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Abstract

The process of developing new reversed-phase liquid chromatography methods can be both time-
consuming and challenging. To meet this challenge, statistics-based strategies have emerged as cost-
effective, efficient and flexible solutions. In the present study, we use a Bayesian response surface
methodology, which takes advantage of the knowledge of the pKa values of the compounds present
in the analyzed sample to model their retention behavior. A multi-criteria decision analysis (MCDA)
was then developed to exploit the uncertainty information inherent in the model distributions. This
strategic approach is designed to integrate seamlessly with quantitative structure retention
relationship (QSRR) models, forming an initial in-silico screening phase. Of the two methods presented
for MCDA, one showed promising results. The method development process was carried out with the
optimization phase, generating a design space that corroborates the results of the selection phase.

Introduction

Liquid Chromatography (LC) is a highly versatile analytical technique widely used in the field of
analytical chemistry for the identification and quantification of individual compounds in complex
mixtures. LC has found applications in diverse fields including pharmaceuticals, biochemistry,
environmental analysis, and food science.
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The significance of method development methodologies in LC lies in the fact that separating complex
mixtures can be challenging due to the potential need for different chromatographic conditions to
effectively address the issue. In recent years, there has been an increasing interest in developing new
methodologies that improve method development efficiency, speed, and accuracy [1,2]. Method
development involves the optimization of chromatographic parameters to achieve the intended
separation of the analytes of interest. This is critical in ensuring the accuracy and reliability of analytical
results, as well as in maximizing the efficiency of the chromatographic process. Additionally, method
development allows for the customization of the chromatographic method to suit the specific needs
of a particular analysis, such as peak shape, signal intensity, and sensitivity, making it an essential
aspect of LC [3].

Method development can be time-consuming and expensive as the number of experiments needed
increases rapidly with the number of chromatographic parameters to optimize. Therefore, reducing
the number of laboratory experiments is an important goal in LC method development, especially
when dealing with complex samples. One approach to achieve this goal is to use a systematic approach,
such as the Design of Experiments (DoE), to screen many parameters and identify the most influential
factors [4].

Dok is a powerful statistical method that allows for the simultaneous variation of multiple factors to
determine their individual and combined effects on the separation. Using a factorial or response
surface design makes it possible to obtain a matrix of experiments that spans a large parameter space
but with a minimal number of runs [5].

Another approach to reduce the number of experiments is to use a simulation model. Models using
the quantitative structure-retention relationship (QSRR) approach can predict the chromatographic
behavior based on the physicochemical properties of the analytes and the chromatographic
conditions. Using simulations makes it possible to optimize the separation conditions before running
any experiments,

reducing the time and resources required [6].

A simulation model is a powerful tool for predicting retention times in liquid chromatography.
However, there are some limitations to this approach that must be taken into consideration.

One of the main limitations is the accuracy of the simulation models. While simulation models can
accurately predict retention times for many compounds, there are some compounds for which it may
not be accurate. This is especially true for compounds that have very different properties from the
compounds used for the training, which may not behave according to the assumptions made by the
simulation model [7].

Another limitation is the need for extensive calibration. To use simulation models for retention time
prediction, it is necessary to first calibrate the models for each experimental setup using experimental
data. This can be time-consuming and may require a large amount of experimental data, especially if
the method is complex or if the compounds being analyzed are not well-characterized [6].

Finally, simulation models may not be able to account for all variables that can affect retention times
in liquid chromatography. For example, the given descriptors may not encompass enough information
about the retention mechanism. A limitation that may be lifted by graph neural networks [8].
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Despite these limitations, simulation models can be very useful tools for retention time prediction in
liguid chromatography, especially when used in conjunction with other experimental and
computational methods [9].

Both DoE and simulation software can be very effective at reducing the number of experiments
required for method development, while also improving the efficiency and robustness of the method.
Additionally, various column screening approaches can be used to quickly identify suitable stationary
phases and selectivity for the separation of complex mixtures [10].

In summary, reducing the number of experiments in LC method development can be achieved through
a combination of statistical methods, and computer simulations. By employing these approaches, it is
possible to develop methods that are efficient, robust, and reliable for the separation of complex
mixtures. The combination of those approaches is what motivated our research. The association of
individual QSRR models, capable of predicting the retention time of new compounds in specific
conditions [11], with Response Surface Methodology (RSM), capable of predictions of the compounds
in new conditions [12] is the approach chosen for in silico screening of chromatographic method. This
integration of different techniques would be used as an initial step in method development to guide
the coming steps and reduce the number of experiments needed.

In the prior research, the RSM was developed in the frequentist statistical framework and needed the
building of a distribution to account for the error of the models during the Multicriteria Decision
Analysis (MCDA) [12]. In this study, this concept is replaced by developing the RSM in a Bayesian
framework. This change is mainly motivated by the interest in working with prediction distributions
which are inherent elements of Bayesian models and therefore do not require additional construction
when working directly with them. Those distributions improve the confidence in the results by giving
a better understanding of their dispersion.

Indeed, Bayesian statistics can be a useful approach to enhance the Design of Experiments (DoE)
methodology. Some benefits are that Bayesian methods provide a way to incorporate prior knowledge
about the parameters of the model, which can help to improve the accuracy of the model. They can
handle small sample sizes and missing data more effectively than traditional frequentist methods.
Finally, they allow for the quantification of uncertainty in the estimates of the model parameters and
the predictions, which can provide valuable information for decision-making. Indeed, working with
mean responses, such as those provided by frequentist methodologies, may produce a good method
on average but the variability in the results may fail to produce robust results. In opposition, some
drawbacks are that Bayesian methods can be computationally intensive and require a higher level of
statistical expertise compared to traditional frequentist methods. However, the selection of an
appropriate prior distribution can present a considerable challenge and greatly influence the resulting
outcomes. The latter drawback will be addressed in the study [13-15].

In case multiple criteria are important for the user, and a transparent and comprehensive decision-
making process is desired, then MCDA could be a useful addition to the DoE methodology. Adjoining
an MCDA to the DoE methodology can help to integrate multiple criteria, such as separation efficiency,
speed of analysis, and robustness, into the experimental design, which can lead to a more
comprehensive optimization of the method. It can facilitate the identification of the best compromise
among different criteria and help to select a method that meets the needs of the user. It can provide
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a framework for transparent decision-making and communication of results to stakeholders. However,
the MCDA framework can be complex and require a higher level of expertise than the DoE
methodology alone. The identification and selection of relevant criteria and weights can be challenging
and requires careful consideration of the needs of the user. The incorporation of MCDA can add
additional steps to the method development process, which can increase the time and resources
required for the optimization.

While some of the drawbacks have already been undertaken in our previous study, such as the choice
of the criteria and the inconvenience of picking the weights. One of the aims of this study is to simplify
the MCDA step of the proposed methodology.

The final stage of the strategy presented in this study will be devoted to presenting the succession of
the screening and the optimization phase of the method development with the application of the
design space principles [16]. This will allow the demonstration of the integration of the different steps
in method development and the comparison of the results of the newly developed approach with a
similar one.

The switch to the Bayesian framework and the optimization of the selected region are done in
accordance with the Analytical quality by design (AQbD) principles. The AQbD is a systematic approach
of method development and validation that aims to ensure the quality of analytical results by
considering the entire lifecycle of the method, from development to routine use. The goal of AQbD is
to design a method that is fit for its purpose and that meets the needs of the user, while also minimizing
the risk of method failure or error by considering the process as a whole rather than as a succession of
independent steps. This approach ensures the quality and reliability of the analytical results [17,18].

2. Materials and methods

2.1. METHODOLOGY

The improved methodology presented in this study extends upon the prior research. It applies a
response surface methodology to formulate equations that are specific to various cases in which the
effect of pH on a compound’s retention time is analyzed. The predictions generated by the
methodology in each condition are evaluated using different criteria, which are then processed
through a multicriteria decision analysis, leading to the calculation of a desirability index to determine
the optimal conditions.

The first significant improvement of the methodology is its development within the Bayesian statistical
framework. Unlike the previous study, which used a frequentist approach and relied on fitting a
Students’ t distribution to each model to estimate the distribution of errors, the Bayesian framework
inherently works with distributions and provides access to them through the posterior distribution
with the chains from the sampler. Consequently, by relying on fewer mathematical constructs, the new
methodology is simpler.
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The second improvement involves the calculation of the criteria and the desirability index. Rather than
being a single value, the criteria are now distributions. This modification takes advantage of the
similarity between desirability functions and probabilities, resulting in the output of the desirability
functions being replaced by the probability of reaching a specified threshold.

2.2. DATA

The data used for this study came from two preceding publications. They have in common that they
were acquired on C18 columns Waters Corp. (Milford, MA, USA) XSelect HSS T3 2.1x100 mm 3.5 um
maintained at 25°C at a flow rate of 0.3 mL/min with Waters Corp. Alliance 2695 HPLC systems coupled
with a UV-visible photodiode array detector 2996 module.

The training data of the models are composed of experimental retention times acquired for the ten
conditions presented in a previous publication [19]. Those conditions are a combination of five pH
values (2.7, 3.5, 5.0, 6.5 and 8.0) and two gradient times (20 and 60 minutes). The testing data were
acquired at two conditions presented in the former research publication [12]. Those conditions were
a combination of two pH values (3.0 and 6.0) and an intermediate gradient time of 40 minutes. The pH
of buffers was measured using a SevenEasy S20 pH-meter (Mettler Toledo, Columbus, OH, USA).

The performance of the modeling part of the strategy was assessed with a first test set that is
composed of 4-nitrophenol, ibuprofen, papaverine, and pindolol. 2,2'-bipyridine, metoclopramide,
and verapamil were added to compose a more complex second test set, used for the application of the
strategy presented in this study. All the compounds were selected for their diverse chromatographic
behaviors. Molecular structures and physicochemical properties of the test set molecules are
presented on Table S1 and Figure S1.

2.3. CHEMICALS AND REAGENT

Ammonium formate, and formic acid 99 % were purchased from VWR Chemicals (Leuven, Belgium).
Ultrapure water was obtained from a Milli-Q Plus 185 water purification system from Millipore
(Billerica, MA, USA). Methanol HPLC gradient grade was purchased from J.T. Baker (Deventer,
Netherlands).

Standard compounds used during this study were 2,2'-bipyridine, 4nitrophenol, ibuprofen,
metoclopramide, papaverine, verapamil hydrochloride acquired from TCl Europe (Anvers, Belgique);
and pindolol from Abcam (Rozenburg, Netherlands). 2.4. Instrumentation and chromatographic
conditions

The conditions of the optimization design were realized experimentally to check the prediction
performance of new conditions and assess the correctness of the strategy. The samples were analyzed
on the same system and in the same conditions as the data already acquired except for the parameters
specified hereunder. The analytical method was a gradient from 0 % to 95 % methanol executed in
different time duration (35, 48, and 60 min) followed by a 5 min hold. Different buffers at 0.1 mole|™!
were used to set the pH of the mobile phase for the new conditions. Formic acid for a pH of 2.7, and
ammonium formate with formic acid for pH of 3.2 and 3.5 The PDA was set to acquire data from 209
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to 395 nm. Experimental retention times of the compounds in those conditions are available in Table
S2.

2.5. SAMPLE PREPARATION

The stock solutions were prepared in water, methanol, or a mixture of both depending on the solubility
properties of each compound. The subsequent mixture solutions were prepared by diluting the stock
solutions using water or a mixture of water and methanol to reach the target concentration of 20
pgemL 1. A more concentrated solution (40 pgemL™ !) was necessary to detect the ibuprofen. For
detailed information about each compound preparation, see Van Laethem et al., 2022 [12].

2.6. SOFTWARE

R version 4.1.1 (2021-08-10) has been used for all the data preparation, model development and
plotting. The Bayesian models were developed using rstanarm version 2.21.1 [20].

3. Results and discussion

3.1. BAYESIAN MODEL

3.1.1. METHOD DEVELOPMENT

As developed in a former work [12], one model is built for each compound individually to predict its
retention behavior. Since the factors have more than two levels, the response surface methodology is
applied. A set of three polynomial equations with different factors or power of factors has been
defined: Eq. 1, Eq. 2, and Eq. 3. Those equations are defined to model the possible behaviors of
different compounds regarding their pKa. Indeed, the effect of the pH on the retention time of
compounds follows a sigmoidal curve. Depending on the range of pH investigated and the pKa of the
analyzed compound, the whole or only a part of the sigmoidal curve can be observed. Firstly, if the pKa
value is not inside the pH range investigated with a margin of 2 to account for the effect of pH values
close to the pKa, Eq. 1 is used. In this study for a pH range from 2.7 to 8, the range with margins is from
0.7 to 10. Secondly, if the pKa value is inside the pH range and is close to the center of the range such
as part of the two plateaus of the curve are inside the investigated domain, Eq. 3 is used. In this study,
this corresponds to a pKa in the range from 4.35 to 6.35. Thirdly, if the pKa value is inside the pH range
and not in the center, Eq. 2 is used.

log(tR) = Bo+B1x tG +€ (1)
log(tR) = Bo+P1x pH+PB2x tG +B11 % pHZ+P12x pH x tG +€(2)

log(tr) = Bo+B1x pH+P2 x tg+B11x pH2 +PB111 x pH3 +B12x pH x tg+€ (3)
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Comparatively to the frequentist models, Bayesian models require some prior information about the
model’s parameters. In this study, it has been defined following the recommendations of [21]. The
prior function used is R?, the proportion of variance in the dependent variable that is explained by the
independent variables. It has the benefits of being a single prior function instead of defining priors for
each coefficient independently of each other and it can have penalizing properties comparable to a
ridge regression. It is set as R with a location at 0.5. This is recommended as a “never wrong” value
for a weakly informative prior.

Regarding the performance of the models, a root mean square error of prediction (RMSEP) lower than
or equal to 2 minutes and a mean absolute percentage error of prediction (MAPEP) lower than or equal
to 10 % were defined as targets.

3.1.2. CASE STUDY

The models in this study were developed using the first set of compounds. Table 1 presents the
performance of these models. The high values of the coefficient of determination (R?) indicate that the
equation parameters explain most of the variance in the retention time. The RMSE and MAPE values
for the calibration and prediction performance are comparable, indicating a lack of overfitting.

When comparing the performance of the Bayesian model in this study to the frequentist models in the
previous study, it can be concluded that both strategies provide similar performance and that neither
outperforms the other.

Table 2 provides a performance evaluation focused specifically on external testing conditions. The
results demonstrate that the predictions are reasonably accurate. Although the table shows some
positive values for the Bayesian models, suggesting a lower bias compared to the frequentist models
which has all negative error values, the values are nonetheless quite similar and do not reveal a clear
advantage for one strategy over the other. This negative bias is reflected on the global regression
equation between predicted and observed values: tx = 0.937 tz +1.046 where iz represents the
predicted retention times and tgrrepresents the observed retention times, it can also be seen on Figure
S2. The standard deviation of this global regression is 0.730 min. In this case, the frequentist and
Bayesian models have similar performances. It can also be noted that the prediction performances are
close or within the target ranges that were chosen.
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Table 1
Individual performance of models in calibration and prediction of the previous and the currently presented strategy.
Compound Rz RMSEC MAPEC RMSEP MAPEP tg [min]
Previous 4-nitrophenol 0.984 0.65 391 0.73 3.64 13.35
Ibuprofen 0.999 0.35 0.75 0.83 2.25 20.22
Papaverine 0.998 0.48 1.61 2.06 8.38 16.97
Pindolol 0.996 0.27 1.39 0.75 5.47 10.83
Current 4-nitrophenol 0.984 0.80 4.07 0.80 3.76 13.35
Ibuprofen 0.999 151 4.11 0.24 0.78 20.22
Papaverine 0.997 1.36 4.35 1.87 5.56 16.97
Pindolol 0.996 0.30 1.65 0.69 4.91 10.83

R2: coefficient of determination; RMSEC: root mean square error of calibration; MAPEC: mean absolute percentage error of calibration; RMSEP: root mean square error of prediction;
MAPEP: mean absolute percentage error of prediction. tg is the retention time at pH 5.0 with a gradient time of 20 min, given for information.

Table 2

Absolute and relative errors of the compound of the first test set in the two external
conditions. Condition 1: pH 3.0 and 40 min gradient time. Condition 2: pH 6.0 and 40 min
of gradient time.

Compound Condition 1 Condition 2

beol Iati Ab<ol

error error error error [min] [%] [min] [%]

Previous 4- -0.82 -4.50 -0.16 -112
nitrophenol
Ibuprofen -0.10 -0.30 -0.88 -3.03
Papaverine -1.07 -5.28 -2.00 -6.92
Pindolol -0.56 -4.24 -0.65 -4.18
Current 4- -1.13 -6.22 -0.13 -0.87
nitrophenol
Ibuprofen 0.20 0.62 -0.27 -0.94
Papaverine -0.21 -1.06 -2.64 -9.13
Pindolol -0.56 -4.20 -0.80 -5.16

3.2. MULTICRITERIA DECISION ANALYSIS

3.2.1. METHOD DEVELOPMENT

To select the best condition for continuing the development of an analytical method, different criteria
may be considered: the separation, the sensitivity to experimental parameters variations (robustness)
and the analysis time. They are calculated in a manner that preserves the distribution of each criterion,
preventing the loss of information that may occur if the distribution is reduced to a single value. The
great advantage of having a distribution for each criterion is that the probability to be lower or greater
than a specific value can be estimated. This would give stronger confidence in the decision that is
made. Regarding this, the previously developed strategy could be applied [12], and a desirability
function could be fitted to the distribution of criteria and would result in a distribution of desirability
values. The other advantage of obtaining the distribution is that one can benefit from a property of
the probabilities. As a matter of fact, the probability of an event is always between 0 and 1. Formerly,
to calculate the desirability index, different desirability functions were designed to transform the



Published in : Journal of Pharmaceutical and Biomedical Analysis (2024), 249, p. 116373 =
DOI: 10.1016/).jpba.2024.116373 - r L I EG E
Status : Postprint (Author’s version) ‘b universite

values of all criteria between 0 and 1. Here, this step can be replaced by calculating the probability of
an event around a specific value. This is a much simpler process because only a single value of
acceptable threshold should be provided by the user instead of two, the best and worst values. The
results of applying both previous and old strategies to the distribution of criteria will be presented and
discussed.

The separation criterion is calculated for each condition by first determining the difference between
all the pairs of retention times for each row in the chain of predicted retention times from the Bayesian
models. Secondly, the second half width of the first peak and the first half width of the second peak
are subtracted from this difference. Thirdly, the minimum of those distances for each row of the chain
is determined and stored (Eq. 4).

Sp,g = min, (_tR,i,c - tR,i—H,c — Wpil — WU,i—H,r) 3 (4)
i=1,...,M—1,
c=1,...,C,

where S;,¢is the distribution of separation at pH p and gradient time g; mincis a function that computes
the minimum for each row c of the chains; tg,;,cis the retention time of compound i when ordered by
decreasing retention time at row c; wo,;, is the left baseline half-width of compound i; wg,i+1,r is the
right baseline half-width of compound i+1; M is the number of compounds; and C is the number of
rows in the chains.

The sensitivity to experimental parameters is calculated based on the separation criterion. It is the
mean of the derivatives of the separation criterion in both directions of the analytical parameters. The
derivative is calculated with the difference of the separation criteria between two juxtaposed
conditions divided by the difference of the analytical parameter values (Eq. 5).

! r
|S]'J_t! + | S[.Et

2

,e=1,...,C, ()

Rpg = )
where R,,¢is the distribution of sensitivity at pH p and gradient time g; S,cis the rate of change of the
separation criterion in the direction of the pH for the considered condition at row c; Sy, is the rate of
change of the separation criterion in the direction of the gradient time for the considered condition at
row c; and C is the number of rows in the chains.

The analysis time is defined as the highest retention time per row of the chain of predicted retention
times and per condition (Eqg. 6).

A, =max.(tric),i=1,...,M, e=1,...,C, (6)

P&

where A, is the distribution of analysis time at pH p and gradient time g; maxcis a function that
computes the maximum for each row c of the chains; tg,; ¢ is the retention time of compound i at row
¢; M is the number of compounds; and Cis the number of rows in the chains.

The criteria are then combined in a desirability index. This desirability index is calculated with the
weighted geometric mean of the criteria. For the probability strategy, the desirability index of each
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condition is a single value calculated on the probability to reach each criterion. For the desirability
strategy, the desirability index of each condition is calculated for each row of the chains of criterion
desirability. This last strategy calculations result in a distribution of desirability index for each
condition.

The weights of criteria can be sampled from a Dirichlet distribution. The use of those sampled weights
results in a distribution of desirability indexes which is less sensitive to small variations of those
weights. The Dirichlet distribution is defined as the ratio of the different weights multiplied by a
parameter defining the scale of the distribution that could be interpreted as the confidence the user
has in the given weights’ values. Once the distribution of desirability is calculated, the user can choose
a value of desirability index and calculate the probability to reach that value. Then, by selecting a
threshold of probability to reach, one or more regions of conditions will be selected in the knowledge
space. One region, for example, the largest, can be selected to fit an optimization design around to
continue with the optimization step.

3.2.2. CASE STUDY

The presented MCDA strategy is applied to the second set of test compounds. All the peak half-widths
are set at 0.5 minutes. Fig. 1 shows the two possible strategies that result from using the distribution
of predictions. The two contour plots illustrated were drawn with 10 levels each to allow the
comparison of the density of the lines. For the probability strategy, the value 0 is used as a threshold
to calculate the probabilities. It has been chosen as the limit case that would be interesting for a
chromatographic method: a separation of 0 minutes at the baseline of the peaks. For this first criterion,
the separation, it can be observed that using the probabilities to select the condition is much more
restrictive. There is a large region at the bottom with probabilities close to 0 which is not present in
the graph of the desirability. Moreover, while it is the same region that is chosen as the best regarding
this criterion, the contour lines are much closer to each other on the probability plot than the
desirability one. This indicates that a decision based on the probabilities is much more selective on the
condition which should give the best results. This would have the consequence that the user can be
much more confident on the results. It can also be noted that, although they are not clearly
represented, the darker bands characteristic of the coelution of peaks can still be recognized in this
figure.

The results of both possible strategies applied to the sensitivity to experimental parameters can be
seen in Fig. 2. For this criterion, the value of 30 was chosen as threshold. This unitless value has no
physical meaning. It is selected among the values taken by the criterion. Any value chosen around the
middle of the range available should work. As it can be seen in Fig. 2, an intermediate value will result
in an ample range of probabilities. Once again, both contour plots are traced to show 10 levels to ease
the comparison. From those graphs, the same interpretation can be drawn for the proximity of the
lines. The probability plot displays contour lines closer to each other for the high-value region than the
desirability plot. This highlights again that using the probability of the criterion leads to a more
restrictive outcome.

The third criterion, the analysis time, is presented with the application of the two possible strategies
in Fig. 3. A maximum of 40 minutes of analysis time was chosen for the probability strategy. One more
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time, an intermediate value is chosen with the objective of producing a gradient of probabilities on a
large surface of the modeled space. Those graphs exhibit the same effect as the other criteria. The
contour lines of the probability plot are closer to each other compared to the desirability plot,
indicating the more restrictive behavior of this strategy. Similarly, as the first criterion, extreme cases
are displayed by large regions, another effect resulting from the contour lines being tight. Regarding
the effect on the selection of a condition, the strategy based on probability will not discriminate
conditions as long as the analysis time is below 40 minutes, contrarily to the strategy based on
desirability which will discriminate and favor shorter analysis time.

Once they are calculated, the three criteria are combined in a global desirability index. The separation
criterion has been given a weight of 1, the sensitivity to analysis parameters criterion has been given
a weight of 0.5 and the analysis time criterion has been given a weight of 0.1. The charts ensuing from
those calculations are presented in Fig. 4.

The desirability plot implies that the best condition is at an acidic pH and a very short retention time,
which does not corroborate the experimental results of the dataset.

This result might be explained by the repartition of the values used to calculate the criteria. A first hint
of this uneven distribution of data can be observed by comparing the range of desirability covered by
each criterion. Indeed, the analysis time desirability in Fig. 3 covers a larger range than the separation
desirability in Fig. 1. This effect leads to the analysis time having a larger effect on the desirability index
than expected even though the criteria desirability are weighted.

From the probability plot, it can be deduced that the best condition is at a pH of 2.7 with a gradient
time between 50 and 55 minutes. The added value of this strategy compared to the previous one is
that no other condition that is not in the direct vicinity of this maximum is presented as having a close
value of desirability index. With the previous strategy, two regions were selected as interesting with
very high desirability index values but only one of them was actually acceptable. The other condition
leads to the coelution of some of the peaks. Although some coelution might not be avoidable and
could be resolved by other means such as peak deconvolution with the UV—visible spectrum, if a better
condition exists, it should be the one that is selected. In this case, the results were satisfying enough
as the experimental testing of the selected conditions still lead to fewer experiments than a screening
plan. Comparatively to the previously presented strategy, the strategy based on probability gives
results with more confidence and only selects the good region.

The last steps of the strategy will only be presented with the desirability index calculated on the
probabilities as it is demonstrated to be the best strategy. An optimization design is developed
around the selected region for a specific equation. These conditions were selected to investigate
further around the selected region. Eq. 7 is selected as appropriate for the optimization phase.
Indeed, the selected area is narrower than one pH unit. Consequently, only the linear and squared
factors will be considered for the pH. On the other hand, considering that the height of the selected
region is quite large, and that the literature shows the non-linear effect of the gradient time on the
retention time, a squared slope factor is added. The interaction factor between pH and slope is still
relevant, so it is kept.

log(tr) = Bo+P1x pH+B2x te+B11x pHa+B22 X te+P1ax pH x tet+e  (7)
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z = p(S>0) p(d(S)<z) = 75%

Probability
F10.165

0.0825

0
Desirability

0.9746

0.9741

0.9735

Fig. 1. The left graphic shows the probability that the minimum separation of a pair of peaks is greater than 0. The right graph shows the quantile 0.75 of the
desirability of the separation criterion as it was calculated formerly.

z = p(R<30) p(d(R)<z) = 75%

60
Probability
—10.763

55
0.53

50

0.296

Desirability
0.9769

0.9765

0.9762

Fig. 2. The left graphic shows the probability that the sensitivity to experimental variations is lower than 30. The right graph shows the quantile 0.75 of the
desirability of the sensitivity to experimental variations criterion as it was calculated formerly

z = p(A<40) p(d(A)<z) = 75%

60 60- B
Probability
1
55-
0.513
501
0.026
,.xrd"/.»"/'vv\. _ . -
45 T SER N 45- Desirability
0.9744
0.9669
0.9594
30-
25~ 25-
20-; ’ . ) : :20-, v ; ) s
3 4 5 6 7 8 3 4 5 6 7 8
pH

Fig. 3. The left graphic shows the probability that the analysis time is lower than 40. The right graph shows the quantile 0.75 of the desirability of the analysis

time criterion as it was calculated formerly.

The design is limited to five points (conditions), the minimum needed to be able to fit the model. The
results of the last part of this strategy are represented on Fig. 5.
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The conditions of the optimization plan have been realized experimentally. The gradient time values
have been rounded to the unit and those of the pH to the tenth of a unit.

Desirability index from desirability

. Desirability index from probabilities functions at quantile 75%

Desirability index
F10.238
0.119
0
Desirability index
0.9749
0.940

0.9731

30-

25-

. . ¥ . . | 20-
3 4 5 6 7 8
pH

Fig. 4. The left graphic shows the desirability index calculated on the probabilities of the criteria. The right graph shows the quantile 0.75 of the desirability index
calculated on the desirability functions of the criteria.

Desirability index with experimental points

Desirability index
0.1779

60~

55-

50~

45-

0

tg [min]

® Experimental points

30

25

20-

Fig. 5. Desirability index calculated on the probabilities of the criteria and the conditions selected for the optimization design (black discs).

It can be observed on the chromatograms (Fig. 6 that the elution order of the compounds does changes
between the conditions at pH 2.7 and 3.2 and the conditions at pH 3.5, which illustrates well why the
MCDA did not select this whole region as coelution-free. It can be noted that the worst condition
regarding coelutions occurs at pH 3.5 and gradient time of 35 minutes where the strategy predicted
that the results would not be the worst. Nonetheless, the experiments in less desirable conditions
were needed to support the optimization models. Even if some conditions present some peaks
coeluting, the optimal condition still needs to be defined in the optimization phase that follows.
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Fig. 6. The chromatograms extracted at 235 nm of the second test set analyzed in the different conditions of pH and gradient time. 1: 2,2'-bipyridine, 2: pindolol,
3: metoclopramide, 4: 4-nitrophenol, 5: papaverine, 6: verapamil, 7: ibuprofen

tg [min]

Fig. 7. The probability of the distance between the critical pair of peaks to be greater than 0 from the optimization design model with contour lines highlighting
the regions where the probabilities are greater than 0.99 and 0.999.

Fig. 7 shows the design space as the probability of distance between the critical pair of peaks to be
greater than 0 from the optimization models. Although the probabilities are different due to the
models using more information (three retention times per peak), the resulting conditions selected to
be optimal are in accordance with the results found after the screening but with more confidence,
indicating the complementarity of the phases.

4. Conclusion

The previously developed approach has been improved and simplified regarding the number of steps
to follow. Indeed, thanks to the Bayesian models, the model uncertainty is straightforwardly
accessible, eliminating the construction of a distribution step. Moreover, the use of probabilities during
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the calculation of the criteria removes the need for a scaling step. Of the two models followed by the
MCDA based on probabilities is better than the former strategy with frequentist models followed by
an MCDA based on desirability functions. The new strategy is more restrictive on what constitutes a
good condition. Compared to the initial strategy, which had two separated regions of conditions with
similar desirability index values that had to be discriminated by experimental results, the new one
clearly selects a single region as the best. Thus applying this strategy after a QSRR model could be used
for in silico screening during method development. Using Bayesian models has one more advantage in
that they are intrinsically capable of being updated. A new perspective could be to use the parameter
distributions from the fitted models during this phase of development as prior information for the
parameters of the models during the optimization phase during the experimental development of
chromatographic method development.
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