, deep learning, 
biodiversity monitoring, conservation technology, African savanna 

1. Introduction 
Although biodiversity loss has a significant impact on Earth’s ecosystem functions 

(Cardinale et al., 2012), it is still accelerating following the growth of human 
population, consumption rates and the continuing pressure humans exert on the 
biosphere (Ceballos and Ehrlich, 2023). Determining and tracking key-species 
populations with standardized data collection is seen as critical in the ‘essential 
biodiversity variables’ (EBVs) for effective biodiversity assessment and conservation 
(Jetz et al., 2019). Among the many existing census methods, aerial surveys are still 
the most economical and quicker way to count large mammals in Africa's large 
savanna protected areas (PAs) (Norton-Griffiths, 1978). 

Counting large terrestrial wildlife species and livestock has traditionally relied on 
the ‘systematic reconnaissance flight’ (SRF) method. SRF consists of aircraft flying 
at low altitude along predefined transects, while rear-seat observers (RSOs) count 
animals in right and left sample strips defined by markers attached to the aircraft 
(Grimsdell and Westley, 1981; Norton-Griffiths, 1978). While this technique has been 
adopted as a standard in African savannas (CITES-MIKE, 2020; Craig, 2012; Norton-
Griffiths, 1978; PAEAS, 2014), it suffers from human counting errors as RSOs may 
under- or overcount large herds, miss species, or lose attention during long flights. 
Counting animals on sight is challenging. It is often biased by survey factors such as 
altitude, sample strip width or observer experience (Caughley, 1974; Jachmann, 2001; 
Norton-Griffiths, 1976), but also by environmental factors such as animal size and 
color, animal’s disturbance caused by an overflying aircraft, group size or vegetation 
type and density (Griffin et al., 2013; Jachmann, 2002; Wal et al., 2011). To minimize 
the impact of some of these factors, aerial survey standards for fixed-wing aircraft 
have been established (CITES-MIKE, 2020; Craig, 2012; PAEAS, 2014). However, 
the high flight speed (150-190 km/h), essential to ensure the crew's safety at common 
flying altitude (90-100 m), leaves the observer only a small window of time to scan 
the terrain and to count animals. This window being estimated at only 5-7 seconds 
(Lamprey et al., 2020b), observers may be overloaded in high-density animal 
environments or tired in low-density ones, which could both lead to biased counts 
(Norton-Griffiths, 1976). Although not always adopted by practitioners, 
photographing herds for post-processing is a beneficial practice during aerial surveys, 
as even experienced observers are unable to accurately count groups of more than 20 
individuals (Norton-Griffiths, 1978). It is even recommended to photograph any 
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group of more than 10 individuals in the case of multi-species survey (CITES-MIKE, 
2020; Norton-Griffiths, 1978). Counts derived from the images are then used to 
correct in-sight count and provide unbiased estimates. 

To compensate for the limits of the SRF method, the oblique-camera-count (OCC) 
approach has recently been developed and has proved to increase and precise the 
estimates of large African mammal species in semi-arid environments (Lamprey et 
al., 2020a, 2020b). The OCC approach is based on digital cameras placed on both 
right and left sides of the aircraft, replicating the oblique viewing angle of RSOs which 
is the most suitable for counting animals in areas with vegetation cover (Lamprey et 
al., 2020b). These cameras are set to acquire images continuously during the SRF. 
With this method, the work of observers has shifted from in-sight animal counting in 
the aircraft to image interpretation in the lab. Nevertheless, counting animals in aerial 
imagery is a time-consuming exercise which may generate considerable costs, making 
the approach too expensive for a broader use at present (Bröker et al., 2019; Lamprey 
et al., 2020b). Previous studies showed that interpreters were able to interpret nearly 
150 nadir images per hour from a mono-species drone survey in homogeneous Asian 
open grasslands (Peng et al., 2020) but only 30 oblique images per hour from a multi-
species aerial survey in heterogeneous semi-arid African environments where many 
variables, including vegetation type, are measured (Lamprey et al., 2020b). While 
being essential for rapidly validating or establishing conservation actions, results from 
aerial surveys of PAs covering thousands of square kilometers and generating 
thousands of images can be delayed by several months using the OCC approach due 
to the slow but necessary manual processing of images. 

Recent advances in machine learning have propelled the perspectives of remotely 
sensed imagery for wildlife conservation (Tuia et al., 2022), and announced good 
prospects for the automation of image processing from SRF-OCC surveys 
(Delplanque et al., 2023b; Eikelboom et al., 2019). Deep learning (DL) is a subgroup 
of machine learning and artificial intelligence (AI) where artificial neural networks 
are trained to achieve challenging tasks (e.g. detect animals in aerial imagery) through 
a complex multi-level representation of information learned from a large amounts of 
data (LeCun et al., 2015). In the last decade, DL has been widely employed to (semi-
)automate the detection and counting of multiple terrestrial mammals on aerial 
imagery acquired in natural and wild environments, through mainly DL-based object 
detection approaches (Delplanque et al., 2023a, 2022; Eikelboom et al., 2019; 
Kellenberger et al., 2018; Naudé and Joubert, 2019; Peng et al., 2020). However, 
counting results obtained with these approaches remain biased, principally for rare 
species, due to the high false positive rate of current DL models and to the limited 
dataset availability. In addition, a time-consuming annotation phase on a subset of 
acquired images is generally required prior to the development of a model for a 
specific PA on which an SRF-OCC survey is to be carried out, as a data discrepancy 
usually appears between different OCC surveys. This is generally caused by both 
survey (camera angle, image resolution, flight altitude) and environmental factors 
(natural imbalance of species, landscape heterogeneity).  
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Pending the development of foundation DL models trained on massive amounts of 
aerial images, there is a strong need to develop efficient approaches for integrating 
existing DL models into the aerial survey process. This will reinforce the efficiency 
of the OCC method and reduce the associated cost by lightening the workload of 
human interpreters. The goal of this paper was to answer the following research 
question: Does a semi-automated approach requiring minimal human effort increase 
the accuracy and/or precision of population estimates compared to the traditional RSO 
approach? This paper presents the results of the first semi-automated aerial image 
processing pipeline applied on SRF-OCC images over a large and heterogeneous PA 
in Ivory Coast. 

2. Materials and Methods 
2.1. Study area 

The study area is the Comoé National Park located in Ivory Coast, which covers 
11,488 km², making it the third biggest PA of west Africa. The CNP is covered at 
64.3% of shrub savanna, 24.3% of wooded savanna and 7.6% of open forest. In 
addition, with patches of dense dry forest located in the south of the CNP as well as 
gallery forests along the shorelines of both Comoé and Iringou rivers, the CNP is an 
example of transitional habitats between forest and savanna. The park belongs to the 
‘northern plateaux’ geophysical region (average altitude of 300 m) and is locally 
dominated by a number of reliefs, such as north-south-trending greenstone hills and 
bars rising to 500-600 m in the north-central and north-western regions; and tabular 
mounds with armored summits on shale, locally exceeding 500 m, in the south-east. 
The climate in this region is tropical savanna with dry winters (Aw). Due to its high 
diversity of habitats, the CNP is an important biodiversity reservoir (Hennenberg et 
al., 2006) and contains populations of wild terrestrial mammals, such as the roan 
antelope (Hippotragus equinus ssp. koba), the western hartebeest (Alcelaphus 

buselaphus ssp. major), or the buffalo (Syncerus caffer ssp. brachyceros), as well as 
endangered species such as the elephant (Loxodonta africana) (Fischer et al., 2002) 
and the emblematic chimpanzee (Pan troglodytes ssp. verus).  

2.2. Aerial survey 

Following previous aerial survey protocols of the CNP, the latter has been divided 
into four strata (Figure 4.3): North-West (NW), North-East (NE), South-West (SW) 
and South-East (SE). Following standard SRF guidelines, 156 transects of 2 km 
spacing were oriented north-west to south-east in the northern strata, and north-east 
to south-west in the southern strata, covering 13% of the area. These orientations 
followed the ecological gradient of the area (rivers and mountains) while avoiding the 
aircraft pilot to be glared by the sun during the flights. Twelve days totaling 54 flight 
hours were needed to cover the entire CNP, starting on April 2 and ending on April 
17, 2022.  
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Figure 4.3: Map of the Comoé National Park and survey area strata: North-West (NW), 
North-East (NE), South-West (SW) and South-East (SE). 

The aircraft was a Cessna 206 (registration 5Y-AKP) and the flying crew was 
composed of: a pilot, an independent front-seat observer, two rear-seat observers 
(RSOs) and a photography manager. The same crew operated throughout the survey. 
During flights over the transects, RSOs were instructed to report the number of 
individuals and the associated species observed between the two strip markers placed 
on each of the aircraft's struts. The start and end of the transects were announced by 
the pilot. The front-seat observer was in charge of recording observations from the 
RSOs and their geo-locations on a tablet computer using the CyberTracker 
(https://cybertracker.org/) app (v3.520). The photography manager managed the two 
oblique cameras set to acquire aerial imagery continuously and was also in charge of 
manually recording observations on papers for back-up. It is worth mentioning that 
due to a lack of space in the aircraft cabin, additional RSO cameras for large group 
bias correction (CITES-MIKE, 2020; PAEAS, 2014) have not been used during the 
survey. 

From the multiple species counted during the survey, only seven species usually 
surveyed by aircraft, in fairly large numbers and/or of conservation interest were 
selected for this study. These species are referred to as ‘key species’ in the text and 
include western hartebeest, buffalo, kob (Kobus kob ssp. kob), waterbuck (Kobus 
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ellipsiprymnus ssp. defassa), elephant, roan antelope and warthog (Phacochoerus 

africanus ssp. africanus). 

Transect (or sample unit) area were estimated using the height above ground level 
and a theoretical predefined strip-width of 150 m on each side of the aircraft at a flight 
altitude of 91.4 m (300 ft) (CITES-MIKE, 2020; Craig, 2012; Norton-Griffiths, 1978; 
PAEAS, 2014). The height above the ground level as well as associated geo-location 
were recorded each second during the flights by a LightWare SF30/D laser altimeter. 
The strip width was calibrated using 20 ground-marks placed 20 m apart on either side 
of the runway. Thirty crossings of the aircraft at increasing height above ground level 
(between 55 and 208 m) were carried out, during which the number of marks 
appearing between the strip markers was counted. 

2.3. Cameras and image acquisition 

Two Nikon D5600 24-megapixel digital reflex cameras equipped with Nikkor AF-
S 18-55 zoom lenses were positioned inside the aircraft, one on each side, using 
articulated double suction cups fixed on the windows. The cameras were mounted 
obliquely at an inclination of 36.5° and zoom lens were set and taped at 35 mm to 
capture a strip of about 150 m width, in accordance with SRF standards (CITES-
MIKE, 2020; Craig, 2012; PAEAS, 2014) and recent OCC studies (Lamprey et al., 
2020a, 2020b). The camera angle was chosen to be as close as possible to the angle 
of vision of human observers while intercepting the strip markers at the inner and 
outer edges of the images. External intervalometers were used and set to acquire 
images at 2 s intervals, to ensure overlapping coverage at a ground speed of 160 km/h. 
Based on initial field trials, cameras were set to ‘aperture-priority’ mode, with aperture 
set to f/5.0, the auto-ISO was preferred, with a minimum value of 500, and minimum 
shutter speed was set to 1/2000 s. In total, 190,686 images were saved in 6,000 x 4,000 
pixels JPEG format, from which 148,239 appeared on transect after cleaning. All 
images were geo-referenced in UTM coordinates using the GeoSetter 
(https://geosetter.de/) software which associated the altimeter’s GPS tracklog to the 
exact acquisition time of each image. 

2.4. Deep learning model 

The DL architecture HerdNet (Delplanque et al., 2023a) has been selected for 
processing the aerial survey images given its attractive performances on a previous 
SRF-OCC study (Delplanque et al., 2023b). HerdNet is a single-stage fully 
convolutional neural network built with two heads: one dedicated to the accurate point 
detection of animals in the image and the other to their classification. 

HerdNet was trained multiple times during image processing, for progressively fine-
tuning it to the study area landscape and species. For each training stage, we 
constructed an unbiased validation set comprising 20% of the current dataset's images. 
Each set was carefully designed to maintain a similar distribution of species and to 
ensure independence by keeping images from the same transect grouped together. 
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This avoided as far as possible any performance bias related to the natural imbalance 
of species, and any spatial bias related to the overlap of images. As for the 
hyperparameters, we set training patch size to 512x512 pixels, the minibatch size to 8 
patches, the learning rate to 10-6, the weight decay to 5x10-4 and the number of epochs 
to 200 or 50, depending on the training schedule (see section 2.5.2 below). Horizontal 
flipping and motion blur have been used as data augmentation, with a 50% probability 
of occurrence. To avoid any risk of overfitting at each training stage, we selected the 
model relative to the epoch that gave the best performance on the validation set. 
During inference, the patch size was set to 1,024x1,024 pixels to accelerate the 
process. Further information on the fine-tuning process is described in section 2.5.2. 

2.5. Image processing 

Images have been processed through the use of the DL model coupled with human 
manual interpretation steps. This ‘human-assisted’ DL-based image processing 
pipeline has been designed to minimize human effort while maximizing the quality of 
counting results. In the following sections, this approach is referred to as the Semi-
Automated Deep Learning (SADL) model, and SADL-OCC refers to the integration 
of the SADL model with the OCC technique. This section therefore presents the main 
components and steps of this developed approach. 

2.5.1. Semi-automatic loop 

The core component of the pipeline was the Semi-Automatic Loop (SAL), which 
integrates both the DL model and a human-expert interpreter. The SAL operated by 
taking aerial images as input and passing them through the DL model to harvest point 
detections. Subsequently, it conducted a 256x256 pixel crop, centered on each 
detection, generating thumbnails that received a rapid examination during the initial 
human verification step. This verification step entails manually classifying each 
thumbnail as either False Positive (FP), True Positive (TP), or uncertain object 
(Figure 4.4). 

This first human verification step played a crucial role in significantly reducing the 
number of full-size images requiring review, thereby minimizing the overall analysis 
time. Additionally, this step served as a guide for the interpreter, directing attention to 
the most relevant detections (i.e. TP). After this step, the relevant detections were 
projected back into their original full-size images for a second verification. In the 
second human verification step, the interpreter thoroughly examined the entire image 
to point out any potentially missed animals and, if necessary, had the option to rectify 
the predicted identification (species name) and/or point coordinates (Figure 4.4). The 
second step has been done on Label Studio 1.3 (Tkachenko et al., 2020) through a 
custom template. 
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Figure 4.4: Overview of the semi-automatic loop (SAL). The central part of the figure is a 
schematic representation of the loop, and the sides illustrate the two main steps on a sample 

image of the aerial survey. TP and FP referred to True Positive and False Positive 
respectively. 

2.5.2. Model fine-tuning and inference 

In aerial surveys of PA using the OCC technique, the availability of a region-specific 
DL model, encompassing the PA's unique species and landscape characteristics, 
remains limited as these approaches are still emerging and such data are often 
sensitive. Consequently, a pre-trained DL model is needed. Such a model has been 
trained on images from a different source (e.g. another PA) but following a similar 
task (e.g. detecting terrestrial mammals in oblique aerial imagery). Ideally, the pre-
trained model should originate from a similar PA containing similar target species and 
following the same acquisition standards to achieve optimal results. Nevertheless, it 
is essential to recognize that while these pre-trained models may yield reasonably 
accurate predictions at times, they are not entirely reliable and risk losing accuracy as 
the discrepancy between source and target data widens. Therefore, a crucial step 
involves fine-tuning the model to suit the targeted PA. As some researchers shared 
their model in recent years (Delplanque et al., 2023a, 2022; Eikelboom et al., 2019), 
we propose a simple yet effective method that could be applied across various cases. 

It is essential to select the most densely populated region to guarantee a sufficient 
number of instances per species for the optimal fine-tuning of the DL model. In this 
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study, the SW stratum was selected, which encompassed three distinct flights 
conducted over three consecutive days. 

Regarding the pre-trained model, we utilized the DL model developed by 
Delplanque et al. (2023b) that was initially fine-tuned on images acquired in a survey 
of Queen Elizabeth National Park, Uganda (Lamprey et al., 2023) following OCC 
procedures developed in Murchison Falls National Park, Uganda (Lamprey et al., 
2020a). The data acquisition conditions closely resembled the current study's data 
acquisition process, encompassing similar wildlife species. 

The pre-trained model underwent inference and fine-tuning for 4 iterations using 
the entire SW stratum employing the SAL. This iterative process served to enhance 
the model's performance and gather samples pertaining to each key species present in 
the region. The training procedure for the two first fine-tuning iterations was the one 
proposed in the original paper (Delplanque et al., 2023a) which consisted of two main 
steps: 1) training the architecture using positive patches for 200 epochs, and 2) 
collecting and including hard negative patches, which are patches containing false 
positives, to further train the model for 50 epochs in order to reduce the number of 
false positives. During the two last fine-tuning iterations, only the second step of the 
training procedure was used. Hard negative patches were created using false positives 
that emerged from the thumbnail classification (step 1 of the SAL). To avoid a too 
severe imbalance between positive and negative patches the batch was equally 
balanced between the latter during training. 

Once the fine-tuning process was done, the model was inferred on images from the 
other strata. The detections resulting from this inference were subjected to verification 
using the SAL. To both maximize the probability of detecting all species individuals 
and take advantage of the collected verified detections, the model was trained one last 
time on the entire set of verified images and then inferred on all 148,239 transect 
images for a final verification. From this process, the previously unseen images were 
verified using the SAL. 

2.5.3. Duplicate removal 

Due to overlapping coverage of images, the same animal may be present in multiple 
images, which may lead to an overestimation of the true number of individuals. It was 
therefore necessary to carefully manage consecutive images to avoid double counting. 
This has been done on Label Studio 1.3 (Tkachenko et al., 2020) by a human operator 
who manually reviewed consecutive images and assigned an additional label to the 
detections to distinguish and discard duplicates.  

2.6. Data analysis and population estimate 

Prior to comparing RSO and SADL-OCC approaches, counting bias was checked 
between right and left RSOs. For each species and stratum, the number of groups 
encountered as well as the number of animals counted in the groups were compared 
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using a chi-square test and a Mann-Whitney U-test, respectively (CITES-MIKE, 
2020). 

RSO and SADL-OCC counting results were analyzed using the Jolly II method for 
unequal sized sample units (Jolly, 1969), where the transects were the sample units, 
following the guidelines of Norton-Griffiths (1978). As the survey area was stratified, 
the method of Jolly II was applied on each stratum. The population estimates and 
variances were calculated for each stratum, and these were then added together to 
obtain estimates for the whole survey area. The global standard error was calculated 
by taking the square root of the summed variances (Norton-Griffiths, 1978). To 
compare the RSO and SADL-OCC surveys, the null hypothesis that estimates were 
not significantly different (⍺=0.05) was tested by calculating d as: 

� = FG� − FG��;�< + ;�<
 

Where FG� and FG� are the population estimates of SADL-OCC approach and RSOs 
respectively, and ;�< and ;�< are their variance (Norton-Griffiths, 1978). Where d > 
1.96, the result is statistically significant at alpha=0.05. 

RSO and SADL-OCC approaches were also compared using the paired t-test and 
the non-parametric Wilcoxon signed-ranks test, where the samples were the transects 
(Lamprey et al., 2020b). 

Finally, in order to evaluate and explain potential counting differences between 
SADL-OCC and RSO, 50 RSO observations were randomly selected for each of the 
following group size class announced by RSOs: 1) 1 to 5 animals, 2) 6 to 10 animals, 
3) 11 to 20 animals and 4) 21 and more animals. At each of these 200 locations, an 
experienced human operator compared the RSO count with the SADL-OCC count. 
An explanation of the differences observed was provided following a visual analysis 
of the matching images (Figure 4.5) as follows: 1) part of the group is probably hidden 
by vegetation, 2) a suspected counting error of RSOs, 3) part of the group is out-of-
strip on the matching images, 4) the group was missed by the SADL-OCC approach 
or 5) the group observed by RSO does not appear on the matching images. 
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Figure 4.5: Illustration of differences observed between the SADL-OCC and RSO 
approaches for 200 random RSO observations: (a) a group of 7 roan antelopes detected by 
the SADL-OCC approach, where some individuals were probably hidden by trees since the 

RSO announced a group of 35 individuals, (b) a group of 17 western hartebeests estimated at 
20 individuals by the RSO indicating a probable RSO counting error, (c) a group of buffalo 
where most of the individuals appeared out-of-strip in the SADL-OCC approach, but where 

all individuals were counted in-the-strip by the RSO, and (d) an example of image containing 
a roan antelope missed by the SADL-OCC approach. 

3. Results 
3.1. RSOs consistency and Jolly II analysis 

Testing consistency between right and left RSO indicated no significant differences 
in encounter rates for the western hartebeest, kob, waterbuck, elephant and warthog. 
The exceptions were for roan antelope in SW stratum with 21 (right) and 7 (left) 
encounters (�²=7.00, d.f.=1, P=0.008) and buffalo in SE stratum with 5 (right) and 0 
(left) encounters (�²=5.00, d.f.=1, P=0.025). Concerning the number of animals 
reported, only buffalo in SE stratum and waterbuck in SW stratum showed a 
significant difference. Median buffalo counts of right and left RSO were 35 and 0, 
respectively (U=0, n1=5, n2=0, P<0.001) while median waterbuck counts were 1 and 
3 (U=1, n1=5, n2=3, P=0.025). 
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The Jolly II analysis showed that SADL-OCC population estimates were 
significantly higher than RSO ones for small-sized species, i.e. kob and warthog, and 
not significantly different for the other key species (i.e. elephant, buffalo, western 
hartebeest, roan antelope and waterbuck). Similarly, results of the paired transect t-
test and the non-parametric Wilcoxon signed-ranks test indicated the same trend 
(Table 4.3). For kob and warthog, the difference in estimates was highly significant 
(p < 0.001) with tighter confidence intervals, indicating that the SADL-OCC approach 
counted much more individuals than RSOs and that the counts were more consistent 
across the survey area. SADL-OCC estimates for kob, warthog and buffalo were 
respectively 240%, 163% and 17% higher than RSO estimates, while being lower for 
roan antelope (-19%), western hartebeest (-7%), and waterbuck (-2%). While the 
elephant population was unfortunately too small for drawing valid consideration, the 
results showed that the SADL-OCC approach found and correctly counted the two 
groups observed during the aerial survey. 

The SADL-OCC approach estimates are systematically higher than RSOs for each 
key species in western strata (i.e. NW and SW), while the inverse trend was observed 
for eastern strata (i.e. NE and SE), except for buffalo, kob and warthog where the 
results vary. For instance, SADL-OCC buffalo estimates are nearly two times higher 
than RSO ones in the NW stratum, but nearly three times lower in the SE stratum 
(Table 4.3). 

3.2. Counting differences 

Based on the additional analysis of 200 randomly-selected RSO observations, 35 
instances (17.5%) of mutual agreement with the SADL-OCC approach were 
observed, ranging from 1 observed animal to a group of 16 individuals. This leaves 
165 instances (82.5%) where differences were observed. These differences were 
mainly explained (35.8%) by the presence of relatively dense vegetation (Figure 4.6), 
hiding some individuals of the group in the image. The second most observed situation 
(26.7%) was a group of animals observed by RSOs but not found on images, which 
often contained highly vegetated scenes. The third explanation (24.2%) of differences 
was the suspected error of RSOs when estimating the group of animals they observed. 
Finally, animals of the group that appeared out-of-strip on the image(s) explained 
around 9.7% of the differences, and animal or group of animals missed by the SADL-
OCC approach (total of 22 animals) explained 3.6%. It should be noted that the 
presence of vegetation is an explanatory cause that cannot be excluded for the others 
and may be a secondary explanation of the difference observed.  

 

 

 

 



Chapter 4 | Integrating oblique camera systems and DL models into aerial survey 

119 
 

  

  
N

or
th

-W
es

t 
N

or
th

-E
as

t 
So

ut
h-

W
es

t 
So

ut
h-

E
as

t 
T

ot
al

 
 

 
 

SA
D

L
-O

C
C

 v
s 

R
SO

 

Sp
ec

ie
s 

Ŷ
S 

(S
E

) 
Ŷ

R
 (

SE
) 

Ŷ
S 

(S
E

) 
Ŷ

R
 (

SE
) 

Ŷ
S 

(S
E

) 
Ŷ

R
 (

SE
) 

Ŷ
S 

(S
E

) 
Ŷ

R
 (

SE
) 

Ŷ
S 

(S
E

) 
C

I 9
5%

 
Ŷ

R
 (

SE
) 

C
I 9

5%
 

d-
st

at
 (

p)
 t

-s
ta

t 
(p

) 
W

 (
p)

 
Δ

%
 

W
es

te
rn

 h
ar

te
be

es
t 

52
43

 
(7

13
) 

49
72

 
(8

69
) 

22
87

 
(2

74
) 

26
30

 
(4

28
) 

77
16

 
(5

46
) 

74
24

 
(9

01
) 

23
16

 
(3

56
) 

37
93

 
(6

21
) 

17
56

2 
(1

00
5)

 
±

 1
1%

 1
88

19
 

(1
46

1)
 

±
 1

5%
 -

0.
70

9 
(0

.4
79

) 
0.

97
9 

(0
.3

29
) 

29
18

 
(0

.3
86

) 
-7

%
 

B
uf

fa
lo

 
42

5 
(2

00
) 

22
0 

(1
05

) 
9 (6

) 
9 (6

) 
26

69
 

(7
54

) 
18

52
 

(7
10

) 
28

4 
(1

90
) 

81
3 

(4
76

) 
33

87
 

(8
03

) 
±

 4
6%

 2
89

4 
(8

61
) 

±
 5

8%
 0

.4
19

 
(0

.6
76

) 
-0

.3
08

 
(0

.7
59

) 
14

0 
(0

.7
75

) 
17

%
 

K
ob

 
17

43
 

(3
81

) 
52

0 
(1

87
) 

45
4 

(1
26

) 
21

3 
(1

07
) 

77
66

 
(7

99
) 

21
02

 
(4

25
) 

18
1 

(5
4)

 
14

2 
(7

0)
 

10
14

3 
(8

96
) 

±
 1

7%
 2

97
7 

(4
82

) 
±

 3
2%

 7
.0

45
 

(<
0.

00
1)

 
-4

.5
92

 
(<

0.
00

1)
 

43
2.

5 
(<

0.
00

1)
 

24
1%

 

W
at

er
bu

ck
 

24
9 

(7
7)

 
73

 
(4

4)
 

25
0 

(7
6)

 
69

4 
(2

61
) 

89
3 

(1
60

) 
27

5 
(1

23
) 

16
8 

(6
6)

 
54

2 
(1

76
) 

15
59

 
(2

04
) 

±
 2

6%
 1

58
5 

(3
41

) 
±

 4
2%

 -
0.

06
4 

(0
.9

49
) 

0.
12

3 
(0

.9
02

) 
53

5.
5 

(0
.1

59
) 

-2
%

 

E
le

ph
an

t 
0 (0

) 
0 (0

) 
0 (0

) 
0 (0

) 
27

5 
(1

33
) 

22
5 

(1
09

) 
0 (0

) 
0 (0

) 
27

5 
(1

33
) 

±
 9

5%
 2

25
 

(1
09

) 
±

 9
5%

 0
.2

90
 

(0
.7

72
) 

-1
.4

19
 

(0
.1

58
) 

0 (0
.1

57
) 

22
%

 

R
oa

n 
an

te
lo

pe
 

93
0 

(2
55

) 
82

0 
(2

39
) 

50
0 

(8
8)

 
83

3 
(2

36
) 

15
60

 
(2

10
) 

15
35

 
(3

00
) 

75
5 

(2
10

) 
14

32
 

(4
04

) 
37

45
 

(4
01

) 
±

 2
1%

 4
62

1 
(6

05
) 

±
 2

6%
 -

1.
20

6 
(0

.2
30

) 
1.

40
8 

(0
.1

61
) 

10
11

 
(0

.6
87

) 
-1

9%
 

W
ar

th
og

 
84

9 
(1

58
) 

27
8 

(9
9)

 
11

1 
(2

9)
 

46
 

(3
0)

 
17

85
 

(2
09

) 
58

4 
(1

25
) 

20
0 

(7
1)

 
21

3 
(9

7)
 

29
46

 
(2

73
) 

±
 1

8%
 1

12
1 

(1
89

) 
±

 3
3%

 5
.4

98
 

(<
0.

00
1)

 
-4

.0
78

 
(<

0.
00

1)
 

32
8 

(<
0.

00
1)

 
16

3%
 

 

T
ab

le
 4

.3
: J

ol
ly

 I
I 

es
ti

m
at

es
 (

Ŷ
) 

an
d 

st
an

da
rd

 e
rr

or
 (

S
E

) 
fo

r 
S

A
D

L
-O

C
C

¹ 
(Ŷ

S
) 

an
d 

R
S

O
² 

(Ŷ
R
) 

su
rv

ey
s 

of
 k

ey
 s

pe
ci

es
 in

 C
om

oé
 

N
at

io
na

l P
ar

k,
 u

si
ng

 th
e 

st
ra

ti
fi

ed
 s

ta
ti

st
ic

al
 s

ch
em

e,
 a

nd
 r

es
ul

ts
 o

f 
th

e 
d-

st
at

is
ti

c 
(N

or
to

n-
G

ri
ff

it
hs

, 1
97

8)
 a

nd
 th

e 
pa

ir
ed

 tr
an

se
ct

 t-
te

st
 (

df
 =

 1
54

) 
an

d 
W

il
co

xo
n 

si
gn

ed
-r

an
ks

 te
st

 f
or

 c
om

pa
ri

so
n.

 T
he

 f
in

al
 c

ol
um

n 
in

di
ca

te
s 

th
e 

ex
te

nt
 to

 w
hi

ch
 S

A
D

L
-O

C
C

 e
st

im
at

es
 

ar
e 

su
pe

ri
or

 to
 R

S
O

 e
st

im
at

es
, a

nd
 w

as
 c

al
cu

la
te

d 
as

 Δ
%

 =
 (

Ŷ
S
/Ŷ

R
) 

- 
1 

(L
am

pr
ey

, P
op

e,
 e

t a
l.,

 2
02

0)
. 

¹S
A

D
L

-O
C

C
, s

em
i-

au
to

m
at

ed
 d

ee
p 

le
ar

ni
ng

 o
bl

iq
ue

-c
am

er
a-

co
un

t;
 ²

R
S

O
, r

ea
r-

se
at

 o
bs

er
ve

r.
 



Integrating remote sensing and deep learning into aerial survey of African mammals 

120 
 

 

Figure 4.6: Distribution of explanatory causes for differences in counts observed between 
the SADL-OCC and RSO approaches. The percentages were calculated from the 165 random 

observations showing differences in counts. Mutual agreements (i.e. no differences) were 
observed for 35 observations. 

 

Comparing the sample of 200 RSO count values with those derived from the SADL-
OCC approach for each key species, it was observed that in most cases large groups 
were underestimated by the SADL-OCC approach (Figure 4.7). This was mainly due 
to the vegetation cover, the absence of the group in the acquired images and because 
part of the groups appeared out-of-strip in the images. The resulting differences were 
particularly severe for the groups observed in the SE and NE strata and for large 
groups (> 20 animals) of western hartebeest, buffalo, waterbuck and roan antelope 
(Figure 4.7). 

  



Chapter 4 | Integrating oblique camera systems and DL models into aerial survey 

121 
 

 

Figure 4.7: Scatter plots between count values announced by RSOs and those derived from 
the SADL-OCC approach, for each key species. These plots were constructed on the basis of 

the 200 random RSO observations examined visually. Point markers are differentiated 
according to the most likely explanatory cause and shaded according to the strata. 

3.3. Human effort 

The human time investment in the SADL-OCC approach was around 111 hours. 
More than half of this time was devoted to full examination of the 24 megapixel (MP) 
images (i.e. step 2 of the SAL), a third to classifying the thumbnails (i.e. step 1 of 
SAL) and around 10% to removing duplicates in overlapping image areas (Table 4.4). 
Considering a 8-hours working day, the total time is equivalent to 14 working days 
for one person. Nevertheless, most of the work was done by one machine through the 
DL model, which devoted around 530 hours to all the required processing, i.e. 
inference and fine-tuning. 

Table 4.4: Detail of the human workload involved in the SADL-OCC detection verification 
process. 

 Number of items Allocated time 

Human task First pass Final pass 
Total (relative 
share) 

8h-workday 
equivalent 

Thumbnails 
classification 

85,779 
thumbnails 

93,472 
thumbnails 

24.0 hours (33%) 4.7 days 

Full 24MP image 
examination 

3,188 images 529 images 64.3 hours (58%) 8.0 days 

Duplicate 
removal 

1,739 images 163 images 9.5 hours (10%) 1.1 days 
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Assuming a manual interpretation time of a few minutes per 24MP image (Lamprey, 
Ochanda, et al., 2020), it would take thousands of hours for one person to process the 
148,239 transect images. The use of the SADL model thus represents a significant 
time saving compared to a fully manual interpretation. Furthermore, when comparing 
the total cumulative counting time of the 3 observers (162h) with the human time 
invested in the SADL-OCC approach (54h for the photography manager and 111h for 
DL model’s detections verification), the SADL-OCC approach required similar 
human effort than the traditional SRF approach. 

4. Discussion 
As DL models are not yet ready for fully automatic use on aerial survey images, we 

propose a semi-automatic DL approach that tackles the main limitation of the OCC 
technique: the considerable time required by humans to interpret images. To the best 
of our knowledge, this is the first time that DL has been integrated into an aerial 
camera survey at such a large-scale study area in Africa to produce population 
estimates. Our results showed that the SADL model significantly reduced the human 
interpretation workload while providing as good or even better population estimates 
than those obtained from RSOs counts. The SADL-OCC approach seems to be well 
adapted to count small-sized static species, as revealed by the high estimates for kob 
and warthog. However, it is difficult to draw conclusions about the larger and more 
mobile species. 

4.1. Population estimates 

Unlike previous African OCC studies (Lamprey et al., 2020a, 2020b), we did not 
observe a systematic significant positive difference between RSO population 
estimates and those derived from imagery counts for each key species. While the DL 
model performance could be the first likely explanation, our thorough comparison of 
200 RSO and SADL matching counts highlighted that the vegetation was the main 
cause of the observed differences and that model errors were the least one. The CNP 
is indeed a vegetated PA and thus differs from arid and semi-arid areas where animals 
are much more easily captured by oblique cameras, even when running, as they are 
less prone to tree occlusion. We hypothesize that SADL-OCC approach performance 
should increase in open areas. Nonetheless, as no additional cameras were used to 
correct RSO counts for large groups, we may not reject the possibility of biased 
estimation from RSOs. 

The SADL-OCC approach gave lower estimates compared to RSOs in eastern strata, 
particularly for western hartebeest, buffalo, waterbuck and roan antelope. These 
differences are mainly explained by the vegetation which occluded the few groups 
observed by RSOs during the survey. Given the lower animal density in these regions, 
the observed difference had a significant impact on the overall population estimates.  

It should also be added that western hartebeest, buffalo and roan antelope often 
showed a running reaction to the passing aircraft, making them more detectable to 
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RSOs due to movement. Whereas an RSO can easily estimate a group of moving 
animals because he has a continuous view of the scene, the OCC method has a fixed 
sampled view. This would explain why kob and warthog were better estimated by the 
SADL-OCC approach, as these species have a much more static behavior. This 
staticity also complicates the task of RSOs, and increases the risk of missing 
individuals during flights. 

4.2. Method comparison 

Our semi-automatic approach went far in addressing the main limitation of the OCC 
method, i.e. the time-consuming burden of image interpretation (Bröker et al., 2019; 
Lamprey et al., 2020b), whilst providing at least similar population estimates than the 
traditional RSO approach. In addition, this combination of DL model and OCC 
method seems to better detect small-sized and static animals, reducing the variance in 
counts between transects and therefore tightening the confidence interval of the 
estimate. Thanks to the cameras and the SAL, what has been counted and identified 
during the aerial survey was recorded, increasing the validity of the estimates obtained 
and enabling further checking and potential certification. 

The role of human interpreter in the semi-automatic approach is crucial, as he 
thoroughly verifies the DL model predictions and therefore gives confidence in the 
final count values. While the use of a DL model reduces traditional aerial survey bias 
such as animal size and color, group size or density, and observer fatigue (Griffin et 
al., 2013; Jachmann, 2002; Norton-Griffiths, 1976; Wal et al., 2011), the work of the 
human interpreter helps to reduce DL model counting bias appearing in heterogeneous 
scenes where many false alarms may be generated (Delplanque et al., 2023b). 

More than 70% of the counting difference between RSOs and the SADL-OCC 
approach were explained by environmental and acquisition factors, and less than 4% 
by the DL model performance. These results highlight some shortcomings of our OCC 
protocol. First, as stated in section 4.1, the fixed and sampled time window of the 
OCC method makes it impossible to count animals running under sparse canopy, 
unlike RSOs, which seemed to easily adapt to animal movements through continuous 
observation. A shorter time interval between image footage might enable better 
capture of animal movement, and therefore better estimation. Secondly, even though 
the RSOs have been instructed to count the animals in the strip perpendicular to the 
line of flight, the front-seat observer's announcement of a group instinctively guided 
them to look slightly forward to give a better estimate. This, combined with vegetation 
cover and animal’s perturbation due to the overflight aircraft, could explain why we 
didn’t find part or entire groups on concurrent images with the OCC method. While 
these assumptions were impossible to validate in our study, they could be verified in 
future research by using additional RSO cameras (CITES-MIKE, 2020; PAEAS, 
2014). This will allow refine the counts and reject RSO observations absent from the 
images. Finally, turbulence during flight at 92 m (300ft) height had obviously an 
impact on image footage and may explain the proportion of animals counted ‘out-of-
strip’ by the SADL-OCC approach. Nevertheless, we observed that when a strip 
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marker crossed a large group of animals, RSOs had difficulty estimating the number 
of animals in and out the strip, often leading to an overestimation of animals counted 
in the strip. This effect might be exacerbated by turbulence, causing the aircraft to 
rock and the strip to vary. 

Concerning the effect of vegetation, future work should further study the 
relationship between vegetation cover and animal counting in aerial images. In 
addition, video recording and analysis might be considered in highly vegetated areas 
to better capture the movement of groups under spare canopies. 

4.3. New insights for aerial surveys 

Our study opens up promising perspectives for frequent monitoring and mitigation 
effort in PAs since OCC survey results may now be obtained rapidly with the use of 
our semi-automatic approach. Given that the SADL-OCC approach gave similar or 
even better estimates for small-sized species compared to RSOs, and following 
previous OCC results (Delplanque et al., 2023b; Lamprey et al., 2020a, 2020b, 2023), 
we suggest that aerial survey standards are moved forward to embrace new 
technologies. 

We believe that the observer work could be migrated from on-sight count to DL 
model detection verification, which could considerably reduce associated costs given 
that during an aerial survey, RSOs are generally mobilized full time for several weeks. 
Verifying DL model predictions (i.e. points) is an easier task than on-sight counting 
and does not require highly experienced interpreters who can be easily and rapidly 
trained. Furthermore, unlike on-sight counting, detection verification may be spread 
over several people and spaced out over time to avoid any effect of human fatigue on 
counting results. However, for an autonomous use by PAs, the proposed approach 
requires a workstation with a good Graphic Processing Unit (GPU) (i.e. at least 8GB 
of memory), and a dedicated and experienced person in charge of model fine-tuning 
and inference. 

Pending the development of long-endurance Unpiloted Aerial Vehicles (UAVs), our 
proposed method has a great potential for the use of microlight aircrafts in aerial 
surveys. Compared to 4-(6-)seat Cessna light aircraft, microlight aircrafts are a much 
affordable option for PA managers since they are cheaper, they require less expensive 
fuel and maintenance, and they have less stringent pilot licensing regulations. The 
main obstacles to their use in wildlife aerial surveys have been their limited capacity 
of 1 or 2 people and their poor stability at low altitude, making it impossible to apply 
the traditional method with RSOs. However, our results and those of previous image-
based studies (Lamprey et al., 2020b; Lethbridge et al., 2019) showed that observers 
may be replaced by oblique cameras, since image interpretation burden should now 
mainly be handled by semi-automated DL models. Thanks to high-resolution cameras 
(e.g. 36MP), it is then possible to fly higher, which will 1) ensure flight stability and 
therefore human safety, 2) increase the sampling rate at no extra flying time and costs, 
thus providing more accurate estimates (Norton-Griffiths, 1978) and 3) mitigate the 
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effect of running animals thanks to a large image footprint and thus a greater scope 
for movement. Coupling these cameras with Inertial Measurement Units (IMU) and 
Global Navigation Satellite Systems (GNSS) would enable image ground projection 
from which more precise transect area estimates could be derived (Lisein et al., 2013), 
thus eliminating the need for strip markers. 

5. Conclusions 
Will AI revolutionize wildlife aerial survey? Our results suggest that we are heading 

in this direction. Most of our observations regarding the differences observed between 
RSO and SADL-OCC approaches point to the need to refine the OCC protocol more 
than improving the semi-automatic approach. While the proposed methodology needs 
to be validated in other PAs and our OCC protocol further refined, the significant time 
saving compared to a fully manual image interpretation is a major step towards 
revolutionizing aerial surveys in Africa. 
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1. Main findings 
In this thesis, I explored the use of remote sensing imagery and DL to address 

current challenges and research gaps observed in multi-species census of large African 
mammals in sub-Saharan PAs. I initially evaluated the use of pre-existing CNN-based 
object detectors, i.e. Faster R-CNN, RetinaNet and Libra R-CNN, to detect and count 
six species of wild African mammals on drone images acquired mainly in Garamba 
and Virunga national parks (Chapter 2). The Libra R-CNN model outperformed other 
models published at that time (i.e. Eikelboom et al., 2019; Kellenberger et al., 2018; 
Rey et al., 2017) in detecting African mammals within similar habitats and landscapes, 
demonstrating notable differentiation of species in nadir aerial images. It also 
surpassed the latest multi-species model in most of the performance metrics (i.e. 
Eikelboom et al., 2019), showing robust performance on an independent dataset. 
These results suggest that the balancing techniques employed within the Libra R-CNN 
architecture were particularly interesting for wildlife detection. The model exhibited 
high precision for major and isolated species but lower precision for herds due 
probably to bounding box overlap, with herding scenarios representing a significant 
portion of false positives (40% in our cases). Despite operational implications and 
challenges in data acquisition, the Libra R-CNN model offered promising 
perspectives for semi-automatic detection and identification of African mammal 
species, particularly in open savanna or sparsely wooded areas. Nevertheless, the 
precision limits observed with dense herds led me to consider other alternatives such 
as developing CNN-based object detectors based on points to improve counting and 
overcome challenges posed by highly overlapping boxes in herds, which probably 
affect the CNN during training. Consequently, I developed HerdNet, a point-based 
CNN better suited to counting animals on aerial imagery (Chapter 3). It was directly 
inspired by approaches developed in crowd counting, a field sharing many similarities 
with oblique animal counting, and was optimized on challenging herds of free-ranging 
livestock. I compared HerdNet with two other CNN-based counting approaches: 
Faster R-CNN (anchor-based), and DLA-34 (density-based). It appeared that previous 
methods relying on density or bounding boxes prove less suitable for precise animal 
counting while other authors suggested them as promising approaches (Eikelboom et 
al., 2019; Padubidri et al., 2021; Peng et al., 2020). The results obtained also further 
emphasize the inefficiency of anchor-based models for close-by animals already 
observed in Chapter 2. HerdNet not only offers superior detection and counting 
accuracy but also makes annotation and verification processes easier, which could be 
valuable in a semi-automated process. Furthermore, HerdNet was trained and 
evaluated on nadir images used in Chapter 2. It surpassed the performance of the first 
model developed in this thesis, i.e. Libra R-CNN, by drastically reducing counting 
errors, such as RMSE, which went from 24 to 4 animals per image with HerdNet. 
However, species identification, particularly for minority species, displayed 
limitations and therefore, for the time being, humans are still needed to ensure the 
quality of species recognition and count values by verifying model detections. 
Chapter 3 also highlighted the trade-off between recall and precision in developing 
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tools for PA managers. Since undercounting is one of the major biases of aerial 
surveys (Caughley, 1974; Grimsdell and Westley, 1981; Jachmann, 2002), the main 
expectation of automated detection methods is to obtain a model with a high detection 
rate (i.e. high recall) and few false positives (i.e. high precision). However, recall and 
precision are often antagonistic: enhancing one aspect typically comes at the expense 
of the other. 

In Chapters 2 and 3, the performance of the models was mainly evaluated on 
images containing animals (i.e. positive images), on small areas and without 
considering image overlap. By applying a model to a set of images taken continuously 
over transects, we get closer to the practical use of applying such automated methods. 
The risk of false positives is however increased with the higher number of 
confounding elements in the landscape, and so the claimed precision is overestimated. 
As a result, I have migrated from evaluating the performance of HerdNet on positive 
images only (i.e. the machine learning way) to obtaining population estimates for an 
entire PA (Chapter 4). Being aware that the current model needs humans for detection 
verification, we first estimated the human workload reduction using a set of oblique 
images acquired in Uganda containing less than 10% of positive images and more 
than 90% of negative images. After training HerdNet to detect 12 wildlife and 
livestock species on a small set of positive annotated images, it was evaluated using a 
significant and meaningful set of about 6,000 test images. The results showed a 74% 
reduction of manual interpretation workload while guiding human interpreters to 
about 95% of the animals. Identification showed to be difficult for some visually 
related species, like buffalo and domestic cow, and false positive rate was notable, 
both emphasizing again the need to keep humans in the whole process for verification. 
Nevertheless, these results have opened up new avenues for advancing aerial surveys 
by integrating DL and continuous oblique imaging into aerial survey standards. 
Consequently, we experimented with a hybrid aerial survey in the Comoé National 
Park (CNP) in Côte d’Ivoire, i.e. simultaneously using human observers and an 
automatic photographic approach. To the best of our knowledge, this was the first 
time that DL has been integrated into an aerial continuous camera survey at such a 
large-scale African PA to produce population estimates. To do so, I designed a 
pipeline, integrating a pre-trained version of HerdNet and involving 3 verification 
steps, that aims to balance efficiency and human effort in 7 key-species population 
estimation. It represented a drastic time savings compared to a fully manual 
interpretation of the images. The Jolly II analysis (Jolly, 1969; Norton-Griffiths, 1978) 
enabled us to compare estimates derived from observer counts with those derived from 
the model's verified detections. This analysis revealed that using the semi-automated 
method, estimates were 2.6 to 3.4 times higher for small-sized species (kob, warthog) 
and comparable for other key species, as well as tighter confidence intervals. Counting 
differences between the two approaches appeared to be mainly attributed to vegetation 
obstruction, counts announced by observers that do not appear in the images, and 
presumed counting errors during the flights. 
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2. Practical implications of these emerging 
technologies 
Every technological advance aims to address previous challenges, but paradoxically 

creates new ones. The research in this thesis is based on the integration of remote 
sensing imagery into African aerial survey, an idea that is not new but has become 
possible due to the rapid evolution of technology. However, this has also brought with 
it a number of constraints, mainly in terms of image processing requirements, a point 
that I have particularly examined following on from the incremental improvement of 
an existing, relatively effective method (Figure 5.1a-b). To put this in context, here 
is first a brief review of these key incremental steps. For over 50 years now, imagery 
has been part of the systematic aerial sample count through the use of observers’ 
cameras, photographing large groups for latter counting. These cameras were mainly 
used for intermittent shooting, even though camera-only systems with continuous 
imaging were already proposed for replacing observers (Caughley, 1974; Leedy, 
1948; Siniff and Skoog, 1964). In those days, observers used film cameras, which 
required a great deal of care (e.g. changing films, referencing images, developing 
films) and generated handling errors (Norton-Griffiths, 1978), probably slowing down 
the idea of continuous-imaging systems. Digital cameras as well as technological and 
computer advances in the last 20 years have simplified matters, and have led to a 
whole host of wildlife monitoring applications, first punctually (e.g. Vermeulen et al., 
2013) and very recently at large scale with oblique camera systems (e.g. Lamprey et 
al., 2020b) or VHR satellite systems (e.g. Wu et al., 2023). Although these methods 
are seen as revolutionary for resetting baselines and better tracking African mammal 
populations, the time-consuming and tedious processing of images has been a real 
obstacle and still causes reluctance for integration in aerial survey protocols due to the 
cost involved. The development of (semi-)automatic image processing approaches 
was and is still therefore crucial to ensure the sustainability of these new methods.  

In response, I showed that the use of DL models alongside continuous UHR aerial 
imagery has demonstrated superior performance compared to conventional aerial 
survey methods, constituting a pivotal advancement. Using HerdNet as a tool for 
sorting thousands of images and pre-detecting animals in them has tackled the main 
limitation of oblique camera systems: the considerable time required by humans to 
interpret images. These results are particularly valuable in the realm of cost-
effectiveness, as a significant saving on manual labor is in fact a saving which could 
be allocated, for instance, to increasing the sampling rate or supporting conservation 
actions. The deployment of these technological approaches not only translates to some 
financial savings but also contributes significantly to enhanced wildlife monitoring 
capabilities. Echoing the introductory emphasis on EBVs framework (Brummitt et al., 
2017; Jetz et al., 2019), the combination of remote sensing and DL should facilitate 
wildlife observation and hence biodiversity monitoring through standardized, 
systematic and comparable records. Additionally, it should fortify the foundation for 
data validation, quality assessment, and certification processes.  
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Figure 5.1: Advances in the conventional aerial survey system and human, technical and 
practical requirements: (a) the conventional observer system; (b) the AI-assisted photo 

system, developed and tested in the context of the thesis; and (c) an improved system based 
on the recommendations and perspectives of the thesis. 

The most likely source of bias in the conventional approach is the observer, who is 
bound by several factors influencing the counting performance. Camera systems, in 
contrast, operate mechanically and are much less influenced by survey and 
environmental factors, making them better ‘eyes’ for counting wildlife. The DL model 
would refer to the ‘brain’, processing visual information. Although, like the observer, 
it is subject to omissions, over- or under-estimations, it may be predictable as precise 
and repeatable patterns can be extracted from its behavior on various datasets, unlike 
humans, who show sometimes unpredictable behavior and great variability. These 
trends may serve for correcting errors (Eikelboom et al., 2019). Alternatively, 
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detections can also be verified by humans, as was done in Chapter 4.2. Detection 
verification, like interpretation in similar studies (Frederick et al., 2003; Lamprey et 
al., 2020b; Terletzky and Ramsey, 2016; Xue et al., 2017), is a task that may be 
performed by anyone with a minimum of interest and attention to detail after a short 
training session. In fact, I would even suggest that this could be the new task of 
conventional system observers. Their job would thus migrate from counting animals 
on sight from the aircraft in the conventional system, to verifying the detections of a 
model in the AI-assisted photo system (Figure 5.1a-b). This is even more justified 
given that counting by sight from the aircraft is a risky task that may additionally 
cause airsickness to observers.  

Despite the advantages just mentioned, it is imperative to acknowledge certain 
technical implications for practical use by PA managers. The use of remote sensing 
and machine learning for wildlife applications requires multidisciplinary work and 
knowledge. While particularly interesting in the field, such profiles are still rare for 
the moment and are more present in the field of scientific research since the 
application of these technologies is still in its infancy. It remains a semantic gap 
between the remote sensing, ecology and computer science communities, which may 
create collaborative challenges (Kuenzer et al., 2014; Pettorelli et al., 2014), but which 
should be bridged to train multidisciplinary staff. Remote sensing and DL also require 
equipment, which may generate some initial costs and regular maintenance. There are 
two main types of equipment to be distinguished: those used to acquire the images, 
and those used to process them. In a move towards a more technological approach, 
the AI-assisted photo system has the advantage of inheriting much of the hardware 
already used in the conventional system (Figure 5.1a-b). However, it still requires the 
purchase of high-resolution digital cameras (I suggest at least 24MP), lenses of 
sufficient quality to identify the target species, intervalometers for photo-shooting at 
regular intervals, power banks, but also several SD cards and storage drives for data 
back-up (Figure 5.1b). Providing a precise absolute cost for all this equipment is 
difficult as it may vary according to the model of equipment used, but as an example, 
the total cost of aerial photo equipment for the 2022 survey of the Comoé National 
Park was around 6200€. For image processing equipment, high-capacity computers 
with large-memory Graphics Processing Unit (GPU) are required, particularly for 
training DL models. From experience, I suggest a GPU with a minimum memory of 
8GB. High-performance computing clusters are also available via cloud platforms 
such as Google Compute Engine or Amazon Web Services, with prices that may be 
adapted to computing needs. However, as its name suggests, cloud computing requires 
a good internet connection, which is not always the case in some African PAs. Of 
course, a model might be trained on such platforms upstream by partners or 
collaborators, but I would still suggest having a machine with a GPU to perform local 
computing or inference. It is an investment of around 2,000€ that would avoid having 
to transfer hundreds of thousands of images elsewhere for processing. However, as 
mentioned above, this requires qualified personnel to maintain both the computer and 
the consequent database produced. 
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3. Remaining challenges for automated aerial 
counting 
Although current DL models show very interesting results for the detection and 

counting of animals on UHR aerial images, there are still several challenges to be 
overcome and aspects to be improved to increase the automation of the whole 
workflow, i.e. from image acquisition to population estimates delivery. In this section, 
I develop what I consider to be the main elements to work on in the years to come. 

3.1. False positive reduction 

Reducing the number of false positives is perhaps the greatest challenge in wildlife 
counting using remote sensing imagery. Unlike most computer vision applications, 
the imbalance between the pixel area covered by animals (i.e. the foreground) and 
their environment (i.e. the background) is extremely important (Kellenberger et al., 
2018). Due to its natural heterogeneity, particularly strong in African savanna, this 
environment is often riddled with confusing animal-like objects, like tree trunks, rocks 
or termite mounds, increasing significantly the number of false positives generated by 
a DL model when applied on large areas, as systematically observed across Chapters 
2 to 4. In response, hard negative mining techniques have already been employed to 
reduce false positives and shown to provide improved model performance 
(Kellenberger et al., 2018; Peng et al., 2020). I also developed a similar approach in 
Chapter 3. Although this minimized the counting error at the image scale, the number 
of false positives remains high at the scale of transects, as observed in Chapter 4.1. 
Future research should continue experimentation in this area, as it is considered 
essential to lighten the task of downstream human verification. Nevertheless, this task 
was considerably reduced following a manual classification of thumbnails centered 
on each model detection during our study of the Comoé 2022 aerial survey (Chapter 
4.2). This first step served as a guide for the interpreter, directing his attention to the 
most relevant detections while discarding numbers of false positives, thus reducing 
the number of full-size images to be verified subsequently in the second step. 
However, this first thumbnail classification step takes a considerable amount of time 
(33% of total human verification time in our study). It is therefore not surprising that 
previous studies explored the use of an image classification model, trained to 
distinguish image patches containing animals from background-only ones (Guirado et 
al., 2019; Rahnemoonfar et al., 2019). The main risk with this type of two-step 
automated approach is that errors in the first step (mainly false negatives) cannot be 
rectified by the second step. Although this method seems interesting, my advice would 
be to focus on improving a single object detection model rather than combining 
several models to avoid error propagation. 

3.2. Species identification 

While the case of multi-species detection faces practical needs, most studies have 
focused on a single species, or have not distinguished between species and grouped 



Chapter 5 | General discussion, perspectives and conclusion 

135 
 

them into a single category (e.g. 'animal', or 'mammal') (Xu et al., 2024). Accurate 
species identification is an inherent challenge for DL models, caused by the naturally 
unbalanced distribution of species, consequently creating a significant imbalance in 
training datasets. As a result, species that are predominantly present in PAs are well 
represented and recognized by DL models, whereas species that are found in smaller 
numbers are under-represented and therefore poorly recognized by DL models. Not 
to mention the consequently small test sample sizes for these species that reduce the 
statistical credibility of the model performance. The main problem with this 
imbalance issue is that it is usually the less abundant species that are targeted by 
conservation agencies, as they are often endangered or on the increase. In Chapter 3, 
HerdNet showed slightly poorer species identification performance for livestock than 
the baseline (i.e. Faster R-CNN), suggesting mandatory human verification to correct 
this and avoid a too high level of confusion. This was also confirmed for the 
identification of wildlife species in Chapter 4.1, where strong confusion was 
observed between look-alike species (e.g. buffalo and cow). One hypothesis, 
apparently shared with other authors (e.g. Xu et al., 2024), is that the relatively small 
pixel size of animals on aerial images creates features that are difficult to distinguish 
between species. This was illustrated and discussed in Chapter 3, where we observed 
that identification performance degraded with distance from the aircraft, i.e. in areas 
where animals are represented by fewer pixels. Future research should focus on the 
optimization and design of feature extractors to better identify small objects that are 
at least recognizable by humans. Nevertheless, while at first we might naively have 
thought that if a human is able to properly discern species on RGB aerial images, then 
a DL model should be able to as well; the results of this thesis show that this is not 
necessarily the case even on images with GSD smaller than 5 cm (see Chapter 2). 
Humans seem to be better at identifying species, even if they can be prone to fatigue 
or mistakes in challenging conditions (e.g. occlusion). Based on my own experience 
and probably that of others accustomed to the task of annotation and identification, it 
appears that our eye takes several elements into account when making its decision, 
such as the surrounding elements of the potential animal, the shape and behavior of 
the herd, other images overlapping the target area, the proximity of other species, or 
the spatial location of the image in the PA. All these features might be taken into 
account by a DL model (see Section 5.1), especially with the advent of foundational 

models (FMs, see Section 5.5), which should be experimented with to improve current 
identification performance. 

3.3. Image overlap 

Due to overlapping coverage of images generated by continuous camera systems, 
the same animal may be present in multiple images, which may lead to an 
overestimation of the true number of individuals if not managed properly. It is 
therefore necessary to carefully manage overlap to avoid double counting. In their 
study, Lamprey et al. (2020b) chose to count all the animals in the even-number 
images, and count only animals appearing in the non-overlap portion in the odd-
number images. During the 2022 Comoé aerial survey (Chapter 4.2), I manually 
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checked each batch of consecutive images for the same individuals present in several 
images. This took around 10% of the total human verification time, representing about 
10 working hours. I personally used a custom template on Label Studio (Tkachenko 
et al., 2020) for this task, without outlining overlapping areas, but recent tools like 
Scout (WildMe) proposed such a feature. Automatic approaches could perhaps be 
explored for managing double counts due to image overlap (Figure 5.1c), as the time 
investment could prove much greater for surveys in PAs with high animal density. A 
simple idea would be to use basic computer vision techniques, such as feature 

detection and matching, to outline areas of image overlap and potentially layer the 
detections of the relevant images. Briefly, this method independently detects features 
and assigns them a descriptor in the images to be compared and then searches for 
likely matching candidates (Szeliski, 2022). While this might be a solution for static 
species (e.g. Corcoran et al., 2019), other methods based on image projection and 
bipartite graphs may be used for moderately moving animals (Shao et al., 2020; Soares 
et al., 2021). Unfortunately, such methods have been mainly tested on vertical imagery 
and thus could be of little interest for oblique imagery containing species that are 
running during the passage of an aircraft. This was a common occurrence, for 
example, with hartebeest and buffalo during the 2022 Comoé aerial survey. Some 
animals were found in more than two images because they were running parallel to 
the aircraft. Such behavior makes the problem even more complex. Although I believe 
that this is not an absolute priority at the moment, future research should focus on the 
development of suitable automatic approaches for this task. 

3.4. Transect area estimates 

In the conventional method, the area of the transects is estimated following a prior 
calibration of the strip width, theoretically delimited by the streamers as a function of 
the flying height, which is then multiplied by the length of the transect (CITES-MIKE, 
2020; Frederick, 2012; Norton-Griffiths, 1978; PAEAS, 2014). Calibration is 
undoubtedly one of the most crucial aspects of an aerial survey, but it can 
unfortunately be subject to errors that have a major impact on survey results, such as 
a change in observer or streamer position after calibration (Frederick, 2012). During 
conventional calibration, markers are placed on the ground at regular distances (e.g. 
20 m) and the aircraft makes several passes at different altitudes (recorded by an a 
radar or laser altimeter) during which the observers count the number of markers 
visible between the streamers. To avoid the use of altimeters, which can lead to errors 
and require frequent checking (Frederick, 2012), flight height can be estimated using 
the GPS-DEM method (Lamprey et al., 2020b) thanks to recent developments in GPS 
technology and Shuttle Radar Topography Mission (SRTM) digital elevation model 
(DEM). This method measures the flying height as the difference in elevation above 
mean-sea-level between the aircraft navigation GPS and the terrain below. For oblique 
camera systems, recent studies have performed calibration by randomly selecting geo-
referenced transect images and superimposing them on very-high resolution satellite 
images in Google Earth to measure the strip width or image footprint (Lamprey et al., 
2020a, 2020b). However, whether using the traditional method or the oblique camera 
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system, turbulence may momentarily cause wing tilt when flying over transects, 
resulting in a considerable increase in the transect area (Lamprey et al., 2020b; 
Pennycuick and Western, 1972). In the traditional observer approach, this effect is 
unfortunately not taken into account. For the oblique camera system, a correction 
factor for tilt can be derived from a random analysis of several batches of consecutive 
images, again using Google Earth. Experiments of Lamprey et al. (2020b) showed, 
for example, an increase of around 7.4% on the estimated sample area based on 
conventional calibration results. Such an increase is bound to have an impact on the 
Jolly II method, and consequently on the population estimates derived from it. It thus 
suggests a call for the development of more accurate methods for estimating transect 
area. Solutions may be found by drawing ideas from existing methods developed for 
vertical aerial imagery (e.g. Lisein et al., 2013; Soares et al., 2021) that use 
photogrammetry elements and Geographic Information Systems (GIS). Such methods 
often require image geo-referencing and ground projection through the use of GNSS 
sensor and Inertial Measurement Units (IMU) (Verykokou and Ioannidis, 2018; Wolf 
et al., 2014), combined to become an Inertial Navigation System (INS) (Figure 5.1c), 
which should be increasingly precise and affordable. 

4. Monitoring African mammals from space: reality 
or fantasy? 
This thesis focused exclusively on aerial platforms and passive RGB acquisition 

systems, but the use of remote sensing for wildlife monitoring could be theoretically 
extended to space platforms coupled with other systems and targeted spectra. 
However, is current satellite imagery already suitable for surveying or monitoring 
large African mammals? This is the key question for upscaling the methods developed 
in this thesis and imagining the prospects for large-scale applications. This question, 
but extended to all wildlife, has been the subject of a review article published in 
GIScience & Remote Sensing (IF=6.7), available in the Annex to this thesis, on which 
the following text is based and derived. Examining 49 peer-reviewed papers, the 
analysis reveals trends in publications, targeted species, studied biomes, sensors, 
resolutions, and methods used for detection, counting and surveying. However, I 
believe that the practical application of satellite imagery for large African mammal 
survey is limited and not a realistic alternative for the moment. This is due to various 
constraining factors associated with the use of current satellites (Figure 5.2).  
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Figure 5.2: Comparison of the technical, practical and economic considerations of the 3 
platforms mainly discussed in the thesis. Note that a two-color cell means a potential 

transition to a more positive state, depending on implementation details (e.g. higher flight 
height). 

Firstly, although the GSDs of today's VHR satellites are attractive (30-50 cm/pixel) 
because they can apparently detect some key conservation species (e.g. African 
elephant, Loxodonta africana) (Duporge et al., 2021), differentiation between species 
is difficult, if not impossible (Wu et al., 2023; Yang et al., 2014). In addition, as one 
animal is covered by just a few numbers of pixels, differentiation between animals 
and environmental features is trickier than with aerial imagery. This is further 
accentuated by the complexity and the number of confusing landscape features in 
African savannas (Irvine et al., 2019; Xue et al., 2017). Based on recent personal 
technical experience, it is sometimes very difficult to decide on certain manually 
detected features. In fact, it is not always possible to reject the hypothesis of an animal 
for certain objects if we do not have a reference image of the same area taken at a near 
date. Regardless of the financial aspects, I feel that this is the most constraining aspect 
when it comes to considering the practical use of satellite imagery for wildlife 
monitoring.  

Secondly, the large spatial and temporal coverage of satellite images means that 
large areas may be covered rapidly and frequently, offering possibilities for total 
count. Moreover, this can be of particular interest in reducing the double-counting 
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bias of the conventional aerial counting method, as well as potentially increasing both 
the precision and accuracy of population estimates. However, the unpredictable 
availability and current cost of VHR satellite imagery severely limit these prospects 
(Figure 5.2). On the one hand, the weather can easily render an image unusable, for 
example in overcast conditions. Furthermore, it is not possible to set the time of day 
at which the image is acquired, which may not correspond to the time and conditions 
when mammals are most visible. On the other hand, the commercial system on which 
these VHR satellites are based operates on priority and license principles, which can 
prevent an image from being acquired at a given time and place, and its sharing to 
third parties. Combined with the fact that the higher the image's spatial resolution, the 
smaller its swath width, this means that covering a PA of several thousand square 
kilometers requires a greater number of satellite passes or acquisition requests. This 
has repercussions not only on the complexity of image mosaicking, but also on the 
costs involved. Pricing varies according to several factors such as the image provider, 
type of demand (archive or tasking), image resolution and spectral characteristics, 
level of processing, coverage area, licensing terms, and intended use. It is therefore 
difficult to give a precise estimate, as they are also often linked to requests for 
quotations. Prices may range from several hundreds to thousands of euros per 
minimum-size ordered scene (25 to 100 km²), which may result in prohibitive costs 
for covering large areas (Apollo Mapping, 2023; LAND INFO Worldwide Mapping, 
LLC, 2023). Nevertheless, we may look forward to positive developments in this 
aspect, as several VHR satellite image providers (e.g. Airbus, Maxar) are offering 
access opportunities at lower or no cost. 

Finally, image processing is an aspect that should not be overlooked and which can 
also generate significant additional costs, depending on the degree of human 
investment in the process. Although, as presented in the Annex and in this thesis, 
automatic methods are emerging, they do not yet make it possible to fully automate 
image analysis. Human intervention remains essential to first develop or train 
automated methods, and then to validate their predictions and obtain reliable count 
data. As stated in Section 2 of this chapter, the development of automated approaches 
requires expertise at the crossroads of different fields, mainly ecology, computer 
science and GIS. Unfortunately, the licensing scheme of satellite image providers does 
not allow data to be shared freely, thus limiting scientific research, community 
collaborations and the development of robust models trained on a large volume of 
images. To ensure the practical application of these tools by PA managers, this 
multidisciplinary knowledge is however crucial and needs to be passed on to local 
operators. This is essential to ensure sustainable use of these new tools, and to avoid 
dependence on external researchers and developers. 

In conclusion to this section, while recent advancements in image-based ecological 
monitoring have propelled the potential of satellite ahead of other methods, current 
limitations, including the still-too-low resolution and the inability to identify species, 
underscore the method's reliance on ground-truthing data for validation. The efficacy 
is notably high in open and homogeneous environments but falters in more complex 
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ecosystems with numbers of confusing elements, such as in African savannas. 
Emphasizing the indispensability of field data at present, I would argue that satellite 
images may serve as valuable complements to organize and deploy other platform 
data acquisition (e.g. aircraft) rather than standalone solutions (see Section 5.3). 
While the general idea hold promise, the existing constraints hinder its emergence as 
a viable alternative, necessitating cost reduction, continued research, and 
technological refinement to unlock its full potential in ecological monitoring. In the 
interests of positive change towards operational approaches, we have identified and 
presented several research priorities and recommendations, which are extensively 
detailed in the Annex: (1) Establishing wildlife-dedicated VHR satellite constellations 
providing freely available imagery at high spatial and temporal resolutions; (2) 
Developing sampling methods in tandem with advancements in remote sensing and 
image processing; (3) Creating foundational DL models for processing diverse 
wildlife monitoring data; (4) Strengthening initiatives for sharing and collaborative 
annotation platforms; and (5) Promoting efforts to enhance events, training, 
publications, and funding programs that merge interdisciplinary approaches. 

5. Perspectives 
In this final section, I put forward some perspectives related to the findings of this 

thesis. Five topics are particularly covered: 1) the potential enhancements to HerdNet; 
2) the upgrade of aerial survey guidelines and standards; 3) the use of microlight 
aircraft as an alternative to light aircraft; 4) the combination of the different remote 
sensing platforms considered in the thesis; and 5) the development of foundational 
DL models. 

5.1. Enhancing HerdNet 

Although HerdNet has shown promising counting and detection performances to cut 
down on the time-consuming interpretation of aerial photo survey images (Chapter 
3-4), there is still room for improvement and further validation. A first aspect that 
could undoubtedly be improved is species identification. In Chapter 3, I showed that 
this was the major weakness of HerdNet. There are several tracks of improvement that 
I believe could help to better identify species. From an 'architecture' perspective and 
its training, different levels can be explored, such as the addition of extra convolution 
layers for the classification head, the testing of other cost functions, performing 
additional balancing, adaptive fine-tuning or incremental learning (Belouadah et al., 
2021; Oksuz et al., 2021; Wu et al., 2019). Other avenues of research would be to look 
at few-shot learning techniques where models are able to be trained efficiently on little 
or no training data (Xin et al., 2024). This may be obtained with the help of synthetic 
data for instance (Nikolenko, 2021), which showed promising results for rare wildlife 
species recognition in camera trap images (e.g. Beery et al., 2020) or for rare object 
detection in satellite imagery (e.g. Martinson et al., 2021). In addition, it would be 
very worthwhile to evaluate the combination of images with other species-related 
variables as inputs, such as herd structure, habitat, vegetation type or species 
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relationships. This additional information should certainly improve the accuracy of 
model identification. 

Easy and rapid adaptation of the model to another landscape is also an essential 
aspect to address for its practical use. From experience, I noticed that when I applied 
a version of the model trained on one PA (e.g. QENP, Uganda) to another PA (e.g. 
Comoé, Côte d'Ivoire), recall and precision systematically dropped, even though some 
species were present in both areas. This is due to a number of technical and natural 
factors, such as the camera model, its angle of inclination, a change in landscape or 
species, a different GSD, or a change in contrast and brightness. These factors result 
in a change in data distribution and/or feature spaces between the source dataset, i.e. 
the one on which the model has been trained, and the target dataset, the application 
case. The discrepancy between the input data distributions of the two datasets or the 
difference in their feature spaces can lead to a degradation in model performance. On 
the one hand, if only a limited dataset is available, solutions exist to minimize the gap 
between source and target distributions, like transfer learning. The latter aims to 
transfer the knowledge learned to perform a task in the annotated source dataset, in 
order to perform the same or another task in the unannotated target dataset (Pan and 
Yang, 2010). Another complementary perspective would be to train a backbone in a 
self-supervised way on a large set of heterogeneous images, leveraging both images 
with and without animals. Self-supervised learning is a type of machine learning 
where the model learns to predict part of its input from other parts, using the input 
data itself as a form of supervision (Jing and Tian, 2021). This method leverages large 
amounts of unlabeled data to generate useful features or representations without the 
need for extensive manual labeling. Such an approach provides pre-trained models 
that could be versatile bases for subsequent fine-tuning steps. On the other hand, if we 
have a large heterogeneous annotated dataset, i.e. with many different landscapes, 
animal species and instances, it is theoretically possible to train a model on the whole 
to learn how to generalize correctly. Such a model would have a much larger feature 
space and a much wider data distribution, enabling it to be used more widely, thus 
avoiding the need to systematically revert to a from-scratch annotation phase when 
new aerial images are acquired. As an example, I recently had the opportunity to test 
HerdNet on independent datasets acquired in another PAs (i.e. Zakouma National 
Park, Chad and Murchison Falls National Park, Uganda), following a prior training 
on all the aerial African mammal datasets available in our lab. Although the 
acquisition conditions were somehow similar, the model showed early signs of 
generalization. Qualitatively, the model was able to detect species absent from the 
training set, such as lions, ostriches, and various bird species. Quantitatively, we 
estimated an overall recall of over 70% and a positive image detection rate (i.e. with 
animals) of over 95%. These first results suggest the idealistic idea of a general high-
performance model trained on numerous PAs and on which we could be much more 
confident about its predictions. While these tests are a good starting point for 
validating the approach proposed in this thesis, they should be multiplied to highlight 
its weaknesses and strengths. I still think that human intervention and verification 
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remain essential, whether to correct the identification and counts of new species, to 
avoid double counting or to spot partially occluded individuals in substantial 
vegetated areas. 

Finally, Chapter 4.2 highlighted the counting limitations of the AI-assisted photo 
system in vegetated areas, compared to the observer who tend to better estimate the 
true number of animals as they run. This hypothesis had been put forward but could 
not be fully confirmed, as we could not rule out the possibility that certain flaws in 
the acquisition protocol may have limited the possibility of animal detection in these 
areas. The results of the 2024 aerial survey of Zakouma National Park (Chad), during 
which we carried out a hybrid survey in collaboration with African Parks, highlighted 
this same observation. Despite the continuous imaging of the photo system and the 
images taken by observers, the comparison of photo counts and those announced by 
observers differed inconsistently in heavily vegetated areas. In some cases, even no 
animals were visible in the images, probably because they are moving too fast and 
hiding directly under the trees (E. Bussière, personal communication, July 24, 2024). 
To tackle this challenge, we suggested the alternative of video recording in Chapter 
4.2. However, such an approach brings with it a series of logistical and technical 
challenges. The resolution of the images composing the videos is generally lower, and 
the cameras are more expensive. In addition, the volume of data generated is 
significant, and management could be trickier when considering survey flights of 3-
5h in general. For example, a 4K camera (4,096 x 2,160 pixels at maximum resolution) 
can generate between 30 and 50 GB per hour, compared with around 12 GB/hour for 
images of equivalent resolution taken at 1-second intervals. Although video recording 
can be interesting for detecting animals more easily during an automated or a manual 
analysis, in my opinion it is of little use in open areas and therefore generates 
worthless data for most of a savanna survey. Without considering costs as a constraint, 
an intermediate solution could be to take punctual video recordings in heavily 
vegetated areas. However, if we are heading for uncrewed acquisition platforms, we 
need to think about an automatic shooting mode when flying over highly vegetated 
area within the transects. I think this should be feasible if a vegetation map is available 
and the acquisition platform is continuously geo-referenced. In this way, a signal 
could be sent to the camera when the platform approaches and leaves a densely 
vegetated area. 

5.2. Advancing aerial survey guidelines and standards 

Given the increased accuracy and precision of oblique camera systems compared 
with the traditional approach (Lamprey et al., 2020a, 2020b, 2023), and the positive 
results of DL in significantly reducing human interpretation of images (Chapter 4), 
aerial survey standards and guidelines should move forward to include these new 
technologies. The transition to automatic approaches should nevertheless be gradual, 
in my opinion, and remain an alternative for the time being given the expertise and 
practical implications this entails (Section 2 of this chapter). The guidelines and 
standards documents (e.g. CITES-MIKE, 2020) are indeed true references for 
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practitioners, and are the result of decades of continual refinement and improvement. 
They are really important because they guarantee the quality of the results of an aerial 
survey. I think it's important to add at least basic protocols for installing oblique 
camera systems for continuous image acquisition, given the growing interest in these 
systems in recent years. In my opinion, this will have two beneficial consequences: 1) 
the spread of the method's use, leading to the creation of multiple databases that are 
crucial for the development of large-scale and robust DL models; and 2) the 
continuous improvement of protocols and the promotion of exchanges between 
organizations, which might lead to an accepted and standard protocol. Nevertheless, 
manual interpretation is seen as the biggest challenge, as it is very labor-intensive and 
therefore very costly at present. As the results of this thesis show, automatic DL 
models like HerdNet are certainly the solution to this problem but including them in 
the guidelines may be premature, as no free, effective and easy-to-use tool is currently 
available. Furthermore, AI is a rapidly evolving field, with new techniques or CNN 
architecture coming out every week, if not every day. I believe this is an aspect that 
should not be overlooked. I feel that what should be included in the guidelines are 
more general considerations, such as techniques for verifying and correcting the 
predictions of an automatic approach, whatever its architecture. 

5.3. Microlight aircrafts 

The combination of oblique imaging and DL has great potential for the use of long-
endurance drones and microlight aircrafts (or simply microlights, also called ultralight 
aircrafts in some countries), eliminating or reducing the risks for the flying crew in 
the conventional protocol (Figure 5.1c). The current main disadvantage of drones for 
wildlife survey applications is its low endurance and therefore poor spatial coverage 
compared to the use of light aircraft (Linchant, 2021). Future technical advances will 
undoubtedly improve their endurance, such as continuous solar power supply 
(Hassanalian and Abdelkefi, 2017; Rajabi et al., 2021), and will offer a real alternative 
to light aircraft. Pending this, microlights appear to be a best candidate, combining 
lower cost and efficiency (Linchant, 2021). Light aircraft are very expensive, and are 
subject to a very strict legal framework, such as extensive pilot training, technical 
certification of every single component, and frequent aircraft maintenance. All this 
makes up a large part of an aerial survey budget (Bouché et al., 2012; Grimsdell and 
Westley, 1981). Furthermore, the aircraft must be operated at an airspeed no slower 
than about 40% to 60% above the stall speed to remain safe (Lamprey et al., 2020b). 
At a common survey altitude of 300 feet, ground speed of at least 160 kmph is thus 
recommended (CITES-MIKE, 2020). Microlights are by definition aircraft with a 
maximum take-off mass of 450 kg and a stall speed of 65 kmph for a two-seat 
landplane (Civil Aviation Authority, 2024). They are less regulated than light aircraft, 
offer better maneuverability and consume motor gasoline (MOGAS), some 20% 
cheaper than aviation gasoline (AVGAS) used by light aircraft (AirNav, 2021). 
Microlights also offer better flexibility in PAs as they can take off and land outside 
conventional aerodromes, as well as carrying sensors outside the engine (Latte et al., 
2020). They are in fact already used in PAs but not for traditional aerial surveys, since 
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their limited capacity of 1 or 2 people is unadapted to the observer method. However, 
the results presented in Chapter 4 offer good prospects for transposing the oblique 
camera system to this platform. The ‘big data’ limitation previously highlighted 
(Linchant, 2021), regarding the development of this platform as an alternative to the 
drone or light aircraft, is now lifted thanks to the use of DL models. However, as the 
approach is semi-automatic, this would not jeopardize the work of the observers. In 
my opinion, the use of such models will inevitably still involve human verification to 
ensure optimal quality of survey results, at least for the next few years. The previous 
work of observers, i.e. risky and hasty sight-counting, would therefore shift to risk-
free and thorough laboratory work, i.e. model detection verification. 

5.4. Combining remote sensing platforms 

As discussed in Section 4, the use of VHR satellites is not currently a viable solution 
for large mammal census in heterogeneous environments, as is the case for most PAs 
in sub-Saharan Africa. The use of light aircraft is very popular and effective, 
particularly with the addition of oblique camera systems (Chapter 4), but its logistics, 
associated risks, regulations and costs have led to the emergence of alternatives such 
as microlights and drones. The drone is indeed interesting, especially when combined 
with the DL to manage the large quantity of images generated (Chapter 2-3), but its 
low endurance and efficiency restrict it to limited sampling for the time being. 
However, I believe that the strengths of these three platforms could be combined to 
develop multi-level monitoring for more effective active conservation strategies. For 
example, a time series of satellite images could be collected upstream at points of 
interest in a PA to study the seasonality of gregarious or migratory species at macro-
level (e.g. Wu et al., 2023). This would make it easier to plan and set up drone or 
microlight acquisition missions downstream to first obtain precise and verifiable 
estimates at meso- and micro-level, and then to carry out appropriate conservation 
actions. This multi-level combination also has prospects for use in monitoring the co-
existence of wildlife and livestock in PAs, which may be a source of territorial, health 
and economic conflict (Butt and Turner, 2012; Georgiadis et al., 2007; Herrero et al., 
2013; Scholte et al., 2022a, 2022b). For example, Vrieling et al. (2022) have recently 
shown that it is possible to track the spatio-temporal patterns of livestock night-time 
enclosures at macro-level using satellite imagery at 3 m/pixel resolution. Although 
improvements are needed, Wilson et al. (2022) have also developed a DL model for 
segmenting cattle camps in South Sudan based on 10 m/pixel resolution satellite 
imagery. Downstream, such tracking and mapping tools could be used to validate the 
movements of transhumant livestock herds at meso-level, using reconnaissance flights 
by light or microlight aircrafts. This would enable a better understanding of the spatio-
temporal patterns of livestock, and thus support initiatives for better environmental 
protection or human-livestock-wildlife cohabitation. While these examples focused 
directly on animals, other applications, complementary to censuses, may also be 
envisaged, such as using satellites to create vegetation maps, which might be 
particularly useful for designing survey strata or targeting areas of ecological interest 
for certain species. The multi-level spatial and temporal combination of these 
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platforms therefore opens up a whole new field of perspectives that promises to 
improve the adaptive management process of biodiversity. 

5.5. Foundational deep learning models 

Wildlife monitoring is inherently a multimodal task, with a wide range of distal data 
sources, like remote sensing platforms acquiring imagery, as well as proximal ones, 
such as camera trap, GNSS collar, or in-situ microphones. Large-scale data obtained 
from these various modalities might be centralize in a so-called Foundational Model 
(or Foundation Model, FM), which once trained, may operate as a basis and can be 
adapted to a wide range of downstream tasks (e.g. animal detection in aerial image or 
species recognition from audio record) with zero or very few training samples (Awais 
et al., 2023; Bommasani et al., 2022). This would enable a model to perform all the 
functions expected of an observer in addition to counting and identifying animals, 
such as detecting illegal activity in a PA. The basic component of FMs are deep neural 
networks, transfer learning and self-supervised learning techniques (Bommasani et 
al., 2022), which have been particularly useful when data and model size have been 
massively scaled-up with recent large language models (Zhao et al., 2023), like GPT-
3 (Brown et al., 2020). Following this, research has explored FMs whose visual inputs 
can be provided, such as SAM for segmenting any type of object (Kirillov et al., 
2023), but also other FMs, like FLAVA (Singh et al., 2022), ImageBind (Girdhar et 
al., 2023) or AudioCLIP (Guzhov et al., 2022) that align multiple data modalities to 
learn meaningful representations useful for different downstream tasks. FMs are seen 
as the future for all automation tasks concerning remote sensing, like image 
interpretation. In fact, such models have already been developed and show good 
prospects for remote sensing applications, such as RSPrompter (Chen et al., 2024) or 
RingMo (Sun et al., 2023). For wildlife monitoring, FMs are also beginning to emerge, 
such as KI-CLIP (Mou et al., 2023a) for the rapid identification of wildlife on 
proximal images, or CLAP for facilitating bioacoustic tasks (Miao et al., 2023). 
Although these models emphasize the potential progress for wildlife monitoring, they 
contain billions of parameters that need to be trained on huge databases before being 
fully versatile on various tasks. Unfortunately, aerial survey images are still sparse 
and not widely shared. Given that FMs require the cross-referencing of massive 
amounts of data, the scarcity of aerial images might be the limiting factor. I could only 
suggest even more data sharing and community collaboration to grow databases of 
wildlife remote sensing imagery. Despite all this, I think it is important to be aware 
that these models require massive computing clusters, running continuously for days 
or weeks to be trained, and then receiving numerous requests every day. The carbon 
footprint of these supercomputers is not to be overlooked (Allen, 2022). If the use of 
these tools impacts the environment more than they help to protect it, is it really 
essential to develop and use them?
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6. Conclusion 
Wildlife monitoring and census applications using remote sensing have recently 

emerged with the rapid technological advances including digital imagery and 
computer processing. The massive production of associated data has however 
instantly revealed a major bottleneck: the tedious and time-consuming aspects of 
manual image interpretation. The general objective of this thesis was therefore to 
evaluate the combined use of remote sensing and DL models for large African 
mammal multi-species census applications. 

In addressing the central research question of whether the combination of aerial 
imagery and DL models enhances the accuracy and precision of population estimates 
for large mammals in sub-Saharan PAs, the research conducted in this thesis presents 
an early response. While Chapters 2 and 3 primarily evaluated model performance 
on positive images, in Chapter 4, the focus shifted towards obtaining population 
estimates for entire PAs, incorporating continuous transect images. Despite the need 
for human verification in species identification and false positive reduction, the study 
demonstrated a substantial reduction in manual interpretation workload using 
HerdNet, paving the way for upgrading aerial surveys. The integration of DL into a 
large-scale aerial camera survey marked a groundbreaking approach, achieving 
remarkable time savings compared to fully manual interpretation. The Jolly II analysis 
further validated the semi-automated method, revealing increased estimates for small-
sized species and comparable results for other key species, with tighter confidence 
intervals. This thus reflects a significant step towards advancing aerial surveys and 
obtaining more accurate and precise population estimates for diverse wildlife species. 
Nevertheless, although the results presented are supportive and bring good prospects 
for cheaper platforms like microlights, one study is not enough to fully answer this 
question. I have presented here the results of a DL model in a specific environment 
with a certain diversity and density of species. We have observed, for example, that 
vegetation is a sensitive factor for the proposed approach. Further studies in other 
landscapes, with other species densities and diversity, should be carried out to target 
reliable patterns in the use of DL models for potential integration into aerial survey 
guidelines and standards. I also detailed and gave some perspectives for four main 
remaining challenges to further improve and automate the workflow: 1) further 
reducing false positives; 2) improving species identification; 3) managing image 
overlap; and 4) better estimating transect areas. False positives persist due to 
environmental complexities, necessitating further research into hard negative mining 
techniques. Additionally, accurately identifying species remains a challenge, 
especially for less common species, prompting exploration into optimizing feature 
extractors and employing few-shot learning techniques. Managing image overlap and 
estimating transect areas are little studied and may be achieve using computer vision 
techniques, orientation and position sensors and calibration methods. 

In a world where biodiversity is under threat, advancing of conventional methods is 
crucial to obtain a more standardized and frequent observation system. Such a system 
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will certainly lead to better monitoring of biodiversity indicators and, ultimately, more 
targeted, and effective conservation actions. However, the journey towards fully 
realizing the potential of remote sensing and DL models in census applications is far 
from over. While this thesis contributes significant insights and advancements for 
large mammals in sub-Saharan PAs, I hope it will also serve as a catalyst for further 
research and innovation, driving towards more efficient, accurate, and comprehensive 
animal census methodologies. 
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