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Abstract 

The process of developing new reversed-phase liquid chromatography methods can be both time-

consuming and challenging. To meet this challenge, statistics-based strategies have emerged as cost-

effective, efficient and flexible solutions. In the present study, we use a Bayesian response surface 

methodology, which takes advantage of the knowledge of the pKa values of the compounds present 

in the analyzed sample to model their retention behavior. A multi-criteria decision analysis (MCDA) 

was then developed to exploit the uncertainty information inherent in the model distributions. This 

strategic approach is designed to integrate seamlessly with quantitative structure retention 

relationship (QSRR) models, forming an initial in-silico screening phase. Of the two methods presented 

for MCDA, one showed promising results. The method development process was carried out with the 

optimization phase, generating a design space that corroborates the results of the selection phase. 

 

Introduction  

Liquid Chromatography (LC) is a highly versatile analytical technique widely used in the field of 

analytical chemistry for the identification and quantification of individual compounds in complex 

mixtures. LC has found applications in diverse fields including pharmaceuticals, biochemistry, 

environmental analysis, and food science. 



Published in : Journal of Pharmaceutical and Biomedical Analysis (2024), 249, p. 116373 
DOI: 10.1016/j.jpba.2024.116373 
Status : Postprint (Author’s version)  

 

 

 

The significance of method development methodologies in LC lies in the fact that separating complex 

mixtures can be challenging due to the potential need for different chromatographic conditions to 

effectively address the issue. In recent years, there has been an increasing interest in developing new 

methodologies that improve method development efficiency, speed, and accuracy [1,2]. Method 

development involves the optimization of chromatographic parameters to achieve the intended 

separation of the analytes of interest. This is critical in ensuring the accuracy and reliability of analytical 

results, as well as in maximizing the efficiency of the chromatographic process. Additionally, method 

development allows for the customization of the chromatographic method to suit the specific needs 

of a particular analysis, such as peak shape, signal intensity, and sensitivity, making it an essential 

aspect of LC [3]. 

Method development can be time-consuming and expensive as the number of experiments needed 

increases rapidly with the number of chromatographic parameters to optimize. Therefore, reducing 

the number of laboratory experiments is an important goal in LC method development, especially 

when dealing with complex samples. One approach to achieve this goal is to use a systematic approach, 

such as the Design of Experiments (DoE), to screen many parameters and identify the most influential 

factors [4]. 

DoE is a powerful statistical method that allows for the simultaneous variation of multiple factors to 

determine their individual and combined effects on the separation. Using a factorial or response 

surface design makes it possible to obtain a matrix of experiments that spans a large parameter space 

but with a minimal number of runs [5]. 

Another approach to reduce the number of experiments is to use a simulation model. Models using 

the quantitative structure-retention relationship (QSRR) approach can predict the chromatographic 

behavior based on the physicochemical properties of the analytes and the chromatographic 

conditions. Using simulations makes it possible to optimize the separation conditions before running 

any experiments, 

reducing the time and resources required [6]. 

A simulation model is a powerful tool for predicting retention times in liquid chromatography. 

However, there are some limitations to this approach that must be taken into consideration. 

One of the main limitations is the accuracy of the simulation models. While simulation models can 

accurately predict retention times for many compounds, there are some compounds for which it may 

not be accurate. This is especially true for compounds that have very different properties from the 

compounds used for the training, which may not behave according to the assumptions made by the 

simulation model [7]. 

Another limitation is the need for extensive calibration. To use simulation models for retention time 

prediction, it is necessary to first calibrate the models for each experimental setup using experimental 

data. This can be time-consuming and may require a large amount of experimental data, especially if 

the method is complex or if the compounds being analyzed are not well-characterized [6]. 

Finally, simulation models may not be able to account for all variables that can affect retention times 

in liquid chromatography. For example, the given descriptors may not encompass enough information 

about the retention mechanism. A limitation that may be lifted by graph neural networks [8]. 
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Despite these limitations, simulation models can be very useful tools for retention time prediction in 

liquid chromatography, especially when used in conjunction with other experimental and 

computational methods [9]. 

Both DoE and simulation software can be very effective at reducing the number of experiments 

required for method development, while also improving the efficiency and robustness of the method. 

Additionally, various column screening approaches can be used to quickly identify suitable stationary 

phases and selectivity for the separation of complex mixtures [10]. 

In summary, reducing the number of experiments in LC method development can be achieved through 

a combination of statistical methods, and computer simulations. By employing these approaches, it is 

possible to develop methods that are efficient, robust, and reliable for the separation of complex 

mixtures. The combination of those approaches is what motivated our research. The association of 

individual QSRR models, capable of predicting the retention time of new compounds in specific 

conditions [11], with Response Surface Methodology (RSM), capable of predictions of the compounds 

in new conditions [12] is the approach chosen for in silico screening of chromatographic method. This 

integration of different techniques would be used as an initial step in method development to guide 

the coming steps and reduce the number of experiments needed. 

In the prior research, the RSM was developed in the frequentist statistical framework and needed the 

building of a distribution to account for the error of the models during the Multicriteria Decision 

Analysis (MCDA) [12]. In this study, this concept is replaced by developing the RSM in a Bayesian 

framework. This change is mainly motivated by the interest in working with prediction distributions 

which are inherent elements of Bayesian models and therefore do not require additional construction 

when working directly with them. Those distributions improve the confidence in the results by giving 

a better understanding of their dispersion. 

Indeed, Bayesian statistics can be a useful approach to enhance the Design of Experiments (DoE) 

methodology. Some benefits are that Bayesian methods provide a way to incorporate prior knowledge 

about the parameters of the model, which can help to improve the accuracy of the model. They can 

handle small sample sizes and missing data more effectively than traditional frequentist methods. 

Finally, they allow for the quantification of uncertainty in the estimates of the model parameters and 

the predictions, which can provide valuable information for decision-making. Indeed, working with 

mean responses, such as those provided by frequentist methodologies, may produce a good method 

on average but the variability in the results may fail to produce robust results. In opposition, some 

drawbacks are that Bayesian methods can be computationally intensive and require a higher level of 

statistical expertise compared to traditional frequentist methods. However, the selection of an 

appropriate prior distribution can present a considerable challenge and greatly influence the resulting 

outcomes. The latter drawback will be addressed in the study [13–15]. 

In case multiple criteria are important for the user, and a transparent and comprehensive decision-

making process is desired, then MCDA could be a useful addition to the DoE methodology. Adjoining 

an MCDA to the DoE methodology can help to integrate multiple criteria, such as separation efficiency, 

speed of analysis, and robustness, into the experimental design, which can lead to a more 

comprehensive optimization of the method. It can facilitate the identification of the best compromise 

among different criteria and help to select a method that meets the needs of the user. It can provide 
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a framework for transparent decision-making and communication of results to stakeholders. However, 

the MCDA framework can be complex and require a higher level of expertise than the DoE 

methodology alone. The identification and selection of relevant criteria and weights can be challenging 

and requires careful consideration of the needs of the user. The incorporation of MCDA can add 

additional steps to the method development process, which can increase the time and resources 

required for the optimization. 

While some of the drawbacks have already been undertaken in our previous study, such as the choice 

of the criteria and the inconvenience of picking the weights. One of the aims of this study is to simplify 

the MCDA step of the proposed methodology. 

The final stage of the strategy presented in this study will be devoted to presenting the succession of 

the screening and the optimization phase of the method development with the application of the 

design space principles [16]. This will allow the demonstration of the integration of the different steps 

in method development and the comparison of the results of the newly developed approach with a 

similar one. 

The switch to the Bayesian framework and the optimization of the selected region are done in 

accordance with the Analytical quality by design (AQbD) principles. The AQbD is a systematic approach 

of method development and validation that aims to ensure the quality of analytical results by 

considering the entire lifecycle of the method, from development to routine use. The goal of AQbD is 

to design a method that is fit for its purpose and that meets the needs of the user, while also minimizing 

the risk of method failure or error by considering the process as a whole rather than as a succession of 

independent steps. This approach ensures the quality and reliability of the analytical results [17,18]. 

2. Materials and methods 

2.1. METHODOLOGY 

The improved methodology presented in this study extends upon the prior research. It applies a 

response surface methodology to formulate equations that are specific to various cases in which the 

effect of pH on a compound’s retention time is analyzed. The predictions generated by the 

methodology in each condition are evaluated using different criteria, which are then processed 

through a multicriteria decision analysis, leading to the calculation of a desirability index to determine 

the optimal conditions. 

The first significant improvement of the methodology is its development within the Bayesian statistical 

framework. Unlike the previous study, which used a frequentist approach and relied on fitting a 

Students’ t distribution to each model to estimate the distribution of errors, the Bayesian framework 

inherently works with distributions and provides access to them through the posterior distribution 

with the chains from the sampler. Consequently, by relying on fewer mathematical constructs, the new 

methodology is simpler. 
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The second improvement involves the calculation of the criteria and the desirability index. Rather than 

being a single value, the criteria are now distributions. This modification takes advantage of the 

similarity between desirability functions and probabilities, resulting in the output of the desirability 

functions being replaced by the probability of reaching a specified threshold. 

2.2. DATA 

The data used for this study came from two preceding publications. They have in common that they 

were acquired on C18 columns Waters Corp. (Milford, MA, USA) XSelect HSS T3 2.1×100 mm 3.5 µm 

maintained at 25◦C at a flow rate of 0.3 mL/min with Waters Corp. Alliance 2695 HPLC systems coupled 

with a UV–visible photodiode array detector 2996 module. 

The training data of the models are composed of experimental retention times acquired for the ten 

conditions presented in a previous publication [19]. Those conditions are a combination of five pH 

values (2.7, 3.5, 5.0, 6.5 and 8.0) and two gradient times (20 and 60 minutes). The testing data were 

acquired at two conditions presented in the former research publication [12]. Those conditions were 

a combination of two pH values (3.0 and 6.0) and an intermediate gradient time of 40 minutes. The pH 

of buffers was measured using a SevenEasy S20 pH-meter (Mettler Toledo, Columbus, OH, USA). 

The performance of the modeling part of the strategy was assessed with a first test set that is 

composed of 4-nitrophenol, ibuprofen, papaverine, and pindolol. 2,2′-bipyridine, metoclopramide, 

and verapamil were added to compose a more complex second test set, used for the application of the 

strategy presented in this study. All the compounds were selected for their diverse chromatographic 

behaviors. Molecular structures and physicochemical properties of the test set molecules are 

presented on Table S1 and Figure S1. 

2.3. CHEMICALS AND REAGENT 

Ammonium formate, and formic acid 99 % were purchased from VWR Chemicals (Leuven, Belgium). 

Ultrapure water was obtained from a Milli-Q Plus 185 water purification system from Millipore 

(Billerica, MA, USA). Methanol HPLC gradient grade was purchased from J.T. Baker (Deventer, 

Netherlands). 

Standard compounds used during this study were 2,2′-bipyridine, 4nitrophenol, ibuprofen, 

metoclopramide, papaverine, verapamil hydrochloride acquired from TCI Europe (Anvers, Belgique); 

and pindolol from Abcam (Rozenburg, Netherlands). 2.4. Instrumentation and chromatographic 

conditions 

The conditions of the optimization design were realized experimentally to check the prediction 

performance of new conditions and assess the correctness of the strategy. The samples were analyzed 

on the same system and in the same conditions as the data already acquired except for the parameters 

specified hereunder. The analytical method was a gradient from 0 % to 95 % methanol executed in 

different time duration (35, 48, and 60 min) followed by a 5 min hold. Different buffers at 0.1 mol•l− 1 

were used to set the pH of the mobile phase for the new conditions. Formic acid for a pH of 2.7, and 

ammonium formate with formic acid for pH of 3.2 and 3.5 The PDA was set to acquire data from 209 
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to 395 nm. Experimental retention times of the compounds in those conditions are available in Table 

S2. 

2.5. SAMPLE PREPARATION 

The stock solutions were prepared in water, methanol, or a mixture of both depending on the solubility 

properties of each compound. The subsequent mixture solutions were prepared by diluting the stock 

solutions using water or a mixture of water and methanol to reach the target concentration of 20 

µg•mL− 1. A more concentrated solution (40 µg•mL− 1) was necessary to detect the ibuprofen. For 

detailed information about each compound preparation, see Van Laethem et al., 2022 [12]. 

2.6. SOFTWARE 

R version 4.1.1 (2021–08–10) has been used for all the data preparation, model development and 

plotting. The Bayesian models were developed using rstanarm version 2.21.1 [20]. 

3. Results and discussion 

3.1. BAYESIAN MODEL 

3.1.1. METHOD DEVELOPMENT 

As developed in a former work [12], one model is built for each compound individually to predict its 

retention behavior. Since the factors have more than two levels, the response surface methodology is 

applied. A set of three polynomial equations with different factors or power of factors has been 

defined: Eq. 1, Eq. 2, and Eq. 3. Those equations are defined to model the possible behaviors of 

different compounds regarding their pKa. Indeed, the effect of the pH on the retention time of 

compounds follows a sigmoidal curve. Depending on the range of pH investigated and the pKa of the 

analyzed compound, the whole or only a part of the sigmoidal curve can be observed. Firstly, if the pKa 

value is not inside the pH range investigated with a margin of 2 to account for the effect of pH values 

close to the pKa, Eq. 1 is used. In this study for a pH range from 2.7 to 8, the range with margins is from 

0.7 to 10. Secondly, if the pKa value is inside the pH range and is close to the center of the range such 

as part of the two plateaus of the curve are inside the investigated domain, Eq. 3 is used. In this study, 

this corresponds to a pKa in the range from 4.35 to 6.35. Thirdly, if the pKa value is inside the pH range 

and not in the center, Eq. 2 is used. 

log(tR) = β0 +β1 × tG +ϵ (1) 

log(tR) = β0 +β1 × pH+β2 × tG +β11 × pH2 +β12 × pH × tG +ϵ (2) 

log(tR) = β0 +β1 × pH+β2 × tG +β11 × pH2 +β111 × pH3 +β12 × pH × tG +ϵ (3) 
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Comparatively to the frequentist models, Bayesian models require some prior information about the 

model’s parameters. In this study, it has been defined following the recommendations of [21]. The 

prior function used is R2, the proportion of variance in the dependent variable that is explained by the 

independent variables. It has the benefits of being a single prior function instead of defining priors for 

each coefficient independently of each other and it can have penalizing properties comparable to a 

ridge regression. It is set as R2 with a location at 0.5. This is recommended as a “never wrong” value 

for a weakly informative prior. 

Regarding the performance of the models, a root mean square error of prediction (RMSEP) lower than 

or equal to 2 minutes and a mean absolute percentage error of prediction (MAPEP) lower than or equal 

to 10 % were defined as targets. 

3.1.2. CASE STUDY 

The models in this study were developed using the first set of compounds. Table 1 presents the 

performance of these models. The high values of the coefficient of determination (R2) indicate that the 

equation parameters explain most of the variance in the retention time. The RMSE and MAPE values 

for the calibration and prediction performance are comparable, indicating a lack of overfitting. 

When comparing the performance of the Bayesian model in this study to the frequentist models in the 

previous study, it can be concluded that both strategies provide similar performance and that neither 

outperforms the other. 

Table 2 provides a performance evaluation focused specifically on external testing conditions. The 

results demonstrate that the predictions are reasonably accurate. Although the table shows some 

positive values for the Bayesian models, suggesting a lower bias compared to the frequentist models 

which has all negative error values, the values are nonetheless quite similar and do not reveal a clear 

advantage for one strategy over the other. This negative bias is reflected on the global regression 

equation between predicted and observed values: tR̂ = 0.937 tR +1.046 where tR̂ represents the 

predicted retention times and tR represents the observed retention times, it can also be seen on Figure 

S2. The standard deviation of this global regression is 0.730 min. In this case, the frequentist and 

Bayesian models have similar performances. It can also be noted that the prediction performances are 

close or within the target ranges that were chosen. 
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3.2. MULTICRITERIA DECISION ANALYSIS 

3.2.1. METHOD DEVELOPMENT 

To select the best condition for continuing the development of an analytical method, different criteria 

may be considered: the separation, the sensitivity to experimental parameters variations (robustness) 

and the analysis time. They are calculated in a manner that preserves the distribution of each criterion, 

preventing the loss of information that may occur if the distribution is reduced to a single value. The 

great advantage of having a distribution for each criterion is that the probability to be lower or greater 

than a specific value can be estimated. This would give stronger confidence in the decision that is 

made. Regarding this, the previously developed strategy could be applied [12], and a desirability 

function could be fitted to the distribution of criteria and would result in a distribution of desirability 

values. The other advantage of obtaining the distribution is that one can benefit from a property of 

the probabilities. As a matter of fact, the probability of an event is always between 0 and 1. Formerly, 

to calculate the desirability index, different desirability functions were designed to transform the 

 

Table 1 
Individual performance of models in calibration and prediction of the previous and the currently presented strategy.  

 Compound R2 RMSEC MAPEC RMSEP MAPEP tR [min] 

Previous 4-nitrophenol 0.984 0.65 3.91 0.73 3.64 13.35 

 Ibuprofen 0.999 0.35 0.75 0.83 2.25 20.22 

 Papaverine 0.998 0.48 1.61 2.06 8.38 16.97 

 Pindolol 0.996 0.27 1.39 0.75 5.47 10.83 

Current 4-nitrophenol 0.984 0.80 4.07 0.80 3.76 13.35 
 Ibuprofen 0.999 1.51 4.11 0.24 0.78 20.22 

 Papaverine 0.997 1.36 4.35 1.87 5.56 16.97 

 Pindolol 0.996 0.30 1.65 0.69 4.91 10.83 

R2: coefficient of determination; RMSEC: root mean square error of calibration; MAPEC: mean absolute percentage error of calibration; RMSEP: root mean square error of prediction; 

MAPEP: mean absolute percentage error of prediction. tR is the retention time at pH 5.0 with a gradient time of 20 min, given for information. 

Table 2 

Absolute and relative errors of the compound of the first test set in the two external 

conditions. Condition 1: pH 3.0 and 40 min gradient time. Condition 2: pH 6.0 and 40 min 

of gradient time. 

 Compound Condition 1 Condition 2 

 Absolute Relative Absolute Relative 
error error error error [min] [%] [min] [%] 

 
Previous 4- − 0.82 − 4.50 − 0.16 − 1.12 

nitrophenol 

 Ibuprofen − 0.10 − 0.30 − 0.88 − 3.03 

 Papaverine − 1.07 − 5.28 − 2.00 − 6.92 

 Pindolol − 0.56 − 4.24 − 0.65 − 4.18 

Current 4- − 1.13 − 6.22 − 0.13 − 0.87 

nitrophenol 

 Ibuprofen 0.20 0.62 − 0.27 − 0.94 

 Papaverine − 0.21 − 1.06 − 2.64 − 9.13 

 Pindolol − 0.56 − 4.20 − 0.80 − 5.16 
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values of all criteria between 0 and 1. Here, this step can be replaced by calculating the probability of 

an event around a specific value. This is a much simpler process because only a single value of 

acceptable threshold should be provided by the user instead of two, the best and worst values. The 

results of applying both previous and old strategies to the distribution of criteria will be presented and 

discussed. 

The separation criterion is calculated for each condition by first determining the difference between 

all the pairs of retention times for each row in the chain of predicted retention times from the Bayesian 

models. Secondly, the second half width of the first peak and the first half width of the second peak 

are subtracted from this difference. Thirdly, the minimum of those distances for each row of the chain 

is determined and stored (Eq. 4). 

 

where Sp,g is the distribution of separation at pH p and gradient time g; minc is a function that computes 

the minimum for each row c of the chains; tR,i,c is the retention time of compound i when ordered by 

decreasing retention time at row c; w0,i,l is the left baseline half-width of compound i; w0,i+1,r is the 

right baseline half-width of compound i+1; M is the number of compounds; and C is the number of 

rows in the chains. 

The sensitivity to experimental parameters is calculated based on the separation criterion. It is the 

mean of the derivatives of the separation criterion in both directions of the analytical parameters. The 

derivative is calculated with the difference of the separation criteria between two juxtaposed 

conditions divided by the difference of the analytical parameter values (Eq. 5). 

 

where Rp,g is the distribution of sensitivity at pH p and gradient time g; S′
p,c is the rate of change of the 

separation criterion in the direction of the pH for the considered condition at row c; S′
g,c is the rate of 

change of the separation criterion in the direction of the gradient time for the considered condition at 

row c; and C is the number of rows in the chains. 

The analysis time is defined as the highest retention time per row of the chain of predicted retention 

times and per condition (Eq. 6). 

 

where Ap,g is the distribution of analysis time at pH p and gradient time g; maxc is a function that 

computes the maximum for each row c of the chains; tR,i,c is the retention time of compound i at row 

c; M is the number of compounds; and C is the number of rows in the chains. 

The criteria are then combined in a desirability index. This desirability index is calculated with the 

weighted geometric mean of the criteria. For the probability strategy, the desirability index of each 
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condition is a single value calculated on the probability to reach each criterion. For the desirability 

strategy, the desirability index of each condition is calculated for each row of the chains of criterion 

desirability. This last strategy calculations result in a distribution of desirability index for each 

condition. 

The weights of criteria can be sampled from a Dirichlet distribution. The use of those sampled weights 

results in a distribution of desirability indexes which is less sensitive to small variations of those 

weights. The Dirichlet distribution is defined as the ratio of the different weights multiplied by a 

parameter defining the scale of the distribution that could be interpreted as the confidence the user 

has in the given weights’ values. Once the distribution of desirability is calculated, the user can choose 

a value of desirability index and calculate the probability to reach that value. Then, by selecting a 

threshold of probability to reach, one or more regions of conditions will be selected in the knowledge 

space. One region, for example, the largest, can be selected to fit an optimization design around to 

continue with the optimization step. 

3.2.2. CASE STUDY 

The presented MCDA strategy is applied to the second set of test compounds. All the peak half-widths 

are set at 0.5 minutes. Fig. 1 shows the two possible strategies that result from using the distribution 

of predictions. The two contour plots illustrated were drawn with 10 levels each to allow the 

comparison of the density of the lines. For the probability strategy, the value 0 is used as a threshold 

to calculate the probabilities. It has been chosen as the limit case that would be interesting for a 

chromatographic method: a separation of 0 minutes at the baseline of the peaks. For this first criterion, 

the separation, it can be observed that using the probabilities to select the condition is much more 

restrictive. There is a large region at the bottom with probabilities close to 0 which is not present in 

the graph of the desirability. Moreover, while it is the same region that is chosen as the best regarding 

this criterion, the contour lines are much closer to each other on the probability plot than the 

desirability one. This indicates that a decision based on the probabilities is much more selective on the 

condition which should give the best results. This would have the consequence that the user can be 

much more confident on the results. It can also be noted that, although they are not clearly 

represented, the darker bands characteristic of the coelution of peaks can still be recognized in this 

figure. 

The results of both possible strategies applied to the sensitivity to experimental parameters can be 

seen in Fig. 2. For this criterion, the value of 30 was chosen as threshold. This unitless value has no 

physical meaning. It is selected among the values taken by the criterion. Any value chosen around the 

middle of the range available should work. As it can be seen in Fig. 2, an intermediate value will result 

in an ample range of probabilities. Once again, both contour plots are traced to show 10 levels to ease 

the comparison. From those graphs, the same interpretation can be drawn for the proximity of the 

lines. The probability plot displays contour lines closer to each other for the high-value region than the 

desirability plot. This highlights again that using the probability of the criterion leads to a more 

restrictive outcome. 

The third criterion, the analysis time, is presented with the application of the two possible strategies 

in Fig. 3. A maximum of 40 minutes of analysis time was chosen for the probability strategy. One more 
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time, an intermediate value is chosen with the objective of producing a gradient of probabilities on a 

large surface of the modeled space. Those graphs exhibit the same effect as the other criteria. The 

contour lines of the probability plot are closer to each other compared to the desirability plot, 

indicating the more restrictive behavior of this strategy. Similarly, as the first criterion, extreme cases 

are displayed by large regions, another effect resulting from the contour lines being tight. Regarding 

the effect on the selection of a condition, the strategy based on probability will not discriminate 

conditions as long as the analysis time is below 40 minutes, contrarily to the strategy based on 

desirability which will discriminate and favor shorter analysis time. 

Once they are calculated, the three criteria are combined in a global desirability index. The separation 

criterion has been given a weight of 1, the sensitivity to analysis parameters criterion has been given 

a weight of 0.5 and the analysis time criterion has been given a weight of 0.1. The charts ensuing from 

those calculations are presented in Fig. 4. 

The desirability plot implies that the best condition is at an acidic pH and a very short retention time, 

which does not corroborate the experimental results of the dataset. 

This result might be explained by the repartition of the values used to calculate the criteria. A first hint 

of this uneven distribution of data can be observed by comparing the range of desirability covered by 

each criterion. Indeed, the analysis time desirability in Fig. 3 covers a larger range than the separation 

desirability in Fig. 1. This effect leads to the analysis time having a larger effect on the desirability index 

than expected even though the criteria desirability are weighted. 

From the probability plot, it can be deduced that the best condition is at a pH of 2.7 with a gradient 

time between 50 and 55 minutes. The added value of this strategy compared to the previous one is 

that no other condition that is not in the direct vicinity of this maximum is presented as having a close 

value of desirability index. With the previous strategy, two regions were selected as interesting with 

very high desirability index values but only one of them was actually acceptable. The other condition 

leads to the coelution of some of the peaks. Although some coelution might not be avoidable and 

could be resolved by other means such as peak deconvolution with the UV–visible spectrum, if a better 

condition exists, it should be the one that is selected. In this case, the results were satisfying enough 

as the experimental testing of the selected conditions still lead to fewer experiments than a screening 

plan. Comparatively to the previously presented strategy, the strategy based on probability gives 

results with more confidence and only selects the good region. 

The last steps of the strategy will only be presented with the desirability index calculated on the 

probabilities as it is demonstrated to be the best strategy. An optimization design is developed 

around the selected region for a specific equation. These conditions were selected to investigate 

further around the selected region. Eq. 7 is selected as appropriate for the optimization phase. 

Indeed, the selected area is narrower than one pH unit. Consequently, only the linear and squared 

factors will be considered for the pH. On the other hand, considering that the height of the selected 

region is quite large, and that the literature shows the non-linear effect of the gradient time on the 

retention time, a squared slope factor is added. The interaction factor between pH and slope is still 

relevant, so it is kept. 

log(tR) = β0 +β1 × pH+β2 × tG +β11 × pH2 +β22 × tG2 +β12 × pH × tG +ϵ (7) 
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Fig. 1. The left graphic shows the probability that the minimum separation of a pair of peaks is greater than 0. The right graph shows the quantile 0.75 of the 

desirability of the separation criterion as it was calculated formerly. 

 

Fig. 2. The left graphic shows the probability that the sensitivity to experimental variations is lower than 30. The right graph shows the quantile 0.75 of the 

desirability of the sensitivity to experimental variations criterion as it was calculated formerly 

 

Fig. 3. The left graphic shows the probability that the analysis time is lower than 40. The right graph shows the quantile 0.75 of the desirability of the analysis 

time criterion as it was calculated formerly. 

The design is limited to five points (conditions), the minimum needed to be able to fit the model. The 

results of the last part of this strategy are represented on Fig. 5. 
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The conditions of the optimization plan have been realized experimentally. The gradient time values 

have been rounded to the unit and those of the pH to the tenth of a unit. 

 

Fig. 4. The left graphic shows the desirability index calculated on the probabilities of the criteria. The right graph shows the quantile 0.75 of the desirability index 

calculated on the desirability functions of the criteria. 

 

Fig. 5. Desirability index calculated on the probabilities of the criteria and the conditions selected for the optimization design (black discs). 

It can be observed on the chromatograms (Fig. 6 that the elution order of the compounds does changes 

between the conditions at pH 2.7 and 3.2 and the conditions at pH 3.5, which illustrates well why the 

MCDA did not select this whole region as coelution-free. It can be noted that the worst condition 

regarding coelutions occurs at pH 3.5 and gradient time of 35 minutes where the strategy predicted 

that the results would not be the worst. Nonetheless, the experiments in less desirable conditions 

were needed to support the optimization models. Even if some conditions present some peaks 

coeluting, the optimal condition still needs to be defined in the optimization phase that follows. 
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Fig. 6. The chromatograms extracted at 235 nm of the second test set analyzed in the different conditions of pH and gradient time. 1: 2,2′-bipyridine, 2: pindolol, 

3: metoclopramide, 4: 4-nitrophenol, 5: papaverine, 6: verapamil, 7: ibuprofen 

 

 

Fig. 7. The probability of the distance between the critical pair of peaks to be greater than 0 from the optimization design model with contour lines highlighting 

the regions where the probabilities are greater than 0.99 and 0.999. 

 

Fig. 7 shows the design space as the probability of distance between the critical pair of peaks to be 

greater than 0 from the optimization models. Although the probabilities are different due to the 

models using more information (three retention times per peak), the resulting conditions selected to 

be optimal are in accordance with the results found after the screening but with more confidence, 

indicating the complementarity of the phases. 

4. Conclusion 

The previously developed approach has been improved and simplified regarding the number of steps 

to follow. Indeed, thanks to the Bayesian models, the model uncertainty is straightforwardly 

accessible, eliminating the construction of a distribution step. Moreover, the use of probabilities during 
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the calculation of the criteria removes the need for a scaling step. Of the two models followed by the 

MCDA based on probabilities is better than the former strategy with frequentist models followed by 

an MCDA based on desirability functions. The new strategy is more restrictive on what constitutes a 

good condition. Compared to the initial strategy, which had two separated regions of conditions with 

similar desirability index values that had to be discriminated by experimental results, the new one 

clearly selects a single region as the best. Thus applying this strategy after a QSRR model could be used 

for in silico screening during method development. Using Bayesian models has one more advantage in 

that they are intrinsically capable of being updated. A new perspective could be to use the parameter 

distributions from the fitted models during this phase of development as prior information for the 

parameters of the models during the optimization phase during the experimental development of 

chromatographic method development. 
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